All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present disclosure generally relates to uterine procedures incorporating a distension media such as a fluid or a gas that could be used with endoscopic procedures or other visualization systems such ultrasound or fluoroscopy. The present disclosure is particular suited for endometrial ablation of the uterine lining. More specifically, the present disclosure relates to endometrial ablation with a heated vapor.
Endometrial ablation (i.e., the removal or destruction of the endometrial lining of the uterus) is used as an alternative to hysterectomy for treating menorrhagia, or other uterine diseases. One prior technique for performing endometrial ablation employs a resectoscope (i.e., a hysteroscope with a built-in wire loop or other ablative devices) that is inserted transcervically into the uterus, and uses radio-frequency electrical current (RF current) to remove or coagulate the endometrial tissue. These standard techniques typically are performed in a hospital setting and importantly utilize hysteroscopy for visualization of the procedure while treating the uterine lining.
Some approaches make use of heated fluid to ablate the endometrium. For example, early journal articles describe the use of steam to treat uterine hemorrhage. The use of steam for this purpose was later discredited, apparently due to patient morbidity and mortality. See, e.g., Fuller U.S. Pat. No. 6,139,571. More recent descriptions of the use of injecting hot fluid into the uterus have been described. Uterine therapies employing a contained fluid have also been described.
In an effort to simplify the procedure, approaches have been developed that do not require concurrent hysteroscopic visualization. In practice, many of these techniques recommend that the physician or user employ hysteroscopy to visualize and inspect the uterine cavity prior to performing the endometrial ablation procedure. In addition, hysteroscopy may be employed at the conclusion of the endometrial ablation procedure as a method to inspect the uterine cavity post treatment. During this hysteroscopic inspection, the physician is verifying that the uterine cavity is not perforated although perforations may not be readily apparent even with hysteroscopic visualization. In general, a physician seeks to avoid perforations for many reasons including the potential for unintended injuries to neighboring organs and maintaining or confining the treatment area to specifically the uterine cavity in the case of endometrial ablation procedures.
Endometrial ablation techniques that do not require active hysteroscopic visualization during treatment operation are commonly referred to as “blind” techniques since the physician is using tactile feel, or markers and indicia on the endometrial ablation device to indicate proper placement of the device in the uterine cavity. One of these particular devices utilizes a balloon-based system using heated saline as the thermal energy source for the ablation of tissue. High frequency, or radiofrequency (RF), energy has also been used to perform thermal ablation of endometrial tissue. Current products for performing endometrial ablation include the NOVASURE® procedure and a system marketed under the trade name THERMACHOICE®, by Ethicon, Inc. of Somerville, N.J. Cryogenic ablation, or “cryoablation,” such as HER OPTION® from American Medical Systems, Inc., is another endometrial treatment approach. All of the products above are characterized as “blind” or not requiring direct hysteroscopic visualization during the treatment.
In utilizing an endometrial ablation technology that does not require hysteroscopic visualization, it would be beneficial to employ a test to verify that the uterine cavity is intact or unperforated prior to performing the treatment. Such tests are referred to as uterine integrity tests and these tests can be performed with endometrial ablation procedures and any procedure of the uterus or hollow body cavity or organ. In addition, these tests can be used with hysteroscopic procedures since a perforation may not be readily detected even under direct vision.
Integrity tests employ saline or gas, preferably carbon dioxide gas, as agents to verify if the uterine cavity is intact in regards to holding fluid or gas pressure. The gas or fluid is supplied under pressure to the uterine cavity and a leak in the uterine cavity, whether it is a perforation, an unsealed cervical canal, or the effect of excess fluid exiting the fallopian tubes, can be discerned. Stern et al. (U.S. Pat. No. 5,562,720) and Sampson et al. (U.S. Pat. Nos. 6,554,780, 6,743,184, 6,872,183, and 7,063,670) describe such pressure techniques while other approaches check for fluid imbalances between an input source and output collection using volume measurements. Other approaches mention using flow rate and pressure measurements.
A method of performing a patency test for a uterine ablation device is provided, comprising inserting the uterine ablation device into a uterus of a patient, inflating an outflow valve to seal an outflow lumen of the uterine ablation device, delivering gas or fluid from an inflow lumen of the uterine ablation device into the uterus, partially deflating the outflow valve to remove gas or fluid from the uterus with the outflow lumen of the uterine ablation device, and determining that the uterine ablation device is not clogged or embedded in tissue if a flow rate of gas or fluid is observed above a threshold value in the outflow lumen of the uterine ablation device.
In some embodiments, the partially deflating step further comprises pulsing the deflating of the outflow valve at a specified duty cycle until flow of gas or fluid through the outflow lumen begins.
In one embodiment, the partially deflating step further comprises pulsing the deflating of the outflow valve a specified duty cycle until a uterine pressure decreases.
In yet another embodiment, the partially deflating step further comprises pulsing the deflating of the outflow valve at a high duty cycle, then pulsing the deflating of the outflow valve at a lower duty cycle when flow of gas or fluid through the outflow lumen begins.
A method of performing a patency test for a uterine ablation device is provided, comprising inserting the uterine ablation device into a uterus of a patient, closing an outflow valve to seal an outflow lumen of the uterine ablation device, delivering gas or fluid from an inflow lumen of the uterine ablation device into the uterus, partially opening the outflow valve to remove gas or fluid from the uterus with the outflow lumen of the uterine ablation device, and determining that the uterine ablation device is not clogged or embedded in tissue if a flow rate of gas or fluid is observed above a threshold value in the outflow lumen of the uterine ablation device.
In some embodiments, the partially deflating step further comprises pulsing the deflating of the outflow valve at a specified duty cycle until flow of gas or fluid through the outflow lumen begins.
In one embodiment, the partially deflating step further comprises pulsing the deflating of the outflow valve a specified duty cycle until a uterine pressure decreases.
In yet another embodiment, the partially deflating step further comprises pulsing the deflating of the outflow valve at a high duty cycle, then pulsing the deflating of the outflow valve at a lower duty cycle when flow of gas or fluid through the outflow lumen begins.
A uterine ablation device is provided, comprising a shafted adapted to be inserted into a uterus of a patient, the shaft including an inflow outflow lumen and an inflow lumen, a gas/fluid source configured to deliver gas or fluid through the inflow lumen of the shaft into the uterus, an outflow valve configured to seal the outflow lumen of the shaft, a flow meter disposed in or near the outflow lumen and configured to measure a flow rate of gas or fluid in the outflow lumen, and an electronic controller operatively coupled to the gas/fluid source, the outflow valve, and the flow meter, the electronic controller being configured to partially open the outflow valve to remove gas or fluid from the uterus through the outflow lumen of the uterine ablation device and determine that the uterine ablation device is not clogged or embedded in tissue if a flow rate of gas or fluid measured by the flow meter is above a threshold value.
In some embodiments, the threshold value is 5 ml/min.
In another embodiment, the electronic controller is configured to determine that the uterine ablation device is not clogged or embedded in tissue if the flow rate of gas or fluid measured by the flow meter is above the threshold value during a rolling patency test time window. In some embodiments, the patency test time window is a 5 second time period.
A method of performing a uterine integrity test is provided, comprising inserting a uterine device into the uterus of the patient, delivering gas or fluid from an inflow lumen of the uterine device into the uterus, measuring a flow rate of the gas or fluid during a rolling time window as it is delivered into the uterus, calculating a delta flow value from a minimum flow rate and a maximum flow of the gas or fluid during the rolling time window, and determining that the uterus is sealed if the flow rate decreases below a flow rate threshold value, and if the delta flow value is below the flow rate threshold value.
In some embodiments, the flow rate threshold value comprises 5 ml/min.
In another embodiment, the rolling time window comprises 15 seconds.
The flow meter can be any flow meter as known in the art, including a thermal mass flow meter, an ultrasonic flow meter, a paddlewheel, or a variable area flow meter. In one embodiment, an ultrasonic flow meter that utilizes transit time and Doppler flow readings is advantageous since it is a non-contact system that does not need to physically interact with the fluid or gas media being employed in the integrity test. An ultrasonic flow meter can be easily adaptable to the exterior dimensions of an inflow lumen. In addition, a drip chamber within the inflow lumen can be used to manually visualize or record drips or flow from the fluid source as the integrity test indicates a sealed uterine cavity. In some uterine procedures, it may be advantageous to use other types of fluid besides saline including Lactated Ringers, non-isotonic solutions for certain electrosurgical procedures, gels, foams, fluids of varying viscosity for some ultrasonographic procedures, or other fluids used in uterine procedures.
In one embodiment, a one way valve can be placed in the inflow lumen on either side of the flow meter relative to the gas/fluid source. The one way valve can allow for the flow of gas/fluid (e.g., saline) from the gas/fluid source to the device and uterine cavity. The one way valve should not interfere with the operation of the flow meter and its readings. In operation, the uterine cavity is a muscle that can undergo significant contractions during the integrity and patency tests. These contractions can push the fluid retrograde back through the saline lumen and past the flow meter. In doing so, flow meter measurements can become difficult to interpret or may produce sinusoidal waves in the output readings. The placement of the one way valve in the inflow lumen can eliminate retrograde fluid flow and stabilize readings for the flow meter during episodes of uterine contractions.
Handle 104 can be an ergonomic handle and can include features and controls for using the device (e.g., buttons, levers, indicia for providing feedback for depths of insertion, valves, etc.), including features for controlling inflation of balloons 108, 110, and 112, and for controlling the delivery and removal of integrity test gas/fluid and heated vapor from the device. The handle can also include features and controls for testing the integrity of the patient's uterus, proper placement of the device and verifying the presence of flow between the inflow and outflow lumens of the device.
The balloons described herein can be any type of flexible balloon, such as rubber, latex, urethane, silicone, PET, LDPE, parylene, nylon, PE, combinations of these polymers, or can be manufactured from any other suitable material as known in the art. It should be noted that in some embodiments, the distal anchor comprises a balloon, but in other embodiments, the distal anchor comprises an expandable anchor or expansion mechanism, such as expandable frames, filters, nets, or cages, or non-expandable components that increase the diameter of the shaft of the uterine ablation device. For purposes of this disclosure, however, the distal anchor may be referred to as a distal anchor or as a distal balloon.
Shaft 102 can be configured to deliver a heated vapor from a remote boiler (not shown) through the device and out of vapor ports 107 in distal tip 106. The shaft can also be configured to return vapor that has exited the device, including bodily fluids, uterine materials, and condensate back through the vapor ports and into the shaft. In
Referring still to
Placement of the ablation device of
Once the distal tip of the ablation device is disposed within the uterus, just distal to the internal os, the distal balloon can be inflated to the desired pressure. In some embodiments, the balloon can be inflated to a pressure of up to approximately 20 to 30 psi so as to prevent accidental withdrawal of the ablation device from the uterus. It should be noted that at this point, the distal balloon is positioned slightly past the internal os of the cervix. Inflation of the distal balloon can later serve as an anchor to prevent the device from sliding proximally out of the uterus.
After inflating the distal balloon, the proximal balloon can be inflated to cause the device to assume a positioned configuration, with the distal balloon fully seated against the internal os and the positioning or proximal balloon expanded within the cervix and extending past the external os into the vagina. As the proximal balloon is inflated, the balloon can expand outwardly from the cervix into the relatively unconstrained space of the vagina, which creates a compression force that pulls the device and the distal balloon proximally to engage against the interior portion of the internal os (also known as the cervical ostium or cervical os).
After positioning the ablation device but prior to delivery of vapor, it can be advantageous to assess the integrity of the uterus to test that the vapor delivery tip of the device is positioned within a sealed uterus and to test that there is flow between the inflow and outflow lumens, by performing an integrity test and a patency test. The amount of fluid and rate in which it flows into the uterine cavity can provide the physician an indication of the size of the uterine cavity and whether the device is in a false passage. An integrity test can assess that the uterus is sealed, and determine leaks originating from 1) perforations to the uterine wall, or 2) leaks from inadequate sealing at the cervix or 3) leaks from the fallopian tubes.
A second test that made an assessment for patency, referred to as the device lumens patency test or patency test, could provide an indication to the physician whether the device was clogged with debris or placed within a false passage. This additional information to the physician, in conjunction with the integrity test, can provide greater assurance to the physician of device location during “blind” endometrial ablation procedures.
In clinical use, a uterine integrity and patency test could be useful for additional uterine procedures besides uterine ablation procedures such as the implantation of a device, implant, or a diagnostic or therapeutic agent. In these cases, a separate unit or module that can conduct a uterine integrity and patency test, sequentially, separately, or individually, with a separate uterine cavity introducer can be employed without a uterine ablation device or system.
In one embodiment, a uterine integrity test can contain the following elements and steps. Referring to
In one embodiment, gas/fluid pressure can be achieved by elevating the gas/fluid source 122 a height distance above the uterine cavity to create pressure. This height elevation can be verified by a measuring stick, tape or laser. An example of a clinically used height for a saline bag would be at least 30 inches above the patient's uterus. At this height, the pressure would be between 50 and 70 mmHg. This pressure is low enough to be below the reported opening pressure of the fallopian tubes. In addition, a pressure sensor within the uterine cavity can verify that the appropriate amount of pressure is being applied for the integrity test and patency tests. A self-adjusting feedback mechanism can be employed to raise or lower the pressure of the saline source in response to pressure measurements taken from within the uterine cavity. As an example, this feedback mechanism can raise or lower the height of the saline source in response to the pressure measurements taken from within the uterine cavity.
In some embodiments, the system can measure a flow rate of gas/fluid exiting the distal lumen of the uterine device or uterine ablation device during the uterine integrity test. This flow rate can also be used to determine the proper pressure or height of the gas/fluid source. For instance, flow rate readings can be taken while the gas/fluid source is at a certain height and the uterine device maintained within a known condition or in free space. As the height of the gas/fluid source is raised or lowered, the flow rate of the gas/fluid will respond accordingly until the gas/fluid source is placed at a height at the desired flow rate, or is pressurized to the desired amount Likewise, the gas/fluid source can be raised or lowered by a self-adjusting feedback mechanism in response to the measured flow rate.
In some embodiments, the uterine ablation device can further include a flow meter 126 having a read out mechanism (not shown) to the end user. In one embodiment, the flow meter can comprise an ultrasound sensor, or an optical sensor configured to sense the drip rate of the gas/fluid. In some embodiments, the flow meter can be disposed near distal tip 106 of the device. In other embodiments, the flow meter can be disposed within an outflow lumen of the device. In yet another embodiment, the flow meter can be disposed external to the device but along the flow path between gas/fluid source 122 and the ablation device. The flow meter can be configured to measure and report a flow rate of fluid/gas or vapor as it moves through or exits the uterine ablation device. The read out mechanism can be numerical, graphical, or icon based. Other variations include various audio and visual signals, indicia, qualitative indicia, alarms, and color identifiers. A filter may or may not be attached to the flow meter.
Referring to
In one embodiment, a one way valve 127 as seen in
A controller of the uterine ablation device, either integrated into the device or into the vapor generator coupled to the device, can be configured to open and close valves 128a, 128b, and 128c to allow gas or fluid to flow from source 122 into the inflow and outflow lumens 129 and 131 of the ablation device 100. Valves 128a, 128b, and 128c can be any type of valve known in the art, such as solenoid valves, inflatable balloons, air cylinders, or electric/hydraulic actuators or cams and gears. During a uterine integrity test, the controller can be configured to open valves 128a and 128b and close valve 128c, to prevent passage of gas/fluid into the waste container 133. This allows gas or fluid to flow from source 122, through flow meter 126, through one way valve 127 and valves 127a and 128b, and into inflow lumen 129 and outflow lumen 131. As the gas or fluid enters the uterus, the flow meter can measure an integrity flow rate of the gas or fluid.
In one embodiment, the controller of the uterine ablation device or the vapor generator can run an integrity test algorithm to determine if the uterus is sealed. The algorithm can analyze integrity flow rate data from the flow meter during the integrity test as gas/fluid is delivered into the uterus. Specifically, the algorithm can analyze a maximum flow rate and a minimum flow rate during an integrity test time window. The integrity test time window can be, for example, a rolling time window of a pre-selected duration. In one specific embodiment, the algorithm analyzes a maximum flow rate and a minimum flow rate continuously during a rolling 15-second integrity test time window. For each rolling integrity test time window, the minimum and maximum flow rates can be calculated. The difference between the minimum and maximum flow rates in each integrity test time window can be calculated to yield a delta flow value (maximum flow rate minus minimum flow rate), which can be used as an indicator of the stability of flow. For example, the larger the delta flow value, the less stable the flow of gas/fluid, and the smaller the delta flow value, the more stable the flow of gas/fluid. If the maximum flow rate and the delta flow value of gas or fluid stabilizes below an integrity threshold value, the controller can determine that the uterus is sealed. Importantly, the test is comprised of two algorithms that compare flow to an integrity threshold value concurrently with a second algorithm that compares the delta flow value to the integrity threshold value, and uses both of these comparisons to determine the ultimate outcome of the integrity test. The application of both of these comparisons provides greater sensitivity in the test results.
In some embodiments, this integrity flow rate delta threshold value can be approximately 5 ml/min. Therefore, in some embodiments, a uterus is considered to “pass” the uterine integrity test if both the maximum flow rate and the integrity flow rate delta threshold value are below 5 ml/min over a rolling integrity test time window. Alternatively, the test can include different thresholds for maximum flow rate and the delta flow value.
In some embodiments, the uterine integrity test can run for a pre-set time period. For example, the test can run for 60 seconds, and subsequent rolling 15-second windows can be analyzed to determine if the uterus is sealed during the 60 second time period. In another embodiment, the delta flow value can be defined as a standard deviation of the average flow that is compared to a threshold value. This delta flow value can then be compared to the threshold value to determine if the uterus is sealed.
In some embodiments, the return channel comprises a valve 128c, such as a solenoid valve, air cylinder, electric/hydraulic actuators, cams and gears or pump/inflatable balloon, which can be activated upon the start of the integrity test to close off the egress of the gas/fluid through the return channel of the uterine ablation device. When the return flow of gas/fluid through the return channel is stopped with the valve, a change of flow can be detected by the flow meter 126 on the input line. In addition to determining if there is a leak or if the device is positioned properly, the specifics of the changes in flow (e.g., how the flow reacts to closing of the return line with the valve) can provide the following the indications in some cases: a) the size of the uterine cavity; and b) the presence of a leak or lack of integrity in the system. For instance in clinical use with uteri of varying sizes, an integration under the graphical curve of flow rate versus time provides a volume assessment of the size of uterine cavity. The amount of volume can provide the physician information not only on the size of the uterus, but whether the device is improperly embedded in a false passage (smaller volume amount) or in the peritoneal cavity (larger volume amount).
Immediately after performing the integrity test above, the amount of flow in the inflow and outflow channels can be measured in a patency test and used to determine the presence of an obstruction that may affect the flow of vapor during the ablation procedure. Based on this determination or patency test, the device may be repositioned or replaced prior to delivery of vapor. For example, in one embodiment, referring to
If it has been determined that the uterus is sealed based on the integrity test performed and described in
In one specific embodiment, the patency test threshold can be greater than 5 ml/min, and the rolling patency test time window can be a 5 second time period. Thus, the flow meter can measure the patency flow rate in rolling patency time windows (e.g., rolling 5 second periods) and the controller can analyze the measured rate. If the patency flow rate is maintained above the patency test threshold (e.g., 5 ml/min) during a rolling patency time window, then the patency test is considered passed and the test can be stopped. Passing the patency test indicates that the uterine ablation device is not obstructed or placed in false passage. If the patency test threshold is not satisfied, the physician should repeat the insertion steps and/or repeat the integrity test and patency test prior to initiating uterine ablation. When the patency flow rate is below the threshold of 5 ml/min during the rolling patency test time window, the uterine ablation device may need to be repositioned.
During the transition from the end of integrity test to the start of the patency test, the uterine cavity can be substantially filled with the gas/fluid provided during the integrity test. As described above, the closed outflow valve during the integrity test prevents gas or fluid from exiting the uterine cavity into the waste container 133. In one embodiment, it is desirable for valve 128c to be opened only partially in the range of 20-50% open for a flow rate greater than 5 ml/min and less than 40 ml/min so the uterine cavity distension achieved during the integrity test is temporarily maintained when the patency test checks for open flow through the uterine ablation device. Certain types of valves are better suited for partial opening. For example, balloon valves can be pulsed at various duty cycles to partially open the valve. The higher the duty cycle, the more quickly the valve can be opened. Partial opening of the valve prevents the uterine cavity from collapsing too quickly around the tip of the uterine ablation device which, in some instances, may cause a false positive failure of the patency test. In one embodiment, partial opening of the valve can be achieved by pulsing the opening of the valve at a specified duty cycle until flow through the vapor probe begins, or alternatively until the uterine pressure begins to drop. In another embodiment, the valve 128c can be opened rapidly just until flow through the valve begins. This rapid drop opening of the valve can be achieved by pulsing the valve initially with a high duty cycle, then shortening the pulsing (or lowering the duty cycle) as the valve approaches the range where flow through the valve begins. Once the patency flow rate increases above a threshold (or by a specific rate of increase), the valve can be maintained.
In one specific embodiment, the valve 128c can be a balloon filled to as much as 20 psig to occlude the tubing leading to waste container 133. The balloon valve can be pulsed open for up to 40 msec every 200 msec until the balloon pressure falls to as low as 5 psig. The valve opening time can then be reduced even further until the balloon pressure falls to between 3-4 psig. The valve can continue to be pulsed until flow increases to a level of 0.20 ml/min or until flow rises above the threshold value (e.g., above 5 ml/min).
As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.
This application is a division of U.S. application Ser. No. 14/719,037, filed May 21, 2015, titled “Integrity Testing Method and Apparatus for Delivering Vapor to the Uterus”, now U.S. Pat. No. 10,179,019; which claims the benefit of U.S. Provisional Application No. 62/002,070, filed May 22, 2014, titled “Integrity Testing Method and Apparatus for Delivering Vapor to the Uterus”, each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
408899 | Small | Aug 1889 | A |
697181 | Smith | Apr 1902 | A |
1719750 | Bridge et al. | Jul 1929 | A |
3818913 | Wallach | Jun 1974 | A |
3871374 | Bolduc et al. | Mar 1975 | A |
3880168 | Berman | Apr 1975 | A |
3924628 | Droegemueller et al. | Dec 1975 | A |
3930505 | Wallach | Jan 1976 | A |
4083077 | Knight et al. | Apr 1978 | A |
4447227 | Kotsanis | May 1984 | A |
4672962 | Hershenson | Jun 1987 | A |
4682596 | Bales et al. | Jul 1987 | A |
4748979 | Hershenson | Jun 1988 | A |
4773410 | Blackmer et al. | Sep 1988 | A |
4793352 | Eichenlaub | Dec 1988 | A |
4872920 | Flynn et al. | Oct 1989 | A |
4898574 | Uchiyama et al. | Feb 1990 | A |
4915113 | Holman | Apr 1990 | A |
4941475 | Williams et al. | Jul 1990 | A |
4950266 | Sinofsky | Aug 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
4985027 | Dressel | Jan 1991 | A |
5006119 | Acker et al. | Apr 1991 | A |
5011566 | Hoffman | Apr 1991 | A |
5045056 | Behl | Sep 1991 | A |
5078736 | Behl | Jan 1992 | A |
5084043 | Hertzmann et al. | Jan 1992 | A |
5084044 | Quint | Jan 1992 | A |
5102410 | Dressel | Apr 1992 | A |
5112328 | Taboada et al. | May 1992 | A |
5122138 | Manwaring | Jun 1992 | A |
5145935 | Hayashi | Sep 1992 | A |
5158536 | Sekins et al. | Oct 1992 | A |
5162374 | Mulieri et al. | Nov 1992 | A |
5190539 | Fletcher et al. | Mar 1993 | A |
5217459 | Kamerling | Jun 1993 | A |
5217465 | Steppe | Jun 1993 | A |
5218970 | Turnbull et al. | Jun 1993 | A |
5242474 | Herbst et al. | Sep 1993 | A |
5246436 | Rowe | Sep 1993 | A |
5263951 | Spears et al. | Nov 1993 | A |
5277201 | Stern | Jan 1994 | A |
5277696 | Hagen | Jan 1994 | A |
5306274 | Long | Apr 1994 | A |
5318014 | Carter | Jun 1994 | A |
5331947 | Shturman | Jul 1994 | A |
5334190 | Seiler | Aug 1994 | A |
5344397 | Heaven et al. | Sep 1994 | A |
5348551 | Spears et al. | Sep 1994 | A |
5352512 | Hoffman | Oct 1994 | A |
5411482 | Campbell | May 1995 | A |
5417686 | Peterson et al. | May 1995 | A |
5424620 | Cheon et al. | Jun 1995 | A |
5433708 | Nichols et al. | Jul 1995 | A |
5433739 | Sluijter et al. | Jul 1995 | A |
5437629 | Goldrath | Aug 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5445168 | Krebs | Aug 1995 | A |
5449380 | Chin | Sep 1995 | A |
5451208 | Goldrath | Sep 1995 | A |
5462521 | Brucker et al. | Oct 1995 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5506300 | Ward et al. | Apr 1996 | A |
5524620 | Rosenschein | Jun 1996 | A |
5529076 | Schachar | Jun 1996 | A |
5540658 | Evans et al. | Jul 1996 | A |
5542928 | Evans et al. | Aug 1996 | A |
5554172 | Horner et al. | Sep 1996 | A |
5562608 | Sekins et al. | Oct 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5584872 | LaFontaine et al. | Dec 1996 | A |
5591157 | Hennings et al. | Jan 1997 | A |
5616120 | Andrew et al. | Apr 1997 | A |
5620440 | Heckele et al. | Apr 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5653692 | Masterson et al. | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5665074 | Kelly | Sep 1997 | A |
5665822 | Bitler et al. | Sep 1997 | A |
5669907 | Platt et al. | Sep 1997 | A |
5674191 | Edwards et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5688267 | Panescu et al. | Nov 1997 | A |
5695507 | Auth et al. | Dec 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5700262 | Acosta et al. | Dec 1997 | A |
5707352 | Sekins et al. | Jan 1998 | A |
5730719 | Edwards | Mar 1998 | A |
5735811 | Brisken | Apr 1998 | A |
5741247 | Rizoiu et al. | Apr 1998 | A |
5741248 | Stern et al. | Apr 1998 | A |
5743870 | Edwards | Apr 1998 | A |
5752965 | Francis et al. | May 1998 | A |
5754717 | Esch | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5769880 | Truckai et al. | Jun 1998 | A |
5782914 | Schankereli | Jul 1998 | A |
5785521 | Rizoiu et al. | Jul 1998 | A |
5800379 | Edwards | Sep 1998 | A |
5800482 | Pomeranz et al. | Sep 1998 | A |
5800493 | Stevens et al. | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5820580 | Edwards et al. | Oct 1998 | A |
5824703 | Clark | Oct 1998 | A |
5827268 | Laufer | Oct 1998 | A |
5836896 | Rosenschein | Nov 1998 | A |
5836906 | Edwards | Nov 1998 | A |
5843019 | Eggers et al. | Dec 1998 | A |
5871469 | Eggers et al. | Feb 1999 | A |
5873855 | Eggers et al. | Feb 1999 | A |
5879329 | Ginsburg | Mar 1999 | A |
5885243 | Capetan et al. | Mar 1999 | A |
5888198 | Eggers et al. | Mar 1999 | A |
5891094 | Masterson et al. | Apr 1999 | A |
5891095 | Eggers et al. | Apr 1999 | A |
5891134 | Goble et al. | Apr 1999 | A |
5891457 | Neuwirth | Apr 1999 | A |
5902272 | Eggers et al. | May 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5913856 | Chia et al. | Jun 1999 | A |
5938660 | Swartz et al. | Aug 1999 | A |
5944686 | Patterson et al. | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5957919 | Laufer | Sep 1999 | A |
5964752 | Stone | Oct 1999 | A |
5968037 | Rizoiu et al. | Oct 1999 | A |
5976129 | Desai | Nov 1999 | A |
5980504 | Sharkey et al. | Nov 1999 | A |
5986662 | Argiro et al. | Nov 1999 | A |
5989212 | Sussman et al. | Nov 1999 | A |
5989249 | Kirwan | Nov 1999 | A |
5989445 | Wise et al. | Nov 1999 | A |
5997499 | Sussman et al. | Dec 1999 | A |
6004509 | Dey et al. | Dec 1999 | A |
6015406 | Goble et al. | Jan 2000 | A |
6024095 | Stanley | Feb 2000 | A |
6024733 | Eggers et al. | Feb 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6032077 | Pomeranz | Feb 2000 | A |
6045532 | Eggers et al. | Apr 2000 | A |
6045549 | Smethers et al. | Apr 2000 | A |
6047700 | Eggers et al. | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6053909 | Shadduck | Apr 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6057689 | Saadat | May 2000 | A |
6059011 | Giolo | May 2000 | A |
6063079 | Hovda et al. | May 2000 | A |
6063081 | Mulier et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6066139 | Ryan et al. | May 2000 | A |
6080128 | Sussman et al. | Jun 2000 | A |
6080151 | Swartz et al. | Jun 2000 | A |
6083255 | Laufer et al. | Jul 2000 | A |
6086585 | Hovda et al. | Jul 2000 | A |
6095149 | Sharkey et al. | Aug 2000 | A |
6099251 | LaFleur | Aug 2000 | A |
6102046 | Weinstein et al. | Aug 2000 | A |
6102885 | Bass | Aug 2000 | A |
6105581 | Eggers et al. | Aug 2000 | A |
6106516 | Massengill | Aug 2000 | A |
6109268 | Thapliyal et al. | Aug 2000 | A |
6113594 | Savage | Sep 2000 | A |
6113597 | Eggers et al. | Sep 2000 | A |
6113722 | Hoffman et al. | Sep 2000 | A |
6117109 | Eggers et al. | Sep 2000 | A |
6126682 | Sharkey et al. | Oct 2000 | A |
6130671 | Argiro | Oct 2000 | A |
6139571 | Fuller et al. | Oct 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6156036 | Sussman et al. | Dec 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159194 | Eggers et al. | Dec 2000 | A |
6159207 | Yoon | Dec 2000 | A |
6159208 | Hovda et al. | Dec 2000 | A |
6162210 | Shadduck | Dec 2000 | A |
6162232 | Shadduck | Dec 2000 | A |
6174308 | Goble et al. | Jan 2001 | B1 |
6179805 | Sussman et al. | Jan 2001 | B1 |
6179824 | Eggers et al. | Jan 2001 | B1 |
6179836 | Eggers et al. | Jan 2001 | B1 |
6183469 | Thapliyal et al. | Feb 2001 | B1 |
6190381 | Olsen et al. | Feb 2001 | B1 |
6194066 | Hoffman | Feb 2001 | B1 |
6196989 | Padget et al. | Mar 2001 | B1 |
6200333 | Laufer | Mar 2001 | B1 |
6203542 | Ellsberry et al. | Mar 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6210404 | Shadduck | Apr 2001 | B1 |
6210405 | Goble et al. | Apr 2001 | B1 |
6219059 | Argiro | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6228078 | Eggers et al. | May 2001 | B1 |
6228081 | Goble | May 2001 | B1 |
6228082 | Baker et al. | May 2001 | B1 |
6231567 | Rizoiu et al. | May 2001 | B1 |
6235020 | Cheng et al. | May 2001 | B1 |
6238391 | Olsen et al. | May 2001 | B1 |
6254597 | Rizoiu et al. | Jul 2001 | B1 |
6254600 | Willink et al. | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6261311 | Sharkey et al. | Jul 2001 | B1 |
6264650 | Hovda et al. | Jul 2001 | B1 |
6264651 | Underwood et al. | Jul 2001 | B1 |
6264652 | Eggers et al. | Jul 2001 | B1 |
6277112 | Underwood et al. | Aug 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6283910 | Bradshaw et al. | Sep 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
6283989 | Laufer et al. | Sep 2001 | B1 |
6290715 | Sharkey et al. | Sep 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6296638 | Davison et al. | Oct 2001 | B1 |
6299633 | Laufer | Oct 2001 | B1 |
6300150 | Venkatasubramanian | Oct 2001 | B1 |
6306129 | Little et al. | Oct 2001 | B1 |
6306134 | Goble et al. | Oct 2001 | B1 |
6309387 | Eggers et al. | Oct 2001 | B1 |
6312408 | Eggers et al. | Nov 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6315755 | Sussman | Nov 2001 | B1 |
6319221 | Savage et al. | Nov 2001 | B1 |
6322549 | Eggers et al. | Nov 2001 | B1 |
6327505 | Medhkour et al. | Dec 2001 | B1 |
6328735 | Curley et al. | Dec 2001 | B1 |
6331171 | Cohen | Dec 2001 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6361531 | Hissong | Mar 2002 | B1 |
6363937 | Hovda et al. | Apr 2002 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6375635 | Moutafis et al. | Apr 2002 | B1 |
6379350 | Sharkey et al. | Apr 2002 | B1 |
6379351 | Thapliyal et al. | Apr 2002 | B1 |
6387088 | Shadduck et al. | May 2002 | B1 |
6388043 | Langer et al. | May 2002 | B1 |
6391025 | Weinstein et al. | May 2002 | B1 |
6394949 | Crowley et al. | May 2002 | B1 |
6394996 | Lawrence et al. | May 2002 | B1 |
6398759 | Sussman et al. | Jun 2002 | B1 |
6398775 | Perkins et al. | Jun 2002 | B1 |
6409699 | Ash | Jun 2002 | B1 |
6409723 | Edwards | Jun 2002 | B1 |
6425877 | Edwards | Jun 2002 | B1 |
6416507 | Eggers et al. | Jul 2002 | B1 |
6416508 | Eggers et al. | Jul 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6425867 | Vaezy et al. | Jul 2002 | B1 |
6432103 | Ellsberry et al. | Aug 2002 | B1 |
6440089 | Shine | Aug 2002 | B1 |
6443947 | Marko et al. | Sep 2002 | B1 |
6451012 | Dobak, III | Sep 2002 | B2 |
6458231 | Wapner et al. | Oct 2002 | B1 |
6461350 | Underwood et al. | Oct 2002 | B1 |
6461354 | Olsen et al. | Oct 2002 | B1 |
6464694 | Massengill | Oct 2002 | B1 |
6464695 | Hovda et al. | Oct 2002 | B2 |
6468270 | Hovda et al. | Oct 2002 | B1 |
6468274 | Alleyne et al. | Oct 2002 | B1 |
6468313 | Claeson et al. | Oct 2002 | B1 |
6475215 | Tanrisever | Nov 2002 | B1 |
6482201 | Olsen et al. | Nov 2002 | B1 |
6488673 | Laufer et al. | Dec 2002 | B1 |
6493589 | Medhkour et al. | Dec 2002 | B1 |
6500173 | Underwood et al. | Dec 2002 | B2 |
6508816 | Shadduck | Jan 2003 | B2 |
6510854 | Goble | Jan 2003 | B2 |
6517533 | Swaminathan | Feb 2003 | B1 |
6522930 | Schaer et al. | Feb 2003 | B1 |
6527761 | Soltesz et al. | Mar 2003 | B1 |
6527766 | Bair | Mar 2003 | B1 |
6540741 | Underwood et al. | Apr 2003 | B1 |
6544211 | Andrew et al. | Apr 2003 | B1 |
6544261 | Ellsberry et al. | Apr 2003 | B2 |
6547784 | Thompson et al. | Apr 2003 | B1 |
6551271 | Nguyen | Apr 2003 | B2 |
6551274 | Heiner | Apr 2003 | B2 |
6554780 | Sampson et al. | Apr 2003 | B1 |
6557559 | Eggers et al. | May 2003 | B1 |
6558379 | Batchelor et al. | May 2003 | B1 |
6565561 | Goble et al. | May 2003 | B1 |
6569146 | Werner et al. | May 2003 | B1 |
6575929 | Sussman et al. | Jun 2003 | B2 |
6575933 | Wittenberger et al. | Jun 2003 | B1 |
6575968 | Eggers et al. | Jun 2003 | B1 |
6579270 | Sussman et al. | Jun 2003 | B2 |
6582423 | Thapliyal et al. | Jun 2003 | B1 |
6585639 | Kotmel et al. | Jul 2003 | B1 |
6588613 | Pechenik et al. | Jul 2003 | B1 |
6589201 | Sussman et al. | Jul 2003 | B1 |
6589237 | Woloszko et al. | Jul 2003 | B2 |
6592594 | Rimbaugh et al. | Jul 2003 | B2 |
6595990 | Weinstein et al. | Jul 2003 | B1 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6610043 | Ingenito | Aug 2003 | B1 |
6620155 | Underwood et al. | Sep 2003 | B2 |
6623444 | Babaev | Sep 2003 | B2 |
6626855 | Weng et al. | Sep 2003 | B1 |
6629974 | Penny et al. | Oct 2003 | B2 |
6632193 | Davison et al. | Oct 2003 | B1 |
6632220 | Eggers et al. | Oct 2003 | B1 |
6634363 | Danek et al. | Oct 2003 | B1 |
6653525 | Ingenito et al. | Nov 2003 | B2 |
6669685 | Rizoiu et al. | Dec 2003 | B1 |
6669694 | Shadduck | Dec 2003 | B2 |
6676628 | Sussman et al. | Jan 2004 | B2 |
6676629 | Andrew et al. | Jan 2004 | B2 |
6679264 | Deem et al. | Jan 2004 | B1 |
6679879 | Shadduck | Jan 2004 | B2 |
6692490 | Edwards | Feb 2004 | B1 |
6692494 | Cooper et al. | Feb 2004 | B1 |
6695839 | Sharkey et al. | Feb 2004 | B2 |
6699212 | Kadziauskas et al. | Mar 2004 | B1 |
6699244 | Carranza et al. | Mar 2004 | B2 |
6708056 | Duchon et al. | Mar 2004 | B2 |
6712811 | Underwood et al. | Mar 2004 | B2 |
6712812 | Roschak et al. | Mar 2004 | B2 |
6719754 | Underwood et al. | Apr 2004 | B2 |
6726684 | Woloszko et al. | Apr 2004 | B1 |
6726708 | Lasheras | Apr 2004 | B2 |
6743184 | Sampson et al. | Jun 2004 | B2 |
6743197 | Edwards | Jun 2004 | B1 |
6746447 | Davison et al. | Jun 2004 | B2 |
6749604 | Eggers et al. | Jun 2004 | B1 |
6755794 | Soukup | Jun 2004 | B2 |
6758846 | Goble et al. | Jul 2004 | B2 |
6763836 | Tasto et al. | Jul 2004 | B2 |
6766202 | Underwood et al. | Jul 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6770071 | Woloszko et al. | Aug 2004 | B2 |
6772012 | Ricart et al. | Aug 2004 | B2 |
6773431 | Eggers et al. | Aug 2004 | B2 |
6776765 | Soukup et al. | Aug 2004 | B2 |
6780180 | Goble et al. | Aug 2004 | B1 |
6805130 | Tasto et al. | Oct 2004 | B2 |
6813520 | Truckai et al. | Nov 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6837884 | Woloszko | Jan 2005 | B2 |
6837887 | Woloszko et al. | Jan 2005 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6852108 | Barry et al. | Feb 2005 | B2 |
6860847 | Alferness et al. | Mar 2005 | B2 |
6872183 | Sampson et al. | Mar 2005 | B2 |
6875194 | MacKool | Apr 2005 | B2 |
6896672 | Eggers et al. | May 2005 | B1 |
6896674 | Woloszko et al. | May 2005 | B1 |
6896675 | Leung et al. | May 2005 | B2 |
6896690 | Lambrecht et al. | May 2005 | B1 |
6901927 | Deem et al. | Jun 2005 | B2 |
6904909 | Andreas et al. | Jun 2005 | B2 |
6907881 | Suki et al. | Jun 2005 | B2 |
6911028 | Shadduck | Jun 2005 | B2 |
6915806 | Pacek et al. | Jul 2005 | B2 |
6918903 | Bass | Jul 2005 | B2 |
6921385 | Clements et al. | Jul 2005 | B2 |
6929640 | Underwood et al. | Aug 2005 | B1 |
6929642 | Xiao et al. | Aug 2005 | B2 |
6949096 | Davison et al. | Sep 2005 | B2 |
6955675 | Jain | Oct 2005 | B2 |
6960204 | Eggers et al. | Nov 2005 | B2 |
6962584 | Stone et al. | Nov 2005 | B1 |
6972014 | Eum et al. | Dec 2005 | B2 |
6978174 | Gelfand et al. | Dec 2005 | B2 |
6986769 | Nelson et al. | Jan 2006 | B2 |
6991028 | Comeaux et al. | Jan 2006 | B2 |
6991631 | Woloszko et al. | Jan 2006 | B2 |
7004940 | Ryan et al. | Feb 2006 | B2 |
7004941 | Tvinnereim et al. | Feb 2006 | B2 |
7022088 | Keast et al. | Apr 2006 | B2 |
7022105 | Edwards | Apr 2006 | B1 |
7031504 | Argiro et al. | Apr 2006 | B1 |
7063670 | Sampson et al. | Jun 2006 | B2 |
7070596 | Woloszko et al. | Jul 2006 | B1 |
7083612 | Littrup et al. | Aug 2006 | B2 |
7094215 | Davison et al. | Aug 2006 | B2 |
7094249 | Broome et al. | Aug 2006 | B1 |
7101367 | Xiao et al. | Sep 2006 | B2 |
7104986 | Hovda et al. | Sep 2006 | B2 |
7105007 | Hibler | Sep 2006 | B2 |
RE39358 | Goble | Oct 2006 | E |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7131969 | Hovda et al. | Nov 2006 | B1 |
7136064 | Zuiderveld | Nov 2006 | B2 |
7144402 | Kuester | Dec 2006 | B2 |
7144588 | Gray et al. | Dec 2006 | B2 |
7162303 | Levin et al. | Jan 2007 | B2 |
7169143 | Eggers et al. | Jan 2007 | B2 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7186234 | Dahla et al. | Mar 2007 | B2 |
7192400 | Campbell et al. | Mar 2007 | B2 |
7192428 | Eggers et al. | Mar 2007 | B2 |
7201750 | Eggers et al. | Apr 2007 | B1 |
7217268 | Eggers et al. | May 2007 | B2 |
7233820 | Gilboa | Jun 2007 | B2 |
7235070 | Vanney | Jun 2007 | B2 |
7241293 | Davison | Jul 2007 | B2 |
7270658 | Woloszko et al. | Sep 2007 | B2 |
7270659 | Ricart et al. | Sep 2007 | B2 |
7270661 | Dahla et al. | Sep 2007 | B2 |
7276063 | Davison et al. | Oct 2007 | B2 |
7297143 | Woloszko et al. | Nov 2007 | B2 |
7297145 | Woloszko et al. | Nov 2007 | B2 |
7311708 | McClurken | Dec 2007 | B2 |
7320325 | Duchon et al. | Jan 2008 | B2 |
7326235 | Edwards | Feb 2008 | B2 |
7331957 | Woloszko et al. | Feb 2008 | B2 |
7335195 | Mehier | Feb 2008 | B2 |
7347859 | Garabedian et al. | Mar 2008 | B2 |
7512445 | Truckai et al. | Mar 2009 | B2 |
7524315 | Blott et al. | Apr 2009 | B2 |
7585295 | Ben-Nun | Sep 2009 | B2 |
7617005 | Demarais et al. | Nov 2009 | B2 |
7620451 | Demarais et al. | Nov 2009 | B2 |
7653438 | Deem et al. | Jan 2010 | B2 |
7717909 | Strul et al. | May 2010 | B2 |
7756583 | Demarais et al. | Jul 2010 | B2 |
7815616 | Boehringer et al. | Oct 2010 | B2 |
7815646 | Hart | Oct 2010 | B2 |
7846160 | Payne et al. | Dec 2010 | B2 |
7853333 | Demarais | Dec 2010 | B2 |
7873417 | Demarais et al. | Jan 2011 | B2 |
7937143 | Demarais et al. | May 2011 | B2 |
7993323 | Barry et al. | Aug 2011 | B2 |
8025656 | Gruber et al. | Sep 2011 | B2 |
8131371 | Demarais et al. | Mar 2012 | B2 |
8145316 | Deem et al. | Mar 2012 | B2 |
8145317 | Demarais et al. | Mar 2012 | B2 |
8150519 | Demarais et al. | Apr 2012 | B2 |
8150520 | Demarais et al. | Apr 2012 | B2 |
8175711 | Demarais et al. | May 2012 | B2 |
8192424 | Woloszko | Jun 2012 | B2 |
8197470 | Sharkey et al. | Jun 2012 | B2 |
8216217 | Sharkey et al. | Jul 2012 | B2 |
8221401 | Sharkey et al. | Jul 2012 | B2 |
8221403 | Sharkey et al. | Jul 2012 | B2 |
8226645 | Harrington et al. | Jul 2012 | B2 |
8313485 | Shadduck | Nov 2012 | B2 |
8343078 | Toth | Jan 2013 | B2 |
8394037 | Toth | Mar 2013 | B2 |
8486060 | Kotmel et al. | Jul 2013 | B2 |
8500732 | Truckai et al. | Aug 2013 | B2 |
8506563 | Truckai et al. | Aug 2013 | B2 |
8529562 | Vissy et al. | Sep 2013 | B2 |
8540708 | Truckai et al. | Sep 2013 | B2 |
8551082 | Strul et al. | Oct 2013 | B2 |
8574226 | Shadduck | Nov 2013 | B2 |
8579888 | Hoey et al. | Nov 2013 | B2 |
8579892 | Hoey et al. | Nov 2013 | B2 |
8585645 | Barry et al. | Nov 2013 | B2 |
8585692 | Shadduck et al. | Nov 2013 | B2 |
8597289 | Layton, Jr. et al. | Dec 2013 | B2 |
8647349 | Gruber et al. | Feb 2014 | B2 |
8690873 | Truckai et al. | Apr 2014 | B2 |
8715278 | Toth et al. | May 2014 | B2 |
8721632 | Hoey et al. | May 2014 | B2 |
8758341 | Shadduck | Jun 2014 | B2 |
8801702 | Hoey et al. | Aug 2014 | B2 |
8814796 | Martin et al. | Aug 2014 | B2 |
8840625 | Adams et al. | Sep 2014 | B2 |
8900223 | Shadduck | Dec 2014 | B2 |
8926629 | Truckai | Jan 2015 | B2 |
8936592 | Beck et al. | Jan 2015 | B2 |
8939971 | Truckai et al. | Jan 2015 | B2 |
8956348 | Bek | Feb 2015 | B2 |
8998898 | Truckai et al. | Apr 2015 | B2 |
8998901 | Truckai et al. | Apr 2015 | B2 |
9050102 | Truckai | Jun 2015 | B2 |
9050103 | Truckai | Jun 2015 | B2 |
9095348 | Truckai et al. | Aug 2015 | B2 |
9113944 | Shadduck | Aug 2015 | B2 |
9144421 | Lau et al. | Sep 2015 | B1 |
9186208 | Truckai et al. | Nov 2015 | B2 |
9204889 | Shadduck | Dec 2015 | B2 |
9242122 | Tsoref et al. | Jan 2016 | B2 |
9247989 | Truckai | Feb 2016 | B2 |
9259262 | Hundertmark et al. | Feb 2016 | B2 |
9277952 | Burnett et al. | Mar 2016 | B2 |
9283022 | Burnett et al. | Mar 2016 | B2 |
9289257 | Toth et al. | Mar 2016 | B2 |
9333111 | Kochem et al. | May 2016 | B2 |
9339330 | Truckai | May 2016 | B2 |
9408657 | Burnett et al. | Aug 2016 | B2 |
9421059 | Truckai et al. | Aug 2016 | B2 |
9427556 | Burnett | Aug 2016 | B2 |
9433457 | Shadduck | Sep 2016 | B2 |
9433467 | Beck et al. | Sep 2016 | B2 |
9486267 | Burnett et al. | Nov 2016 | B2 |
9498274 | Burnett et al. | Nov 2016 | B2 |
9554853 | Strul et al. | Jan 2017 | B2 |
9585712 | Truckai | Mar 2017 | B2 |
9615875 | Shadduck | Apr 2017 | B2 |
9636171 | Toth et al. | May 2017 | B2 |
9662060 | Peliks et al. | May 2017 | B2 |
9662163 | Toth et al. | May 2017 | B2 |
9743974 | Gurskis et al. | Aug 2017 | B2 |
9743978 | Skalyni | Aug 2017 | B2 |
9775542 | Toth | Oct 2017 | B2 |
9788890 | Toth et al. | Oct 2017 | B2 |
9814520 | Truckai | Nov 2017 | B2 |
9848933 | Burnett et al. | Dec 2017 | B2 |
9883907 | Toth et al. | Feb 2018 | B2 |
9895192 | Model | Feb 2018 | B2 |
9907599 | Hoey et al. | Mar 2018 | B2 |
9913681 | Bueaudet | Mar 2018 | B2 |
9943353 | Hoey et al. | Apr 2018 | B2 |
9993290 | Chee et al. | Jun 2018 | B2 |
10004551 | Burnett et al. | Jun 2018 | B2 |
10004553 | Churchill et al. | Jul 2018 | B2 |
10052150 | Truckai et al. | Aug 2018 | B2 |
10105176 | Toth et al. | Oct 2018 | B2 |
10154871 | Sharkey et al. | Dec 2018 | B2 |
10179019 | Chee et al. | Jan 2019 | B2 |
10213151 | Filloux et al. | Feb 2019 | B2 |
10213335 | Burnett et al. | Feb 2019 | B2 |
10238446 | Gurskis et al. | Mar 2019 | B2 |
10299856 | Chee et al. | May 2019 | B2 |
10456194 | Truckai | Oct 2019 | B2 |
10499981 | Model | Dec 2019 | B2 |
10524847 | Shadduck | Jan 2020 | B2 |
10548653 | Hoey et al. | Feb 2020 | B2 |
10575898 | Chee et al. | Mar 2020 | B2 |
10588689 | Truckai | Mar 2020 | B2 |
10617461 | Toth et al. | Apr 2020 | B2 |
10624694 | Kochem et al. | Apr 2020 | B2 |
10722298 | Skalnyi | Jul 2020 | B2 |
10758300 | Truckai et al. | Sep 2020 | B2 |
10779877 | Churchill et al. | Sep 2020 | B2 |
20020007180 | Wittenberger et al. | Jan 2002 | A1 |
20020013601 | Nobles et al. | Jan 2002 | A1 |
20020019627 | Maguire et al. | Feb 2002 | A1 |
20020077516 | Flanigan | Jun 2002 | A1 |
20020078956 | Sharpe et al. | Jun 2002 | A1 |
20020111386 | Sekins et al. | Aug 2002 | A1 |
20020128638 | Chauvet et al. | Sep 2002 | A1 |
20020133147 | Marchitto et al. | Sep 2002 | A1 |
20020151917 | Barry | Oct 2002 | A1 |
20020161326 | Sussman et al. | Oct 2002 | A1 |
20020173815 | Hogendijk et al. | Nov 2002 | A1 |
20020177846 | Muller et al. | Nov 2002 | A1 |
20030028189 | Woloszko et al. | Feb 2003 | A1 |
20030097126 | Woloszko et al. | May 2003 | A1 |
20030099279 | Venkatasubramanian et al. | May 2003 | A1 |
20030130738 | Hovda et al. | Jul 2003 | A1 |
20030144654 | Hilal | Jul 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030163178 | Davison et al. | Aug 2003 | A1 |
20030181922 | Alferness | Sep 2003 | A1 |
20030212394 | Pearson et al. | Nov 2003 | A1 |
20030217962 | Childers et al. | Nov 2003 | A1 |
20030220604 | Al-Anazi | Nov 2003 | A1 |
20030225364 | Kraft et al. | Dec 2003 | A1 |
20040002698 | Hua Xiao et al. | Jan 2004 | A1 |
20040024399 | Sharps et al. | Feb 2004 | A1 |
20040047855 | Ingenito | Mar 2004 | A1 |
20040049180 | Sharps et al. | Mar 2004 | A1 |
20040055606 | Hendricksen et al. | Mar 2004 | A1 |
20040068306 | Shadduck | Apr 2004 | A1 |
20040116922 | Hovda et al. | Jun 2004 | A1 |
20040199226 | Shadduck | Oct 2004 | A1 |
20040230190 | Dahla et al. | Nov 2004 | A1 |
20050010205 | Hovda et al. | Jan 2005 | A1 |
20050119650 | Sanders et al. | Jun 2005 | A1 |
20050143728 | Sampson et al. | Jun 2005 | A1 |
20050166925 | Wilson et al. | Aug 2005 | A1 |
20050171574 | Rubinsky et al. | Aug 2005 | A1 |
20050171582 | Matlock | Aug 2005 | A1 |
20050177147 | Vancelette et al. | Aug 2005 | A1 |
20050215991 | Altman et al. | Sep 2005 | A1 |
20050222485 | Shaw et al. | Oct 2005 | A1 |
20050228423 | Khashayar et al. | Oct 2005 | A1 |
20050228424 | Khashayar et al. | Oct 2005 | A1 |
20050240171 | Forrest | Oct 2005 | A1 |
20050240239 | Boveja et al. | Oct 2005 | A1 |
20050267467 | Paul et al. | Dec 2005 | A1 |
20050283143 | Rizoiu | Dec 2005 | A1 |
20060004400 | McGurk et al. | Jan 2006 | A1 |
20060047291 | Barry | Mar 2006 | A1 |
20060058831 | Atad | Mar 2006 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20060100619 | McClurken et al. | May 2006 | A1 |
20060130830 | Barry | Jun 2006 | A1 |
20060135955 | Shadduck | Jun 2006 | A1 |
20060142783 | Lewis et al. | Jun 2006 | A1 |
20060161147 | Privitera et al. | Jul 2006 | A1 |
20060161233 | Barry et al. | Jul 2006 | A1 |
20060200076 | Gonzalez et al. | Sep 2006 | A1 |
20060206150 | Demarais et al. | Sep 2006 | A1 |
20060224154 | Shadduck et al. | Oct 2006 | A1 |
20060265053 | Hunt | Nov 2006 | A1 |
20060271111 | Demarais et al. | Nov 2006 | A1 |
20070021713 | Kumar et al. | Jan 2007 | A1 |
20070032785 | Diederich et al. | Feb 2007 | A1 |
20070066990 | Marsella et al. | Mar 2007 | A1 |
20070129720 | Demarais et al. | Jun 2007 | A1 |
20070129760 | Demarais et al. | Jun 2007 | A1 |
20070129761 | Demarais et al. | Jun 2007 | A1 |
20070135875 | Demarais et al. | Jun 2007 | A1 |
20070225744 | Nobles et al. | Sep 2007 | A1 |
20070239197 | Dubey et al. | Oct 2007 | A1 |
20070288051 | Beyer et al. | Dec 2007 | A1 |
20080033493 | Deckman et al. | Feb 2008 | A1 |
20080077201 | Levinson et al. | Mar 2008 | A1 |
20080125747 | Prokop | May 2008 | A1 |
20080132826 | Shadduck et al. | Jun 2008 | A1 |
20080135053 | Gruber et al. | Jun 2008 | A1 |
20080161788 | Dando et al. | Jul 2008 | A1 |
20080167664 | Payne et al. | Jul 2008 | A1 |
20080249467 | Burnett et al. | Oct 2008 | A1 |
20090024108 | Lee-Sepsick et al. | Jan 2009 | A1 |
20090030412 | Willis et al. | Jan 2009 | A1 |
20090076409 | Wu et al. | Mar 2009 | A1 |
20090125010 | Sharkey et al. | May 2009 | A1 |
20090216220 | Hoey et al. | Aug 2009 | A1 |
20090306640 | Glaze et al. | Dec 2009 | A1 |
20100078046 | Labib et al. | Apr 2010 | A1 |
20100082021 | Gutierrez et al. | Apr 2010 | A1 |
20100094268 | Bouthillier et al. | Apr 2010 | A1 |
20100094270 | Sharma | Apr 2010 | A1 |
20100100091 | Truckai | Apr 2010 | A1 |
20100100094 | Truckai | Apr 2010 | A1 |
20100106152 | Truckai et al. | Apr 2010 | A1 |
20100114083 | Sharma | May 2010 | A1 |
20100114089 | Truckai et al. | May 2010 | A1 |
20100168731 | Wu et al. | Jul 2010 | A1 |
20100168739 | Wu et al. | Jul 2010 | A1 |
20100174282 | Demarais et al. | Jul 2010 | A1 |
20100179528 | Shadduck et al. | Jul 2010 | A1 |
20100204688 | Hoey et al. | Aug 2010 | A1 |
20100228222 | Williams et al. | Sep 2010 | A1 |
20100249773 | Clark et al. | Sep 2010 | A1 |
20100262133 | Hoey et al. | Oct 2010 | A1 |
20110009829 | Kosinski et al. | Jan 2011 | A1 |
20110054508 | Zhou et al. | Mar 2011 | A1 |
20110077628 | Hoey et al. | Mar 2011 | A1 |
20110112400 | Emery et al. | May 2011 | A1 |
20110112432 | Toth | May 2011 | A1 |
20110112433 | Toth | May 2011 | A1 |
20110112523 | Toth et al. | May 2011 | A1 |
20110118718 | Toth et al. | May 2011 | A1 |
20110118719 | Vissy et al. | May 2011 | A1 |
20110160648 | Hoey | Jun 2011 | A1 |
20110166499 | Demarais et al. | Jul 2011 | A1 |
20110178570 | Demarais | Jul 2011 | A1 |
20110200171 | Beetel et al. | Aug 2011 | A1 |
20110208096 | Demarais et al. | Aug 2011 | A1 |
20110208178 | Truckai | Aug 2011 | A1 |
20110257564 | Demarais et al. | Oct 2011 | A1 |
20110264011 | Wu et al. | Oct 2011 | A1 |
20110264075 | Leung et al. | Oct 2011 | A1 |
20110264090 | Shadduck et al. | Oct 2011 | A1 |
20120065632 | Shadduck | Mar 2012 | A1 |
20120101413 | Beetel et al. | Apr 2012 | A1 |
20120101538 | Ballakur et al. | Apr 2012 | A1 |
20120116382 | Ku et al. | May 2012 | A1 |
20120116383 | Mauch et al. | May 2012 | A1 |
20120116486 | Naga et al. | May 2012 | A1 |
20120130359 | Turovskiy | May 2012 | A1 |
20120130360 | Buckley et al. | May 2012 | A1 |
20120130458 | Ryba et al. | May 2012 | A1 |
20120136343 | Burnett | May 2012 | A1 |
20120136344 | Buckley et al. | May 2012 | A1 |
20120136350 | Goshgarian et al. | May 2012 | A1 |
20120136417 | Buckley et al. | May 2012 | A1 |
20120136418 | Buckley et al. | May 2012 | A1 |
20120143293 | Mauch et al. | Jun 2012 | A1 |
20120150267 | Buckley et al. | Jun 2012 | A1 |
20120158104 | Huynh et al. | Jun 2012 | A1 |
20120197198 | Demarais et al. | Aug 2012 | A1 |
20120197245 | Burnett et al. | Aug 2012 | A1 |
20120209281 | Truckai | Aug 2012 | A1 |
20120232545 | Truckai et al. | Sep 2012 | A1 |
20120245583 | Truckai et al. | Sep 2012 | A1 |
20120259271 | Shadduck et al. | Oct 2012 | A1 |
20130006231 | Sharma et al. | Jan 2013 | A1 |
20130116683 | Shadduck et al. | May 2013 | A1 |
20130237978 | Shadduck et al. | Sep 2013 | A1 |
20130261539 | King | Oct 2013 | A1 |
20130296837 | Burnett et al. | Nov 2013 | A1 |
20140031805 | Shadduck | Jan 2014 | A1 |
20140088575 | Loeb | Mar 2014 | A1 |
20140088581 | Kelly et al. | Mar 2014 | A1 |
20140200570 | Hoey et al. | Jul 2014 | A1 |
20140236129 | Radi et al. | Aug 2014 | A1 |
20150025515 | Hoey et al. | Jan 2015 | A1 |
20150119795 | Germain et al. | Apr 2015 | A1 |
20150334079 | Laidlaw et al. | Nov 2015 | A1 |
20170258511 | Peliks et al. | Sep 2017 | A1 |
20170354452 | Gurskis et al. | Dec 2017 | A1 |
20180168713 | Hoey et al. | Jun 2018 | A1 |
20180193079 | Hoey et al. | Jul 2018 | A1 |
20180199982 | Hoey et al. | Jul 2018 | A1 |
20180289416 | Chee et al. | Oct 2018 | A1 |
20190038210 | Peliks et al. | Feb 2019 | A1 |
20190216523 | Gurskis et al. | Jul 2019 | A1 |
20190223934 | Shadduck | Jul 2019 | A1 |
20200188008 | Hoey et al. | Jun 2020 | A1 |
20200197081 | Chee et al. | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
201189204 | Feb 2009 | CN |
201379631 | Jan 2010 | CN |
102271602 | Dec 2011 | CN |
103717126 | Apr 2014 | CN |
104135960 | Nov 2014 | CN |
H06-285074 | Oct 1994 | JP |
2000502585 | Mar 2000 | JP |
20003513742 | Apr 2003 | JP |
2010516351 | May 2010 | JP |
WO9857603 | Dec 1998 | WO |
WO9953853 | Oct 1999 | WO |
WO00011927 | Mar 2000 | WO |
WO0029055 | May 2000 | WO |
WO0185012 | Nov 2001 | WO |
WO02069821 | Sep 2002 | WO |
WO 03070302 | Aug 2003 | WO |
WO2005025635 | Mar 2005 | WO |
WO2005102175 | Nov 2005 | WO |
WO2006003665 | Jan 2006 | WO |
WO 2006055695 | May 2006 | WO |
WO2006108974 | Oct 2006 | WO |
WO2009009398 | Jan 2009 | WO |
WO2010045055 | Apr 2010 | WO |
WO2010048007 | Apr 2010 | WO |
WO2011025658 | Mar 2011 | WO |
WO2011053599 | May 2011 | WO |
WO2011060189 | May 2011 | WO |
WO2011060191 | May 2011 | WO |
WO2012106260 | Aug 2012 | WO |
Entry |
---|
Baker et al.; Threshold intrauterine perfusion pressures for intraperitoneal spill during hydrotubation and correlation with tubal adhesive diseases; Fertility and Sterility; 64(6); pp. 1066-1069; Dec. 31, 1995. |
Blacker; Vaporization of the uterus; J. Obstet. & Gyn.; vol. 1; Issue 5; pp. 488-511; May 1902. |
Fishman et. al.; A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema; N Engl J Med; 348(210. pp. 2059-2073; May 22, 2003. |
Homasson et. al.; Bronchoscopic cryotherapy for airway strictures caused by tumors; Chest; 90(2); pp. 159-164; Aug. 1, 1986. |
Marasso et al.; Radiofrequency resection of bronchial tumours in combination with cryotherapy: evaluation of a new technique; Thorax; 53(2); pp. 106-109; Feb. 1998. |
Marasso et. al.; Cryosurgery in bronchoscopic treatment of tracheobronchial stenosis; Cheat; 103(2); pp. 472-474; Feb. 1993. |
Morice et. al.; Endobronchial argon plasma coagulation for treatment of hemoptysis and neoplastic airway obstruction; Chest; 119(3); pp. 781-787; Mar. 1, 2001. |
Neuwirth et al.; The endometrial ablator; a new instrument; Obst. & Gyn.; vol. 83; No. 5; part 1; pp. 792-796; May 1994. |
Prior et al.; Treatment of mennorrhagia by radiofrequency heating; Int. J. Hyperthermia; vol. 7; No. 2; pp. 213-220; Mar.-Apr. 1991. |
Tschirren et. al.; Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans; IEEE Transactions on Medical Imaging; 24(12); pp. 1529-1539; Dec. 2005. |
Unger et. al.; Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography; Science, 288(5463); pp. 113-116; Apr. 7, 2000. |
Van De Velde; Vapo-cauterization of the uterus; Amer. J. Med. Sci.; vol. CXVIII (118); Nov. 1899. |
Sharkey et al.; U.S. Appl. No. 16/224,287 entitled “Uterine therapy device and method,” filed Dec. 18, 2018. |
Sharkey et al.; U.S. Appl. No. 16/224,363 entitled “Uterine therapy device and method,” filed Dec. 18, 2018. |
Kim et al.; Polyurethanes having shape memory effect; Polymer-Letchworth; 37(26); pp. 5781-5793; Jan. 1996. |
Poco; Industry news: Poco introduces improved CXT-CXT-xtra; 2 pages; retrieved from the internet (https://web.archive.org/web/20061215223908/http://www.poco.com/us/) on Feb. 2020. |
Stanford; Capacitor micro machined ultrasonic transducer (cMUT); 10 pages; retrieved from the Internet (https://web.archive.org/web/20040205083311/http://acoustics.stanford.edu/group/cmut1.pdf) on Feb. 20, 2020. |
Chee et al.; U.S. Appl. No. 16/422,835 entitled “Systems and methods for performing endometrial ablation,” filed May 24, 2019. |
Number | Date | Country | |
---|---|---|---|
20190142496 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62002070 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14719037 | May 2015 | US |
Child | 16248292 | US |