The present disclosure relates to electrochemical energy storage systems. In particular, the present disclosure relates to particular systems and methods for providing a compact framework in which to house an electrochemical energy storage system.
Energy storage systems, such as electrochemical rechargeable batteries, are an important part of electrical power systems, particularly electrical power systems supplied by wind turbine generators, photovoltaic cells, and other non-dispatchable energy sources. Energy storage systems may also be used: to enable energy arbitrage (e.g., the selling and buying power during off-peak hours); as uninterruptible power sources (UPS) to provide backup power; and in power quality applications in conjunction with a prime power source.
According to various embodiments, an electrochemical energy storage system generates electrical power by passing liquid reactants through one or more electrochemical cells. An electrochemical energy storage system may include any number and configuration of cells, depending on the instantaneous power demands of the system. Similarly, an electrochemical energy storage system may have varying amounts of liquid reactants available to it, depending upon the energy capacity needs of the system. The number of cells may determine the amount of instantaneous power the electrochemical energy storage system is capable of producing and/or absorbing. The volume of liquid reactants available to the electrochemical battery generally defines its power storage and production capacity.
Commonly, electrochemical energy storage systems incorporate at least three main components, namely (1) a reaction cell (or series of such cells); (2) reactant storage tanks; and (3) a reactant distribution system for conveying reactants between the tanks and cells. The reactant distribution system may be a complex assembly. The reactant distribution system may include, among other things, pumps, pipes, sensors, and controls related thereto. These individual components may be held together by a structural framework or, in larger installations, may be installed directly onto a plant floor. The elements may be connected by discrete runs of pipe or hoses, as required. Instruments may be installed along these runs of pipe, and may be installed separately from the other components. This configuration, while functional, may lead to a system with a very large number of individual components. The costs of interconnecting pipes, fastening hardware, and the structures to support these parts may result in considerable cost.
The systems and methods disclosed herein may be utilized in a wide variety of types of the electrochemical energy storage systems that utilize a liquid reactant. For example, such electrochemical energy storage systems may utilize a vanadium redox based liquid reactant, a polysulfide bromide based liquid reactant, a zinc-bromine based liquid reactant, a cerium-zinc based liquid reactant, and a lead based liquid reactant.
Systems and methods disclosed herein employ various techniques in order to reduce the complexity and cost of electrochemical energy storage systems. The complexity and cost of an electrochemical energy storage system may be reduced by combining various components of a liquid reactant distribution system into a flow manifold. The flow manifold, in various embodiments, may provide a plurality of channels for distributing liquid reactant to an electrical cell stack. The flow manifold, in various embodiments, may be utilized in conjunction with a flow manifold cover. Other embodiments may include alternative structures for creating fluid pathways that may be utilized to distribute a liquid reactant in an electrochemical energy storage system. For example, different manufacturing processes (e.g., a lost-materials casting process or a rotational moulding process) may be utilized for forming fluid pathways in such embodiments. The flow manifold cover may be configured to support a variety of components of a liquid reactant system. Such components may include one or more liquid reactant pump motors, inlet and outlet ports, a reference cell, and a variety of sensors. The distribution of liquid reactants received via the inlet and outlet ports to the cell stack may be accomplished primarily by way of the flow manifold cover.
In certain embodiments, a flow manifold and a flow manifold cover may be directly coupled to a cell stack. As the term is used herein, a cell stack comprises a plurality of individual electrochemical cells. Coupling a flow manifold and a flow manifold cover to a cell stack may realize several advantages, including: (1) simplifying the installation of an electrochemical energy storage system by reducing the number of fluid connections to be created during the installation; (2) reducing the number of fluid connections within an electrochemical energy storage system may improve reliability; (3) reducing the size of electrochemical energy storage systems; (4) allowing for the production of electrochemical energy storage systems on a single production line as a unitized system; and (5) allowing for the use of common structural components for both the cell stack and the reactant distribution system.
Various embodiments disclosed herein may also realize certain advantages in safety and reliability. More specifically, by reducing the amount of exposed pipe and the number of interconnections through which reactant flows, there is a reduced likelihood of accidental damage to the pipes and interconnections during operation of the system. Further, pipes and interconnections in electrochemical energy storage systems may require the use of toxic bonding agents. Inasmuch as the embodiments disclosed herein require fewer fluid interconnections, such embodiments also require a reduced quantity of bonding agent. The advantages noted above, together with other advantages that will be realized by one having skill in the art, allow for the production, installation, and operation of the electrochemical energy storage systems that are safer, less costly, more compact, easier to produce, and less costly to install.
Cell stack 122 may include reactant inlet ports 142 and 144. The reactants may be supplied to reactant inlet ports 142 and 144 by pumps 116 and 118, respectively. Pumps 116 and 118 may draw a liquid reactant from reactant storage tanks 190 and 191. Pump motors 192 and 193 are connected to pumps 116 and 118 by driveshafts 158 and 159. One of reactant inlet ports 142 and 144 may be utilized to admit a positive reactant (e.g., an analyte solution), while the other port may be utilized to admit a negative reactant (e.g., a catholyte solution).
Reactant storage tanks 190 and 191 may store liquid reactant. One of reactant storage tanks 190 and 191 may store a positive reactant and the other may store a negative reactant. Cell stack 122 may also include reactant outlet ports 176 and 177, from which reactant may exit cell stack 122 and be returned to reactant storage tanks 190 and 191.
A reference cell 120 may provide an indication of the performance of cell stack 122. Reference cell 120 may receive reactant via inlet ports 168, and reactant may exit reference cell 120 by way of reference cell outlet ports 169. Measurements taken from cell stack 122 directly may fluctuate depending on how much power is instantaneously being drawn from cell stack 122. Based on the power fluctuation, directly monitoring the electrical output of cell stack 122 may provide a poor measure of the performance of the electrochemical energy storage system 100. In contrast, reference cell 120 may not be subject to similar fluctuations in power being drawn, and accordingly, reference cell 120 may provide a better indication of the overall performance of cell stack 122. Electrical leads (not shown) from reference cell 120 may be connected to a monitoring and/or control system (not shown). The electrical leads from reference cell 120 may be configured to monitor the open circuit voltage of reference cell 120.
Electrochemical energy storage system 100 may also include a variety of sensors and valves. Sensors 108a, 108b, 110a, and 110b may be configured to monitor certain characteristics of the liquid reactant. For example, sensors 108a and 108b may monitor the temperature and pressure of one reactant, while sensors 110a and 110b monitor the temperature and pressure of the other reactant. In addition, a remix valve 134 may be configured to selectively remix the reactants.
Electrical leads 132 and 133 may conduct electrical energy to, or from cell stack 122. Electrical leads 132 may be electrically coupled to one or more sources of electrical energy and one or more electrical loads. Depending upon the electrical power requirements of a connected electrical load, or depending on the electrical energy supply by an electrical source, pump motors 192 and 193 may adjust their speed in order to vary the amount of reactant passing through cell stack 122. In this way, cell stack 122 may absorb or supply a variable amount of electrical energy. A control system (not shown) may be employed in order to optimize the action of pump motors 192 and 193 based upon the need for, or the availability of electrical energy. Certain embodiments may employ a control system, as described in U.S. Patent Publication No. 2005/0158614, titled System and Method for Optimizing Efficiency and Power Output from a Vanadium Redox Battery Energy Storage System, the entirety of which is incorporated herein by reference.
As illustrated in
As disclosed herein, many fluid connections within an electrochemical energy storage system may be made by way of a flow manifold and a flow manifold cover. An electrochemical energy storage system, including a flow manifold and a flow manifold cover, may exhibit increased reliability because such systems may have a reduced amount of exposed tubing and a reduced number of exposed fluid connections. Further, such systems may be less costly to install because of the reduced number of fluid connections that must be made at the time of installation.
Electrochemical energy storage system 200 may include a front compression frame 206 and a rear compression frame 207. The top perspective view of
A plurality of compression springs 250 may be disposed between front compression frame 206 and a flow manifold cover 224. As illustrated in
Flow manifold cover 224 and flow manifold 230 accommodate various pumps, sensors, valves, and reactant channels that distribute liquid reactants to cell stack 222. In the illustrated embodiment, flow manifold cover 224 includes a plurality of reactant port connectors 212-215 that allow a reactant to enter and exit electrochemical energy storage system 200. Reactant port connectors 212 and 213 may be in fluid communication with reactant inlet ports 242 and 244. One of reactant inlet ports 242 and 244 may be utilized to admit a positive liquid reactant (e.g., an analyte solution), while the other port is utilized to admit a negative liquid reactant (e.g., a catholyte solution). Reactant port connectors 214 and 215 may be in fluid communication with reactant outlet ports 238 and 240. One of reactant outlet ports 238 and 240 may be utilized to allow a positive reactant to exit electrochemical energy storage system 200, while the other port may be utilized to allow a negative reactant to exit electrochemical energy storage system 200. Reactant port connectors 212-215 may be utilized to connect the electrochemical energy storage system 200 to reservoirs containing positive and negative reactants. In certain embodiments, reactant port connectors 212-215 may comprise one-way valves in order to ensure that the liquid reactants flow in the appropriate direction.
Reactant may be circulated throughout electrochemical energy storage system 200 by pump motors 216 and 218. Pump motors 216 and 218 may be connected to flow manifold cover 224 using a pump housing 254 and a pump housing 256, respectively. Pump motor 218 may drive impeller 228. In the illustrated embodiment, flow manifold cover 224 includes an impeller port 252, through which an impeller driveshaft 258 may extend. Although not shown because of the perspective of
Flow manifold cover 224 may also accommodate other devices, such as a reference cell 220, sensors sets 208 and 210, and a remix valve 234. Sensor sets 208 and 210 may be embodied as a variety of types sensors. Various embodiments may include one or more of the following types sensors: pressure sensors, flow rate sensors, temperature sensors, hydrogen sensors, and the like. In the illustrated embodiment, reference cell 220 is disposed on flow cover 224. As discussed above, reference cell 220 may provide an indication of the electrical performance of the cell stack 222. Reference cell 220 may be attached to flow cover 224 using a reference cell mount 236. One set of sensors 208 and 210 may be in fluid communication with the positive reactant, while the other is in fluid communication with the negative reactant. Sensor set 208 may be received within flow pressure sensor ports 260. Remix valve 234 may also be disposed on flow manifold cover 224. Remix valve 234 may be in communication with the reactant by way of remix valve port 248.
Flow manifold cover 224 may abut flow manifold 230 and create a fluid seal. Flow manifold 230 may provide a fluid path connecting various inlet ports, outlet ports, and the cell stack. In the illustrated embodiment, flow manifold 230 abuts flow manifold cover 224 on one side and abuts cell stack 222 on the other side.
Electrochemical energy storage system 200 may include a front current collector 264 and rear current collector 266 (
The reactant may exit cell stack 222 by way of cell stack outlet apertures 276 and 277. Cell stack outlet apertures 276 and 277 may also direct reactant to reference cell channels 282 and 283. Reference cell 220 may sit atop reference cell channels 280-283 in order to receive reactant from each inlet and outlet aperture. Accordingly, reference cell 220 may provide an indication of the performance of electrochemical energy storage system 200.
Operation of remix valve 234 may allow mixing of reactant exiting cell stack 222 by way of cell stack outlet apertures 276 and reactant received by way of reactant inlet aperture 289. Reactant from each of cell stack outlet aperture 276 and reactant inlet aperture 289 may be conducted to remix valve aperture 278 by way of remix channel 279. Remix valve 234 may allow for the restoration of energy capacity of the liquid reactant lost due to water and liquid reactant transfer across the membranes (not shown) in each cell (not shown) of cell stack 222.
As illustrated in
A plurality of electrochemical energy storage systems, such as electrochemical energy storage system 200, may be operated in concert in order to provide a desired amount of electrical energy storage. The embodiments described herein do not require discrete runs of pipe or hoses for internal distribution of reactant. Rather, distribution of reactant is accomplished by way of a flow manifold cover and a flow manifold. Accordingly, installation of the embodiments of electrochemical energy storage systems disclosed herein do not require on-site adjustments to allow for internal distribute liquid reactant. Accordingly, such systems may be produced on a single production line as a unitized system.
It will be obvious to those having skill in the art that many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention. The scope of the present invention should, therefore, be determined only by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4786567 | Skyllas-Kazacos et al. | Nov 1988 | A |
4908281 | O'Callaghan | Mar 1990 | A |
4927509 | Mathur et al. | May 1990 | A |
4956244 | Shimizu et al. | Sep 1990 | A |
5308718 | Eidler et al. | May 1994 | A |
5368762 | Sato et al. | Nov 1994 | A |
5601943 | Eidler et al. | Feb 1997 | A |
5656390 | Kageyama et al. | Aug 1997 | A |
5665212 | Zhong et al. | Sep 1997 | A |
5725967 | Mark | Mar 1998 | A |
5759711 | Miyabayashi et al. | Jun 1998 | A |
5851694 | Miyabayashi et al. | Dec 1998 | A |
6143443 | Kazacos et al. | Nov 2000 | A |
6242125 | Eidler et al. | Jun 2001 | B1 |
6416653 | Barben et al. | Jul 2002 | B1 |
6461772 | Miyake et al. | Oct 2002 | B1 |
6468688 | Kazacos et al. | Oct 2002 | B2 |
6475661 | Pellegri et al. | Nov 2002 | B1 |
6562514 | Kazacos et al. | May 2003 | B1 |
6563234 | Hasegawa et al. | May 2003 | B2 |
6761945 | Adachi et al. | Jul 2004 | B1 |
6764789 | Sekiguchi et al. | Jul 2004 | B1 |
6875535 | Ye et al. | Apr 2005 | B2 |
6916579 | Gorchkov et al. | Jul 2005 | B2 |
7061205 | Shigematsu et al. | Jun 2006 | B2 |
7078123 | Kazacos et al. | Jul 2006 | B2 |
7083875 | Lillis et al. | Aug 2006 | B2 |
7181183 | Hennessy | Feb 2007 | B1 |
7184903 | Williams et al. | Feb 2007 | B1 |
7199550 | Tsutsui et al. | Apr 2007 | B2 |
7220515 | Ito et al. | Apr 2007 | B2 |
7227275 | Hennessy et al. | Jun 2007 | B2 |
7258947 | Kubata et al. | Aug 2007 | B2 |
7265456 | Hennessy | Sep 2007 | B2 |
7353083 | Hennessy | Apr 2008 | B2 |
7389189 | Williams et al. | Jun 2008 | B2 |
7517608 | Brereton et al. | Apr 2009 | B2 |
7682728 | Harper | Mar 2010 | B2 |
7687193 | Harper | Mar 2010 | B2 |
7704634 | Deguchi et al. | Apr 2010 | B2 |
7740977 | Lepp et al. | Jun 2010 | B2 |
8026013 | Valensa et al. | Sep 2011 | B2 |
8048555 | Darcy et al. | Nov 2011 | B2 |
20040151953 | Kirk et al. | Aug 2004 | A1 |
20040169493 | Tsutsui et al. | Sep 2004 | A1 |
20040241544 | Nakaishi et al. | Dec 2004 | A1 |
20050004716 | Lillis et al. | Jan 2005 | A1 |
20050158614 | Hennessy | Jul 2005 | A1 |
20050158615 | Samuel et al. | Jul 2005 | A1 |
20060183016 | Kazacos | Aug 2006 | A1 |
20070072067 | Symons et al. | Mar 2007 | A1 |
20070202385 | Minamiura | Aug 2007 | A1 |
20080241643 | Lepp et al. | Oct 2008 | A1 |
20090004536 | Knauer et al. | Jan 2009 | A1 |
20090047571 | Harper | Feb 2009 | A1 |
20090311559 | Levine et al. | Dec 2009 | A1 |
20100003545 | Home et al. | Jan 2010 | A1 |
20100003586 | Sahu | Jan 2010 | A1 |
20100021805 | Winter | Jan 2010 | A1 |
20100136455 | Winter | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
0814527 | Dec 1997 | EP |
1284513 | Feb 2003 | EP |
1385226 | Jan 2004 | EP |
2030349 | Apr 1980 | GB |
2085475 | Apr 1982 | GB |
63069151 | Mar 1988 | JP |
07153477 | Dec 1993 | JP |
07192776 | Jul 1995 | JP |
9283169 | Oct 1997 | JP |
200317763 | Nov 2003 | JP |
WO2006129635 | Dec 2006 | JP |
1019990076812 | Oct 1999 | KR |
1020010106463 | Nov 2001 | KR |
WO 8905363 | Jun 1989 | WO |
WO9003666 | Apr 1990 | WO |
WO9939397 | Aug 1999 | WO |
WO 2006089415 | Feb 2006 | WO |
WO2006081514 | Aug 2006 | WO |
WO 2010118060 | Apr 2010 | WO |
Entry |
---|
International Preliminary Report on Patentability for PCT/US2011/038607 filed May 31, 2011, and dated Jan. 10, 2013, 7 pgs. |
Hagedorn, Mark, et al., “NASA Redox Cell Stack Shunt Current, Pumping Power, and Cell Performance Tradeoffs,” National Aeronautics and Space Administration, Lewis Research Center, Feb. 1982, 30 pgs. |
Hawkins, J.M, et at., “A field of a Vanadium Energy Storage System,” INTELC 2001, Oct. 2001, pp. 652-656, Conference Publication No. 484. |
“Flow Battery,” Flow Battery Solutions, Mar. 15, 2013, <http://www.arbin.com/ products/flow-battery?gclid=CKvNqLXD7bUCFed1Ogod-jcAkQ>. |
ZBB Energy Corporation, Menomonee Falls, Wisconsin, United States; Product Brochure, “The Focus of Avanced Energy Storage Systems”; (8 pgs.) |
Premium Power Corporation, North Reading, Massachusetts, United States; Product Brochure, “TransFlow 2000 Utility-Scale Mobile Energy Storage System”; (2 pgs.). |
Close, Tullis; “Energy storage—a key technology for global energy sustainability”, Journal of Power Sources 100, 2-17, 2001 (16 pgs.). |
Shigematsu, T.; Kumamoto T.; Deguchi, H.; and Hara, T.; “Applications of a Vanadium Redox-Flow Batter to Maintain Power Quality”, Sumitomo Electric Industries, Ltd., IEEE 2002 (6 pgs.). |
Barton, John P. and Infield, David G.; Énergy Storage and Its Use with Intermittent Renewable Energy, IEEE Transactions on Energy Conversion, vol. 19, No. 2, Jun. 2004 (8 pgs.). |
ZBB Energy Corporation, “The Focus of Advanced Energy Storage Systems,” http://www.zbbenergy.com/pdf/ABB_CorpBrochure_Web.pd, 8 pgs. |
Premium Power Corporation, “TransFlow 2000, Utility-Scale Mobile Energy Storage System,” http://www.premiumpower.com/product/TF2000_2-pager.pdf, 2 pgs. |
International Search Report and Written Opinion for PCT/US2011/038607 filed May 31, 2011, and dated Jan. 16, 2012, 34525/270 PCT, 10 pgs. |
Nguyen, Trung and Savinell, Robert F.; “Flow Batteries”, The Electrochemical Society Interface; Fall 2010 (3 pgs.). |
Norris, Benjamin L.; Lex, Peter; Ball, Greg J.; and Scaini, Vince; “Grid-Connected Solar Energy Storage Using the Zinc-Bromine Flow Battery”; (4 pgs.). |
Ponce De Leon, C.; Frias-Ferrer, A.; Gonzalez-Garcia, J.; Szanto, D.A.; and Walsh, F.C.; “Redox Flow Cells for Energy Conversion”; Elsevier B.V. ScienceDirect, Journal of Power Sources 160, 716-732; 2006 (17 pgs.). |
Scamman, Daniel P.; Reade, Gavin W.; and Roberts, Edward P.L.; “Numerical Modelling of a Bromide-Polysulphide Redox Flow Battery Part 1: Modelling Approach and Validation for a Pilot-Scale System”; Elsevier B. V. Journal of Power Sources 189, 1120-1230; 2009 (9 pgs.). |
Tokuda, Nobuyuki; Kanno, Takashi; Hara, Takushi; Shigematsu, Toshio; Tsutsui, Yasumitsu; Ikeuchi, Atsuo; Itou, Takefumi; and Kumamoto, Takahiro; “Development of a Redox Flow Battery System”; SEI Technical Review, No. 50; Jun. 2000 (7 pgs.). |
Premium Power Corporation, North Andover, Massachusetts, United States; Powerblock 150 Specifications; (2 pgs.). |
Premium Power Corporation, North Andover, Massachusetts, United States; Product Brochure, “Zinc-Flow 45 Regenerative fuel cell with DC output power, for uninterrupted operation of mission-critical site infrastructure”; (2 pgs.). |
Number | Date | Country | |
---|---|---|---|
20110311896 A1 | Dec 2011 | US |