The state of the art in 94 GHz antenna array is shown in
The novelty of our technology lies 1) The uniquely designed composite slot array consisting of the quartz and Si matching layers suppress the unwanted microwave modes in the substrate and produces a reception pattern with better than 20 dB suppression of the side lobes. As a result, pixels can be placed very close to each other producing high density pattern for the antenna and its conversion circuit. 2) Simple process technology for fabrication of the antenna array 3) Design of SBD array and corresponding matching circuits, geometrically layed out to meet the “footprint” of the pixels 4) 3D integration of the Active circuits to produce a monolithic power device.
Current feed-horn based integrated rectenna arrays at 94 GHz are difficult to fabricate and are too thick (1.5 cm). The processing of the rectenna limits its yield and the thickness of rectenna prevents its use in small sensor networks as an energy conversion element. Also conversion of the RF waves into DC power will require a layer of power conversion elements (rectifiers and matching network) that is hard to integrate with the horns. This combination of issues prohibits the development of monolithic power source at this frequency
A new generation of Si based low profile slot based compost antenna array is developed that can readily be integrated with the Si based (or GaAs based) conversion circuitry enabling the construction of an all in one ultra thin 94 GHz power conversion source.
The solution consists of three steps 1) the slot based composite antenna array, 2) Si based integrated power converter array circuit and 3) the 3-D integration using micro-fabrications technology. Description of the integrated system is as follows:
1.0) The Antenna Array:
The cross section of a single element (pixel) of the composite slot based array is shown in
3.0) The 3-D Integration Technology.
The antenna array can be made on a Si wafer using simple five step Si process technology. The steps include depositing metal on the Si, patterning and etching of the slots, depositing a fine layer of Si02 over the slots, and attaching the Si substrate to a companion quartz wafer.
Integration Choices: Integrate antenna array with micro-strip and capacitor; use commercial GaAs SBD; and flip chip onto antenna. Second revision options: MBE deposition of GaAs SBD; (high GaAs efficiency, process development and optimization); 3D integration of Si SBD with antenna array (proven Si technology, rapid integration and demonstration, low integration costs). Initial Demonstration: Pitch is 510 um, 20 by 20 array will be 1.2 cm by 1.1 cm; 3D size is 1.2 cm by 1.1 cm by 1 cm; power capability of approximately 1.2 W (3 mW/rectenna); foldable membrane power source; technology similar to flexible membrane SAR; enables folding and stowing of the power sheet in the back pack of the war-fighter; thin integrated tiles can be embedded into flexible membranes.
Quantitative impact (low power sensors network): Ultra thin scalable power source for mW to kW power applications; light weight, foldable membrane based power sheet can be carried out in war fighter backpack; enables transfer of power during night for distributed power sensors; expandable, allows deployment of aggregate number tiles for larger and larger power levels; four times more efficient than solar arrays (under the same input power density of 0.1350 W/cm2); capable of processing up to 1.2 W/cm2 of microwave power; twenty times reduction in thickness compared to integrated horn antenna achieved by use of planar ultra thin (0.78 mm) integrated antenna array; 30% improvement in efficiency produced by revolutionary new slot based antenna technology; ten times reduction in cost because of the ease of manufacturing; enhanced functionality because of on-chip power management; scalable to support different applications; multiple applications, power system for infield army applications, distributed sensor networks.
Number | Date | Country | |
---|---|---|---|
61128227 | May 2008 | US |