The present invention relates generally to object detection systems, and more particularly, some embodiments relate to systems and methods for long distance optical detection.
Clutter can cause serious performance issues in object detection systems, such as radar, LIDAR, sonar, and imaging systems. For example, in littoral environments, wave clutter can severely impede the ability of a radar system to detect objects such as periscopes.
Optical detection systems are provided for detecting objects in the presence of clutter and discriminating between target objects and clutter. In some embodiments, the system is configured for detection of high brightness objects and light sources—for example, non-Lambertian reflectors, such as retroreflectors.
In some embodiments, the system mitigates clutter in the scene by reducing false positives or increasing positive predictive values (PPV). Various signals may be used for target discrimination. For example, clutter signal patterns associated with known target types may be detected along with potential target signals. Additionally, specific target signals may be detected. For example, multiple retroreflections from a single ocular body may be detected, and the character of these multiple retrorefelections may be used for target discrimination.
In various embodiments, an eye-safe laser is used to emit a diverging laser flash configured to illuminate a detection zone. A pseudoimaging optical receiver system is used to detect reflections from objects in the detection zone. The receiver system includes a time-gated photodetector array that is used to record signatures in a voxel array. A voxel processing module receives the voxel array and detects a reference clutter signal within the array. Potential targets are then detected according to target signals in relation to the reference clutter signal.
Further embodiments of the invention use a temporal sequence of voxel-arrays from the same detection zone to implement voxel change detection. Potential target may be detected according to various temporal voxel signatures. More generally, the potential target may detected space/time voxel patterns manifested by voxel coherence.
Other features and aspects of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the features in accordance with embodiments of the invention. The summary is not intended to limit the scope of the invention, which is defined solely by the claims attached hereto.
The present invention, in accordance with one or more various embodiments, is described in detail with reference to the following figures. The drawings are provided for purposes of illustration only and merely depict typical or example embodiments of the invention. These drawings are provided to facilitate the reader's understanding of the invention and shall not be considered limiting of the breadth, scope, or applicability of the invention. It should be noted that for clarity and ease of illustration these drawings are not necessarily made to scale.
Some of the figures included herein illustrate various embodiments of the invention from different viewing angles. Although the accompanying descriptive text may refer to such views as “top,” “bottom” or “side” views, such references are merely descriptive and do not imply or require that the invention be implemented or used in a particular spatial orientation unless explicitly stated otherwise.
The figures are not intended to be exhaustive or to limit the invention to the precise form disclosed. It should be understood that the invention can be practiced with modification and alteration, and that the invention be limited only by the claims and the equivalents thereof.
As used herein the term “sensor” or “pixel” refers generally to an element of a sensor array. For example, the term sensor or pixel may refer to an individual photodetector of a photodetector array (“PDA”). In other cases, as indicated by context, the term “sensor” may refer to an entire sensor or pixel array.
In still further embodiments, the emitter 103 is optomechanically adjustable to adjust the size or range of the detection zone. Each module's FOV 402 is provided by the laser flashes 405 that illuminate a detection volume comprising a portion of the detection zone. The number of flashes 405 may vary in different implementations based on factors such as module FOV size, desired operational frequency, available laser power, available detection power, visibility, and other system or environmental factors. In one embodiment, for a detection zone between 5 km and 15 km, with each flash illuminating about 100 m at the 15 km radius, each flash has a horizontal FOV of 0.38° and a vertical FOV of 0.37°.
Returning to
As an example, the following formula relating pulse energy, Eo, and repetition frequency, n, into equivalent continuous watt (CW) power,
where no is nominal repetition frequency:
no=100 Hz (2)
Therefore:
As an example, assume
In some embodiments, the laser path 502 may be free space, a waveguide, or an optical fiber. As discussed above, in some embodiments, the laser has a peak power greater than 1 MW. Optical fibers have a laser damage threshold which defines the maximum optical intensity in W/cm2 that can be transmitted in the fiber. In particular embodiments, the laser path 502 comprises a multi-mode fiber with a core diameter of around 300 μm.
In one embodiment, the laser damage threshold is about:
Io=10 GW/cm2=1010 W/cm2 (4)
Then, minimum fiber core diameter, (dF) min, is
where Po is laser beam nominal power. Assuming, as before, Po=6.67·106 W, we obtain
(dF)min=290 μm (6)
which is a multimode fiber. For a typical multi-mode fiber the numerical aperture is NA=0.4. From this, its etendue is: (2)(290 μm)(0.4)=232 μm, which is much larger than a laser's single-mode Gaussian beam etendue, εL, in the form:
i.e., about 1.6 μm
In other embodiments, the laser beam path comprises a single mode optics. In these embodiments, the laser beam may comprise a Gaussian beam with divergence, 2θ, and beam waist, 2wo. For 2θ=Δφ=0.38°, wo=(1.6)(32)(10−4)/(0.033), =0.155 mm, and 2wo=310 μm>290 μm. The relation between the beam waist 2wo and divergence angle, 2θ in degrees, is summarized in Table 2.
The emitter housing 503 comprises a beam coupler that couples the laser path 502 to the laser emitter 504 and that conditions the beam 501 to be emitted 505.
The coupler 601 has a profile 707 configured to provide a desired intensity distribution 708 at the coupler exit 709. The desired intensity distribution 708 may be symmetrical or asymmetrical. Symmetrical intensity distributions 708 may include circularly symmetrical distributions, where intensity, I, is a function of radius, r. The intensity distribution 708 arises from total internal reflection (TIR) 705 of rays 704 within the beam coupler 601. In some embodiments, the intensity distribution 708 is Gaussian. In other embodiments, the intensity distribution 708 follows some other bell-shaped curve.
In some embodiments, the coupler exit 709 is optically coupled to the emitter optics directly. In other embodiments, the beam undergoes further conditioning prior to the emitter. In the illustrated embodiment, the coupler exit 709 is optically coupled to a beam shuffler 602. An embodiment of the beam shuffler 602 is illustrated in
The beam shuffler 602 comprises a fiber bundle having an input arrangement 801 and an output arrangement 802. The fiber bundle comprises a plurality of optical fibers 803 having input surfaces optically coupled to the output surface 709 of the beam coupler 601. The optical fibers 803 may be made of the same material as the coupler 601, or other material having a similar index of refraction, n3. In some embodiments, the optical fibers 803 lack claddings or have reduced claddings to reduce the space between fibers 803 and reduce light loss at the interface between output surface 709 and the input 801.
The output fiber bundle arrangement 802 differs from the input fiber bundle arrangement 801 in a manner adapted to provide an output intensity distribution 805. As discussed above, in some embodiments, each module FOV has an inner radius and an outer radius. In some cases, the inner radius and outer radius can differ by several kilometers. Accordingly, if the beam had isotropic intensity, the irradiance of the detection zone near the outer radius could be significantly less than the irradiance near the inner radius. Indeed, any symmetric distribution 708 provides an unequal irradiance throughout the detection zone. To reduce these effects, the output fiber bundle arrangement 802 is configured to provide an asymmetrical spatial intensity profile 805. The asymmetrical intensity profile is formed because fibers 808, 809 with an input near the peak input intensities 806, 807 have outputs at locations corresponding to farther detection distances. Any desired output intensity function 805 may be obtained by such reshuffling. For example, the output intensity function 805 may be a monotonically decreasing intensity function. Additionally, in some embodiments, the centers of the fibers 803 are not symmetrically distributed about the center of the input 708. Accordingly, the input intensity function 708 is sampled by the fiber bundle 801 asymmetrically. This allows the output intensity function 805 to more accurately approximate a desired profile. For example, in the illustrated embodiment, fiber 808 is closer to the peak intensity value than fiber 809. Accordingly, fiber 808 samples a higher intensity value 806 than intensity value 807 sampled by fiber 809. In other embodiments, shuffler 602 may include fiber optic couplers joining two input fibers 803 to form a single output fiber 810. In such embodiments, the exit intensity from the output fiber 810 may be the sum of the input intensities of the two input fibers 803.
After transmission through the emitter optics, the spatial intensity function 805 is transformed into a radiant intensity function. In particular embodiments, the radiant intensity function is or is an approximation of the radiant intensity function (measured in Watts per steradian, or W/sr):
where h is the approximate height of the system and θ is the vertical beam angle with respect to the mast.
In this geometry, the emittance as a function of R is (ignoring atmospheric effects):
Accordingly, the radiant intensity given in Eq. (8ab) compensates for the dependence of E(R) on R−2. For marine platforms: β<<1, so that J(θ) is as follows:
where Po is total beam power, Δφ is beam azimuthal range of a single facet, and F-factor, is
including R-formula, as in Eq. (8b). Eq. (10) includes both R2-profile as in Eq. (8a) and power normalization, while
where w is azimuthal range value. The azimuthal range may vary depending on embodiment, but remains less than a threshold, wT, defined by the implementation. This can be done, at least, in two ways, either keeping Δφ constant, or w constant, where the first case can be preferable in order to keep well-controlled total FOV combined of a number of modules. In such a case, w-value will be variable, equal to wT-value, for R=R2:
In other implementations, the system may be mounted at other locations. For example, the system may be mounted on an aircraft or helicopter. In such an example, β may be not be <<1. In these implementations, J(θ) will vary, but may be determined in a straightforward extension of the above analysis.
Additionally, although discussed in terms of a multimode fiber delivery path 502. A coupler 601 and shuffler 602 may likewise be applied in the case of a free space path 502. Additionally, in embodiments without large power requirements, the path 502 may comprise a single mode fiber. In these embodiments, the coupler 601 and shuffler 602 may or may not be applied, depending on implementation.
Returning to
The following general relation for multi-mode fiber optics applies:
From this relation: (NA)=0.447 for f#=1, and f#=1.14 for (NA)=0.4, while, the Ettendue theorem has the form:
2dF(NA)=(Δφ)·D (15)
This is the optical version of the 2nd principle of Thermodynamics, which is a consequence of the Liouville Theorem.
Bottom intensity value 1030, is transformed to the same upper (or, double-rescaled) exit angular intensity value 1030, as it is shown for the three upper exit values 1030; same with intensity values 1031. This occurs because the spatial intensity values 1032, for z-coordinated at the exit of fiber core 1010, are transformed to angular intensity values 1033 at the lens exit, and this relation is inverse (i.e., upside-down).
In some embodiments, an actuator 1034 may be coupled to the fiber 1010. For example, the actuator 1034 may comprise a piezoelectric actuator. This may be used to change the position of the beam axis 1039, for example, in the z direction. As a result, the scanning range (R1, R2) may be modified. For example, the range might be modified from (5 km, 15 km) to (8 km, 18 km).
Returning to
To calculate the radiant intensity, J(θ), for R=15 km, assuming R1=5 km, R2=15 km, w=100 m, and Po=6.667·106 W, and:
And, equivalent pulse energy, Eo, is (for τL=6 nsec)
Eo=τL·Po=(6.667·106 W)(6·10−9 sec)=40 mJ (18)
Also, assuming nominal repetition frequency value of no=100 Hz, according to Eq. (3), the equivalent continuous-work (CW) power,
For R=R2=15 km, Eq. (16) becomes
where θ1=89.43° (5 km) and θ2=89.8° (15 km). Using Eq. (17), the value of radiant intensity at the front of the target 901 is:
In some cases, the target 901 is a non-Lambertian reflecting optical system (such as a periscope). Such targets 901 may be called optical-augmented devices (OADs) herein.
The illumination and optical power at the detector relates to the illumination and optical power at the reflector as follows.
where D is the lens diameter, R the distance from reflector to detector, and a is the reflection divergence half-angle. P5 is the power at the detector while P3 is the power at the reflector surface. For (Lambertian) clutter reflectors (using prime to distinguish clutter objects):
α′=90° (23)
while, for the target (non-Lambertian), α<<1, such as:
α=0.25°=0.0044=4.4·10−3 (24)
From well-known radiometric definitions:
P5=E5A5; P3=E3A3 (25ab)
where E is illumination or irradiance. Therefore, substituting Eq. (25b) into Eq. (22a), we obtain
introducing focal length of the detection optics and system magnification results in:
or,
Introducing brightness (or radiance), B3, at the reflector then, the well-known basic radiometric formula results:
This formula shows that the retro-reflectors, such as periscopes, which have high brightness, image very well. However, they image into a very small spot, which is typically much smaller than pixel size (linear), a.
An example is a periscope cross-section as a reflector object, with diameter, d=7 cm. Assuming typical: R=10 km, and f=30 cm, then the image size s is:
where m is demagnification (m=R/f). If a 50 μm sensor (pixel) size is used (i.e., a=50 μm), then:
i.e., periscope cross-section cannot be imaged (in other words, the system is a pseudo-imaging system, where the target images do not satisfy the resolving criteria of having images extending across at least two sensors).
The ratio of clutter/target powers, may be written as
Additionally:
E3=rE2; E3′=r′E2′ (33ab)
where subscript “3” denotes the exit plane of the reflector plane, while subscript “2” denotes the entrance plane of the reflector, and r and r′ are Fresnel (energy) effective reflection coefficients for target and clutter, respectively. Thus:
where, E2=E2′ (e.g, the same laser illumination is incident on target and clutter), and clutter reflection beam is imaged, uniformly; i.e., filling up whole pixel area; thus,
A5′=a2. (35)
Accordingly:
Introducing the resolving element, as described herein:
where δl is the pixel resolving element (in other words δl is the size of an object that is imaged to the size of the pixel) (δl=m*a), and, for circular periscopic cross-section with diameter, d:
and, Eq. (37) becomes,
As an example, the resolving element for δl, for a=50 μm, f=20 cm, and R=10 km is:
(δl)=ma=(50 μm)(5·104)=25·105=25·102 mm=2.5 m (40)
To continue this example, the power ratio for (δl)=2.5 m, d=7 cm, and α=1°, assuming: r=r′ is:
Accordingly, voxel inference (i.e., distinguishing a true target from a potential false target using the presence of a reference clutter signal) may be applied in this example because both powers have comparable values. In general, so long as the power ratio for the clutter signals and potential target signals are within the dynamic range of the detector, both signals may be read by a single detector.
As a contrary example, assume: f=30 cm, a=20 μm, α−0.25°, R=10 km, d=7 cm, and r=r′. Here the power ratio of retroreflected target signal to Lambertian clutter signal is
This power ratio exceeds typical dynamic ranges of available photodetectors, and hence voxel inference cannot be applied using a single detection branch.
Accordingly, for small α-angles and small-δl, the target power is much higher than that for reference clutter; thus, the voxel inference cannot be applied within the single system; otherwise the voxel inference (within the same system) can be applied.
This reflects the general fact that minimizing both false negatives and false positives within a single detection system may be contradictory. In general, to minimize false negatives, the target signal is maximized by reducing sensor size, a. This also reduces the NEP (noise equivalent power) of the system.
In contrast, to minimize false positives, ability to perform voxel inference is maximized; e.g., both signal and clutter powers are brought within the system detector range.
An R* parameter may be defined as the distance, that:
P=P′; r=r′ (43ab)
The use of equality for R* is for simplicity of explanation. In general, the relevant distance is where both powers are within the system detection range.
As an example, typical conditions might be d=7 cm, α=1°, f=20 cm, and a=50 μm. The R* value is obtained from
Thus,
(δl)=3.55 m (44)
and,
thus, the R*-value, is
R*=f·m=(20 cm)(7.1·104)=142·104 cm=142·102 m=14.2 km (45)
Less than this distance, P>P′, while greater than this distance, P′>P.
From Eq. 39:
and:
To increase the ability to perform voxel inference, the reference clutter signal must be reduced in respect to target signal by reducing the R* value. Therefore, according to Eq. (47), adjustment of following parameters in the following manner minimizes R* value:
d; α; f; a. (48abcd)
Conditions (48ab) are fixed for specific target (e.g., periscope) types, so system parameters determining Eq. (48cd) may be modified. Reducing f-value, is equivalent to reducing system sensitivity because reducing f value is equivalent to reducing D value in the f# (i.e., weakening light collection). Accordingly, preferably, the sensor (i.e., pixel) size a is increased to reduce R*. Additionally, a second system having a different a value will have a different R* value. Accordingly, in some implementations, two parallel detection systems are used for distances shorter than R<R*.
Minimizing both false negatives and false positives at the same time is a central challenge with the IOS. This is done by maximizing the strength of the laser beam reflected from the periscopic target, and, at the same time, providing voxel inference (i.e., to process information from clutter correlated to the target, which includes, for example, the body of periscope, wave disturbance by the submarine, etc.) The first task leading to minimization of false negatives [target misses] is detecting the signal from the target. This is performed, in one embodiment, for example, by elements 1103 and 1104 in the upper branch of the detection system of
The second task [signal from correlated clutter] leading to minimization of false positives [false alarms] relates to detecting a signal from correlative clutter. This task is performed, for example, by elements 1109, 1103′ and 1104′ in the lower branch of detection system in
According to equation 47, the only parameters that can be controlled or varied by modifying the system are f and a, where f is focal length, and a is the linear pixel size. In order to increase the value of P′ in the lower branch of
Depending on system configuration and constraints, component availabilities and other design considerations, it may not always be possible or practical to implement detectors 1103, 1103′ with actual pixel sizes meeting this constraint. Accordingly, in some embodiments, a pixel cluster concept can be applied in the lower branch in which multiple adjacent pixels are clustered together to yield a larger effective pixel size. For example, four (2×2), nine (3×3), (they need not be in a ‘square’ array) or more pixels can be configured to work in coordination as one single pixel. This electronically increases pixel size in the lower branch.
The pupil 1109 in the lower branch of
The detection subsystem may comprise a filter 1101. The filter 1101 passes the laser wavelength while blocking other light. This reduces, minimizes, or eliminates optical noise. For example, such optical noise might arise from unwanted solar reflections, or other light sources. Because the laser beam is practically monochromatic, the filter 1101 may be a narrow wavelength filter. For example, the filter 1101 may comprise an interference passband filter, such as a Bragg filter. These filters demonstrate a “blue-shift” effect for slanted beams, the form: λ=λo√{square root over (1−sin2 α/n2)}, where α is the slant angle λo is interference wavelength under normal incidence (α=0). This blue-shift effect can be quite significant for narrow passband filters and moderate incidence angles. However, as discussed above, in some embodiments, each flash FOV may be less than 1°, for example 0.36°. The blue shift effect in these cases is small enough that the interference filter performance is not compromised. For example, for α=0.36°, Δλ=0.012 nm.
In further embodiments, the filter 1101 may comprise a polarizing filter. As discussed above, in some embodiments, the emitted light beam may have a polarization signature. The filter 1101 may be configured to allow only light having that polarization signature to pass. For example, if the emitted beam is TH-polarized, the filter 1101 may comprise a TH-polarization filter. Man-made targets may be more likely to reflect light without change in polarization when compared to natural clutter, such as waves and plant matter. Accordingly, filter 1101 may increase the likelihood of target detection by reducing clutter signatures.
In still further embodiments, the filter 1101 may comprise a non-uniform neutral density filter. A non-uniform neutral density filter 1101 may be used instead of or to augment the normalizing system of the emitter. For example, the non-uniform neutral density filter 1101 may reduce the optical signal from close objects to normalize the received signal.
In the illustrated embodiment, the detection optics 1102 is optically coupled to the filter 1101. In some embodiments, the detection optics 1102 is disposed behind the filter 1101 in the optical path. In other embodiments, the detection optics 1102 may be in front of the filter 1101. The detection optics 1102 is configured to transfer received light to the detector 1103 in a pseudo-imaging manner. In still further embodiments, a filter 1101 is not employed.
In some embodiments, the detection system comprises a pupil 1109 coupled to, or integrated with, the optics 1102. In the optical path, the pupil 1109 may be behind or in front of optics 1102. The pupil 1109 may be used in the system to control the effective aperture, and thus, f#, of the optics system 1102. In embodiments having a pupil 1109, the pupil 1109 may be used to control the instantaneous dynamic range of the detection system. In some instances, reflected signals may exceed the system dynamic range—for example, if an object with a strong reflected (e.g., a non-Lambertian reflector) signal is near clutter with weaker reflected signal (e.g. a painted marine vessel). In such a case, the pupil may be used to reduce the light gathering ability of the optics system 1102, to bring the reflected signals within the dynamic range of the detector 1103.
In some embodiments, the pupil 1109 is adjustable, and to control the f# of the system, the detection optics 1102 has an adjustable focal length, f. For example, in some embodiments, the f# may be between 1 and 5. In systems without a pupil 1109 or with a fixed pupil 1109, the focal length f of the detection optics 1102 may also be fixed to set the desired f#.
As discussed below, the detector 1103 may comprise a one or two dimensional array of individual sensors 1106 separated by gaps (
In the case of long distance detection, such as optical periscope detection (OPD), the photodetector array 1103 creates potential problem with missing periscope target during pseudo-imaging operation. This is because, the periscopic target is very small, with 10 cm-diameter, for example. In such a case, its image, at very long distances (e.g., R=10 km), is very small, down to even 0.1 μm size. Then, if photodetector array 1103 filling factor, F (i.e., the ratio between sensor area to total array area), is not perfect (i.e., F=100%), this target image can be missed in the space between sensors 1106. This is illustrated in
In
In one embodiment, this problem is solved by increasing the size of the target signal at the detector 1103.
According to the Nyquist resolution criteria, the smallest resolving object should produce an image across at least two pixels 1106 of the array 1103. If, for example, this object is a periscope cross-section, with 10 cm diameter, then for detection optics 1102, with focal length f=30 cm and distance, R=10 km, the system demagnification, m=R/f=10 km/30 cm=3.33*104. Then, the Nyquist-satisfying pixel size is equal to 5 cm/3.33*104=1.5 microns, i.e, smaller than the Raleigh resolution (1.22*λ*f#=1.59 microns, for f#=1 and λ=1.3 microns), and which is comparable with speckle size for this system. Thus, in typical conditions, such small objects cannot be imaged without significant speckle-sized distortion. Therefore, the integrative optics system is “pseudo-imaging” rather than an imaging system. In other words, the optics 1102 produces images of targets that do not satisfy the Nyquist criteria for imaging a target.
In various embodiments, the f# of the optics system is as small as possible. For example, the f# may be between 1 and 0.5. However, in other embodiments, f#s between 1 and 5, or even higher may be employed.
The size of the detector 1103 may depend on considerations such as the sensor 1106 size, the effective diameter of the optics system and the distance from the detector 1103 to the optics (which may differ from the focal length for de-focusing embodiments). For a lens system with an effective diameter of D=30 cm, for example, f=30 cm, while Δφ=0.38°=0.0066; thus, Δφ/2=0.0033, and
d=Δφ×f=(0.0066)(30 cm)=1.98 mm (50)
and, for vertical FOV (Δφ=0.37°), d=1.94 mm for 50 μm APD sensors (e.g., 1106,
and, the number of vertical APD sensors is (e.g, in a APD detector array 1103 (
In some embodiments, the ratio of the sensed energy from a potential target to the sensed energy from the surrounding clutter is used a parameter for target detection. The sensed area per image sensor 1106 (i.e., the area illuminated by a flash whose reflection impinges on a sensor 1106) is correlated to the sensed energy from the surrounding clutter. This parameter is dependent on factors such as de-magnification, FOV, sensor size, and distance from the sensed area to the system.
In
As illustrated in
As discussed above, the detector 1103 may comprise a plurality of individual sensors 1106 arranged in various one or two dimensional pixel arrays. The sensors 1106 are selected to have a sufficient specific detectivity. Typically, in semiconductor detectors 1106, the NEP (noise equivalent power) is defined by so-called specific detectivity, D*, in W−1 cm Hz1/2, by the following formula:
where A is the photodetection area in cm2 and B is the bandwidth in Hz. For semiconductor detectors, D* is, approximately, proportional to wavelength, up to cutoff wavelength, λ cutoff, defined by energy gap, Eg, as: λ cutoff=hc/Eg, where h is the Planck constant and c is the speed of light. For Avalanche Photodiodes (APD), the speed is very high (even in picoseconds), but (NEP) is limited by Johnson (thermal) noise, where
where < > is the statistical ensemble average, in is the noise current, k is the Boltzmann constant, T is the temperature in Kelvins (K°) and R is the resistance (typically, R˜20Ω). Then for typical applications, D*˜1.9·1011 Hz1/2 cm W−1, and, for pulse laser with pulse length: δt=6 ns, the bandwidth B=1/δt=1.67·108 Hz; and for APD pixel size: √{square root over (A)}=25 μm=25·10−4 cm and √{square root over (B)}=1.3·104 Hz1/2, from Eq. (35):
In other embodiments, the sensors 1106 may comprise photomultipliers. With photomultipliers with very high gain ˜107, the dark current noise dominates, and:
where η-quantum efficiency. Then, for η=0.8 and √{square root over (B)}=1.3·104 Hz1/2:
Accordingly, for typical embodiments, the NEP is assumed to be approximately:
(NEP)o=0.5 pW=0.5·10−12 W=0.5·10−18 MW=−183.01 dBM (58)
In further embodiments, the detector 1103 may comprise a CCD array. CCDs have slower responses than APDs but NEP is lower and CCD pixel sizes are smaller. For example, for KODAK KAF-50100 Image Sensor, pixel sizes are 6 μm×6 μm, and Maximum Data Rate, B=18 MHz; i.e., (100)/(18)=5.5 slower than required for some implementations. In particular, implementations using laser pulses with approximately 10 nsec length are equivalent to B=100 MHz. By comparison, CCD speed limitation allows to measure only laser pulses 5.5-times longer; i.e., 16.5 m vs. 3 m for APD devices (since, cδt=(3*108 m/s)(10−8 m)=3 m). On the other hand, the SNR-value is much better. This is, because, the CCDs are limited by dark current noise rather than by Johnson noise as the APDs are. As a result, their D*-values are much higher: about 1012 W−1 cm Hz1/2 vs. 109 W−1 cm Hz1/2 for APDs.
In still further embodiments, the detector 1103 may comprise a solid state photomultiplier array.
The detection system further comprises detector electronics 1104 coupled to the detector 1103. In some embodiments, the detector electronics 1104 may comprise normalizing electronics. For example, the normalizing electronics may be used to normalize the gain settings across the detector to supplement or replace the normalizing system of the emitter. For example, a non-linear detector response, following a general square-root function or sigmoid function curve may be applied so that detector elements receiving light from closer objects have lower gain than detector elements receiving light from farther objects.
In some embodiments, the detector electronics further comprise RISC processor arrays 1104. Each RISC processor 1108 of array 1104 is coupled to a plurality of sensors 1106 of detector 1103. In some embodiments, each RISC processor 1108 of array 1104 is coupled to a 3×2 grid of six sensors 1106. In embodiments employing a 39×40 array of 50 μm APD sensors, an array of 256 RISC processors allows 255 RISC processors to be coupled to 6 APDs each, and one RISC processor 1108 to be coupled to 7 APDs. Each RISC processor 1108 receives a set of readouts from its connected APDs and performs a set number of operations on the set of readouts. In other embodiments, the detector electronics 1104 may comprise any other combination of analog or digital electronics systems.
In one embodiment, the RISC processors 1108 perform novelty filtering on their readouts. During the novelty filtering operation, each readout xi is translated by some predetermined amount Ax to form a set of translated readouts xi0=xj+Δx. In other words, the xi0 has the same coordinates as xi, but its value is the value of xj at Ax away. In some embodiments, the translation is performed using shift registers or other memory devices coupled to the processors 1108. When the translated readouts are formed, the RISC processors 1108 send the translated readout values to the appropriate RISC processors. For example, if Δx is one unit down, then the RISC processor connected to the APD at (1,1) would send the readout from (1,1) to the RISC processor connected to the APD at (1,2).
Next, during the novelty filtering operation, each RISC processor subtracts xi−xio. If each readout is a binary value (for example, if the APD readout is treated as 1 if the APD detects more than a threshold amount of light and 0 if the detected amount of light is less than the threshold), this value will be 1 at edges of objects and 0 within and outside objects. In some embodiments, the RISC processor array 1104 outputs the subtracted readouts as a set of detected edges. In further embodiments, the RISC processor array 1104 performs further calculations.
In one embodiment, the RISC processor array 1104 calculates the squared Euclidean distance dE2, in the form; shown in N-space:
This value dE2 may be output by the RISC processor array 1104. In various implementations, the squared Euclidean distance may be calculated for an entire sensor readout, for a row of sensors, for a column of sensors, or for a block of sensors connected by detected edges.
These examples are intra-frame calculations (i.e., calculations performed on a single readout of the detector 1103). In further embodiments, the RISC processor array 1104 may perform inter-frame calculations (i.e., calculations performed on multiple readouts of the detector 1103). Examples of such inter-frame calculations are described in further detail below.
The RISC processor array 1104 is coupled to a detection processor 1105. The detection processor 1105 receives data from the RISC processor array 1104 and performs various detection algorithms to determine if a target is detected. Examples of such detection algorithms are described in further detail below.
In further embodiments, parallel detection systems may be used to measure return flashes.
In this embodiment, if filters 1101 and 1111 are employed, they may have similar filter characteristics. Subsystem 1000 is configured to have less greater light gathering ability, in order to detect the weaker of the potential target signals and clutter signals. Accordingly, the system 1000 lacks a pupil. Additionally, the detector 1103 may have larger sensor sizes than detector 1113, such as 50 μm compared to 25 μm (linear size). The detection optics 1112 may vary from detection optics 1102 to accommodate the pupil 1119. For example, the focal length of detection optics 1112 may be longer than the focal length of detection optics 1102 to accommodate the reduced diameter caused by pupil 1119.
The detector electronics 1104, 1114 may be any combination of digital or analog circuitry, including RISC processors, sufficient to provide the voxel readouts to the detection processor 1105. Additionally, in some embodiments, detectors 1103 and 1113 may share some detector electronics 1104, 1114, components, for example, to combine the signals prior to providing the signals to detection processor 1105.
In step 1502, the system stabilizes the emitter and detector while detecting return pulses from objects within the facet field of view. As discussed above (for example, see
The step 1502 of receiving return pulses further comprises time-gating the sensor readouts. Time gating the sensor readouts allows the system to determine the distance from the module to the object or clutter that reflected the laser pulse. Then, the minimum quantum of distance, δz, resolved by each laser pulse, is: δz=(0.5)cδt, where c=3·108 m/sec is speed of light in air (vacuum) and δt is the pulse width (for example, full width at half maximum). For example, for δt=10 nsec=10−8 sec: δz=1.5 m, while for δt=1 nsec, δz=15 cm. The step of gating 1502 may comprise gating the detector at any rate up to the pulse repetition rate to obtain a desired distance resolution. The set of time gated sensor readouts, indexed by time, will be termed a set of voxels. Each pixel (i.e., sensor) has its voxel derivatives; each voxel with sizes: ax, ay, δz, where ax, ay are pixel sizes, while δz is the temporal (i.e., distance) resolution. It should be noted that this is an approximation based on a system mounted at height h that is small compared to the distance R between the system and the target. Systems, such as aircraft or helicopter mounted systems, where the height h is large or on the order of R. δz may be replaced with δR, which provides non-orthogonal voxels, with sizes ax, ay, δR. Alternatively, such systems may translate the δR values to δz values. In these systems β (
The module waits for at least the maximum return time for pulses to return from the farthest range of the detection zone. Then, in step 1503, the module translate the next facet and repeats the method. For ranges on the order of 15 km, the maximum return times will be around 0.1 msec. Accordingly, the maximum repetition rate is about 10 kHz for one laser pulse per facet. However, lasers meeting the requisite power parameters typically have maximum repetition rates of about 100-200 Hz. Additionally, in some embodiments, multiple pulses are emitted per facet. A 100 Hz laser frequency allows emission of one pulse per facet and a scan rate of 100 facets per second. Allowing a module with a 38° field of view and 100 facets to have a scan rate of 1 scan/sec.
In this example, with one module FOV per second, (f=1 Hz) assuming horizontal mechanical tracking with N=100 channels, there are n−1=10 msec between facets, which is achievable by current mechanical systems. Total return time, Δt, is much smaller than tracking-step-time (TST):
(Δt)<<(TST)=n−1 (60)
since Δt=10−4 sec, while (TST)=10−2 sec. Therefore, the mechanical tracking system can be relatively stable, since, there is a lot of time for stabilization. In this example, 99% of the time, the laser is not operating; so, this time can be used for stabilization purposes.
In some cases, the set of voxels obtained in step 1601 depends on the environmental visibility. The atmospheric attenuation, TA, may impact the detection range or the total detection space. TA is the atmospheric attenuation in the form:
TA=e−σR (61)
where R-distance from laser delivery sub-system to the target, and σ is atmospheric attenuation coefficient, based on the following well-known phenomenological formula (defined as distance, V, where image contrast is reduced to 1%):
where V is called visibility, λ550, is the reference wavelength at λ=550, λ is the system laser wavelength, and q=q(V) is a power factor. (It should be noted that function: y=ax, where a<1, is a monotonically-decreasing function of x. Therefore, the λ-power factor in Eq. (35) is monotonically-decreasing function of q.) Since, q-factor is monotonically-decreasing function of V, therefore, the attenuation coefficient, σ, is a faster decreasing function of V, than V−1.
As an example, in a system where λ=1.6 μm:
λ>550 nm (63)
The well-known phenomenological formula of dependence: q=q(V) has the form
The visibilities of equivalent atmospheric conditions are summarized in Table 3.
According to simulations, the atmospheric attenuation coefficient relation:
σ=σ(V,λ) (65)
includes both atmospheric absorption and atmospheric scattering, mostly represented by so-called Mie scattering. This modeling should be understood in such a sense that only “ballistic” photons reach photodetector array while both absorbed and scattered photons do not reach the receiver sub-system.
The attenuation coefficient value, 2σ, can be presented as a function of visibility, V, for specific wavelength, λ, in the look-up table form, as shown in Table 4, for λ=1.6 μm, in the visibility range; V=1 km-6 km. According to Table 3, it is equivalent to thin fog (1 km≦V≦2 km), through haze (2 km≦V≦4 km), and part of light haze (4 km≦V≦10 km).
The system may handle the impact of visibility in various ways. For example, the step of obtaining voxels 1601 may comprise obtaining a reduced set of voxels in lower visibilities. As another example, the step of obtaining voxels 1601 may comprise angling the system to provide a detection range (e.g. 402,
Step 1601 may also include an automatic dynamic range adjustment procedure. For example, the system may adjust the pupil 1109 (if present), activate a second detection system having a different dynamic range, or activate a splitter 1110 (if present). If a second detector (from a second detection system or from a second detector 1103′) is used, the system builds the voxel space from the combined signals of the two detectors.
In step 1602, a clutter signal is obtained from the set of voxels. For example, in a system deployed on a ship mast, a clutter signal will occur at the voxels corresponding to sea level. As described above, measured distance is a function of laser pulse return time and gating speed.
In step 1603, voxels are missing from the expected clutter signal are detected. For example, in a clutter plane created by sea level, missing voxels are created by objects (such as targets or other clutter objects) blocking the laser pulse and causing an early return pulse or by absorbing the laser pulse, causing a late or non-existent return pulse. For example, in
Δz=z2−z1 (66)
In
The light line symmetry breaking situation becomes more complex in the case of other targets. For example,
For clutter point, C, the symmetry is not broken, because C-point is located at light line 1865. The most broken light line symmetry is for low-brightness point B, since, this breaking value is: 2Δz, where Δz=z2−z1. High-brightness A-point has symmetry breaking less than 2(z3−z1), because there is pulse time delay due to optical ray penetrating the periscope's interior. Assuming that the optical ray is reflected at the periscope and at its eye piece, this extra time delay is 2L, in ct-coordinates, where L is the periscope length. However, in the case of reflection from intermediate retro-surface, with distance, L′, from periscope point A, this extra time delay will be 2L′, in ct-coordinates, where L′<L, where L-periscope length.
The number of t-cell units: δz=(cδt)/2, this extra time-delay provides is as follows. For typical marine (mast) platforms (h=50 m), and typical R-distances, (R=10 km), and for typical A-point height (H=3 m), the |z3−z1|-distance is about 600 m, and δz=1.5 m, for δt=10 nsec. Therefore, for periscope length; L=12 m:
Therefore, the value of periscope length in t-cell units is 8; i.e., location of point A is separated by 8-number of t-cells (or, 8-number of voxels) from point, B. This is a significant value, which can be used as an extra temporal signature of periscopic target, even for single-pulse reflection.
The clutter point C is separated far from points A and B, in t-cell units, since, according to Eq. (67a), for |z4−z1|≅|z3−z1|, we have about 400-units separation. Therefore, the related clutter is separated quite far from periscopic points' location, in t-cell units; thus, providing significant t-cell or, voxel δr-units, separation. Accordingly, if target point, A, is located at (m+8)th voxel, for example, by using Eq. (39), the low-brightness periscopic point, B, is located at mth voxel, while C-point is located at (m+392)th voxel, according to Eq. (67). Therefore, the noise signals from reflective points, B and C, do not bias target signal from high-brightness point, A. In various embodiments, targets may be detected using the t-cell separation of signals from background clutter signals as determined from the voxel readouts.
Returning to
In other embodiments, step 1604 may comprise detect voxel coherency signals.
Vertical voxel coherency is illustrated in
The temporal relation between voxel columns 1907 and 1908 represents an example of voxel coherency. By retrieving and analyzing all voxels from these columns, the system can identify two meaningful voxels 1918 and 1922, representing the information about mutual location of two reflected signals 1916 and 1917. In turn, the system can perform reasoning about presence of periscope 1900, in respect to reference clutter 1902. We see that this specific periscopic information can be obtained without using distinctive periscope optical signals, due to reference clutter 1902 which has comparable pixel signal power with high-brightness retro-reflected signal 1916.
Voxel coherency analysis may also be applied using all available dimensions of the voxel space.
The incident ray 2013 strikes solid reference clutter 2014, and its reflected ray is 2015. This reflected ray 2015 has the earliest arrival time, t1, represented by voxel array 2004. The retro-reflected ray 2003 has the second arrival time, t2, represented by voxel array 2005. The 3rd incident ray 2019 is reflected at sea point C, denoted as 2021, and incoming as reflected ray 2019, much later than other reflected rays 2003 and 2015, at arrival time, t3, represented as voxel array 2006. The distance between bottom point, B′, denoted as 2020 and C-reflection point, 2021, is very large, say 600 m, for example. Therefore, from general formula: (t3−t2)=(2×600 m)/(3·108 msec)=4·10−6 sec, while for spatial voxel quant of δz=1.5 m, this distance, in light units, is: (N3−N2)=(600 m)/(1.5 m)=400; i.e., very large, in comparison with periscope return time for example (eight (8) light units); thus, (N2−N1)=8. Therefore, voxel arrays 2004 and 2005 are relatively close to each other (N2−N1=8), while voxel arrays 2005 and 2006 are far away (N3−N2)=400.
The horizontal voxel coherency signature is represented by graphical voxel pattern of three horizontal voxel arrays 2004, 2005, and 2006, in respect to signal-filled voxels and empty voxels. In particular, horizontal voxel array 2006 demonstrates a characteristic missing-tooth pattern, with “missing” voxel (or “hole”) 2010, while this missing voxel is located at other voxel array 2005, at voxel 2008. The second reference voxel is 2007, represents solid (hard) reference clutter B. This clutter plays a dual role, not only as regular clutter (a noise) but also as reference object, allowing the system to identify (ID) periscopic target 2000 as well us to find its location, with single time cell accuracy (˜1.5 m). This is done even without two-pulse operation. In further embodiments, the reference clutter may additionally or alternatively comprise the ground, clouds, or distant background objects.
In general, detectable targets will show significant space time voxel coherency.
I=I(i,j,m) (68)
where; i, j, m—are integers, defining given voxel index; e.g.,
Ii,j,m=I2,5,151=I(2,5,151)=2.5·10−5 W/cm2 (69)
where: i-index defines voxel's x-coordinate (horizontal); j-index defines voxel's y-coordinate (vertical); and, m-index defines voxel's ct-coordinate (in light units).
In
Returning to
In
In
In
In summary of
j=5, in FIG. 21A; j=6, in FIG. 21C, j=7, in FIG. 21D (70)
will be filled by light reflected from sea level, assuming sea clutter at sea level. The exception would be sea waves with amplitudes exceeding 2.5 m (assuming exemplary conditions). These waves start to occupy some voxel, with jth coordinates, higher than those in Eq. (42), such as j=6, in
In some implementations, the signal from high-brightness targets (such as non-Lambertian reflectors) will tend to be smaller than the signal from surrounding clutter. This is because, although high-brightness targets reflect a greater amount of light per unit area back to the system, the clutter signal will be integrated over a much larger area. The system parameters may be set so that the upper range of the dynamic range of the detector 1103 encompasses the expected signal from large area clutter. In some embodiments, for example where some target signals may be greater than their reference clutter signals (for example, an ocular target on a vessel with light absorbing paint), some system parameters may be adjusted. For example, a pupil 1109 may be used to reduce the light gathering ability of the system to bring the target signal within the dynamic range of the detector.
In some embodiments, a second detection system may be employed in parallel.
Alternatively, a splitter 1110 may allow two detectors 1103, 1103′ and detector electronics 1104, 1104′ to operate in parallel. One detector 1103′ may be configured to detect higher brightness signals than the other 1103, for example by having larger sensor sizes or by having more sensitive sensors. In this case, each RISC 1108, 1108′ array 1104, 1104′ provides its output to the detection processor 1105 and the detection processor 1105 builds a combined voxel space from the two outputs.
In a further embodiment, the pupil 1109 is on only one branch of the detection subsystem.
In these embodiments, detectors 1103 and 1103′ may have different sensor sizes to accommodate the changes in light gathering ability introduced by the pupil 1109. As discussed herein, photodetectors 1103 and 1103′ may be various types of detectors. For example, they may be APDs or solid-state photomultipliers, satisfying performance conditions such as sufficiently low NEP (preferably on the picowatt order), sufficiently high speed (for example, greater than 100 MHz), and availability in an array configuration (either one-dimensional or two-dimensional).
In still further embodiments, further photo detection branches may be employed. For example, three or four photo detection branches may be employed.
In other embodiments, for example, those using binary detection signals instead of multi-valued detection signals, high brightness signals are allowed to saturate the detector. Accordingly, the gain of the detector is set for expected low signal levels, such as signals expected from low reflective reference clutter objects, such as absorptive vessel bodies.
Returning to
In step 1606, a reference voxel set (RVS) corresponding to the bright voxel is detected from the voxel readout. The reference voxel set comprises clutter signals from clutter surrounding the target (for example, the clutter signals surrounding the missing voxels detected in step 1603). The reference voxel set may further comprise voxels nearby the bright voxel that may be reflected by other parts of the target. Such other voxels will have signal levels commensurate with clutter signals, but will be within some predetermined distance of the bright voxels.
In step 1607, the reference voxel set and its relationship to the bright voxel is analyzed for target detection. For example, in one embodiment the distance between the bright voxel and all or a portion of the reference voxel set is determined. For example, in
In some implementations, various truthing experiments may be performed to determine a figure of merit (FoM) necessary for step 1607 to detect and identify a target. An example of such an analysis would be optical periscope detection, against sea clutter and other false targets. The FoM may be developed pursuant to probability of false alarm (PFA), false alarm rate (FAR), false positives, false negatives, and other considerations. The FoM may be developed using a statistical analysis, based on Bayesian inference (BI). For example, various mock-ups of different target types and different reference clutter types (such as different periscopes on different submarines) may be used to determine appropriate reference clutter and target signals. In particular, these truthing experiments may be used to maximize the PPV of the system.
For the sake of explanation and to simplify Bayesian inference (BI), two binary events are considered: signal, or true target; and, noise (clutter), or false target. The event of detection of a signal is denoted S; and, the sensor readout corresponding to the event as S′. Similarly N (event) and N′ (sensor readout) will denote noise. Then, two absolute probabilities: p(S), and p(N), mean probability of signal and noise, respectively, with conservation relation:
p(S)+p(N)=1 (71)
because there are only two exclusive events. There are four conditional (direct) probabilities:
p(S′|S)—probability of detection (PoD) (72a)
p(N′|N)—probability of rejection (PoR) (72b)
p(S′|N)—probability of false positives (77c)
p(N′|S)—probability of false negatives (77d)
For example, p(S′|S) means the probability, that, under signal event, sensor readout will also show signal. Also, p(S′|N) is probability that positive readout (S) is false (since event is noise). Therefore, it can be also called probability of false alarm (PFA); or, the false alarm rate (FAR).
In the case of the BI, inverse conditional probabilities can be mathematically derived from the absolute and direct conditional probabilities. For example, positive predictive value (PPV) is: p(S|S′); i.e., probability of signal event, assuming, that signal readout did occur. According to the Bayesian paradox:
(PPV)=p(S|S′) (78a)
(PPV)<(PoD) (78b)
The PPV figure is defined as (assuming large number of samples):
Therefore, the PPV may be utilized as a FoM for periscopic target truthing (or experimental validation) experiments; i.e., for testing a system while simulating (or, real) true targets (periscopes) and false targets (oculars, small boats, sea clutter, etc.) and with possible increasing P(S) to higher values than in likely real-world scenarios (for training purposes).
In general, it is desirable to minimize p(S′|N) and p(N′|S) while maximizing PPV. Additionally, as false negatives represent missed targets, it is desirable to obtain a very low amount of false negatives. This can be done independently of PoD by minimizing false positive with respect to p(S): p(S′|N)<p(S).
In step 2206, sensor readouts are evaluated to detect a retroreflective effect to discriminate non-ocular clutter 2207 from ocular potential targets 2208. Retroreflection occurs when a refracting optical element and a reflective surface are arranged so that the focal surface of the refractive element coincides with the reflective surface. Optical systems, such as periscopes, binoculars, cameras, monoculars, other optical devices, and eyes, often exhibit retroreflection, at least for incident rays within the field of view of the optical system. The light reflected from a retroreflectors is reflected back to its source with little divergence or no divergence. In some cases, the light reflected back from a retroreflector may have a beam divergence of 0.25° or less. However, in other cases, the light reflected back from a retroreflector may have a greater beam divergence. Accordingly, the retroreflected signal from ocular potential targets 2208 will be greater than the non-ocular clutter 2207, which typically exhibit Lambertian, near-Lambertian, or other divergent scattering. Accordingly, for voxels away from the clutter plane caused by sea level, signal strength may be used to discriminate between non-ocular clutter 2207 and ocular potential targets 2208. Any signals from non-ocular clutter 2207 may be rejected 2212. In some embodiments, the voxel readouts include measured signal strength. In other embodiments, the voxel readouts are binary, with a signal detected if measured signal strength is above a threshold. This threshold may be set to a value likely to exclude non-ocular clutter 2207 from ocular potential targets 2208.
Omnipulse discrimination 2210 may be used to distinguish between ocular clutter 2209 (such as optical device 2204) and periscope targets 2211. Omnipulse discrimination 2210 refers to using the tendency of a periscope to produce multiple retroreflective return signals for target discrimination.
δl=cδt (80)
For example, for δt=10 nsec, δl=3 m, but for δt=1 nsec, δl=30 cm.
In
For example, for δt=10 nsec, Eq. (81) yields: ΔL>1.5 m; but, for δt=1 nsec, ΔL>15 cm. Therefore by reducing laser pulse temporal length, δt, can increase the omnipulse resolution, since, for δt=1 nsec, the separation between two retro-surfaces must be larger than only 15 cm. Eq. (81) can be generalized for a number of retro-surfaces larger than two; assuming condition (81) satisfied for any two sequent retro-surfaces.
Returning to
Returning to
Δt=t2−t1; t2>t1 (82)
Where, Δt is time difference between those moments. Furthermore, multiple PFFs, in time moments: t1, t2, t3, etc, (either periodically, or not) may be sent to build as large a hypervoxel space as desired. For simplicity of explanation, it is assumed that PFFs are sent periodically. However, the non-periodic case is a straightforward extension. In the periodic case:
Δt=t2−t1=t3−t2=t4−t3= . . . (83)
Previously, three voxel indices were employed: i, j, m, related to (x, y, z) coordinates, respectively. Now, four voxel indices are related to four voxel coordinates: (x, y, z, t), in the form:
(x,y,z,t)(i,j,m,k) (84)
where index, k, where k=1, 2, 3, . . . , is related to new time coordinate, t, related to different PFFs, obtained from different time moments: t1, t2, t3, etc.
Therefore, in the case of voxel change detection, Voxel Change Coherency (VCC) may be employed in the method. Voxel change coherence is determined in four-dimensional (4D) space (x, y, z, t), defined by Eq. (84), which is a kind of hyperspace.
The 4D voxels, or hypervoxels, are: elements, quants, or units of 4D space (x, y, z, y), characterizing voxel change coherency (VCC), in the form of indexing: (i, j, m, k), as described in Eq. (82-84). In this case, (x, y)-arc lateral pixel coordinates, z—is longitudinal voxel coordinate, and t—is (independent) time coordinate. In fact, there are two time coordinates: t, and t′, the latter one being dependent (connected) time coordinate, connected with z-coordinate, by relation: 2z=ct′ (t′-coordinate has, previously, been denoted by t). The sub-set of 4D hyperspace: (x, y, z, t) is called cross-section, and can be itself 3D space, or 2D space. Any subset of 4D space: (x, y, z, t), with constant one coordinate (such, as t, for example), is 3D space cross-section. The 3D voxels discussed above are related to 3D space cross-section: (x, y, z, to), in the form:
(x,y,z,t)/t=to=CONSTANT (85)
i.e., for single, PFF (Pulse Facet Flash). Then, 4D hypervoxels are reduced to 3D voxels, quantizing space: (x, y, z).
In kinematics, the general movement of material point (a point object) is described by three (3) equations in 4D space (x, y, z, t), in the form:
x=x(t), y=y(t), z=z(t) (86abc)
and, the momentary (instant) speed (velocity) vector, is
where: {right arrow over (r)}′={right arrow over (r)}(x, y, z) is directional vector. Parametrically, the movement:
{right arrow over (r)}={right arrow over (r)}(t) (88)
where {right arrow over (r)} is directional vector, v—its instant speed, and (x, y, z)—are its coordinates as functions of time, t. In the VCC case, this movement is described by four discrete coordinates: (x, y, z, t), indexed by: (i, j, k, m). Then, instead of momentary (instant) vector, {right arrow over (v)}, there is an almost momentary, or momentary-mean (MM) vector, {right arrow over (v)}′, which, further, will be denoted as, simply, {right arrow over (v)}, in the form of ratio of Δ{right arrow over (r)} and Δt:
where, arrow shows changing of symbolics: from {right arrow over (v)}′ to {right arrow over (v)}.
The 4D resolution of material point movement, described by MM-velocity vector, {right arrow over (v)}, is characterized by pixel sizes: ax,ay, δz—longitudinal resolution, and time coordinate change, Δt.
In the lateral movement case, described by (x, y)-coordinate, and their indices: (i,j), the lateral resolving elements: δx, and δy, are derived from the following relations:
ax=mxδx; ay=myδy (90ab))
where: mx, my is x, y—IOS system magnification, or, rather de-magnification, because: mx<<1, and my<<1.
In the longitudinal movement case, described by z-coordinate, the longitudinal resolving element, δz, is
δz=(0.5)cδtB (91)
where: δtB=B−1, and, in ideal case: δtB=δtL, where B—photodetector bandwidth, and δtL—laser pulse temporal length.
The time resolving element, Δt, is defined by Eq. (82). In summary, 4D resolution of 3D movement in hypervoxel space: (x, y, z, t), which is time-space, is defined by lateral, longitudinal, and time resolving elements:
(δx,δy,δz,Δt). (92)
Therefore, MM-velocity vector resolution is also described by these four (4) resolving elements.
When hypervoxels are introduced in step 1601, the analysis may comprise analyzing movement in the hypervoxel space.
The term foxel refers to a signal-filled voxel, while the empty voxel, “left” by this foxel, will be called a hole, resulting in foxel-hole pair. When the dynamic cases in time-space (x, y, z, t), foxel-hole pair movement (FH-Pair movement) will occur. Such FH-Pair movement can be either rigid, or elastic. In the 1st (rigid, solid state) case, the distance between foxel and hole remains constant at a time, t, while in the 2nd (elastic) case, this distance changes with time.
Here, foxels 2400, 2401, and 2402 move rigidly. At t=t1, these foxels have the following pixel (x, y)-locations: for 2400 (i=3, j=4); for 2401 (i=3, j=3); for 2402 (i=4, j=3). At t=t2, these (i,j)-locations are: (2,4), (2,3), and (3,3)—respectively. At t=t3, (or, k=3), the locations are: (1,4), (1,3), and (2,3). At t=t4 (k=4), the locations are: (3,2), (3,1), and (4,1). Therefore, for this foxel rigid group, t first, i.e., for t1≦t≦t3, the lateral movement from right to left, along x-coordinate which is decreasing, with the following MM-velocity vector:
where: δx=ax/mx, where ax is x-pixel size, and mx is system-de-magnification (mx<<1). It should be emphasized that, in this particular PFF (Pulse Facet Flash) case, the absolute distance, z, from an object to platform is known (by measuring beam return time). For example, for z=1 km, and f=50 cm (focal length), we obtain: mx−1=(1 km)/(50 cm)=1000/0.5=2000, and mx=1/2000=5·10−4. Then, for ax=20 μm, for example: δx=axmx−1=(2000) (20 μm)=(2000) (20·10−4 cm)=4 cm; i.e., x-resolving element size is 4 cm. Then, for Δt=0.1 sec. for example:
|vx|=v=(4 cm)/(0.1) sec=40 cm/sec. (94)
Therefore, by this kind of “forensic” analysis, the system can determine an approximate speed of a given group of foxels: 2400, 2401, 2402. This foxel group represents some object with “L”-profile, as with sizes: Lx, Ly, where Lx=Ly=L, and L=2δx=8 cm. At t=t4 (k=4), this foxel group suddenly move to the right-bottom corner. Therefore, for t3≦t≦t4, its MM-velocity vector, {right arrow over (v)}, is
where Δx=3δx=12 cm, Δy=−|Δy|=−12 cm, and,
For example, for Δt=0.1 sec: v=(17 cm/0.1 sec=1.7 m/sec. In summary, at first, this L-object moves with 40 cm/sec-speed into opposite x-axis direction, and then, it moves, diagonally, into “south-east,” with higher 1.7 m/sec-speed. Additionally, a 2nd group of foxels: 2003, 2004, and 2005, which arrived at t−t1 (k=1), and then, disappear from this set of voxels. Then, the system would search this group in other sets of voxels. Accordingly, during the analysis step, various foxel groups may be identified and tracked. Their movement patterns may be used for target identification.
The hole-group of four (4) holes, marked by: 2624, 2625, 2626, 2627, is moving through the following (i, j, m, k)-transformation:
Comparing Eq. (97) and (98), both foxels and holes have the same lateral (i, j)-indices for both columns: k=1 and k=2. For example, for the 1st column (k=1), the foxel 2620, and its hole 2624, have the same indices: (6, 12); the same with k=2, where this FH-pair has indices (7, 13). However, their longitudinal m-indices are different: 10 vs. 20, for the 1st column, and 12 vs. 20, for the 2nd column.
Therefore, this FH-pair is elastic one. Also, crossed voxels (foxels) in 2D CSS, denoted by k=1 and m=20, as well as in 2D CSS, with k=2, m=20, represent the RIC (Reference Integrated Clutter), because, their m-index does not change (m=20=constant). In contrast, the foxels in 2D CSS, represented by (m, k)=(10, 1), and (m, k)=(12, 2)nge their longitudinal position. Thus, they represent a moving object, while the RIC represents only its (moving) (x, y)-projection. Accordingly, systems may detect reference clutter signals (e.g., perform step 1602 of
The moment of the object represented by foxels: 2620, 2621, 2622, 2623, has an MM-velocity vector, {right arrow over (v)}, with all three non-zero coordinates: {right arrow over (v)}=(vx, vy, vz). For example, for Δt-representing time difference from k=1 to k=2, equal to: Δt=1 sec, and for lateral resolving element: δx=δy=10 cm, its x-movement is represented by Δi=1, only (e.g., from i=6, to i=7). Therefore:
Same with y-movement (Δj=1); thus, also:
vy=vx=10 cm/sec (100)
In order to estimate its longitudinal movement, Δm=2 (from m=10, to m=12). Thus, according to the orientation of right-hand (x, y, z)-coordinate system its:
Δz=−2δz (101)
and, for δz=20 cm, for example:
vz=−20 cm/sec (102)
Accordingly its velocity vector is:
{right arrow over (v)}=(10 cm/sec,10 cm/sec,−20 cm/sec) (103)
The object with size (2δx, 2δy) has a velocity vector, described by Eq. (103). Its movement is represented by (i, j, m, k)-discrete coordinates (indices) through transformation from column (k=1) table to column (k=2) table, as in Eq. (97), while its lateral (x, y)-projection, represented by RIC (Reference Integrated Clutter), moves through transformation of tables in Eq. (98). However, the specific MM-velocity vector values can be found only when the 4D resolution is known, represented by four (4) resolving elements: δx, δy, δz, and Δt.
In some implementations, the hypervoxel analysis may be used to perform detection without the use of reference clutter signals.
An example of a detection and analysis method is described with reference to
As an example, a 100×100 photodetector array, per facet; thus, for 100-facets per second, the frame has: 100×100×100=106-pixels. Additionally, with gating there is also signal return z-coordinate. Assume long-range IOS geometry, as in
Then, the total number of parallel voxels, is
n3D=(106)(3·103)=3·109 (105)
Using a 200 MHz-speed 256-RISC processor array, with total RISC operation time of 4 msec per 8.3 Mb-parallel pixels as an example, for 3·109—number of parallel calculations, this time, tRISC, is
In this method, further the system identifies all COIs, by using virtual 3D frame shift. Then, the system attaches a velocity vector to each COI, by using voxel-by-voxel comparison, and Euclidean distance computing, using RISC processor array. Then, Cluster Voxel Velocity (CV2) flow mapping, or CV2-flow mapping, may be obtained as in
In
The system and methods detailed above can be applied to other applications then those reflected to marine augmented target with high brightness in retro-reflection. In other words, those targets do not need to be reflective non-Lambertian (RNL) ones only, especially when shorter distances are included. Also, since the VC is based on general integrated reference reflection clutter (IRRC), the IRRC does not need to be sea waves, but, also flat, or folded ground, for example.
One such application is the detection of a tripwire above ground. In such a case, such low-contrast (e.g., plastic) trip-wire can be almost invisible to human eye. In this case, the reference clutter signal can result from the ground behind such a wire, as shown in
In order to explain some quantitative parameter values, a reference geometry is introduced, assuming, for example, OA′=50 m, and OD′=100 m. In order to calculate, unknown B′C-distance, as an example: h=3 m, and BB′=20 cm (marked by 2807). Then, the unknown B′C-value, denoted as, w, can be estimated from the following trigonometric similarly relation:
Assuming typical BB′-value of 10 cm, Eq. (72) becomes (w=B′C):
Solving this equation, in respect to unknown: w-value, where: h=3 m, BB′=10 cm, OB′=70 m (so, A′B′=20 m): w=B′C′=2.4 m.
In order to identify target, B, as a wire, however, vertical voxel coherency (VVC) is used. Still further confirmation will be provided by horizontal voxel coherency (HVC). Therefore, the 2D photodetector pixel array (or, 2D PPA) is preferable. 2D PPA with moderate 60×40-pixel resolution is assumed for sake of simplicity of explanation. First, horizontal pixel resolution for single facet, with typical narrow FOV=3° is estimated. Then, at 100 m-distance, the horizontal range is about 10.5 m; thus, horizontal object resolving element is: (105 cm)/(60)=1.75 cm. For simplicity, vertical angular size of the PPF is assumed to be similar to that of horizontal; i.e., Δβ=6°, marked as 2808.
Another example of system generalization is the changes in soil density. Changes in density in highly-porous soils (e.g., highly-humid, or poorly settled dirt) that be partially penetrated by high pulse-power IR-beam may be detected. Assuming: 10 MW-pulse optical power and super-high-sensitivity of photodetector array, with noise equivalent power of 0.1 pW, for example, extremely high detection dynamic range of 107/10−13=1020=200 dB is obtained. In this application, voxel temporal resolution is also high, with δz=100 μm=0.1 mm, for example. Then, laser pulse temporal length, δt, must be 0.67 psec obtained from relation: δz=(0.5)c·δt, or 0.67·10−12 sec. In such a case, from voxel distance, the soil penetration profile:
z=z(x,y) (109)
The profile varies with internal structure, modified by, perhaps man-made modification, either by introducing more humidity, or by digging in ground. The profile; z=z(x,y), is obtained from photodetector pixel structure, while longitudinal resolution is defined by δz-value which is proportional to laser pulse length, δt.
A third additional application is the detection of finger-prints. The applied laser pulse beam has a pulse length, δt, and equivalent longitudinal resolution, δz, defined by relation: δz=(0.5)cδt. Additionally, eye-safe infrared beams may be used with wavelengths of greater than 1.3 or 1.5 μm. In
Since, for typical finger print profile sizes, δz˜200-400 μm, and δy˜300 μm, the system comprises a pixel array zoomed on finger-region. Thus, for typical rather small pixel-numbers, for such long wavelengths (˜1.5 μm), in the range: 60×40, for example, the system employs a second standard camera, in order to find region of interest (ROI), which is human hand with visible finger prints, we need to either manually, or automatically, find the ROI. In the latter case, the system applies some standard pattern recognition algorithm.
A further application may be the detection of objects under the ground. Here, the system applies soil profilimetry in connection with detection of trip wires described with respect to
As described above, various application time gate the sensor to provide voxel readouts. In some embodiments, the time gating may be performed at a faster rate to sample the reflected laser pulses. This may be used to provide pulse partition voxel coherency (PPVC), related to laser pulse partition/sampling as shown in
where (δt)L is laser pulse temporal length, previously denoted as (δt). Of course, when (δt)B→0 (or, B→∞), then, the discrete M2-power line 3003, becomes continuous (analog) line 3002.
It should be noted that the analog instant (optical) power line 3002 can be only measured as discrete M2-power line 3003, while inequality (Eq. 110) can be written as:
where m is integer: m=1, 2, 3, . . . . For example, for pulse length: (δt)L=10 nsec=10−8 sec, and m=10, (δt)B=1 nsec=10−9 sec, and, according to Eq. (77), B=1 GHz.
Such pulse sampling allows the system to measure reflected pulses, with higher precision than, without sampling. For example, if soil penetration depth is equal to:
Δz=k(δz)B; k=1,2,3, . . . (112)
where (δt)B is voxel resolving element, determined by relation:
2(δz)B=(C/n)(δt)B (113)
where C is light speed in air, and n—soil refractive index; then, reflected pulse will be deformed, respectively.
Various targets may be detected according to their temporal signatures of reflected pulse and related pulse partition voxel coherency (PPVC), which is a generalization of voxel coherency (VC). For sake of explanation rectangular pulse are illustrated instead of analog (Gaussian) pulse. Then, the reflected pulse from hard interface, as in
As used herein, the term module might describe a given unit of functionality that can be performed in accordance with one or more embodiments of the present invention. As used herein, a module might be implemented utilizing any form of hardware, software, or a combination thereof. For example, one or more processors, controllers, ASICs, PLAs, PALs, CPLDs, FPGAs, logical components, software routines or other mechanisms might be implemented to make up a module. In implementation, the various modules described herein might be implemented as discrete modules or the functions and features described can be shared in part or in total among one or more modules. In other words, as would be apparent to one of ordinary skill in the art after reading this description, the various features and functionality described herein may be implemented in any given application and can be implemented in one or more separate or shared modules in various combinations and permutations. Even though various features or elements of functionality may be individually described or claimed as separate modules, one of ordinary skill in the art will understand that these features and functionality can be shared among one or more common software and hardware elements, and such description shall not require or imply that separate hardware or software components are used to implement such features or functionality.
Where components or modules of the invention are implemented in whole or in part using software, in one embodiment, these software elements can be implemented to operate with a computing or processing module capable of carrying out the functionality described with respect thereto. One such example computing module is shown in
Referring now to
Computing module 3200 might include, for example, one or more processors, controllers, control modules, or other processing devices, such as a processor 3204. Processor 3204 might be implemented using a general-purpose or special-purpose processing engine such as, for example, a microprocessor, controller, or other control logic. In the illustrated example, processor 3204 is connected to a bus 3202, although any communication medium can be used to facilitate interaction with other components of computing module 3200 or to communicate externally.
Computing module 3200 might also include one or more memory modules, simply referred to herein as main memory 3208. For example, preferably random access memory (RAM) or other dynamic memory, might be used for storing information and instructions to be executed by processor 3204. Main memory 3208 might also be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 3204. Computing module 3200 might likewise include a read only memory (“ROM”) or other static storage device coupled to bus 3202 for storing static information and instructions for processor 3204.
The computing module 3200 might also include one or more various forms of information storage mechanism 3210, which might include, for example, a media drive 3212 and a storage unit interface 3220. The media drive 3212 might include a drive or other mechanism to support fixed or removable storage media 3214. For example, a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical disk drive, a CD or DVD drive (R or RW), or other removable or fixed media drive might be provided. Accordingly, storage media 3214 might include, for example, a hard disk, a floppy disk, magnetic tape, cartridge, optical disk, a CD or DVD, or other fixed or removable medium that is read by, written to or accessed by media drive 3212. As these examples illustrate, the storage media 3214 can include a computer usable storage medium having stored therein computer software or data.
In alternative embodiments, information storage mechanism 3210 might include other similar instrumentalities for allowing computer programs or other instructions or data to be loaded into computing module 3200. Such instrumentalities might include, for example, a fixed or removable storage unit 3222 and an interface 3220. Examples of such storage units 3222 and interfaces 3220 can include a program cartridge and cartridge interface, a removable memory (for example, a flash memory or other removable memory module) and memory slot, a PCMCIA slot and card, and other fixed or removable storage units 3222 and interfaces 3220 that allow software and data to be transferred from the storage unit 3222 to computing module 3200.
Computing module 3200 might also include a communications interface 3224. Communications interface 3224 might be used to allow software and data to be transferred between computing module 3200 and external devices. Examples of communications interface 3224 might include a modem or softmodem, a network interface (such as an Ethernet, network interface card, WiMedia, IEEE 802.XX or other interface), a communications port (such as for example, a USB port, IR port, RS232 port Bluetooth® interface, or other port), or other communications interface. Software and data transferred via communications interface 3224 might typically be carried on signals, which can be electronic, electromagnetic (which includes optical) or other signals capable of being exchanged by a given communications interface 3224. These signals might be provided to communications interface 3224 via a channel 3228. This channel 3228 might carry signals and might be implemented using a wired or wireless communication medium. Some examples of a channel might include a phone line, a cellular link, an RF link, an optical link, a network interface, a local or wide area network, and other wired or wireless communications channels.
In this document, the terms “computer program medium” and “computer usable medium” are used to generally refer to media such as, for example, memory 3208, storage unit 3220, media 3214, and channel 3228. These and other various forms of computer program media or computer usable media may be involved in carrying one or more sequences of one or more instructions to a processing device for execution. Such instructions embodied on the medium, are generally referred to as “computer program code” or a “computer program product” (which may be grouped in the form of computer programs or other groupings). When executed, such instructions might enable the computing module 3200 to perform features or functions of the present invention as discussed herein.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not of limitation. Likewise, the various diagrams may depict an example architectural or other configuration for the invention, which is done to aid in understanding the features and functionality that can be included in the invention. The invention is not restricted to the illustrated example architectures or configurations, but the desired features can be implemented using a variety of alternative architectures and configurations. Indeed, it will be apparent to one of skill in the art how alternative functional, logical or physical partitioning and configurations can be implemented to implement the desired features of the present invention. Also, a multitude of different constituent module names other than those depicted herein can be applied to the various partitions. Additionally, with regard to flow diagrams, operational descriptions and method claims, the order in which the steps are presented herein shall not mandate that various embodiments be implemented to perform the recited functionality in the same order unless the context dictates otherwise.
Although the invention is described above in terms of various exemplary embodiments and implementations, it should be understood that the various features, aspects and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead can be applied, alone or in various combinations, to one or more of the other embodiments of the invention, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments.
Terms and phrases used in this document, and variations thereof, unless otherwise expressly stated, should be construed as open ended as opposed to limiting. As examples of the foregoing: the term “including” should be read as meaning “including, without limitation” or the like; the term “example” is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof; the terms “a” or “an” should be read as meaning “at least one,” “one or more” or the like; and adjectives such as “conventional,” “traditional,” “normal,” “standard,” “known” and terms of similar meaning should not be construed as limiting the item described to a given time period or to an item available as of a given time, but instead should be read to encompass conventional, traditional, normal, or standard technologies that may be available or known now or at any time in the future. Likewise, where this document refers to technologies that would be apparent or known to one of ordinary skill in the art, such technologies encompass those apparent or known to the skilled artisan now or at any time in the future.
The presence of broadening words and phrases such as “one or more,” “at least,” “but not limited to” or other like phrases in some instances shall not be read to mean that the narrower case is intended or required in instances where such broadening phrases may be absent. The use of the term “module” does not imply that the components or functionality described or claimed as part of the module are all configured in a common package. Indeed, any or all of the various components of a module, whether control logic or other components, can be combined in a single package or separately maintained and can further be distributed in multiple groupings or packages or across multiple locations.
Additionally, the various embodiments set forth herein are described in terms of exemplary block diagrams, flow charts and other illustrations. As will become apparent to one of ordinary skill in the art after reading this document, the illustrated embodiments and their various alternatives can be implemented without confinement to the illustrated examples. For example, block diagrams and their accompanying description should not be construed as mandating a particular architecture or configuration.
This application claims the benefit of U.S. Provisional Application No. 61/659,348, filed Jun. 13, 2012; U.S. Provisional Application No. 61/675,256, filed Jul. 24, 2012; and U.S. Provisional Application No. 61/718,154, filed Oct. 24, 2012, which are hereby incorporated herein by reference in their entireties.
One or more inventions described herein are partially supported by the following contracts for the Department of Navy under the SBIR program: M67854-10-C-6531, N00024-06-C-4121, N00014-09-C-0456, and N00014-05-C-0423. The Government may have partial rights in such inventions.
Number | Name | Date | Kind |
---|---|---|---|
6081605 | Roth | Jun 2000 | A |
20060095207 | Reid | May 2006 | A1 |
20070116607 | Wang | May 2007 | A1 |
20110026389 | Nagatomi | Feb 2011 | A1 |
20150296193 | Cote | Oct 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
61659348 | Jun 2012 | US | |
61675256 | Jul 2012 | US | |
61718154 | Oct 2012 | US |