The present application claims priority under 35 U.S.C. §119(e) to U.S. patent application Ser. No. 61/165,405, filed Mar. 31, 2009 and entitled “Integration of Piezoelectric Materials With Substrates”, which is hereby incorporated herein by reference in its entirety.
The technology described herein relates to integration of piezoelectric materials with substrates.
Conventional micromechanical resonators are physical structures that are designed to vibrate, often at high frequencies. Such resonators may be incorporated into a variety of devices such as timing oscillators, mass sensors, gyros, accelerometers, switches, and electromagnetic fuel sensors, amongst others.
Many conventional mechanical resonators are formed of quartz, due to the temperature-stability and high Q exhibited by the quartz crystal. Such conventional quartz resonators are individually packaged, with minimal or no electrical circuitry included within the package. Rather, connections to control circuitry are made externally to the packaged resonators.
Many of the products which utilize conventional quartz resonators (e.g., components within timing circuits, telecomm networks, toys, etc.) are frequently undergoing reductions in size, driven partially by the ongoing reductions in size of present-day silicon based integrated circuit (IC) technology. However, conventional fabrication and encapsulation methods limit packaged quartz crystal resonators to a size of about 2.5 mm×2.0 mm, making their integration with present-day products, as well as tomorrow's products of even smaller sizes, difficult.
Devices including piezoelectric material structures integrated with substrates are described. Methods of fabricating such devices are also described.
According to one aspect, a device is provided, comprising a substrate comprising a first material. The device further comprises a mechanical resonator comprising a piezoelectric material, different from the first material. The mechanical resonator is integrated with the substrate.
According to another aspect, a device comprises a substrate comprising a first material. The device further comprises a mechanical resonator comprising quartz and integrated with the substrate. The first material is not quartz.
According to another aspect, a device comprises a substrate comprising a first material. The device further comprises a mechanical resonator comprising a single crystal piezoelectric material, different from the first material, and integrated with the substrate. The device further comprises integrated circuitry coupled to the mechanical resonator.
According to another aspect, a device comprises a substrate formed of a semiconductor material comprising silicon. The device further comprises a mechanical resonator comprising quartz and integrated with the substrate. The device further comprises integrated circuitry formed on the substrate and coupled to the mechanical resonator to control operation of the mechanical resonator and/or to detect vibration of the mechanical resonator.
According to another aspect, a method of fabricating a device is provided. The method comprises bonding a wafer comprising a piezoelectric material to a wafer comprising a first material, the first material being different than the piezoelectric material. The method further comprises forming a mechanical resonator from the wafer of the piezoelectric material.
Various embodiments of the technology will be described with respect to the following figures. It should be appreciated that the figures are not necessarily drawn to scale.
Device structures including piezoelectric materials integrated with substrates are described, as well as methods of forming the same. In some embodiments, the piezoelectric device structures include single crystal piezoelectric resonators integrated with one or more substrates, for example to form an engineered substrate. One or more of the substrates may include circuitry coupled to the piezoelectric device structures, for example to control operation of the piezoelectric device structure, and/or to detect/sense operation of the piezoelectric device structure. The piezoelectric device structures may be fabricated by bonding a wafer of piezoelectric material to a substrate wafer, and then forming the piezoelectric device structure from the wafer of piezoelectric material. In some embodiments, the piezoelectric material is quartz, which is bonded to a silicon substrate to form an engineered substrate. The piezoelectric device structure may be a quartz resonator formed from the quartz wafer.
It should be appreciated that the use of the term “coupled” herein covers both direct connection of components as well as interconnection of components through one or more intermediate components (e.g., transistors, resistors, capacitors, etc.). Also, the phrase “integrated with” as used herein refers to the interconnection of components and/or material layers such that the components/layers being interconnected form a single structure. For example, material layers (e.g., piezoelectric material layers) integrated with a substrate may form an engineered substrate.
Various aspects of the technology will now be described in greater detail. These aspects may be used alone, all together, or in any combination of two or more, as the technology is not limited in this respect.
The piezoelectric material structure 102 may be a resonator, a filter, a sensor, or any other suitable structure, as those listed are merely non-limiting examples. Likewise, the piezoelectric material structure 102 may, in some situations, preferably comprise quartz, but may alternatively comprise LiNbO3, LiTaO3, aluminum nitride (AlN), or any other suitable piezoelectric material (e.g., zinc oxide (ZnO), cadmium sulfide (CdS), lead titanate (PbTiO3), lead zirconate titanate (PZT), potassium niobate (KNbO3), Li2B4O7, langasite (La3Ga5SiO14), gallium arsenside (GaAs), barium sodium niobate, bismuth germanium oxide, indium arsenide, indium antimonide), either in substantially pure form or in combination with one or more other materials. Moreover, in some embodiments the piezoelectric material structure may comprise single crystal piezoelectric material (e.g., single crystal quartz), although not all embodiments are limited in this respect.
The piezoelectric material structure may be integrated with the substrate 104 by bonding a piezoelectric material wafer to the substrate 104 and then forming the piezoelectric material structure 102 from the piezoelectric material wafer. Thus, the piezoelectric material structure and the substrate 104 may form an engineered substrate. Other techniques for integrating the piezoelectric material structure may also be used, as the various aspects described herein relating to piezoelectric material structures integrated with substrates are not limited to the manner in which the two are integrated.
The substrate 104 may be formed of silicon, may comprise silicon (e.g., silicon, silicon carbide (SiC), etc.), or may be formed of any other suitable material. According to some embodiments, the substrate 104 may be formed of a semiconductor material, and in some embodiments may be formed of a single crystal semiconductor material (e.g., single crystal silicon). In some embodiments, the substrate 104 comprises a different material than that of the piezoelectric material structure 102. For example, the piezoelectric material structure may comprise single crystal quartz while the substrate 104 does not comprise quartz, e.g., the substrate may be a silicon substrate, according to one non-limiting embodiment. However, other material combinations are also possible.
The piezoelectric material structure 102 may be electrically interconnected with circuitry on the substrate 104. For example, as shown, integrated circuitry 106 (e.g., integrated silicon circuitry, CMOS circuitry, biCMOS circuitry, SiGe circuitry, GaAs circuitry, InP circuitry, etc.) may be formed on the substrate 104. The integrated circuitry may be configured to control and/or detect/sense operation of the piezoelectric material structure 102, and therefore may include compensation circuitry, synthesizer circuits, or any other suitable control and/or detection circuitry, or circuitry for any supporting functions.
The piezoelectric material structure 102 itself may include one or more electrical components (e.g., electrodes) or circuitry 108, for example to control (e.g., actuate and/or detect) the piezoelectric material structure. In the non-limiting example of
It should be appreciated that resonators (e.g., quartz resonators) are merely one non-limiting example of a type of piezoelectric material structure 102, and that the function of the integrated circuitry 106 and 107 may depend on the particular type of piezoelectric material structure. For example, if the piezoelectric material structure 102 is a sensor, the integrated circuitry 106 and/or 107 may operate to detect and process output signals of the sensor. Other functions of the integrated circuitry 106 and 107 are also possible. It should also be appreciated that not all embodiments include integrated circuitry on both the substrate and cap. For example, differing embodiments may include integrated circuitry on only one of the substrate and cap, on both the substrate and cap, or on neither of the substrate and cap.
In the non-limiting embodiment of
It should also be appreciated that various additional or alternative features may optionally be included in the device 100. Also, the cavity 103 may be formed in any suitable manner, and may not be included in all embodiments. For example, the cavity 103 may be formed before bonding the cap. In some embodiments, buried cavities in substrates and/or caps are formed by suitable etching of a substrate and/or cap prior to bonding to other structures (e.g., forming the cavity in the substrate prior to bonding by etching with XeF2 or SF6, or in any other suitable manner) or after bonding the cap or substrate to a wafer of piezoelectric material (e.g., by selectively etching the substrate after bonding). Alternatively, if the piezoelectric material structure 102 is to be suspended, such a result may be achieved using various alternative configurations. For example, a sacrificial layer (e.g., gold, aluminum, or any other suitable sacrificial layer) may be formed and then removed (e.g., after bonding substrate 104 to a wafer of piezoelectric material) to create an air gap between the piezoelectric material structure and the substrate 104, even though no cavity may be formed within the substrate 104 itself. Other configurations are also possible, and it should be appreciated that the various aspects described herein are not limited to use with suspended piezoelectric material structures, and when such structures are used, are not limited to suspending the structure in any particular manner.
The mechanical resonator 202 may be any type of mechanical resonator, such as a quartz resonator, a plate acoustic wave resonator, a flexural mode resonator, a bulk acoustic wave (BAW) resonator, a surface acoustic wave (SAW) resonator, a film bulk acoustic resonator (FBAR), or any other suitable resonator, as the various aspects described herein are not limited in this respect. Suitable resonators have been described, for example, in PCT Patent Publication No. WO 2006/083482, and in U.S. patent application Ser. No. 12/142,254, filed Jun. 19, 2008 and published as U.S. Patent Application Publication No. 2009-0243747-A1, all of which are incorporated herein by reference in their entireties. In some embodiments, the mechanical resonator may be formed of two or more materials, for example using two or more material layers. In some embodiments, the mechanical resonator may be a solidly mounted resonator (SMR), for example comprising a piezoelectric material bonded onto a stack of layers having alternating low and high acoustic impedances. Such a stack may be referred to as a mirror stack, and may be formed on a substrate.
The mechanical resonator may be actuated and/or detected in any suitable manner, including, but not limited to, being actuated and/or detected by piezoelectric techniques, electrostatic techniques, magnetic techniques, thermal techniques, piezoresistive techniques, any combination of those techniques listed, or in any other suitable manner.
The mechanical resonator may have any resonance frequency. For example, the frequency of the mechanical resonator may be between 1 kHz and 10 GHz. In some embodiments, the frequencies of operation of the mechanical resonator are in the upper MHz range (e.g., greater than 100 MHz), or at least 1 GHz (e.g., between 1 GHz and 10 GHz). In some embodiments, the output signal produced by the mechanical resonator may have a frequency of at least 1 MHz (e.g., 13 MHz, 26 MHz) or, in some cases, at least 32 kHz. In some embodiments, the operating frequency may range from 30 to 35 kHz, 60 to 70 kHz, 10 Mhz to 1 GHz, 1 GHz to 3 GHz, 3 GHz to 10 GHz, or any other suitable frequencies.
The substrate 208 may be a semiconductor substrate (e.g., silicon, SiC, etc.), or may comprise any other suitable material, either in substantially pure form or in combination with one or more additional materials. In some embodiments, the substrate 208 may comprise single crystal material. For example, the substrate 208 may be a single crystal silicon substrate.
The device 200 further comprises a cap 210. The cap 210 may facilitate formation of a hermetic seal (creating either an inert or non-inert environment) for the resonator 202, or may serve any other suitable purpose. For example, the cap may be bonded to the substrate and/or the piezoelectric material, as described below, to form a vacuum environment for the mechanical resonator. However, not all hermetic seals necessarily result in creation of a vacuum environment. According to some non-limiting embodiments, circuitry (e.g., integrated circuitry, such as CMOS circuitry, biCMOS circuitry, InP circuitry, etc.) may be formed on the cap 210, which circuitry may be coupled to the resonator 202 (e.g., to the electrode 206 of the resonator 202) to communicate with the resonator 202. Thus, according to one non-limiting embodiment, the cap 210 may be a complementary metal oxide semiconductor (CMOS) cap, with integrated circuitry formed thereon. In
As mentioned with respect to
In device 200, several components provide electrical access to the mechanical resonator 202. Access may be provided to circuitry on the substrate 208, circuitry on the cap 210 (if any), and/or circuitry external to the device 200. For example, in addition to providing bonding, the metallization layer 212 may also provide electrical connection to the resonator 202, and in particular to the electrode 206. The metallization layer 212 may therefore provide an electrical path to circuitry on substrate 208 and/or circuitry on cap 210. According to the non-limiting embodiment of
The device 200 illustrated in
It should be appreciated that the device 200 may take any suitable dimensions, and that the various aspects of the technology described herein are not limited to devices of any particular sizes. For example, in some non-limiting embodiments, the mechanical resonator 202 may have a large dimension (e.g., length, width, diameter, circumference, etc.) of less than approximately 1000 microns, less than 100 microns, less than 50 microns, or any other suitable value. It should be appreciated that other sizes are also possible.
The substrate 308 may be any suitable type of substrate. For example, the substrate 308 may comprise any of the materials previously described in connection with substrate 208 of
The device 300 further comprises a cap 310. As with cap 210, the cap 310 may facilitate formation of a hermetic seal (e.g., a vacuum seal) for the resonator 302, or may serve any other suitable purpose, such as those described above in connection with cap 210 of
In
As mentioned with respect to
The device 300 illustrated in
As with device 200 in
Devices having piezoelectric material structures integrated with substrates may be fabricated in any suitable manner, and the various devices described herein are not limited to being fabricated in any particular manner. According to one aspect of the technology described, fabrication techniques enabling wafer-level processing (as opposed to separate fabrication of individual devices) are provided. The wafer-level processing may utilize one or more steps available in silicon processing and microelectromechanical systems (MEMS) processing schemes, and in some embodiments all steps of fabrication may be performed using conventional silicon processing techniques. In those situations in which wafer-level processing is performed, individual devices may be produced by dicing the processed wafers, though it should be appreciated that not all embodiments are limited in this respect.
Referring to
The method 400 may begin at 402 by forming one or more cavities in a substrate wafer. For example, as seen with respect to
The method 400 continues at 404 by bonding a piezoelectric material wafer to a substrate wafer (e.g., the substrate wafer from 402 if step 402 is performed). The piezoelectric material wafer (e.g., a wafer of single crystal quartz, in one non-limiting embodiment) may have polished surfaces in some embodiments, and may be bonded to the substrate wafer (e.g., a silicon wafer) using any suitable bonding technique. If step 402 has previously been performed, then the bonding at step 404 may result in a plurality of buried cavities.
It should also be appreciated that one or more structures may be formed on the piezoelectric material wafer and/or the substrate wafer prior to bonding of the two. For example, electrodes may be formed on the piezoelectric material wafer prior to the bonding. However, not all embodiments are limited in this respect.
Subsequently, at 406, a piezoelectric material structure (e.g., mechanical resonators 202 and 302) may be formed from the piezoelectric material wafer. The formation of such structures may involve sub-steps such as depositing, patterning, and/or etching of materials, or any suitable combination of such processing steps. Which sub-steps are employed to form the piezoelectric material structure at 406 may depend on the type of structure being formed (e.g., filters, resonators, sensors, etc.).
The formation of a piezoelectric material structure integrated with a substrate may thus be completed at step 406. However, according to some embodiments, devices, such as devices 200 and 300, further comprise cap wafers. Thus, at 408, bonding of a cap wafer to the existing structures (e.g., to the substrate wafer, piezoelectric material wafer, etc.) may optionally be performed. One alternative to using a cap wafer is to deposit a thin film capping layer. Other alternatives are also possible, and according to some embodiments no form of cap is used.
According to one embodiment, the steps of method 400 described thus far may be utilized to form a single device. However, as previously mentioned, according to another embodiment the method 400 may be utilized to perform wafer-level processing resulting in the formation of multiple devices. In such an embodiment, then, the method 400 may optionally include, at 410, dicing the processed wafers to form individual devices. According to some embodiments in which dicing may be employed, the dicing may expose bond pads which may be used, for example, for wirebonding to other integrated circuits. In such embodiments, TSVs may not be included in the device, although diced devices are not limited in this respect.
The devices 200 and 300 of
Referring to
In
As previously mentioned with respect to
As previously mentioned with respect to
It should also be appreciated with respect to
As previously shown with respect to
Subsequently, as shown in
As previously mentioned, electrical connection may be provided to the resonator 202 (not yet formed in
Subsequently, as shown in
As shown in
Subsequently, as shown in
According to some embodiments, the device 200 may be configured to be surface mountable. In such embodiments, under-bump metallization may be used to facilitate bonding and/or electrical connection of the device 200. Thus, as shown in
As mentioned, the structures illustrated in
As shown in
Subsequently, as illustrated in
Prior to the bonding of substrate 308 to the wafer of piezoelectric material 304, the bottom electrode 306b may be formed on the wafer of piezoelectric material 304. In addition,
As mentioned with respect to
It should be appreciated by reference to
As seen in reference to
Referring again to
Subsequently, as shown in
Subsequently, as shown in
It should be appreciated that various alterations and modifications to the examples described above are possible. For example, while some of the embodiments have been described as including piezoelectric resonators, it should be appreciated that such structures are not limiting. Some of the techniques described herein may be used to form piezoelectric filters, piezoelectric sensors, or other devices, and resonators should be understood to be merely one non-limiting example.
Having thus described several aspects of at least one embodiment of the technology, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings provide non-limiting examples only.
For example, the devices 200 and 300 have been shown as including caps 210 and 310. Alternatively, thin film layers may be formed by deposition to create a seal (e.g., a hermetic seal), without bonding of a cap wafer. Other configurations are also possible.
Number | Name | Date | Kind |
---|---|---|---|
1785036 | Marrison | Dec 1930 | A |
3644761 | Doi et al. | Feb 1972 | A |
5260596 | Dunn et al. | Nov 1993 | A |
5525855 | Gotoh et al. | Jun 1996 | A |
5596243 | Tsuru et al. | Jan 1997 | A |
5847489 | Satoh et al. | Dec 1998 | A |
5914553 | Adams et al. | Jun 1999 | A |
6124765 | Chan et al. | Sep 2000 | A |
6548942 | Panasik | Apr 2003 | B1 |
6828713 | Bradley et al. | Dec 2004 | B2 |
6909221 | Ayazi et al. | Jun 2005 | B2 |
6936954 | Peczalski | Aug 2005 | B2 |
6943484 | Clark et al. | Sep 2005 | B2 |
6954020 | Ma et al. | Oct 2005 | B2 |
6995622 | Partridge et al. | Feb 2006 | B2 |
7005946 | Duwel et al. | Feb 2006 | B2 |
7104129 | Nasiri et al. | Sep 2006 | B2 |
7154212 | Kosinski | Dec 2006 | B1 |
7211926 | Quevy et al. | May 2007 | B2 |
7215061 | Kihara et al. | May 2007 | B2 |
7247246 | Nasiri et al. | Jul 2007 | B2 |
7250353 | Nasiri et al. | Jul 2007 | B2 |
7352608 | Mohanty et al. | Apr 2008 | B2 |
7436272 | Fujii et al. | Oct 2008 | B2 |
7442570 | Nasiri et al. | Oct 2008 | B2 |
7492241 | Piazza et al. | Feb 2009 | B2 |
7504909 | Tada | Mar 2009 | B2 |
7508286 | Ruby et al. | Mar 2009 | B2 |
7621183 | Seeger et al. | Nov 2009 | B2 |
7724103 | Feng et al. | May 2010 | B2 |
7739906 | Hatanaka et al. | Jun 2010 | B2 |
7791432 | Piazza et al. | Sep 2010 | B2 |
7830215 | Higuchi et al. | Nov 2010 | B2 |
7851893 | Kim et al. | Dec 2010 | B2 |
7928584 | O Suilleabhain et al. | Apr 2011 | B2 |
20050073078 | Lutz et al. | Apr 2005 | A1 |
20050218755 | Song et al. | Oct 2005 | A1 |
20060082260 | Kinoshita | Apr 2006 | A1 |
20060214745 | Park et al. | Sep 2006 | A1 |
20070044565 | Aratake | Mar 2007 | A1 |
20070092179 | Park et al. | Apr 2007 | A1 |
20070188054 | Hasken et al. | Aug 2007 | A1 |
20070295456 | Gudeman et al. | Dec 2007 | A1 |
20080079516 | Ruby et al. | Apr 2008 | A1 |
20080136542 | Hirama | Jun 2008 | A1 |
20080143217 | Ho et al. | Jun 2008 | A1 |
20080196930 | Tuominen et al. | Aug 2008 | A1 |
20080204153 | Yoshida et al. | Aug 2008 | A1 |
20080272852 | Six | Nov 2008 | A1 |
20090108381 | Buchwalter et al. | Apr 2009 | A1 |
20090108959 | Piazza et al. | Apr 2009 | A1 |
20090144963 | Piazza et al. | Jun 2009 | A1 |
20090243747 | Gaidarzhy et al. | Oct 2009 | A1 |
20090267460 | Satoh et al. | Oct 2009 | A1 |
20090294638 | Mohanty et al. | Dec 2009 | A1 |
20100007443 | Mohanty et al. | Jan 2010 | A1 |
20100134207 | Mohanty et al. | Jun 2010 | A1 |
20100155883 | Wenzler et al. | Jun 2010 | A1 |
20100315179 | Schoepf et al. | Dec 2010 | A1 |
20110187227 | Chen et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
0503892 | Sep 1992 | EP |
WO 9801948 | Jan 1998 | WO |
WO 0217481 | Feb 2002 | WO |
WO 2006000611 | Jan 2006 | WO |
WO 2006083482 | Aug 2006 | WO |
WO 2008149298 | Dec 2008 | WO |
WO 2010011288 | Jan 2010 | WO |
Entry |
---|
Humad et al., “High frequency micromechanical piezo-on-silicon block resonators,” Int'l Electron Devices Meeting 2003IEDM. Technical Digest, Washington, D.C. Dec. 8-10, 2003, New York, NY: IEEE US Dec. 8, 2003, pp. 957-960. |
International Search Report and Written Opinion for International Application No. PCT/US2010/000955 mailed Jun. 23, 2010. |
International Search Report and International Preliminary Report on Patentability for PCT/US2006/021298 mailed Nov. 6, 2006 and Dec. 6, 2007 respectively. |
Piazza et al., “Low motional resistance ring-shaped contour-mode aluminum nitride piezoelectric micromechanical resonators for UHF applications,” Micro Electro Mechanical Systems, 2005. MEMS 2005. 18th IEEE International Conference on Miami Beach, Florida, Jan. 30-Feb. 3, 2005, Piscataway, New Jersey, US, IEEE Jan. 30, 2005, pp. 20-23. |
Number | Date | Country | |
---|---|---|---|
20100301703 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
61165405 | Mar 2009 | US |