This application relates generally to methods and systems for retrieving, capturing, filtering, or removing obstructions or other particulates (thrombus, clot, emboli, foreign body (e.g., loose aneurysm coils)) from a patient's vasculature, and more specifically relates to integrated thrombectomy and filtering devices and methods of use.
Typically, acute ischemic stroke is caused by thrombotic or embolic occlusion of a cerebral artery obstructing flow therethrough. Preserving salvageable tissue in a patient's ischemic penumbra by restoring blood flow is a primary objective of acute ischemic stroke therapies. Recanalization therapies may include administration of intravenous tissue-type plasminogen activators or endovascular intra-arterial techniques for clot retrieval (e.g., mechanical thrombectomy).
Currently, a common mechanical thrombectomy technique includes positioning a self-expanding stent on a delivery wire within a blood vessel and aligning the stent with a clot. The stent is configured to engage the clot and be withdrawn with the clot out of a patient. In some situations, a clot may be strongly adhered to a vessel wall. Because self-expandable stents are generally maintained in an open position via internal radial force, such stents tend to compress when encountering radial resistance during retrieval. For example, a pull force applied to the proximal end of such a stent translates into compressive force causing the stent to compress and collapse. A partially compressed stent may slide through a channel created through the clot during the stent delivery or placement process which may leave behind residual clots or fragments still adhered to the vessel wall. Another common mechanical thrombectomy technique includes directly aspirating a clot. Such aspiration techniques may also leave behind residual clots or fragments that may migrate distally, potentially occluding smaller downstream vessels. Therefore, it would be desirable to provide improved systems and methods for retrieving, capturing, filtering, or removing obstructions or other particulates from a patient's vasculature.
The invention relates generally to methods and systems for retrieving, capturing, filtering, or removing obstructions or other particulates from a patient's vasculature, and more specifically relates to integrated thrombectomy and filtering devices and methods of use. The vasculature contemplated herein may include a neurovasculature, a pulmonary vasculature, a peripheral vasculature, or a coronary vasculature. The methods and systems described herein may be used for any suitable medical procedure. For example, they may be used for the neurovascular procedure, a pulmonary vasculature procedure, a coronary vasculature procedure, or a peripheral vasculature procedure. The disclosure contemplates removal of obstructions that may include a thrombus, emboli, or clot. The disclosure also contemplates the removal of obstructions including foreign body objects (e.g., a dislodged implant, a dislodged aneurysm coil). Such methods and systems may be suitable for use during an intravascular procedure to restore blood flow through a blocked or obstructed vessel (e.g., arterial lumen). For example, the methods and systems may be configured to remove clots from a neurovascular vessel or lumen (e.g., in the head, neck, or brain) or provide protection from distal emboli (e.g., filtering) during removal of the clot, an aspiration procedure, or other procedure (e.g., to break up or dissolve the clot). In one aspect, an intravascular device for retrieving an obstruction from a patient is provided that includes an outer delivery shaft and an expandable basket movable between a collapsed configuration and an expanded configuration. The expandable basket is configured to be in the collapsed configuration during delivery into a vasculature of the patient and in the expanded configuration during engagement and retrieval of the obstruction. The expandable basket includes a proximal end and a distal end. The proximal end is configured to be centrally and pivotally coupled to the outer delivery shaft. At least one of the proximal end or the distal end is movable relative to each other such that a proximal portion of the expandable basket is invertible towards a distal portion of the expandable basket to form a proximally oriented cavity in the expanded configuration to engage and retrieve the obstruction.
In some embodiments, a distal portion of the outer delivery shaft is pivotally coupled to the proximal end of the expandable basket. The intravascular device may include an inner core wire extending (e.g., coaxially) through the outer delivery shaft with a distal portion of the inner core wire coupled to the distal end of the expandable basket. In some aspects of the invention, the proximal end of the expandable basket is axially movable relative to the distal end to invert the proximal portion of the expandable basket towards the distal portion of the expandable basket to form the proximally oriented cavity. In certain embodiments, the distal end of the expandable basket is axially movable relative to the proximal end to invert the proximal portion of the expandable basket towards the distal portion of the expandable basket to form the proximally oriented cavity. In some embodiments, the proximally oriented cavity has a cup-shaped cavity.
In some embodiments, the proximal end of the expandable basket is spaced radially inward from a peripheral edge of the distal portion of the expandable basket when the proximal portion is inverted towards the distal portion of the expandable basket. The axial positions of the proximal and distal ends of the expandable basket are securable relative to each other after the proximal portion of the expandable basket is inverted towards the distal portion of the expandable basket to form the proximally oriented cavity. In some embodiments, the proximal and distal ends of the expandable basket are securable relative to each other in a plurality of axial positions such that a shape or size of the proximally oriented cavity is adjustable.
In certain aspects of the inventions, the distal portion of the expandable basket includes a pre-set conical configuration. In certain embodiments, the intravascular device includes an aspiration system configured to aspirate a retrieved obstruction from the proximally oriented cavity of the expandable basket out of the patient. In certain embodiments, the intravascular device includes a delivery catheter configured to position the expandable basket distal to the obstruction in the collapsed configuration, the delivery catheter extending around at least a portion of the expandable basket. In some embodiments, the expandable basket is configured to be moved to the collapsed configuration from the expanded configuration for removal from the patient via the delivery catheter after removal of a retrieved obstruction.
In yet further embodiments, the intravascular device includes a handle coupled to the outer delivery shaft and the inner core wire, the handle including one or more locking mechanisms configured to secure a position of the outer delivery shaft relative to a position of the inner core wire. In some embodiments, the expandable basket is constructed from a radiopaque material. The expandable basket may be fluoroscopically viewable at least in part due to the radiopaque material. In some embodiments, the device includes a coil extending around a distal tip of the inner core wire. In some embodiments, the coil (or at least a portion thereof) may be made of platinum, platinum alloy, or otherwise a material that includes platinum. In certain embodiments, the inner core wire tapers in diameter from a proximal portion to a distal portion of the inner core wire. In some embodiments, the inner core wire includes a cylindrical portion and a flattened portion. The flattened portion may be at a distal end of the inner core wire. In some embodiments, the expandable basket comprises a filter to trap particulates released during aspiration or removal of the obstruction to prevent distal migration of particulates of the obstruction.
In some embodiments, an extender wire may be coupled to the inner core wire. For example, the extender wire may be releasably coupled to the inner core wire. The extender wire may be releasably coupled to the inner core wire via one or more extender hypotubes. In some embodiments, a delivery catheter may be exchanged for a different catheter (e.g., an aspiration catheter) over the extender wire.
In yet other embodiments, the expandable basket includes support ribs. In some embodiments, a portion of the expandable basket includes multiple layers. The multiple layers may include an inner layer and an outer layer. In certain embodiments, the inner layer is configured to expand to a larger diameter relative to the outer layer when the expandable basket is moved to a partially expanded configuration between the collapsed configuration and expanded configuration. In some embodiments, the intravascular device includes an aspiration catheter, the aspiration catheter configured to be at least partially positioned within the proximally oriented cavity during an aspiration procedure
In another aspect of the invention, a method for retrieving a thrombus (or some other obstruction) from a neurovasculature of a patient to prevent or treat ischemic stroke is provided that includes the steps of: advancing a neurovascular device distally of a thrombus within a patient, the neurovascular device comprising an expandable basket movable between a collapsed configuration and an expanded configuration and having a proximal end and a distal end, the proximal end configured to be centrally and pivotally coupled to an outer delivery shaft; deploying the expandable basket from the collapsed configuration to the expanded configuration by moving at least one of the proximal end or distal end relative to each other to invert a proximal portion of the expandable basket towards a distal portion of the expandable basket to form a proximally oriented cavity, the proximally oriented cavity having a proximally oriented cavity in the expanded configuration to engage and retrieve the thrombus; retracting the expandable basket proximally to engage and retrieve the thrombus into the proximally oriented cavity.
In some embodiments, the method includes pivoting the outer delivery shaft relative to the expandable basket as the expandable basket is pulled proximally through the neurovasculature. In certain embodiments, the intravascular device includes the outer delivery shaft and an inner core wire extending coaxially through the outer delivery shaft with a distal portion of the inner core wire coupled to the distal end of the expandable basket. In some embodiments, moving the expandable basket from the collapsed configuration to the expanded configuration includes moving the proximal end of the expandable basket axially towards the distal end of the expandable basket to invert the proximal portion of the expandable basket towards the distal portion of the expandable basket to form the proximally oriented cavity.
In certain aspects of the invention, moving the expandable basket from the collapsed configuration to the expanded configuration includes moving the distal end of the expandable basket axially towards the proximal end of the expandable basket to invert the proximal portion of the expandable basket towards the distal portion of the expandable basket to form the proximally oriented cavity. In some embodiments, the proximal end of the expandable basket is spaced radially inward from a peripheral edge of the distal portion of the expandable basket when the proximal portion is inverted towards the distal portion of the expandable basket.
In some aspects of the invention, the method further includes securing axial positions of the proximal and distal ends of the expandable basket relative to each other after forming the proximally oriented cavity to maintain the expandable basket in the expanded configuration. The proximal and distal ends of the expandable basket may be securable relative to each other in a plurality of axial positions such that a shape or size of the proximally oriented cavity is adjustable. In some embodiments, the distal portion of the expandable basket comprises a pre-set conical configuration.
In some aspects of the invention, the method for retrieving a thrombus from a neurovasculature of a patient further includes aspirating a retrieved thrombus from the proximally oriented cavity of the expandable basket out of the patient. In some embodiments, inserting the intravascular device includes positioning the expandable basket distal to the thrombus in the collapsed configuration via a delivery catheter extending around at least a portion of the expandable basket. In some embodiments, the method further includes moving the expandable basket to the collapsed configuration from the expanded configuration for withdrawal from the patient via the delivery catheter after removal of a retrieved thrombus.
In some aspects of the invention, the expandable basket may be retracted proximally toward the aspiration catheter such that at least a portion of the expandable basket cups or surrounds a distal portion of the aspiration catheter. During this retraction, the aspiration catheter may be maintained in a substantially stationary position. In other aspects of the invention, the aspiration catheter may be advanced distally toward the proximally oriented cavity of the expandable basket such that at least a portion of the expandable basket cups or surrounds a distal portion of the aspiration catheter. The expandable basket may be radially expanded to contact a vessel wall distal to the thrombus (or other obstruction) being retrieved, and may effectively create a seal against the vessel wall to prevent emboli from being released distally. This seal may be maintained while the aspiration catheter is advanced all the way up to the dome of the proximally oriented cavity, such that all of the thrombus may be aspirated while preventing emboli from being released distally. During this event, the expandable basket may be maintained in a substantially stationary position. In some aspects of the invention, a portion of the proximally oriented cavity of the expandable basket may come in contact with the distal portion of the aspiration catheter. For example, aspiration catheter may be advanced all the way to the top of the dome formed by the proximally oriented cavity such that the dome of the proximally oriented cavity comes in contact with the distal portion of the aspiration catheter (or alternatively, the expandable basket may be retracted such that the top of the dome of the proximally oriented cavity comes in contact with the distal portion of the aspiration catheter). In some aspects of the invention, a combination of both techniques may be used.
In some aspects of the invention, a thrombus (or some other obstruction) may be capped by surrounding at least a distal portion of the thrombus within the proximally oriented cavity of the expandable basket. The thrombus may be retrieved from a vasculature in conjunction with a catheter proximal to the thrombus so as to remove the thrombus substantially intact.
In some aspects of the invention, the method further includes locking a position of the outer delivery shaft relative to a position of the inner core wire after the proximally oriented cavity is formed to maintain the expandable basket in the expanded configuration during engagement and retrieval of the thrombus. In certain embodiments, the expandable basket is constructed from a radiopaque material. In some embodiments, the intravascular device includes a coil extending around a distal tip of the inner core wire. In certain embodiments, the inner core wire tapers in diameter from a proximal portion to a distal portion of the inner core wire. In certain embodiments, the method further includes filtering into the proximally oriented cavity particulates released during aspiration or removal of the thrombus. In some embodiments, the method further includes withdrawing the expandable basket in the collapsed configuration from the patient via the delivery catheter.
In some aspects of the invention, deploying the expandable basket from the collapsed configuration to the expanded configuration includes moving the expandable basket to a partially expanded configuration between the collapsed configuration and the expanded configuration prior to moving at least one of the proximal end or distal end relative to each other, wherein the expandable basket is not constrained by a delivery catheter or sheath extending around at least a portion of the expandable basket. In some aspects of the invention, the method further includes pivoting the expandable basket so that the expandable basket remains substantially centered in the neurovasculature and substantially maintains vessel opposition during retraction of the expandable basket during thrombus retrieval. In some aspects of the invention, a shape of the proximally oriented cavity is substantially maintained independent of the retraction or retracting step of the expandable basket.
In another aspect of the invention, an intravascular device for filtering particulates released during an intravascular procedure performed upon a patient to prevent distal migration of the released particulates is provided that includes the an outer delivery shaft and an expandable basket movable between a collapsed configuration and an expanded configuration. The expandable basket is configured to be in the collapsed configuration during delivery into a vasculature of the patient and in the expanded configuration to filter particulates released during the intravascular procedure. The expandable basket includes a proximal end and a distal end. The proximal end is configured to be centrally and pivotally coupled to the outer delivery shaft, and at least one of the proximal end or the distal end is movable relative to each other such that a proximal portion of the expandable basket is invertible towards a distal portion of the expandable basket to form a proximally oriented cavity in the expanded configuration configured to retain the released particulates therein.
In another aspect of the invention, a method for filtering particulates released during an neurovascular procedure performed upon a patient to prevent distal migration of the released particulates is provided that includes advancing an neurovascular device into a neurovasculature of the patient. The neurovascular device includes an expandable basket movable between a collapsed configuration and an expanded configuration and includes a proximal end and a distal end. The proximal end is configured to be centrally and pivotally coupled to an outer delivery shaft. The method includes deploying the expandable basket from the collapsed configuration to the expanded configuration by moving at least one of the proximal end or distal end relative to each other to invert a proximal portion of the expandable basket towards a distal portion of the expandable basket to form a proximally oriented cavity. The proximally oriented cavity in the expanded configuration to filter particulates released during the neurovascular procedure. The method further includes capturing the released particulates within the proximally oriented cavity.
In another aspect of the invention, a method for filtering particulates released during a neurovascular aspiration procedure performed upon a patient to prevent distal migration of the released particulates is provided, the method includes advancing a neurovascular device into a neurovasculature of the patient, the neurovascular device comprising an expandable basket movable between a collapsed configuration and an expanded configuration and having a proximal end and a distal end, the proximal end configured to be centrally and pivotally coupled to an outer delivery shaft; anchoring the neurovascular device distal of a thrombus; deploying the expandable basket from the collapsed configuration to the expanded configuration by moving at least one of the proximal end or distal end relative to each other to invert a proximal portion of the expandable basket towards a distal portion of the expandable basket to form a proximally oriented cavity, the proximally oriented cavity in the expanded configuration configured to filter particulates released during the neurovascular aspiration procedure; aspirating the thrombus; and capturing the released particulates of the thrombus within the proximally oriented cavity while aspirating.
In some aspects of the invention, the outward radial force exerted by the expandable basket against the vasculature (e.g., when it is in its expanded configuration) may be sufficient to secure the intravascular device in place without the use of any separate anchors. An outside perimeter of the expandable basket may intimately contact a wall of the vasculature to maintain vessel opposition and fixation of the expandable basket. The anchor position of the intravascular device may be repositioned or adjusted distal of a thrombus by, for example, collapsing or partially collapsing the expandable basket, repositioning the expandable basket, and again expanding the expandable basket. In some aspects of the invention, the anchoring may be carried out without blocking blood flow within the vasculature. In some aspects of the invention, the delivery catheter through which the intravascular device was advanced may be withdrawn, and an aspiration catheter may be navigated to the anchored expandable basket. The anchored expandable basket may provide a substantially fixed pre-positioned guide to the thrombus. The aspiration catheter may be tracked over the outer delivery shaft of the vascular device. Once the aspiration catheter is near an obstruction (e.g., a thrombus), the obstruction may be aspirated as the aspiration catheter is advanced distally toward the expandable basket. During this aspiration, any released particulates of the obstruction may be filtered by the expandable basket and retained within the proximally oriented cavity. In some aspects of the invention, separate anchors may be included to secure the intravascular device (e.g., the expandable basket) in position within a vasculature (e.g., a neurovascular).
In some aspects of the invention, the expandable basket may be constructed from a radiopaque material. The intravascular device may include a radiopaque marker band coupled to an inner perimeter of the outer delivery shaft and further coupled to a proximal anchoring element that is coupled to the proximal end of the expandable basket. In some aspects of the invention, the expandable basket may be constructed from a radiopaque material, and the coil may be radiopaque. The intravascular device may further include a radiopaque proximal anchoring element (e.g., a coil) at the proximal end of the expandable basket, and a radiopaque distal anchoring element (e.g., a coil) at the distal end of the expandable basket. The intravascular device may also include a radiopaque supporting coil between the proximal anchoring element and the distal anchoring element.
In some aspects of the invention, an intravascular device kit for retrieving an obstruction from a patient is provided. The kit may include an intravascular device, such as the one disclosed herein, and an extender wire disposed within a packaging container. The intravascular device may include an outer delivery shaft and an expandable basket movable between a collapsed configuration and an expanded configuration. The extender wire may be releasably coupleable to the intravascular device. In some aspects of the invention, the intravascular device and the extender wire may be disposed together within the packaging container to form an interleaved coil. The expandable basket may be configured to be in the collapsed configuration during delivery into a vasculature of the patient and in the expanded configuration during engagement and retrieval of the obstruction. The expandable basket may include a proximal end and a distal end. At least one of the proximal end or the distal end may be movable relative to each other such that a proximal portion of the expandable basket is invertible towards a distal portion of the expandable basket to form a proximally oriented cavity in the expanded configuration configured to engage and retrieve an obstruction. The proximal end of the expandable basket may be configured to be centrally and pivotally coupled to the outer delivery shaft. In some aspects of the invention, the kit may include one or more extender hypotubes for coupling the extender wire to the intravascular device. In some aspects of the invention, the kit may include a delivery catheter disposed within the packaging container. The delivery catheter may be disposed in a coil interleaved with the intravascular device and the extender wire.
With reference to
The expandable basket 102 includes a proximal end 104 and a distal end 106. The proximal end 104 is centrally and pivotally coupled to an outer delivery shaft 108 (e.g., a hypotube) allowing the expandable basket 102 to pivot and maintain contact with a vessel wall as described in more detail below with reference to
The proximally oriented cavity 112 includes a cavity 118 (e.g., opening, basin, catch portion) configured to engage, capture, retrieve, or filter a clot or other obstruction therein for removal from a patient during an intravascular procedure as described herein. As illustrated in
In some embodiments, the proximal end 104 is movable relative to the distal end 106 of the expandable basket 102 to form the proximally oriented cavity 112. For example, the outer delivery shaft 108 having a distal portion or end pivotally coupled to the proximal end 104 of the expandable basket 102 may be moved (e.g., pushed) distally to invert the proximal portion 114 of the expandable basket 102 towards the distal portion 116. In other embodiments, the distal end 106 is movable relative to the proximal end 104 of the expandable basket 102 to form the proximally oriented cavity 112. For example, the inner wire 110 having a distal portion coupled to the distal end 106 of the expandable basket 102 may be moved (e.g., pulled, drawn) proximally to invert the proximal portion 114 of the expandable basket 102 towards the distal portion 116. In yet other embodiments, both the proximal end 104 and the distal end 106 of the expandable basket 102 are movable relative to each other to move the expandable basket 102 to the expanded configuration and form the proximally oriented cavity 112.
The intravascular device may include a handle 120 (e.g., a catheter handle) coupled to the outer delivery shaft 108 or inner wire 110. The handle 120 may include one or more actuating components 128 configured to move the proximal end 104 or the distal end 106 of the expandable basket 102 relative to each other (e.g., by pushing the outer delivery shaft 108 distally or drawing the inner wire 110 proximally). The components 128 may also be configured to move a delivery catheter as discussed in more detail below. As discussed above, the relative movement of the proximal end 104 or distal end 106 moves the expandable basket 102 from the collapsed configuration to the expanded configuration. Such relative movement compresses the expandable basket 102 longitudinally or axially and inverts the proximal portion 114 of the expandable basket 102 towards the distal portion 116 to form the proximally oriented cavity 112.
The handle 120 may include one or more locking mechanisms 122 configured to lock or secure a location or position of the outer delivery shaft 108 and the inner wire 110 relative to each other (e.g., relative positions of the proximal and distal ends of the expandable basket 102). By securing the relative positions of the outer delivery shaft 108 and inner wire 110, the expandable basket 102 may be maintained in the expanded configuration after the proximally oriented cavity 112 is formed (e.g., independent of pulling force when engaging and retrieving an obstruction). Maintaining the expandable basket 102 in the expanded configuration prevents or reduces compression of the expandable basket 102 as the expandable basket 102 is pulled across or over an obstruction that may be, for example, strongly adhered to a vessel wall.
Further, in some embodiments, relative positions of the proximal and distal ends of the expandable basket 102 may be configured to be secured in multiple or various positions (e.g., two or more positions relative to each other). For example, the locking mechanism 122 may be configured to secure the outer delivery shaft 108 and the inner wire 110 relative to each other at multiple positions. A shape or size of the proximally oriented cavity 112 may be modified depending on the distance between positions of the outer delivery shaft 108 and inner wire 110. In some embodiments, the outer delivery shaft 108 may be secured at a first position or first distance relative to the inner wire 110 with the proximally oriented cavity 112 having a first diameter and a first length. The outer delivery shaft 108 may then be secured at a second position or second distance relative to the inner wire 110 (e.g., with the proximal end 104 more proximal or farther away from the distal end 106 than in the first position). The second distance may be greater than the first distance. In the second position, the proximally oriented cavity 112 may have a second diameter less than the first diameter or a second length greater than the first length. In other embodiments, the second distance may be less than the first distance (e.g., with the proximal end 104 more distal or closer to the distal end 106). Such adjustability may allow a clinician to change the shape or size of the proximally oriented cavity 112 as desired to engage and retrieve or filter obstructions in different sized vessels or during a same intravascular procedure.
As illustrated in
As discussed above, the expandable basket 102 is pivotally and centrally coupled to a distal end of the outer delivery shaft 108. The outer delivery shaft 108 is a hollow structure or includes a lumen configured to allow the inner wire 110 to extend therethrough. The outer delivery shaft 108 may be constructed out of a metallic material (e.g., stainless steel), multi-layer composite, or other suitable material. In some embodiments, the outer delivery shaft 108 may be made of a same material (e.g., braided) as the expandable basket 102. A distal segment or portion 109 of the outer delivery shaft 108 proximate or at the proximal end of the expandable basket 102 may be more flexible relative to a proximal segment or portion to allow the delivery shaft 108 to bend or pivot relative to the expandable basket 102. In some embodiments, the outer delivery shaft 108 may be a hypotube. The outer delivery shaft 108 may be slotted, spiral or diagonal cut, or include other suitable patterns or shaped notches or holes at the distal segment or portion 109 to allow the distal segment or portion to bend, pivot, or elastically deform relative to the proximal segment or portion. For example, the distal portion 109 may be slotted while the proximal portion of the shaft 108 is unslotted. In other embodiments, the distal portion 109 may include more slots or a higher slot density relative to the proximal portion of shaft 108. In yet further embodiments, relative amount or slot density may vary across the length of the distal portion 109 (e.g., distal half having more slots relative to a proximal half). In some embodiments, instead of or in addition to slots, the distal segment or portion 109 may be made of a different material (e.g., less stiff or more deformable or flexible) relative to the proximal segment or portion of the outer delivery shaft 108. In some embodiments, material stiffness may vary across a length of the distal portion 109.
The inner wire 110 may be a movable or actuatable core or pull wire extending past or distal to the distal end of the outer delivery shaft 108 coupled to the distal end of the expandable basket 102. The inner wire 110 may be constructed out of solid wire(s) or multi-strands of cable twisted together. In some embodiments, a distal tip 130 of the inner wire 110 extends past the distal end 106 of the expandable basket. The distal tip 130 may be an atraumatic tip. In some embodiments, the distal tip 130 includes a protective coil 132 (e.g., a helical coil) extending around the tip 130 configured to resile or deflect against vessel walls such that the expandable basket 102 does not substantially damage or penetrate such walls during delivery to a retrieval or filtering site. The coil 132 may be separate from the inner wire 110 or may be integrated with the inner wire 110. The coil 132 may be coupled to or supported by a portion of the distal tip 130. The coil 132 may be a coil made of platinum, or any other suitable material.
With reference to
In some embodiments, the proximal or distal portions 114 or 116 of the expandable basket 102 may have pre-set (e.g., heat-set, shape-set, heat treated) cylindrically-shaped or conically-shaped configurations, respectively. For example, the proximal and distal portions 114 or 116 may be made of shape-memory materials pre-set into different configurations such that only one of the proximal or distal portions (e.g., the proximal portion) is invertible to form the proximally oriented cavity 112. In other embodiments, the proximal or distal portions 114 or 116 may have other suitably-shaped pre-set configurations. In some embodiments, the distal portion 116 has a different pre-set configuration than the proximal portion 114 to allow only the proximal portion of the expandable basket 102 to invert or be invertible. For example, in some embodiments, the distal portion 116 may have a conical-shaped pre-set configuration and the proximal portion may have a more cylindrically-shaped configuration (e.g., proximally oriented cavity 112). As one of the proximal or distal ends of the expandable basket 102 is moved toward each other, the proximal portion 114 may invert to return to the pre-set cylindrical shaped configuration while the distal portion 116 will remain or tend to remain in the pre-set conical-shaped configuration (
With reference to
In some embodiments, the inner layer 105b is configured to expand or expands more or equivalently relative to the outer layer 105a when the basket 102 is moved to a partially expanded or intermediary configuration from the collapsed configuration as described in more detail below (
With reference to
As illustrated in
With reference to
As illustrated in
As illustrated in
Referring to
Anchoring the expandable basket 102 within a vessel may be further advantageous in that it may facilitate navigation of a catheter (e.g., a delivery catheter and/or an aspiration catheter) through narrow and/or tortuous pathways, which may be commonly encountered, for example, in the neurovasculature. For example, the relatively small distal end 106 of the expandable basket 102 may be navigated around narrow, tortuous pathways of the neurovasculature in ways that may not be feasible for the larger profile of catheters or sheaths. In this example, the expandable basket 102 may be expanded and inverted once it reaches a target location, at which point it may serve as an anchor point which may be used by an operator to navigate a catheter or sheath (e.g., an aspiration catheter 244) proximal to the target location. For example, once the expandable basket 102 is anchored in this manner, an operator may remove the delivery catheter 240 that introduced the expandable basket 102, but may leave behind the intravascular device 100e. The operator may then navigate an aspiration catheter 244 over the outer delivery shaft 108 (e.g., coaxially) proximal to the target location. In this example, the expandable basket 102 may exert sufficient outward radial force on the vessel wall in its inverted conformation to allow the operator to advance the aspiration catheter (or any other suitable catheter or sheath) distally with respect to the outer delivery shaft 108 while keeping the expandable basket 102 at or near the target location. In some embodiments, the operator may leave the delivery catheter 240 and may simply introduce the aspiration catheter 244 over the delivery catheter 240. In these embodiments, the aspiration catheter 244 may have a larger diameter than the delivery catheter 240. The efficacy of procedures such as thrombectomy is time dependent, and patient outcomes are directly correlated with reduced recanalization from time of onset. One disadvantage of existing procedures is that they are time- and skill-intensive when it comes to navigating to the site of the lesion. Moreover, vessels of the vasculature—and particularly those of the neurovasculature—are delicate, and can be prone to perforation. The path that the catheter needs to navigate to reach the treatment site follows a long and tortuous route. Additionally, increased time and potential complications may be increased in the event that an aspiration catheter is clogged or needs to be removed and cleaned. The advantage of the anchoring functionality of the intravascular device, when used, is evident when compared to devices that are not so anchored—in such devices, when the aspiration catheter is removed out of the access port, the operator would lose access to the lesion and would need to re-navigate a guidewire to the lesion site, adding time and potential complication to the procedure. The anchoring functionality described here may provide for a fixed, anchored intravascular device 100 that may not require any re-navigation once the expandable basket 102 is anchored. To aid with stability of the anchoring, the intravascular device may also have an extender wire (as described elsewhere herein) to extend the wire enough to allow the operator to hold onto the proximal end of the wire without movement at the distal end to perform an exchange maneuver for removing the delivery catheter. Providing an anchored system as described herein is likely to decrease procedural time and potentially improve outcomes.
Referring to
Referring to
Although
The example embodiment discussed above with respect to
In the description above, various embodiments of the present invention are described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the embodiments. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details. Furthermore, well-known features may be omitted or simplified in order not to obscure the embodiment being described. The subject matter of the present invention is described here with specificity, but the claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies.
This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described. Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and sub-combinations are useful and may be employed without reference to other features and sub-combinations. Embodiments of the invention have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present invention is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications may be made without departing from the scope of the claims below.
Other variations are within the spirit of the present invention. Thus, while the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific form or forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention, as defined in the appended claims.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The term “or” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of items in the list. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The terms “connected” or “attached” are to be construed as partly or wholly contained within, coupled to, or joined together, even if there is something intervening. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments of the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context. All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The present application is a Continuation of U.S. patent application Ser. No. 16/425,650 filed May 29, 2019 (Allowed); which claims the benefit of U.S. Provisional Appln Nos. 62/677,870 filed May 30, 2018; 62/697,644 filed Jul. 13, 2018; 62/701,254 filed Jul. 20, 2018; and 62/836,255 filed Apr. 19, 2019; the full disclosures which are incorporated herein by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5827304 | Hart | Oct 1998 | A |
5906627 | Spaulding | May 1999 | A |
5944730 | Nobles et al. | Aug 1999 | A |
6066158 | Engelson et al. | May 2000 | A |
6168579 | Tsugita et al. | Jan 2001 | B1 |
6217526 | Frassica | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6254571 | Hart | Jul 2001 | B1 |
6258115 | Dubrul et al. | Jul 2001 | B1 |
6273876 | Klima et al. | Aug 2001 | B1 |
6511897 | Arima et al. | Jan 2003 | B2 |
6530939 | Hopkins et al. | Mar 2003 | B1 |
6589263 | Hopkins et al. | Jul 2003 | B1 |
6685722 | Rosenbluth et al. | Feb 2004 | B1 |
6699260 | Dubrul et al. | Mar 2004 | B2 |
6712835 | Mazzocchi et al. | Mar 2004 | B2 |
6755847 | Eskuri et al. | Jun 2004 | B2 |
6878151 | Carrison et al. | Apr 2005 | B2 |
7056328 | Arnott et al. | Jun 2006 | B2 |
7232432 | Fulton, III et al. | Jun 2007 | B2 |
7320698 | Eskuri et al. | Jan 2008 | B2 |
7331980 | Dubrul et al. | Feb 2008 | B2 |
7691121 | Rosenbluth et al. | Apr 2010 | B2 |
7780696 | Daniel et al. | Aug 2010 | B2 |
7905896 | Straub et al. | Mar 2011 | B2 |
8100935 | Rosenbluth et al. | Jan 2012 | B2 |
8109962 | Pal | Feb 2012 | B2 |
8317251 | Nelson | Nov 2012 | B2 |
8317748 | Fiorella et al. | Nov 2012 | B2 |
8357178 | Pedersen et al. | Jan 2013 | B2 |
8512352 | Martin et al. | Aug 2013 | B2 |
8535334 | Martin et al. | Sep 2013 | B2 |
8545526 | Martin et al. | Oct 2013 | B2 |
8696622 | Fiorella et al. | Apr 2014 | B2 |
8715314 | Janardhan | May 2014 | B1 |
8728116 | Janardhan et al. | May 2014 | B1 |
8777976 | Brady et al. | Jul 2014 | B2 |
8784441 | Rosenbluth et al. | Jul 2014 | B2 |
8795305 | Martin et al. | Aug 2014 | B2 |
8795345 | Pedersen et al. | Aug 2014 | B2 |
8801748 | Martin et al. | Aug 2014 | B2 |
8852205 | Gilvarry et al. | Oct 2014 | B2 |
8852226 | Gilson et al. | Oct 2014 | B2 |
8932319 | Martin et al. | Jan 2015 | B2 |
8945143 | Cragg et al. | Feb 2015 | B2 |
8979157 | Nelson | Mar 2015 | B2 |
9186487 | Dubrul et al. | Nov 2015 | B2 |
9204887 | Cully et al. | Dec 2015 | B2 |
9254371 | Martin et al. | Feb 2016 | B2 |
9271747 | Martin | Mar 2016 | B2 |
9271748 | Martin | Mar 2016 | B2 |
9308016 | Escudero et al. | Apr 2016 | B2 |
9358094 | Martin et al. | Jun 2016 | B2 |
9427252 | Sos | Aug 2016 | B2 |
9439664 | Sos et al. | Sep 2016 | B2 |
9456834 | Folk et al. | Oct 2016 | B2 |
9498604 | Dubrul et al. | Nov 2016 | B2 |
9597101 | Galdonik et al. | Mar 2017 | B2 |
9642639 | Brady et al. | May 2017 | B2 |
9717514 | Martin et al. | Aug 2017 | B2 |
9833253 | Ulm | Dec 2017 | B1 |
9848906 | Eskridge | Dec 2017 | B1 |
9943323 | Martin et al. | Apr 2018 | B2 |
10064635 | Martin et al. | Sep 2018 | B2 |
10076346 | Martin | Sep 2018 | B2 |
10172633 | Martin et al. | Jan 2019 | B2 |
11383068 | Tran et al. | Jul 2022 | B2 |
11399853 | Tran | Aug 2022 | B2 |
20020026211 | Khosravi et al. | Feb 2002 | A1 |
20020123720 | Kusleika et al. | Sep 2002 | A1 |
20020173819 | Leeflang | Nov 2002 | A1 |
20030144686 | Martinez et al. | Jul 2003 | A1 |
20030171770 | Kusleika | Sep 2003 | A1 |
20040020492 | Dubrul et al. | Feb 2004 | A1 |
20040098033 | Leeflang et al. | May 2004 | A1 |
20040133232 | Rosenbluth et al. | Jul 2004 | A1 |
20040199202 | Dubrul et al. | Oct 2004 | A1 |
20040260332 | Dubrul et al. | Dec 2004 | A1 |
20040260333 | Dubrul et al. | Dec 2004 | A1 |
20050090857 | Kusleika et al. | Apr 2005 | A1 |
20050131450 | Nicholson et al. | Jun 2005 | A1 |
20050177132 | Lentz et al. | Aug 2005 | A1 |
20050216050 | Sepetka et al. | Sep 2005 | A1 |
20050288656 | Koerner et al. | Dec 2005 | A1 |
20060100662 | Daniel et al. | May 2006 | A1 |
20060161187 | Levine et al. | Jul 2006 | A1 |
20070191876 | Dubrul et al. | Aug 2007 | A1 |
20070288054 | Tanaka et al. | Dec 2007 | A1 |
20080119886 | Greenhalgh | May 2008 | A1 |
20080119889 | Kusleika | May 2008 | A1 |
20080147170 | Vrba | Jun 2008 | A1 |
20080188793 | Kozak et al. | Aug 2008 | A1 |
20090069828 | Martin et al. | Mar 2009 | A1 |
20100030256 | Dubrul et al. | Feb 2010 | A1 |
20100114113 | Dubrul et al. | May 2010 | A1 |
20110009942 | Gregorich et al. | Jan 2011 | A1 |
20110175391 | Nelson | Jul 2011 | A1 |
20110213403 | Aboytes | Sep 2011 | A1 |
20130345739 | Brady et al. | Dec 2013 | A1 |
20140031856 | Martin et al. | Jan 2014 | A1 |
20140046358 | Cully et al. | Feb 2014 | A1 |
20140058324 | Salahieh et al. | Feb 2014 | A1 |
20140236219 | Dubrul et al. | Aug 2014 | A1 |
20140260928 | Janardhan et al. | Sep 2014 | A1 |
20140309673 | Dacuycuy et al. | Oct 2014 | A1 |
20140371781 | Morgan | Dec 2014 | A1 |
20150018929 | Martin et al. | Jan 2015 | A1 |
20150127035 | Trapp et al. | May 2015 | A1 |
20150209058 | Ferrera et al. | Jul 2015 | A1 |
20150238207 | Cox et al. | Aug 2015 | A1 |
20150306311 | Pinchuk et al. | Oct 2015 | A1 |
20160022293 | Dubrul et al. | Jan 2016 | A1 |
20160096004 | Gerrans et al. | Apr 2016 | A1 |
20160220346 | Bonnette et al. | Aug 2016 | A1 |
20160331506 | Korkuch et al. | Nov 2016 | A1 |
20160367285 | Sos | Dec 2016 | A1 |
20170325830 | Martin et al. | Nov 2017 | A1 |
20170333675 | Cottone | Nov 2017 | A1 |
20180161185 | Kresslein et al. | Jun 2018 | A1 |
20180221037 | Martin et al. | Aug 2018 | A1 |
20180368865 | Martin et al. | Dec 2018 | A1 |
20190015121 | Martin | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
404123 | Aug 2008 | AT |
1030603 | Aug 2000 | EP |
1617893 | Jan 2006 | EP |
08308933 | Nov 1996 | JP |
H10151136 | Jun 1998 | JP |
2002537943 | Nov 2002 | JP |
2006507073 | Mar 2006 | JP |
2006509591 | Mar 2006 | JP |
4731471 | Apr 2011 | JP |
2011136180 | Jul 2011 | JP |
2016511106 | Apr 2016 | JP |
2017529222 | Oct 2017 | JP |
2018033491 | Mar 2018 | JP |
9923952 | May 1999 | WO |
2004093966 | Nov 2004 | WO |
2017117092 | Jul 2017 | WO |
2018043279 | Mar 2018 | WO |
Number | Date | Country | |
---|---|---|---|
20220280175 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
62836255 | Apr 2019 | US | |
62701254 | Jul 2018 | US | |
62697644 | Jul 2018 | US | |
62677870 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16425650 | May 2019 | US |
Child | 17751481 | US |