This application claims the priority of Korean Patent Application No. 2007-27562 filed on Mar. 21, 2007, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to an integrated type transformer, and more particularly, to an integrated type transformer that reduces the volume by integrating a plurality of transformers transmitting power for driving a plurality of lamps in an inverter circuit for an LCD into one transformer structure.
2. Description of the Related Art
In recent years, liquid crystal display (LCD) products, such as LCD TVs or LCD monitors, have become larger. At the same time, however, there has been a need for a decrease in volume of the large LCD products. In order to satisfy the need, development has been carried out to realize small and compact built-in circuits and components that are used in the LCD products. This trend is also found in driving circuits, which are one of the main circuits in the LCD products.
The above-described LCD driving circuit generally uses a power conversion transformer to supply a current to a plurality of lamps. According to a general method of making the LCD driving circuit smaller, the volume of the transformer that supplies the current to the lamps is decreased.
Referring to
A primary coil C1 is wound around the center winding section. Secondary coils C2 are separately wound around both winding sections around the center winding section. The core Co that is coupled to the bobbin B surrounds the inside of the bobbin B and the bobbin B in a longitudinal direction thereof to form two magnetic paths, which will be described in detail with reference to
Referring to
In the transformer according to the related art, a plurality of transformers are integrated into one transformer structure. However, since the volume of the transformer is still large, it is difficult to manufacture a small, thin, lightweight driving circuit that uses the transformer.
An aspect of the present invention provides an integrated type transformer that reduces the volume by integrating a plurality of transformers transmitting power for driving a plurality of lamps in an inverter circuit for an LCD into one transformer structure.
According to an aspect of the present invention, there is provided an integrated type transformer including: bobbin unit including a bobbin body having a predetermined length and a through hole therein in a longitudinal direction of the bobbin unit; and a core unit including an inner core inserted into the through hole of the bobbin unit, and an outer core formed along one surface in the longitudinal direction among outer circumferential surfaces of the bobbin unit and electromagnetically coupled to the inner core to form one magnetic path.
The integrated type transformer may further include a coil unit including a primary coil wound around the outer circumferential surfaces of the bobbin unit and a plurality of secondary coils electromagnetically coupled to the primary coil; and a terminal unit including an input terminal transmitting input power to the primary coil and an output terminal transmitting output power from the secondary coils.
The output terminal of the terminal unit may be formed at the one surface of the bobbin unit at which the outer core is formed.
The inner core may be an I-shaped core having one end and the other end, and the outer core may be a C-shaped core having a support part formed along one surface of the bobbin unit and protrusion parts formed at one end and the other end of the support part along the same direction and electromagnetically coupled to the one end and the other end of the I-shaped core.
The core unit may include two open square-shaped cores each including: a support part having one end and the other end; an inner protrusion part formed at the one side of the support part and inserted into the through hole of the bobbin unit; and an outer protrusion part formed at the other side of the support part, formed along the same direction as a direction of the inner protrusion part, and formed along one surface of the bobbin unit, and the two open square-shaped cores may face each other and be electromagnetically coupled to each other, such that the inner protrusion parts of the two cores may form the inner core, and the outer protrusion parts and the support parts thereof may form the outer core. Further, the thickness of the inner protrusion part may be smaller than that of the outer protrusion part.
The primary coil may be wound around the center of the outer circumferential surfaces of the bobbin unit, and the plurality of secondary coils may be wound around both sides of the circumferential surfaces around the primary coil along the longitudinal direction of the bobbin unit.
A cross walk may be formed at the center of the outer circumferential surfaces of the bobbin unit to equally divide the winding number of the primary coil.
The above and other aspects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings.
Referring to
The bobbin unit B has a predetermined length and a through hole Bi formed therein.
The core unit Co includes an inner core Coi and an outer core Coo. The inner core Coi is inserted into the through hole Bi of the bobbin unit B. The outer core Coo is formed along one surface of the bobbin unit B that is formed in a longitudinal direction of the bobbin unit B. The inner core Coi and the outer core Coo are electromagnetically coupled to each other to form a magnetic path that is a path of magnetic flux. Here, one inner core Coi and one outer core Coo are electromagnetically coupled to each other to form one magnetic path.
The coil units C1 and C2 are wound around outer circumferential surfaces of the bobbin unit B. The coil units C1 and C2 include a primary coil C1 and a plurality of secondary coils C2. The primary coil C1 is wound around the center of the outer circumferential surfaces of the bobbin unit B. The plurality of secondary coils C2 are wound around both sides of the outer circumferential surfaces, respectively, around the primary coil C1 along the longitudinal direction of the bobbin unit B. The primary coil C1 corresponds to the secondary coil C2 to form one electric transformer. When the secondary coils C2 are wound around both sides of the outer circumferential surfaces of the bobbin unit B, respectively, two transformers may be integrated into one transformer structure. When two of each of the secondary coils C2 are wound, four electrical transformers may be integrated into one transformer structure.
The terminal units Ii and Io include an input terminal Ii and an output terminal Io. The terminal units Ii and Io may further include a fixing or grounding terminal Ig. The input terminal Ii and the output terminal Io are formed at one surface and the other surface of the bobbin unit B, respectively, which are located opposite to each other. The input terminal Ii transmits input power to the primary coil C1, a first input terminal Ii1 is connected to one end of the primary coil C1, and a second input terminal Ii2 is connected to the other end of the primary coil C1. The output terminal Io transmits to the outside, output power that is set according to a winding ratio between the primary coil C1 and the secondary coils C2. Then, a first output terminal Io1 of the output terminal Io is connected to one end of the one secondary coil C2 that is wound around the outer circumferential surfaces of the one side of the bobbin unit B, and a second output terminal Io2 is connected to the other end of the secondary coil C2 that is wound around the outer circumferential surfaces of the one side of the bobbin unit B. In the same manner, a third output terminal Io3 is connected to one end of the other secondary coil C2 that is wound around the outer circumferential surfaces of the other side of the bobbin unit B, and a fourth output terminal Io4 is connected to the other end of the secondary coil C2 that is wound around the outer circumferential surfaces of the other side of the bobbin unit B.
Preferably, the output terminal Io and the outer core Coo may be formed on the same outer circumferential surface of the bobbin unit B. As shown below in Table 1, experiments show that an output current deviation can be reduced by an electromagnetic action between the input and output terminals Ii and Io, the core unit Co, and the coil units C1 and C2 when the output terminal Io and the outer core Coo are formed at the same outer circumferential surface.
Referring to Table 1, when the output terminal Io and the outer core Coo are formed at the same outer circumferential surface of the same bobbin unit B, a tube current deviation between the lamps is 0.3 mA. On the other hand, when the output terminal Io and the outer core Coo are formed at the different outer circumferential surfaces of the bobbin unit B that are opposite to each other, the tube current deviation between the lamps is 1.8 mA.
In general, when a rated output current (lamp tube current) is 8 mA, an output current deviation that is required by a user is 0.5 mA. Therefore, preferably, the output terminal Io and the outer core Coo are formed at the same outer circumferential surface of the bobbin unit B.
Further, a cross walk Cw that equally divides the winding number of the primary coil C1 may be formed at the center of the outer circumferential surfaces around which the primary coil C1 of the bobbin unit B is wound. Taking into account the fact that the output power is determined according to the winding ratio between the primary coil C1 and the secondary coils C2, the output power of each of the secondary coils C2 can be equally controlled.
Referring to
The core unit Co includes two open square-shaped cores that are coupled to form one magnetic path. That is, a first open square-shaped core includes a first support part V1, a first inner protrusion part Coi1, and a first outer protrusion part Coo1. The first support part V1 has one side and the other side. The first inner protrusion part Coi1 is formed at the one side of the first support part V1 and inserted into a through hole Bi of a bobbin unit B. The first outer protrusion part Coo1 is formed at the other side of the first support part V1 along the same direction as a direction of the first inner protrusion part Coi1, and formed along one surface formed in the longitudinal direction of the bobbin unit B.
In the same manner, a second open-square shaped core includes a second support part V2, a second inner protrusion part Coi2, and a second outer protrusion part Coo2. The second support part V2 has one side and the other side. The second inner protrusion part Coi2 is formed at the one side of the second support part V2 and inserted into the through hole Bi of the bobbin unit B. The second outer protrusion part Coo2 is formed at the other side of the second support part V2 along the same direction as a direction of the second inner protrusion part Coi2, and formed along one surface formed in the longitudinal direction of the bobbin unit B.
The first and second open square-shaped cores face each other and are coupled to each other. The first and second inner protrusion parts Coi1 and Coi2 form one inner core Coi. The first and second outer protrusion parts Coo1 and Coo2 and the first and second support parts V1 and V2 form one outer core Coo.
Since a description of the bobbin unit B, coil units, and terminal units is the same as that with reference to
Referring to
The still another exemplary embodiment of a core unit Co that is used in the transformer according to the invention will be described in detail.
The core unit Co includes an inner core Coi and an outer core Coo. The inner core Coi is an I-shaped core that has a predetermined length, and the outer core Coo is a C-shaped core that has a plurality of protrusion parts V1 and V2.
The inner core Coi includes one end and the other end, and is inserted into a through hole Bi of a bobbin unit B. The outer core Coo is formed along one surface in a longitudinal direction of the bobbin unit B among outer circumferential surfaces of the bobbin unit B. Further, the outer core Coo includes protrusion parts V1 and V2 that are formed at one side and the other side thereof along the same direction. The first protrusion part V1 of the outer core Coo is electrically connected to the one side of the inner core Coi, and the second protrusion part V2 is electrically connected to the other end of the inner core Coi, thereby forming one magnetic path. In the above-described core unit according to the still another embodiment of the invention, the inner core Coi is shorter than the outer core Coo. For this reason, one end surface and the other end surface of the inner core Coi are electrically connected to surfaces that face the through hole Bi of the bobbin unit B among surfaces of the first and second protrusion parts V1 and V2 of the outer core Coo.
Referring to
Referring to
When each of the plurality of lamps is a long bar-shaped lamp, the four lamps receive the output power through the first to fourth output terminals Io1, Io2, Io3, and Io4. Here, the output terminals Io1 and Io2 are electrically connected to one end and the other end of one secondary coil C2, respectively, and the output terminals Io3 and Io4 are electrically connected to one end and the other end of the other secondary coil C2, respectively. Then, the four lamps emit light.
Referring to
Referring to
As shown in graph of
As described above, characteristics of the transformer according to the exemplary embodiments of the present invention are compared with those of the transformer according to the related art shown in
Referring to Table 2, the transformer according to the related art forms two magnetic paths and a core section has a width of 43.5 mm2, while the transformer according to the exemplary embodiments of the present invention forms one magnetic path and a core section has a width of 27 mm2. As a result, the volume of the transformer according to the related art is 5873 mm3, while the transformer according to the exemplary embodiments of the present invention is 4289 mm3.
Therefore, the transformer according to the exemplary embodiments of the present invention has almost the same electrical characteristic as the transformer according to the related art. However, the volume of the transformer according to the exemplary embodiments of the present invention is reduced by approximately 27%.
As set forth above, according to exemplary embodiments of the invention, a plurality of electrical transformers are integrated into one transformer structure to form one magnetic path, thereby reducing the volume of the transformer.
While the present invention has been shown and described in connection with the exemplary embodiments, it will be apparent to those skilled in the art that modifications and variations can be made without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2007-0027562 | Mar 2007 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6154113 | Murai | Nov 2000 | A |
6414583 | Yeh et al. | Jul 2002 | B1 |
7176777 | Hsueh et al. | Feb 2007 | B2 |
7274282 | Park et al. | Sep 2007 | B2 |
20070030109 | Kohno | Feb 2007 | A1 |
20070046414 | Wu | Mar 2007 | A1 |
20070216511 | Tseng et al. | Sep 2007 | A1 |
20070241853 | Yang et al. | Oct 2007 | A1 |
20070257760 | Saito et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
20-0299597 | Dec 2002 | KR |
10-2006-0134639 | Dec 2006 | KR |
2006025156 | Sep 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080231404 A1 | Sep 2008 | US |