Intelligent assistant for home automation

Information

  • Patent Grant
  • 10170123
  • Patent Number
    10,170,123
  • Date Filed
    Tuesday, September 30, 2014
    10 years ago
  • Date Issued
    Tuesday, January 1, 2019
    6 years ago
Abstract
This relates to systems and processes for using a virtual assistant to control electronic devices. In one example process, a user can speak an input in natural language form to a user device to control one or more electronic devices. The user device can transmit the user speech to a server to be converted into a textual representation. The server can identify the one or more electronic devices and appropriate commands to be performed by the one or more electronic devices based on the textual representation. The identified one or more devices and commands to be performed can be transmitted back to the user device, which can forward the commands to the appropriate one or more electronic devices for execution. In response to receiving the commands, the one or more electronic devices can perform the commands and transmit their current states to the user device.
Description
FIELD

This relates generally to natural language processing and, more specifically, to the use of a virtual assistant with natural language processing to control electronic devices.


BACKGROUND

Home electronic devices that can be controlled remotely using software applications running on a computing device, such as a mobile phone, tablet computer, laptop computer, desktop computer, or the like, have become increasingly popular. For example, numerous manufacturers create light bulbs that can be controlled by a software application running on a mobile phone to adjust the brightness and/or color of the bulb. Other devices, such as door locks, thermostats, and the like, having similar controls are also available.


While these devices can provide users with a greater level of control and convenience, it can become exceedingly difficult to manage these devices as the number of remotely controlled devices and the number of types of remotely controlled devices in the home increase. For example, a typical home can include 40-50 light bulbs placed throughout the various rooms of the home. Using conventional software applications, each light bulb is given a unique identifier, and a user attempting to control one of these devices must select the appropriate identifier from a list of available devices within a graphical user interface. Remembering the correct identifier for a particular light bulb and finding that identifier from a list of 40-50 identifiers can be a difficult and time-consuming process. To add to the difficulty of managing and controlling a large number of remotely controlled devices, different manufactures typically provide different software applications that must be used to control their respective devices. As a result, a user must locate and open one software application to turn on/off their light bulbs, and must then locate and open another software application to set the temperature of their thermostat.


SUMMARY

Systems and processes for using a virtual assistant to control electronic devices are provided. In one example process, a user can speak an input in natural language form to a user device to control one or more electronic devices. The user device can transmit the user speech to a server to be converted into a textual representation. The server can identify the one or more electronic devices and appropriate commands to be performed by the one or more electronic devices based on the textual representation. The identified one or more devices and commands to be performed can be transmitted back to the user device, which can forward the commands to the appropriate one or more electronic devices for execution. In response to receiving the commands, the one or more electronic devices can perform the commands and transmit their current states to the user device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary environment in which a virtual assistant can be used to control electronic devices according to various examples.



FIG. 2 illustrates an exemplary environment in which a virtual assistant can be used to remotely control electronic devices according to various examples.



FIG. 3 illustrates an exemplary user device according to various examples.



FIG. 4 shows a visual representation of multiple entries used to store information associated with electronic devices according to various examples.



FIG. 5 illustrates an exemplary process for controlling electronic devices using a virtual assistant implemented using a client-server model according to various examples.



FIG. 6 illustrates an exemplary process for remotely controlling electronic devices using a virtual assistant implemented using a client-server model according to various examples.



FIG. 7 illustrates an exemplary process for controlling electronic devices using a virtual assistant on a standalone user device according to various examples.



FIG. 8 illustrates an exemplary process for storing the states of electronic devices as a configuration according to various examples.



FIG. 9 illustrates an exemplary process for setting the states of electronic devices using a previously stored configuration according to various examples.



FIG. 10 illustrates a functional block diagram of an electronic device configured to control electronic devices according to various examples.



FIG. 11 illustrates a functional block diagram of an electronic device configured to store the states of electronic devices as a configuration according to various examples.



FIG. 12 illustrates a functional block diagram of an electronic device configured to set the states of electronic devices based on a stored configuration according to various examples.



FIG. 13 illustrates a functional block diagram of an electronic device configured to control electronic devices according to various examples.



FIG. 14 illustrates a functional block diagram of an electronic device configured to store the states of electronic devices as a configuration according to various examples.



FIG. 15 illustrates a functional block diagram of an electronic device configured to set the states of electronic devices based on a stored configuration according to various examples.





DETAILED DESCRIPTION

In the following description of examples, reference is made to the accompanying drawings in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the various examples.


Intelligent automated assistants (or virtual assistants) provide an intuitive interface between users and electronic devices. These assistants can allow users to interact with devices or systems using natural language in spoken and/or text forms. For example, a user can access the services of an electronic device by providing a spoken user input in natural language form to a virtual assistant associated with the electronic device. The virtual assistant can perform natural language processing on the spoken user input to infer the user's intent and operationalize the user's intent into tasks. The tasks can then be performed by executing one or more functions of the electronic device and a relevant output can be returned to the user in natural language form.


This relates to systems and processes for using a virtual assistant to control electronic devices. In one example process, a user can speak an input in natural language form to a user device to control one or more electronic devices. The user device can transmit the user speech to a server to be converted into a textual representation. The server can identify the one or more electronic devices and appropriate commands to be performed by the one or more electronic devices based on the textual representation. The identified one or more devices and commands to be performed can be transmitted back to the user device, which can forward the commands to the appropriate one or more electronic devices for execution. In response to receiving the commands, the one or more electronic devices can perform the commands and transmit their current states to the user device.


System Overview



FIG. 1 illustrates exemplary system 100 for implementing a virtual assistant to control electronic devices according to various examples. The terms “virtual assistant,” “digital assistant,” “intelligent automated assistant,” or “automatic digital assistant” can refer to any information processing system that interprets natural language input in spoken and/or textual form to infer user intent, and performs actions based on the inferred user intent. For example, to act on an inferred user intent, the system can perform one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent; inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the like; and generating output responses to the user in an audible (e.g., speech) and/or visual form.


A virtual assistant can be capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request seeks either an informational answer or performance of a task by the virtual assistant. A satisfactory response to the user request can include provision of the requested informational answer, performance of the requested task, or a combination of the two. For example, a user can ask the virtual assistant a question, such as “Where am I right now?” Based on the user's current location, the virtual assistant can answer, “You are in Central Park.” The user can also request the performance of a task, for example, “Please remind me to call Mom at 4 p.m. today.” In response, the virtual assistant can acknowledge the request and then create an appropriate reminder item in the user's electronic schedule. During the performance of a requested task, the virtual assistant can sometimes interact with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a virtual assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the virtual assistant can also provide responses in other visual or audio forms (e.g., as text, alerts, music, videos, animations, etc.).


An example of a virtual assistant is described in Applicants' U.S. Utility application Ser. No. 12/987,982 for “Intelligent Automated Assistant,” filed Jan. 10, 2011, the entire disclosure of which is incorporated herein by reference.


As shown in FIG. 1, in some examples, a virtual assistant can be implemented according to a client-server model. The virtual assistant can include a client-side portion executed on a user device 102, and a server-side portion executed on a server system 110. User device 102 can include any electronic device, such as a mobile phone, tablet computer, portable media player, desktop computer, laptop computer, PDA, television, television set-top box, wearable electronic device, or the like, and can communicate with server system 110 through one or more networks 108, which can include the Internet, an intranet, or any other wired or wireless public or private network. The client-side portion executed on user device 102 can provide client-side functionalities, such as user-facing input and output processing and communications with server system 110. Server system 110 can provide server-side functionalities for any number of clients residing on a respective user device 102.


Server system 110 can include one or more virtual assistant servers 114 that can include a client-facing I/O interface 122, one or more processing modules 118, data and model storage 120, and an I/O interface to external services 116. The client-facing I/O interface 122 can facilitate the client-facing input and output processing for virtual assistant server 114. The one or more processing modules 118 can utilize data and model storage 120 to determine the user's intent based on natural language input, and perform task execution based on inferred user intent. Additionally, data and model storage 120 can store a unique identifier, a state, a type, a location, and any other relevant information associated with one or more of electronic devices (e.g., electronic devices 128, 130, and 132) capable of being controlled by user device 102 and/or server system 110. In some examples, virtual assistant server 114 can communicate with external services 124, such as telephony services, calendar services, information services, messaging services, navigation services, and the like, through network(s) 108 for task completion or information acquisition. The I/O interface to external services 116 can facilitate such communications.


Server system 110 can be implemented on one or more standalone data processing devices or a distributed network of computers. In some examples, server system 110 can employ various virtual devices and/or services of third party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 110.


User device 102 can be further coupled to electronic devices 128, 130, and 132 via one or more networks 126. Electronic devices 128, 130, and 132 can include any type of remotely controlled electronic device, such as a light bulb (e.g., having a binary ON/OFF state, numerical dimmable state, color state, etc.), garage door (e.g., having a binary OPEN/CLOSED state), door lock (e.g., having binary LOCKED/UNLOCKED state), thermostat (e.g., having one or more numerical temperature states, such as a high temperature, low temperature, time-based temperatures, etc.), electrical outlet (e.g., having a binary ON/OFF state), switch (e.g., having a binary ON/OFF state), or the like. Network(s) 126 can include a WiFi network or any other wired or wireless public or private local network. Additionally or alternatively, user device 102 can be coupled to communicate directly with electronic devices 128, 130, or 132 using, for example, Bluetooth, BTLE, line of sight, peer-to-peer, or another radio-based or other wireless communication. Thus, in the illustrated example, user device 102 can be located near electronic devices 128, 130, and 132, such that it can communicate with them directly or over the same local network. For example, user device 102 and electronic devices 128, 130, and 132 can be located within the same home or building, and network(s) 126 can include the home or building's WiFi network. As discussed in greater detail below with respect to FIGS. 5, 8, and 9, user device 102 can issue commands to control any of electronic devices 128, 130, and 132 in response to a natural language spoken input provided by a user to user device 102.


While only three electronic devices 128, 130, and 132 are shown, it should be appreciated that system 100 can include any number of electronic devices. Additionally, although the functionality of the virtual assistant is shown in FIG. 1 as including both a client-side portion and a server-side portion, in some examples, the functions of the assistant can be implemented as a standalone application installed on a user device. Moreover, the division of functionalities between the client and server portions of the virtual assistant can vary in different examples. For instance, in some examples, the client executed on user device 102 can be a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the virtual assistant to a backend server.



FIG. 2 illustrates another exemplary system 200 for implementing a virtual assistant to remotely control electronic devices according to various examples. Similar to system 100, system 200 can include user device 102, server system 110, and external services 124 communicatively coupled together by network(s) 108. However, in contrast to system 100, user device 102 may not be coupled to electronic devices 128, 130, and 132. Instead, system 200 can include a second user device 134 coupled to communicate with user device 102 and/or server system 110 via network(s) 108 and coupled to communicate with electronic devices 128, 130, and 132 via network(s) 126. This configuration can represent a situation in which the user and user device 102 are located remotely from electronic devices 128, 130, and 132 (e.g., the user and user device 102 are at the user's office, while electronic devices 128, 130, and 132 are at the user's home).


Second user device 134 can include any type of electronic device, such as a mobile phone, tablet computer, portable media player, desktop computer, laptop computer, PDA, television, television set-top box, wearable electronic device, or the like, and can be configured to receive commands from user device 102 and/or server system 110 and to issue commands to electronic devices 128, 130, and 132. As discussed in greater detail below with respect to FIG. 6, second user device 134 can issue commands to control any of electronic devices 128, 130, and 132 in response to a natural language spoken input provided by a user to user device 102.


User Device



FIG. 3 is a block diagram of a user-device 102 (or second user device 134) according to various examples. As shown, user device 102 can include a memory interface 302, one or more processors 304, and a peripherals interface 306. The various components in user device 102 can be coupled together by one or more communication buses or signal lines. User device 102 can further include various sensors, subsystems, and peripheral devices that are coupled to the peripherals interface 306. The sensors, subsystems, and peripheral devices gather information and/or facilitate various functionalities of user device 102.


For example, user device 102 can include a motion sensor 310, a light sensor 312, and a proximity sensor 314 coupled to peripherals interface 306 to facilitate orientation, light, and proximity sensing functions. One or more other sensors 316, such as a positioning system (e.g., a GPS receiver), a temperature sensor, a biometric sensor, a gyroscope, a compass, an accelerometer, and the like, are also connected to peripherals interface 306, to facilitate related functionalities.


In some examples, a camera subsystem 320 and an optical sensor 322 can be utilized to facilitate camera functions, such as taking photographs and recording video clips. Communication functions can be facilitated through one or more wired and/or wireless communication subsystems 324, which can include various communication ports, radio frequency receivers and transmitters, and/or optical (e.g., infrared) receivers and transmitters. An audio subsystem 326 can be coupled to speakers 328 and a microphone 330 to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and telephony functions.


In some examples, user device 102 can further include an I/O subsystem 340 coupled to peripherals interface 306. I/O subsystem 340 can include a touch screen controller 342 and/or other input controller(s) 344. Touch-screen controller 342 can be coupled to a touch screen 346. Touch screen 346 and the touch screen controller 342 can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, such as capacitive, resistive, infrared, and surface acoustic wave technologies, proximity sensor arrays, and the like. Other input controller(s) 344 can be coupled to other input/control devices 348, such as one or more buttons, rocker switches, a thumb-wheel, an infrared port, a USB port, and/or a pointer device such as a stylus.


In some examples, user device 102 can further include a memory interface 302 coupled to memory 350. Memory 350 can include any electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, a portable computer diskette (magnetic), a random access memory (RAM) (magnetic), a read-only memory (ROM) (magnetic), an erasable programmable read-only memory (EPROM) (magnetic), a portable optical disc such as CD, CD-R, CD-RW, DVD, DVD-R, or DVD-RW, or flash memory such as compact flash cards, secured digital cards, USB memory devices, memory sticks, and the like. In some examples, a non-transitory computer-readable storage medium of memory 350 can be used to store instructions (e.g., for performing some or all of processes 500, 600, 700, 800, or 900, described below) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device, and execute the instructions. In other examples, the instructions (e.g., for performing processes 500, 600, 700, 800, or 900, described below) can be stored on a non-transitory computer-readable storage medium of server system 110, or can be divided between the non-transitory computer-readable storage medium of memory 350 and the non-transitory computer-readable storage medium of server system 110. In the context of this document, a “non-transitory computer readable storage medium” can be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device.


In some examples, the memory 350 can store an operating system 352, a communication module 354, a graphical user interface module 356, a sensor processing module 358, a phone module 360, and applications 362. Operating system 352 can include instructions for handling basic system services and for performing hardware dependent tasks. Communication module 354 can facilitate communicating with one or more additional devices, one or more computers, and/or one or more servers. Graphical user interface module 356 can facilitate graphic user interface processing. Sensor processing module 358 can facilitate sensor related processing and functions. Phone module 360 can facilitate phone-related processes and functions. Application module 362 can facilitate various functionalities of user applications, such as electronic-messaging, web browsing, media processing, navigation, imaging, and/or other processes and functions.


Memory 350 can also store client-side virtual assistant instructions (e.g., in a virtual assistant client module 364) and various user data 366 (e.g., user-specific vocabulary data, preference data, and/or other data, such as the user's electronic address book, to-do lists, shopping lists, etc.) to provide the client-side functionalities of the virtual assistant.


In various examples, virtual assistant client module 364 can be capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., I/O subsystem 340, audio subsystem 326, or the like) of user device 102. Virtual assistant client module 364 can also be capable of providing output in audio (e.g., speech output), visual, and/or tactile forms. For example, output can be provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, virtual assistant client module 364 can communicate with the virtual assistant server using communication subsystem 324.


In some examples, virtual assistant client module 364 can utilize the various sensors, subsystems, and peripheral devices to gather additional information from the surrounding environment of user device 102 to establish a context associated with a user, the current user interaction, and/or the current user input. In some examples, virtual assistant client module 364 can provide the contextual information or a subset thereof with the user input to the virtual assistant server to help infer the user's intent. The virtual assistant can also use the contextual information to determine how to prepare and deliver outputs to the user.


In some examples, the contextual information that accompanies the user input can include sensor information, such as lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, distance to another object, and the like. The contextual information can further include information associated with the physical state of user device 102 (e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signal strength, etc.) or the software state of user device 102 (e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc.). Any of these types of contextual information can be provided to the virtual assistant server 114 as contextual information associated with a user input.


In some examples, virtual assistant client module 364 can selectively provide information (e.g., user data 366) stored on user device 102 in response to requests from the virtual assistant server 114. Virtual assistant client module 364 can also elicit additional input from the user via a natural language dialogue or other user interfaces upon request by virtual assistant server 114. Virtual assistant client module 364 can pass the additional input to virtual assistant server 114 to help virtual assistant server 114 in intent inference and/or fulfillment of the user's intent expressed in the user request.


Memory 350 can further store electronic device data 370 that can include a unique identifier, a state, a type, a location, and any other relevant information associated with one or more of the electronic devices capable of being controlled by user device 102 and/or server system 110 (e.g., electronic devices 128, 130, and 132). FIG. 4 shows a visual representation of entries that can be stored in electronic device data 370 for seven different electronic devices. As shown, each entry includes a unique name, type, and state of the electronic device. Data and model storage 120 of virtual assistant server 114 can include similar or identical entries for the electronic devices that can be maintained separately from that of electronic device data 370 of memory 350.


Referring back to FIG. 3, memory 350 can further include instructions (e.g., in daemon module 368) for creating and updating entries for electronic devices in electronic device data 370, communicating with the electronic devices of system 100, and for communicating with server system 110. For example, to add an electronic device to system 100, a software application associated with the electronic device can communicate with processor(s) 304 executing daemon module 368 to provide user device 102 with a unique name, type, state, location, and the like, of the electronic device. The software application can allow the user to enter the unique name in any desired manner. For example, a dropdown box with common names and/or a freeform text field can be provided in the application to allow a user to name a particular device. The type, state, and/or location of the electronic device can be predetermined or determined by the software application through communication with the electronic device. Processor(s) 304 executing daemon module 368 can store this information as an entry in electronic device data 370 and can also transmit this information to server system 110 to be stored in data and models storage 120. Additionally, when executed by processor(s) 304, daemon module 368 can receive commands that are to be provided to electronic devices 128, 130, and 132 from server system 110 via network(s), and can transmit those commands to the appropriate electronic devices. Processor(s) 304 executing daemon module 368 can further receive state updates from electronic devices 128, 130, and 132, update the corresponding entries in electronic device data 370 to reflect the updated states of the devices, and transmit the state updates to server system 110 to allow server system 110 to update the corresponding entries in data and models storage 120 to reflect the updated states of the devices.


Additionally, daemon module 368 can include instructions to manage access to electronic device data 370 by other devices and software applications. For example, when executed by processor(s) 304, daemon module 368 can grant access to all of electronic device data 370 by server system 110, but can restrict access to only a portion of electronic device data 370 by other devices or software applications. This can be useful when user device 102 is used to control electronic devices made by different manufacturers. In these situations, devices or software applications from each manufacturer can communicate with daemon module 368 using an API, and daemon module 368 can limit their access to only the portions of electronic device data 370 that correspond to their respective electronic devices. For example, company X can manufacture a light bulb capable of being controlled by user device 102, and company Y can manufacture a thermostat capable of being controlled by user device 102. Daemon module 368 can facilitate communication between user device 102 and each of the light bulb and the thermostat to allow user device 102 to issue commands to the electronic devices and to receive state information associated with the electronic devices for updating electronic device data 370. However, daemon module 368 can limit the access that the light bulb (and an associated software application running on user device 102) has to information in electronic device data 370 to only the information associated with the light bulb (and possibly any other electronic devices manufactured by company X). Similarly, daemon module 368 can limit the access that the thermostat (and an associated software application running on user device 102) has to information in electronic device data 370 to only the information associated with the thermostat (and possibly any other electronic devices manufactured by company Y). However, daemon module 368 can grant access to all of the information in electronic device data 370 to server system 110.


In various examples, memory 350 can include additional instructions or fewer instructions. Furthermore, various functions of user device 102 can be implemented in hardware and/or in firmware, including in one or more signal processing and/or application specific integrated circuits.


Local Control of Electronic Devices



FIG. 5 illustrates an exemplary process 500 for controlling electronic devices using a virtual assistant. In some examples, process 500 can be performed using a system similar or identical to system 100, shown in FIG. 1. In these examples, the blocks of process 500 can be performed by both user device 102 and server system 110. Specifically, the blocks on the left side of FIG. 5 can be performed by user device 102, while the blocks on the right side of FIG. 5 can be performed by server system 110.


At block 502, an audio input including user speech can be received at a user device. In some examples, a user device (e.g., user device 102) can receive audio input that includes a user's speech via a microphone (e.g., microphone 330). The microphone can convert the audio input into an analog or digital representation, and provide the audio data to one or more processors (e.g., processor(s) 304).


At block 504, data corresponding to the audio input received at block 502 can be transmitted to one or more servers for processing. For example, user device 102 can transmit data corresponding to the audio input to virtual assistant server 114 of server system 110 via network(s) 108.


At block 506, data corresponding to the audio input transmitted by the user device at block 504 can be received by one or more servers. For example, virtual assistant server 114 of server system 110 can receive the data corresponding to the audio input transmitted by user device 102 via network(s) 108.


At block 508, speech-to-text conversion can be performed on the data corresponding to the audio input to convert the user speech into a textual representation of the user speech. The user speech can be converted using any known speech-to-text conversion process.


At block 510, one or more electronic devices can be identified based at least in part on the textual representation generated at block 508. In some examples, block 510 can include processing the textual representation of the user input to determine a user intent to issue a command to one or more electronic devices. As discussed above, server system 110 can include one or more data and model storages 120 that can store a unique identifier, a state, a type, a location, and any other relevant information associated with the electronic devices that can be controlled using system 100. Thus, block 510 can include identifying one or more of the electronic devices having associated information stored in data models and storages 120.


The one or more electronic devices can be identified in any number of ways. In some examples, the one or more electronic devices can be identified by parsing the textual representation to identify any of a set of nouns that correspond to the electronic devices supported by system 100. For example, the set of nouns can include the unique names of the electronic devices stored in electronic device data 370 and data and models storage 120, the possible types of electronic devices and their synonyms (e.g., garage door, thermostat, light, dimmable light, switch, color changeable light, bulb, lamp, lock, outlet, socket, etc.), categories of possible device states (e.g., volume, temperature, brightness, color, etc.), and the like.


To illustrate, using the example electronic device entries of FIG. 4, the set of nouns can include the unique names of the seven electronic devices (e.g., “Garage Door,” “Upstairs Thermostat,” “Downstairs Thermostat,” “Living Room Lamp 1,” “Living Room Lamp 2,” “Front Door,” and “Toaster Outlet”), the possible types of electronic devices and their synonyms (e.g., “Garage Door,” “Thermostat,” “Light,” “Bulb,” “Lamp,” “Lock,” “Outlet,” “Socket,” etc.), and categories of possible device states (e.g., temperature). Thus, if the textual representation of user speech generated at block 508 includes “Lock the front door,” the textual representation can be processed using processing modules 118 and data and models storage 120 to search for any of the set of nouns. As a result of the search, it can be determined that the textual representation includes the unique name “Front Door,” and the electronic device identified at block 510 can include this device. It should be appreciated that more than one electronic device can be identified at block 510 depending on the textual representation of user speech. For example, if the textual representation of user speech generated at block 508 instead includes “Turn off all the bulbs,” the textual representation can be processed using processing modules 118 and data and models storage 120 to search for any of the set of nouns. As a result of the search, it can be determined that the textual representation includes the synonym “bulb” of the possible device type “light,” and that the instruction from the user was to turn off all of those types of devices. As a result, the electronic devices identified at block 510 can include both “Living Room Lamp 1” and “Living Room Lamp 2.”


In some examples, it can be difficult to identify the appropriate electronic device using only the set of nouns described above. For example, a textual representation that includes “Turn on the light” can produce a type match with both “Living Room Lamp 1” and “Living Room Lamp 2.” In these examples, block 510 can further include the use of contextual information received from user device 102 (e.g., received as part of the data corresponding to the audio input at block 506) to disambiguate between potential matching electronic devices. Any type of contextual information can be used, such as sensor information (e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, distance to another object, and the like), information associated with the physical state of user device 102 (e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signal strength, etc.), the software state of user device 102 (e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc.), or the like. For example, continuing with the “Turn on the light” example provided above, the location and orientation of user device 102 when user device 102 received the audio input at block 502 can be provided to server system 110 at blocks 504 and 506. This contextual information can be used to determine a location of user device 102 and/or a direction at which user device 102 was pointed when receiving the user speech. When compared with the known locations of “Living Room Lamp 1” and “Living Room Lamp 2” stored in data and models storage 120, the closest light or the light at which user device 102 was pointing can be selected as the electronic device at block 510. Other types of contextual information can be used in similar ways to disambiguate between potential matching electronic devices at block 510 by identifying contextual information that makes one or more of the potential matching electronic devices more or less likely to have been referenced by the textual representation of user speech.


In yet other examples, words associated with a state in the textual representation of user input can additionally or alternatively be used to disambiguate between potential matching electronic devices or to identify the appropriate electronic device. For example, a textual representation that includes “Turn it to 68” may not produce any matches using the set of nouns described above. Thus, in these examples, block 510 can further include parsing the textual representation to identify any of a set of words associated with a state that corresponds to the electronic devices supported by system 100. For example, the set of words associated with a state can include the possible states of the electronic devices and their synonyms (e.g., open, closed, close, shut, on, off, active, inactive, lock, locked, a color, etc.), the types of values of the states (e.g., binary, float, etc.), a query for the state of the device, adjectives associated with a specific type of state (e.g., warmer, cooler, brighter, dimmer, a color, etc.), or the like. When used to parse “Turn it to 68,” it can be determined that the textual representation includes the float value “68.” When compared to the entries shown in FIG. 4, it can be determined that only “Upstairs Thermostat” and “Downstairs Thermostat” accept state float values. To disambiguate between the two thermostats, contextual information, such as a location of user device 102 can be used to select the thermostat that is closer to user device 102 as the electronic device identified at block 510. Similarly, if the textual representation instead included “Make it brighter,” the set of words associated with a state can be used to determine that the textual representation includes the word “brighter,” which is an adjective that describes the state of devices having the type “light.” To disambiguate between the two lights, contextual information, such as a location of user device 102 can be used to select the light that is closer to user device 102 as the electronic device identified at block 510.


At block 512, a command to be performed by each of the one or more electronic devices identified at block 510 can be identified. The command(s) to be performed can be identified in any number of ways. In some examples, the command(s) to be performed can be identified by parsing the textual representation of user speech to identify any of the set of words associated with a state (e.g., the possible states of the electronic devices and their synonyms, the types of values of the states, a query for the state of the device, adjectives associated with a specific type of state). The identified state or operation can then be used to identify a command to be performed by each of the one or more electronic devices identified at block 510. For example, if the textual representation of user speech includes “Lock the front door,” it can be determined that the textual representation includes the state “lock” from the set of states. Thus, a command to transition to the “lock” state can be generated and identified at block 512 as being the command to be performed by the electronic device “Front Door” that was identified at block 510. While a single command for a single electronic device is identified in the example above, it should be appreciated that multiple commands can be identified if multiple electronic devices were identified at block 510. For example, the textual representation “Turn on all of the lights” can result in the identification a command to transition to the “on” state for each of “Living Room Lamp 1” and “Living Room Lamp 2” at block 512.


In some examples, when the textual representation of user speech includes one of the adjectives associated with a specific type of state (e.g., warmer, cooler, brighter, dimmer, etc.), block 512 can include identifying a command to set a state of the electronic device identified at block 510 to a value relative to its current value. For example, if the textual representation includes “make it warmer,” the command identified at block 514 can be a command to increase the temperature of the thermostat identified at block 510 by a predetermined amount. The command can be a command to change the state value by an amount relative to the electronic device's current value rather than a command to transition the state value to a specific value (e.g., determined using the state of the thermostat stored in data and models storage 120) since the actual state of the electronic device may differ from the state stored in data and models storage 120.


In some examples, when the textual representation of user speech includes a query for the state of the device, block 512 can include identifying an instruction to cause user device 102 to query the identified electronic device(s). For example, if the textual representation includes “Is the garage door closed?”, the command identified at block 514 can be a command to query the state of electronic device “Garage Door.”


At block 514, an identification of each of the one or more electronic devices identified at block 510 and the command(s) to be performed by the one or more electronic devices identified at block 512 can be transmitted to the user device. For example, server system 110 can transmit the unique identifier associated with each of the electronic devices identified at block 510 and the command(s) to be performed by the one or more electronic devices to user device 102 via network(s) 108.


In some examples, the textual representation of the user speech generated at block 508 can also be transmitted to the user device at block 514. In these examples, blocks 510 and 514 can also be performed on the user device. The transmitted textual representation can be used by the user device to identify one or more electronic devices and/or identify a command or commands to be performed by the one or more electronic devices in electronic device data 370. This can be desirable, for example, when the electronic device data 370 in the user device is more up-to-date than the data on the one or more servers. In such instances, the user device can identify an electronic devices and/or a command that is not included in the data of the one or more servers.


In other examples, the textual representation can be parsed at blocks 510 and/or 512 at the one or more servers to determine key words or terms that can be suitable for identifying one or more of electronic devices and/or identifying a command or commands to be performed by the one or more electronic devices. In these examples, the parsed key words or terms can also be transmitted to the user device at block 514. The transmitted key words or terms can be used by the user device to identify one or more electronic devices and/or identify a command or commands to be performed by the one or more electronic devices in electronic device data 370. This can be desirable, for example, when the electronic device data 370 in the user device is more up-to-date than the data on the one or more servers. In such instances, the user device can identify an electronic devices and/or a command that is not included in the data of the one or more servers.


At block 516, the identification of each of the one or more the electronic devices and command(s) transmitted by the one or more servers can be received by the user device. For example, user device 102 can receive the unique identifier(s) and the command(s) transmitted by server system 110 at block 514 via network(s) 108.


At block 518, the user device can transmit the command(s) received at block 516 to the electronic device(s) associated with the identifier(s) received at block 516. For example, if user device 102 received an identifier associated with electronic device 128 (e.g., “Front Door”) and a command to transition the electronic device to a “locked” state at block 516, user device 102 can transmit the command to electronic device 128 to transition to the “locked” state via network(s) 126. If user device 102 received additional identifiers and commands at block 516, user device 102 can further transmit those commands to the identified electronic devices at block 518.


In some examples, the actual state of an electronic device may not be the same as the state of the electronic device as stored in user device 102 (e.g., in memory 350) and/or server system 110 (e.g., in data and models storage 120). For example, a door lock could have been manually opened or closed without using the virtual assistant of system 100. Thus, in some examples, block 518 can be performed regardless of the state of the electronic device as stored in user device 102 and/or server system 110. For example, a command to set a door lock's state to “locked” can be transmitted to the door lock even if the corresponding entry in user device 102 and/or server system 110 indicates that they door is already locked. Moreover, block 518 can be performed without first querying the electronic device (e.g., between blocks 516 and 518) to determine its actual state in order to reduce the amount of time required to issue a command to the electronic device. For example, the command to set the door lock's state to “locked” can be transmitted to the door lock without first querying its state, thereby reducing the time required to transmit the command to the door lock by an amount corresponding to the time required to send a query to the door lock and to receive the state from the door lock.


At block 520, the user device can receive a current state of each electronic device (that was sent a command at block 518) after each electronic device executes their respective command. For example, user device 102 can receive an updated status of electronic device 128 after it performed the command to set its state to “locked.” In this example, the current state returned to user device 102 can be the state “locked.” If commands were sent to more than one electronic device at block 518, block 520 can further include receiving current states from those electronic devices. In some examples, block 520 can further include updating the state of the electronic device in electronic device data 370 based on the received current state. For example, user device 102 can update the state of electronic device 128 in electronic device data 370 to “locked.” In some examples, block 520 can further include outputting an audio or visual indication of a result of the command(s) transmitted to the electronic device(s) at block 518 based on the transmitted command(s) and the received current state(s) of the electronic device(s). For example, if the command transmitted to electronic device 128 was a command to transition the device's state to “locked” and the current state of electronic device 128 received at block 520 was “locked,” an indication of the result can be that electronic device 128 was successfully transitioned to the “locked” state. Alternatively, if the received current state of the electronic device (e.g., “unlocked”) differs from the desired state indicated in the command (e.g., “locked”), an indication of a failure to transition to the “locked” state can be presented to the user. The current state can further include an error state, such as an undetermined or unavailable state of the device.


At block 522, the user device can transmit the current state(s) of the electronic device(s) received at block 520 to the one or more servers. For example, user device 102 can transmit the current state of the electronic device received at block 520 to server system 110. If the current state of more than one electronic device was received at block 520, block 522 can further include transmitting those current states to server system 110.


At block 524, the one or more servers can receive the current state(s) of the electronic device(s) transmitted by the user device at block 522. For example, server system 110 can receive the current state of the electronic device transmitted by user device 102 at block 522. If user device 102 transmitted more than one current state, block 524 can further include receiving those current states as well. In some examples, block 524 can further include updating the state(s) of the electronic device(s) in data and models storage 120 based on the received current state(s). For example, server system 110 can update the state of electronic device 128 in data and models storage 120 to “locked.”


In some examples, process 500 can further include generating a notification associated with the current state of one or more of the electronic devices in response to determining that a predetermined condition has been satisfied. For example, in response to the location of user device 102 exiting a predetermined area (e.g., an area corresponding to the user's home) while one or more of the electronic devices are in a predetermined state (e.g., the “Front Door” is unlocked), a notification can be presented to the user via user device 102 indicating that the user forgot to lock their door. Other similar notifications can be generated in response to other predetermined conditions.


Using process 500, a virtual assistant implemented by a user device can receive natural language commands to set the state or query any number of electronic devices. The natural language commands can refer to the electronic devices in any desired manner and need not include unique identifiers of the electronic devices or a type of the electronic device.


Remote Control of Electronic Devices



FIG. 6 illustrates an exemplary process 600 for remotely controlling electronic devices using a virtual assistant. In some examples, process 600 can be similar to process 500, except that process 600 can be performed using a system similar or identical to system 200, shown in FIG. 2. For example, process 600 can be performed by a user device (e.g., user device 102) that is located remotely from the electronic devices being controlled (e.g., electronic devices 128, 130, and 132), and a second user device (e.g., second user device 134) can instead be used to control the electronic devices. Thus, portions of process 600 can be performed by each of user device 102, server system 110, and second user device 134. Specifically, the blocks on the left side of FIG. 6 can be performed by user device 102, the blocks in the middle of FIG. 6 can be performed by server system 110, and the blocks on the right side of FIG. 6 can be performed by second user device 134.


The blocks of process 600 can be similar or identical to the identically numbered blocks of process 500, except that blocks 516, 518, 520, and 522 of process 600 can instead be performed by a second user device (e.g., second user device 134). Additionally, as a result, the identification of each of the one or more electronic devices and command(s) to be performed by the electronic device(s) can instead be transmitted to the second user device at block 514, and the current state(s) of the electronic device(s) can instead be received from the second user device at block 524.


In some examples, process 600 can further include transmitting, by the one or more servers, the current state(s) of the electronic device(s) received at block 524 to the user device that received the audio input at block 502. Additionally or alternatively, the process can include transmitting an indication of success of the command transmitted to the electronic device at block 518. For example, a visual or audio output can be generated that notifies the user of the success, partial success, or failure to execute the command by the electronic device. The success determination can depend on the command transmitted to the electronic device and the current state of the device received at block 524.


Standalone Control of Electronic Devices



FIG. 7 illustrates an exemplary process 700 for controlling electronic devices using a virtual assistant. In some examples, process 700 can be similar to process 500, except that process 700 can be performed using a standalone user device that can perform the functions of both user device 102 and server system 110. As a result, all blocks of process 700 can be performed by the user device (e.g., user device 102).


The blocks of process 700 can be similar or identical to the identically numbered blocks of process 500, except that blocks 508, 510, and 512 can instead be performed by the user device (e.g., user device 102). Additionally, as a result, the blocks corresponding to functions for communicating between user device 102 and server system 110 (e.g., blocks 504, 506, 514, 516, 522, and 524) need not be performed.


Storing a Configuration of Electronic Devices



FIG. 8 illustrates an exemplary process 800 for storing the states of multiple electronic devices as a configuration using a virtual assistant. The configuration can represent a stored set of states of the multiple electronic devices that can be referenced in a spoken user input to cause the multiple electronic devices to transition to the states defined in the configuration. For example, a user may create a “sleep” configuration in which the states of all lights are set to off, the states of the thermostats are set to 72° F., the state of all doors are set to locked, and the state of the garage door is set to closed. Thus, when the user is about to go to sleep, the user can provide user device 102 with a command that references the stored configuration, such as “I'm going to sleep,” and system 100 can set the states of the electronic devices based on the stored states in the sleep configuration. In some examples, process 800 can be performed using a system similar or identical to system 100, shown in FIG. 1. In these examples, the blocks of process 800 can be performed by both user device 102 and server system 110. Specifically, the blocks on the left side of FIG. 8 can be performed by user device 102, while the blocks on the right can be performed by server system 110.


At block 802, an audio input including user speech can be received at a user device in a manner similar or identical to block 502 of process 500. At block 804, data corresponding to the audio input received at block 802 can be transmitted to one or more servers for processing in a manner similar or identical to block 504 of process 500.


At block 806, the data corresponding to the audio input transmitted by the user device at block 804 can be received by one or more servers in a manner similar or identical to block 506 of process 500. At block 808, speech to text conversion can be performed on the data corresponding to the audio input to convert the user speech into a textual representation of the user speech in a manner similar or identical to block 508 of process 500.


At block 810, it can be determined that the textual representation of the user speech represents a user intent to store the states of the electronic devices of system 100 as a configuration. For example, one or more processing modules 118 of server system 110 can utilize data and model storage 120 to determine the user's intent based on natural language input. In some examples, this can include parsing the textual representation for words likely to be related to storing a configuration, such as “save,” “store,” “name,” “keep,” “configuration,” “scene,” their synonyms, and the like. For example, if the textual representation includes “Store this configuration as sleep,” it can be determined at block 810 that the user intends to store the state of the electronic devices as a configuration named “sleep.” Other textual representations, such as “Save this scene as work,” can similarly result in a determination at block 810 that the user intends to store the state of the electronic devices as a configuration named “work.”


At block 812, in response to determining that the textual representation of the user speech represents a user intent to store the state of the electronic devices of system 100 as a configuration, the one or more servers can transmit an instruction to the user device to query the state of the electronic devices. For example, server system 110 can transmit an instruction to user device 102 to query the state of electronic devices 128, 130, and 132 via network(s) 108.


At block 814, the instruction to query the state of the electronic devices transmitted by the one or more servers can be received by the user device. For example, user device 102 can receive the instruction to query the state of electronic devices 128, 130, and 132 from server system 110 via network(s) 108.


At block 816, the user device can transmit a query to each of the electronic devices for their current state. For example, user device 102 can transmit a command to each of electronic devices 128, 130, and 132 instructing them to return their current state via network(s) 126.


At block 818, the user device can receive a current state of each of the electronic device(s) in response to the query transmitted at block 516 (or a current state of all electronic devices capable of transmitting their current state). For example, user device 102 can receive a current state of electronic devices 128, 130, and 132 via network(s) 126 in response to the query sent to each of the devices at block 816. In some examples, block 818 can further include updating the state of the electronic device in electronic device data 370 based on the received current state. The current state can further include an error state, such as an undetermined or unavailable state of the device.


At block 820, the user device can transmit the current states of the electronic devices received at block 818 to the one or more servers. For example, user device 102 can transmit the current states of the electronic devices received at block 818 to server system 110.


At block 822, the one or more servers can receive the current states of the electronic devices transmitted by the user device at block 820. For example, server system 110 can receive the current state of electronic devices 128, 130, and 132 from user device 102 via network(s) 126.


At block 824, the one or more servers can store the current states of the electronic devices received at block 822 as a configuration. In some examples, the configuration can be assigned a unique identifier, such as “sleep,” “morning,” “work,” or the like, based on the name provided in the textual representation and identified at block 810. For example, server system 110 can store the current states of electronic devices 128, 130, and 132 as a “sleep” configuration in model and data storage 120 in response to a user speech received at block 802 that included “name this configuration sleep.”


Controlling Electronic Devices Using a Stored Configuration



FIG. 9 illustrates an exemplary process 900 for setting the states of multiple electronic devices using a previously stored configuration (e.g., created using process 800) using a virtual assistant. In some examples, process 900 can be performed using a system similar or identical to system 100, shown in FIG. 1. In these examples, the blocks of process 900 can be performed by both user device 102 and server system 110. Specifically, the blocks on the left side of FIG. 9 can be performed by user device 102, while the blocks on the right can be performed by server system 110.


At block 902, an audio input including user speech can be received at a user device in a manner similar or identical to block 502 of process 500. At block 904, data corresponding to the audio input received at block 902 can be transmitted to one or more servers for processing in a manner similar or identical to block 504 of process 500.


At block 906, data corresponding to the audio input transmitted by the user device at block 904 can be received by one or more servers in a manner similar or identical to block 506 of process 500. At block 908, speech to text conversion can be performed on the user speech of the audio input to convert the user speech into a textual representation of the user speech in a manner similar or identical to block 508 of process 500.


At block 910, it can be determined that the textual representation of the user speech represents a user intent to set the states of the electronic devices of system 100 based on a stored configuration. For example, one or more processing modules 118 of server system 110 can utilize data and model storage 120 to determine the user's intent based on natural language input. In some examples, this can include parsing the textual representation for words likely to be related to using a stored configuration, such as the unique identifiers associated with the stored configurations, “set,” “configuration,” “scene,” their synonyms, or the like. For example, if the textual representation includes “I'm going to sleep,” it can be determined at block 910 that the user intends to set the state of the electronic devices based on the “sleep” configuration. Other textual representations, such as “night mode,” “set to sleep,” or the like, can similarly result in a determination at block 910 that the user intends set the state of the electronic devices based on the “sleep” configuration.


At block 912, commands to set the states of the electronic devices of system 100 based on the configuration identified at block 910 can be transmitted by the one or more servers to the user device. Identifications associated with the commands can also be transmitted to identify which devices are to perform each command. For example, server system 110 can transmit the unique identifiers associated with the electronic devices and the commands that are to be performed by those electronic devices to cause the electronic devices to be in the states specified by the stored configuration.


At block 914, commands to set the states of the electronic devices of system 100 transmitted by the server(s) can be received by the user device. For example, user device 102 can receive the commands transmitted by server system 110 at block 912 via network(s) 108.


At block 916, the user device can transmit the commands received at block 914 to the electronic devices associated with the commands. For example, user device 102 can transmit commands to electronic devices 128, 130, and 132 via network(s) 126 to cause the electronic devices to be in the states specified by the stored configuration.


In some examples, the actual state of an electronic device may not be the same as the state of the electronic device as stored in user device 102 (e.g., in memory 350) and/or server system 110 (e.g., in data and models storage 120). Thus, in some examples and similar to process 500, block 916 can be performed regardless of the state of the electronic device as stored in user device 102 and/or server system 110, and without first querying the electronic devices (e.g., between blocks 914 and 916) to determine their actual states in order to reduce the amount of time required to issue a command to the electronic devices.


At block 918, the user device can receive an updated state of the electronic devices after the electronic devices perform the commands transmitted by the user device at block 916. For example, user device 102 can receive updated statuses of electronic devices 128, 130, and 132 after they performed the commands to set their states to the states specified by the stored configuration. In some examples, block 920 can further include updating the state of the electronic device in electronic device data 370 based on the received current state. For example, user device 102 can update the state of electronic device 128 in electronic device data 370 to “locked.” In some examples, similar to block 520, block 918 can further include outputting an audio or visual indication of a result of the command(s) transmitted to the electronic device(s) at block 916 based on the transmitted command(s) and the received current state(s) of the electronic device(s). The updated state can further include an error state, such as an undetermined or unavailable state of the device.


At block 920, the user device can transmit the updated states of the electronic device received at block 918 to the one or more servers. For example, user device 102 can transmit the updated states of the electronic devices received at block 918 to server system 110.


At block 922, the one or more servers can receive the updated states of the electronic devices transmitted by the user device at block 920. For example, server system 110 can receive the updated states of the electronic devices transmitted by user device 102 at block 920. In some examples, block 922 can further include updating the states of the electronic devices in data and models storage 120 based on the received updated states.


In some examples, additionally or alternatively, the states of the electronic devices can be configured using a stored configuration in response to determining that a predetermined condition has been satisfied. For example, in response to the location of user device 102 entering a predetermined area (e.g., an area corresponding to the user's home), commands can be sent to the electronic devices to transition to states specified by a stored configuration (e.g., a “home” configuration). Similarly, commands can be sent to the electronic devices to transition to states specified by another stored configuration (e.g., a “work” configuration) in response to the location of user device 102 exiting a predetermined area (e.g., an area corresponding to the user's home) during a predetermined window of time (e.g., between 8-9 a.m. on a weekday). Other similar predetermined conditions can be created to cause system 100 to configure the electronic devices based on stored configurations.


Electronic Device


In accordance with some examples, FIG. 10 shows a functional block diagram of an electronic device 1000 configured in accordance with the principles of the various described examples. The functional blocks of the device can be implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 10 can be combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.


As shown in FIG. 10, electronic device 1000 can include a touch screen display unit 1002 configured to display a user interface and to receive touch input, and a sound receiving unit 1004 configured to receive sound input. In some examples, electronic device 1000 can include a speaker unit 1006 configured to generate sound. Electronic device 1000 can further include a processing unit 1008 coupled to touch screen display unit 1002 and sound receiving unit 1004 (and, optionally, coupled to speaker unit 1006). In some examples, processing unit 1008 can include an audio input receiving unit 1010, an audio input transmitting unit 1012, an identification and command receiving unit 1014, an identification and command transmitting unit 1016, a state receiving unit 1018, a state transmitting unit 1020, a state updating unit 1022, an indication outputting unit 1024, a second identification and command receiving unit 1026, a second identification and command transmitting unit 1028, and a second state receiving unit 1030, a second state transmitting unit 1032, and a notification transmitting unit 1034.


Processing unit 1008 can be configured to receive an audio input (e.g., using audio input receiving unit 1010) containing user speech. Processing unit 1008 can be further configured to transmit (e.g., using audio input transmitting unit 1012) data corresponding to the audio input to one or more servers. Processing unit 1008 can be further configured to receive (e.g., using identification and command receiving unit 1014), from the one or more servers, an identification of a first electronic device determined by the one or more servers based on the data corresponding to the audio input and a first command to be performed by the first electronic device determined by the one or more servers based on the data corresponding to the audio input. The first command can be transmitted to the first electronic device (e.g., using identification and command transmitting unit 1016). A current state of the first electronic device can be received (e.g., using state receiving unit 1018) from the first electronic device after transmitting the first command to the first electronic device. The current state of the first electronic device can be transmitted (e.g., using state transmitting unit 1020) to the one or more servers.


In some examples, first electronic device includes a light bulb. In other examples, the first command includes a command to set an ON/OFF state, dimmable state, or color state of the light. In yet other examples, the current state of the first electronic device includes the ON/OFF state, dimmable state, or color state of the light bulb after transmitting the first command to set the ON/OFF state, dimmable state, or color state of the light bulb.


In some examples, first electronic device includes a switch. In other examples, the first command includes a command to set an ON/OFF state of the switch. In yet other examples, the current state of the first electronic device includes the ON/OFF state of the switch after transmitting the first command to set the ON/OFF state of the switch.


In some examples, the first electronic device includes an electrical outlet. In other examples, the first command includes a command to set an ACTIVE/INACTIVE state of the electrical outlet. In yet other examples, the current state of the first electronic device includes the ACTIVE/INACTIVE state of the electrical outlet after transmitting the command to set the ACTIVE/INACTIVE state of the electrical outlet.


In some examples, the first electronic device includes a door lock. In other examples, the first command includes a command to set a LOCKED/UNLOCKED state of the door lock. In yet other examples, the current state of the first electronic device includes the LOCKED/UNLOCKED state of the door lock after transmitting the command to set the LOCKED/UNLOCKED state of the door lock.


In some examples, the first electronic device includes a garage door. In other examples, the first command includes a command to set an OPEN/CLOSED state of the garage door. In yet other examples, the current state of the first electronic device includes the OPEN/CLOSED state of the garage door after transmitting the command to set the OPEN/CLOSED state of the garage door.


In some examples, the first electronic device includes a thermostat. In other examples, the first command includes a command to set a numerical value of a temperature setting of the thermostat. In yet other examples, the current state of the first electronic device includes the numerical value of the temperature setting of the thermostat after transmitting the first command to set the numerical value of the temperature setting of the thermostat.


In some examples, the first command includes a query for the current state of the first electronic device.


In some examples, the first command can be transmitted (e.g., using identification and command transmitting unit 1016) to first electronic device over a local wireless network.


In some examples, the first command can be transmitted to the first electronic device directly through Bluetooth, line of sight, peer-to-peer, or WiFi communication.


In some examples, processing unit 1008 can be configured to exclude querying the first electronic device for the state of the first electronic device between receiving the first command from the one or more servers and transmitting the first command to the first electronic device.


In some examples, electronic device 1000 can further include a database unit 1034 for storing a state of each of a plurality of electronic devices, the plurality of electronic devices including the first electronic device. In other examples, processing unit 1008 can be further configured to update (e.g., using state updating unit 1022) a state of the first electronic device stored in database unit 1034 based at least in part on the current state of the first electronic device received from the first electronic device.


In some examples, processing unit 1008 can be further configured to output (e.g., using indication outputting unit 1024) an indication of a result of the first command based on the first command and the current state of the first electronic device received from the first electronic device.


In some examples, electronic device 1000 can include a mobile phone, desktop computer, laptop computer, tablet computer, portable media player, television, television set-top box, or wearable electronic device.


In some examples, processing unit 1008 can be further configured to receive (e.g., using second identification and command receiving unit 1026), from the one or more servers, an identification of a second electronic device determined by the one or more servers based on the data corresponding to the audio input and a second command to be performed by the second electronic device determined by the one or more servers based on the data corresponding to the audio input. Processing unit 1008 can be further configured to transmit (e.g., using second identification and command transmitting unit 1028) the second command to the second electronic device and to receive (e.g., using second state receiving unit 1030), after transmitting the second command to the second electronic device, a current state of the second electronic device from the second electronic device. Processing unit 1008 can be further configured to transmit (e.g., using second state transmitting unit 1032) the current state of the second electronic device to the one or more servers.


In some examples, processing unit 1008 can be further configured to transmit (e.g., using notification transmitting unit 1036) a notification associated with the current state of the first electronic device in response to determining that a predetermined condition has been satisfied.


In accordance with some examples, FIG. 11 shows a functional block diagram of an electronic device 1100 configured in accordance with the principles of the various described examples. The functional blocks of the device can be implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 11 can be combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.


As shown in FIG. 11, electronic device 1100 can include a touch screen display unit 1102 configured to display a user interface and to receive touch input, and a sound receiving unit 1104 configured to receive sound input. In some examples, electronic device 1100 can include a speaker unit 1106 configured to generate sound. Electronic device 1100 can further include a processing unit 1108 coupled to touch screen display unit 1102 and sound receiving unit 1104 (and, optionally, coupled to speaker unit 1106). In some examples, processing unit 1108 can include an audio input receiving unit 1110, an audio input transmitting unit 1112, an instruction receiving unit 1114, a query transmitting unit 1116, a state receiving unit 1118, and a state transmitting unit 1120.


Processing unit 1108 can be configured to receive an audio input (e.g., using audio input receiving unit 1110) containing user speech. Processing unit 1108 can be further configured to transmit (e.g., using audio input transmitting unit 1112) data corresponding to the audio input to one or more servers. Processing unit 1108 can be further configured to receive (e.g., using instruction receiving unit 1114), from the one or more servers, an instruction to query a state of each of a plurality of electronic devices determined by the one or more servers based on the data corresponding to the audio input. A state query can be transmitted (e.g., using query transmitting unit 1116) to each of the plurality of electronic devices, and a current state of each of the plurality of electronic devices can be received (e.g., using state receiving unit 1118) from the plurality of electronic devices. The current state of each of the plurality of electronic devices can be transmitted (e.g., using state transmitting unit 1120) to the one or more servers to be stored as a configuration.


In accordance with some examples, FIG. 12 shows a functional block diagram of an electronic device 1200 configured in accordance with the principles of the various described examples. The functional blocks of the device can be implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 12 can be combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.


As shown in FIG. 12, electronic device 1200 can include a touch screen display unit 1202 configured to display a user interface and to receive touch input, and a sound receiving unit 1204 configured to receive sound input. In some examples, electronic device 1200 can include a speaker unit 1206 configured to generate sound. Electronic device 1200 can further include a processing unit 1208 coupled to touch screen display unit 1202 and sound receiving unit 1204 (and, optionally, coupled to speaker unit 1206). In some examples, processing unit 1208 can include an audio input receiving unit 1210, an audio input transmitting unit 1212, an instruction receiving unit 1214, a query transmitting unit 1216, a state receiving unit 1218, and a state transmitting unit 1220.


In some examples, processing unit 1208 can be further configured to receive (e.g., using audio input receiving unit 1210) an audio input including a user speech, transmit (e.g., using audio input transmitting unit 1212) data corresponding to the audio input to the one or more servers, and receive (e.g., using command receiving unit 1214), from the one or more servers, a plurality of commands to set the state of each of the plurality of electronic devices determined by the one or more servers based on a stored configuration. Processing unit 1208 can be further configured to transmit (e.g., using command transmitting unit 1216) the plurality of commands to the plurality of electronic devices. Processing unit 1208 can be further configured to receive (e.g., using state receiving unit 1218) an updated state of each of the plurality of electronic devices from the plurality of electronic devices and to transmit (e.g., using state transmitting unit 1220) the updated state of each of the plurality of electronic devices to the one or more servers.


As shown in FIG. 13, electronic device 1300 can include a touch screen display unit 1302 configured to display a user interface and to receive touch input, and a sound receiving unit 1304 configured to receive sound input. In some examples, electronic device 1300 can include a speaker unit 1306 configured to generate sound. Electronic device 1300 can further include a processing unit 1308 coupled to touch screen display unit 1302 and sound receiving unit 1304 (and, optionally, coupled to speaker unit 1306). In some examples, processing unit 1308 can include an audio input receiving unit 1310, speech-to-text converting unit 1312, an electronic device identifying unit 1314, a command identifying unit 1316, an identification and command transmitting unit 1318, a state receiving unit 1320, a state updating unit 1322, a contextual information receiving unit 1324, an indication transmitting unit 1326, a second electronic device identifying unit 1328, a second command identifying unit 1330, a second identification and command transmitting unit 1332, and a second state receiving unit 1336.


Processing unit 1308 can be configured to receive data corresponding to an audio input (e.g., using audio input receiving unit 1310) containing user speech. Processing unit 1308 can be further configured perform (e.g., using speech to text converting unit 1312) speech-to-text conversion on the data corresponding to the audio input to generate a textual representation of the user speech. Processing unit 1308 can be further configured to identify (e.g., using electronic device identifying unit 1314) a first electronic device based on the textual representation of the user speech. Processing unit 1308 can be further configured to identify (e.g., using command identifying unit 1316) a first command to be performed by the first electronic device based on the textual representation of user speech. Processing unit 1308 can be further configured to transmit (e.g., using identification and command transmitting unit 1318) an identification of the first electronic device and the first command to the user device. Processing unit 1308 can be further configured to receive (e.g., using state receiving unit 1320) a current state of the first electronic device.


In some examples, first electronic device includes a light bulb. In other examples, the first command includes a command to set an ON/OFF state, dimmable state, or color state of the light. In yet other examples, the current state of the first electronic device includes the ON/OFF state, dimmable state, or color state of the light bulb after transmitting the first command to set the ON/OFF state, dimmable state, or color state of the light bulb.


In some examples, the first electronic device includes an electrical outlet. In other examples, the first command includes a command to set an ACTIVE/INACTIVE state of the electrical outlet. In yet other examples, the current state of the first electronic device includes the ACTIVE/INACTIVE state of the electrical outlet after transmitting the command to set the ACTIVE/INACTIVE state of the electrical outlet.


In some examples, the first electronic device includes a switch. In other examples, the first command includes a command to set an ON/OFF state of the switch. In yet other examples, the current state of the first electronic device includes the ON/OFF state of the electrical outlet after transmitting the command to set the ON/OFF state of the switch.


In some examples, the first electronic device includes a door lock. In other examples, the first command includes a command to set a LOCKED/UNLOCKED state of the door lock. In yet other examples, the current state of the first electronic device includes the LOCKED/UNLOCKED state of the door lock after transmitting the command to set the LOCKED/UNLOCKED state of the door lock.


In some examples, the first electronic device includes a garage door. In other examples, the first command includes a command to set an OPEN/CLOSED state of the garage door. In yet other examples, the current state of the first electronic device includes the OPEN/CLOSED state of the garage door after transmitting the command to set the OPEN/CLOSED state of the garage door.


In some examples, the first electronic device includes a thermostat. In other examples, the first command includes a command to set a numerical value of a temperature setting of the thermostat. In yet other examples, the current state of the first electronic device includes the numerical value of the temperature setting of the thermostat after transmitting the first command to set the numerical value of the temperature setting of the thermostat.


In some examples, the first command includes a query for the current state of the first electronic device.


In some examples, electronic device 1300 further includes a database unit 1334 for storing a name, a type, and a state of each of a plurality of electronic devices, the plurality of electronic devices comprising the first electronic device. In other examples, processing unit 1308 can be further configured to update (e.g., using state updating unit 1322) the state of the first electronic device stored in database unit 1334 based on the current state of the first electronic device.


In some examples, processing unit 1308 can be further configured to receive (e.g., using contextual information receiving unit 1324) contextual information within the data corresponding to the audio input from the user device. In other examples, processing unit 1308 can be further configured to identify (e.g., using electronic device identifying unit 1314) the first electronic device based on the contextual information. In yet other examples, processing unit 1308 can be further configured to identify (e.g., using command identifying unit 1316) the first command based on the contextual information. In some examples, the contextual information includes an orientation of the user device when the user device received the audio input or a location of the user device when the user device received the audio input.


In some examples, the textual representation of the user speech excludes the name of the first electronic device. In other examples, the textual representation of the user speech excludes the type of the first electronic device.


In some examples, electronic device 1300 includes a mobile phone, desktop computer, laptop computer, tablet computer, portable media player, television, television set-top box, or wearable electronic device.


In some examples, processing unit 1308 can be further configured to transmit (e.g., using identification and command transmitting unit 1318) the identification of the first electronic device and the first command to the user device, and to receive (e.g., using state receiving unit 1320) the current state of the first electronic device from the user device.


In other examples, processing unit 1308 can be further configured to transmit (e.g., using identification and command transmitting unit 1318) the identification of the first electronic device and the first command to a second user device, and to receive (e.g., using state receiving unit 1320) the current state of the first electronic device from the second user device.


In other examples, processing unit 1308 can be further configured to transmit (e.g., using indication transmitting unit 1326) an indication to the second user device of a result of the first command based on the first command and the current state of the first electronic device.


In other examples, processing unit 1308 can be further configured to identify (e.g., using second electronic device identifying unit 1328) a second electronic device based on the textual representation of the user speech, identify (e.g., using second command identifying unit 1330) a second command to be performed by the second electronic device based on the textual representation of the user speech, transmit (e.g., using second identification and command transmitting unit 1332) an identification of the second electronic device and the second command, and receive (e.g., using second state receiving unit 1336) a current state of the second electronic device.


As shown in FIG. 14, electronic device 1400 can include a touch screen display unit 1402 configured to display a user interface and to receive touch input, and a sound receiving unit 1404 configured to receive sound input. In some examples, electronic device 1400 can include a speaker unit 1406 configured to generate sound. Electronic device 1400 can further include a processing unit 1408 coupled to touch screen display unit 1402 and sound receiving unit 1404 (and, optionally, coupled to speaker unit 1406). In some examples, processing unit 1408 can include an audio input receiving unit 1410, speech-to-text converting unit 1412, a determining unit 1414, an instruction transmitting unit 1416, a state receiving unit 1416, a configuration storing unit 1420, a second audio input receiving unit 1422, a second speech to text converting unit 1424, a second determining unit 1426, a command transmitting unit 1428, and a second state receiving unit 1430.


Processing unit 1408 can be configured to receive (e.g., using audio input receiving unit 1410) data corresponding to an audio input comprising a user speech from a user device. Processing unit 1408 can be further configured perform (e.g., using speech to text converting unit 1412) speech-to-text conversion on the data corresponding to the audio input to generate a textual representation of the user speech. Processing unit 1408 can be further configured to determine (e.g., using determining unit 1414) that the textual representation of the user speech represents a user intent to store a state of each of a plurality of electronic devices as a configuration. Processing unit 1408 can be further configured to transmit (e.g., using instruction transmitting unit 1416) an instruction to query the state of each of the plurality of electronic devices. Processing unit 1408 can be further configured to receive (e.g., using state receiving unit 1418) a current state of each of the plurality of electronic devices. Processing unit 1408 can be further configured to store (e.g., using configuration storing unit 1420) the received current state of each of the plurality of electronic devices as the configuration.


As shown in FIG. 15, electronic device 1500 can include a touch screen display unit 1502 configured to display a user interface and to receive touch input, and a sound receiving unit 1504 configured to receive sound input. In some examples, electronic device 1500 can include a speaker unit 1506 configured to generate sound. Electronic device 1500 can further include a processing unit 1508 coupled to touch screen display unit 1502 and sound receiving unit 1504 (and, optionally, coupled to speaker unit 1506). In some examples, processing unit 1408 can include an audio input receiving unit 1510, speech-to-text converting unit 1512, a determining unit 1514, an instruction transmitting unit 1516, a state receiving unit 1516, a configuration storing unit 1520, a second audio input receiving unit 1522, a second speech to text converting unit 1524, a second determining unit 1526, a command transmitting unit 1528, and a second state receiving unit 1530.


In some examples, processing unit 1508 can be further configured to receive (e.g., using audio input receiving unit 1510) data corresponding to an audio input comprising a user speech, perform (e.g., using speech to text converting unit 1512) speech-to-text conversion on the data corresponding to the audio input to generate a textual representation of the user speech, determine (e.g., using determining unit 1514) that the textual representation of the user speech represents a user intent to change the state of each of the plurality of electronic devices based on the configuration, transmit (e.g., using command transmitting unit 1516) a plurality of commands to set the state of each of the plurality of electronic devices based on the configuration, and receive (e.g., using state receiving unit 1518) an updated state of each of the plurality of electronic devices.


As described above, one aspect of the present technology is the gathering and use of data available from various sources to improve the delivery to users of invitational content or any other content that may be of interest to them. The present disclosure contemplates that in some instances, this gathered data can include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, home addresses, or any other identifying information.


The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to deliver targeted content that is of greater interest to the user. Accordingly, use of such personal information data enables calculated control of the delivered content. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure.


The present disclosure further contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. For example, personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection should occur only after receiving the informed consent of the users. Additionally, such entities would take any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices.


Despite the foregoing, the present disclosure also contemplates examples in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of advertisement delivery services, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services. In another example, users can select not to provide location information for targeted content delivery services. In yet another example, users can select to not provide precise location information, but permit the transfer of location zone information.


Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed examples, the present disclosure also contemplates that the various examples can also be implemented without the need for accessing such personal information data. That is, the various examples of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, content can be selected and delivered to users by inferring preferences based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the content delivery services, or publicly available information.


Although examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the various examples as defined by the appended claims.

Claims
  • 1. A method for controlling electronic devices using a virtual assistant on a user device having a memory and at least one processor, the method comprising: at the user device: receiving, an audio input comprising user speech;transmitting data corresponding to the audio input to one or more servers;receiving, from the one or more servers: an identification of a first electronic device determined by the one or more servers based on the data corresponding to the audio input; anda first command to be performed by the first electronic device determined by the one or more servers based on the data corresponding to the audio input;transmitting the first command to the first electronic device;receiving, after transmitting the first command to the first electronic device, a second audio input;transmitting a state query to the first electronic device in accordance with the second audio input;receiving, from the first electronic device, a current state of the first electronic device; andtransmitting the current state of the first electronic device to the one or more servers to be stored as at least a portion of a configuration, wherein the configuration defines a plurality of states of a plurality of corresponding electronic devices to use in response to a command that references the configuration.
  • 2. The method of claim 1, further comprising: receiving, after transmitting the first command to the first electronic device and prior to receiving the second audio input, a current state of the first electronic device from the first electronic device; andtransmitting the current state of the first electronic device to the one or more servers.
  • 3. The method of claim 2, wherein the first electronic device comprises a light bulb.
  • 4. The method of claim 3, wherein the first command comprises a command to set an ON/OFF state, dimmable state, or color state of the light bulb.
  • 5. The method of claim 4, wherein the current state of the first electronic device comprises the ON/OFF state, dimmable state, or color state of the light bulb after transmitting the first command to set the ON/OFF state, dimmable state, or color state of the light bulb.
  • 6. The method of claim 2, wherein the first electronic device comprises an electrical outlet.
  • 7. The method of claim 6, wherein the first command comprises a command to set an ACTIVE/INACTIVE state of the electrical outlet.
  • 8. The method of claim 7, wherein the current state of the first electronic device comprises the ACTIVE/INACTIVE state of the electrical outlet after transmitting the command to set the ACTIVE/INACTIVE state of the electrical outlet.
  • 9. The method of claim 2, wherein the first electronic device comprises a switch.
  • 10. The method of claim 9, wherein the first command comprises a command to set an ON/OFF state of the switch.
  • 11. The method of claim 10, wherein the current state of the first electronic device comprises the ON/OFF state of the electrical outlet after transmitting the command to set the ON/OFF state of the switch.
  • 12. The method of claim 2, wherein the first electronic device comprises a door lock.
  • 13. The method of claim 12, wherein the first command comprises a command to set a LOCKED/UNLOCKED state of the door lock.
  • 14. The method of claim 13, wherein the current state of the first electronic device comprises the LOCKED/UNLOCKED state of the door lock after transmitting the command to set the LOCKED/UNLOCKED state of the door lock.
  • 15. The method of claim 2, wherein the first electronic device comprises a garage door.
  • 16. The method of claim 15, wherein the first command comprises a command to set an OPEN/CLOSED state of the garage door.
  • 17. The method of claim 16, wherein the current state of the first electronic device comprises the OPEN/CLOSED state of the garage door after transmitting the command to set the OPEN/CLOSED state of the garage door.
  • 18. The method of claim 2, wherein the first electronic device comprises a thermostat.
  • 19. The method of claim 18, wherein the first command comprises a command to set a numerical value of a temperature setting of the thermostat.
  • 20. The method of claim 19, wherein the current state of the first electronic device comprises the numerical value of the temperature setting of the thermostat after transmitting the first command to set the numerical value of the temperature setting of the thermostat.
  • 21. The method of claim 2, further comprising outputting a notification associated with the current state of the first electronic device in response to determining that a predetermined condition has been satisfied.
  • 22. The method of claim 2, wherein the user device comprises a database for storing a state of each of a plurality of electronic devices, the plurality of electronic devices comprising the first electronic device, and wherein the method further comprises updating a state of the first electronic device stored in the database based at least in part on the current state of the first electronic device received from the first electronic device.
  • 23. The method of claim 2, wherein the method further comprises outputting an indication of a result of the first command based on the first command and the current state of the first electronic device received from the first electronic device, wherein the indication of the result is an audio, visual, or both an audio and visual indication.
  • 24. The method of claim 1, wherein the user device comprises a mobile phone, desktop computer, laptop computer, tablet computer, portable media player, television, television set-top box, or wearable electronic device.
  • 25. The method of claim 1, further comprising: receiving, prior to receiving the second audio input, from the one or more servers: an identification of a second electronic device determined by the one or more servers based on the data corresponding to the audio input; anda second command to be performed by the second electronic device determined by the one or more servers based on the data corresponding to the audio input;transmitting the second command to the second electronic device;receiving, after transmitting the second command to the second electronic device, a current state of the second electronic device from the second electronic device; andtransmitting the current state of the second electronic device to the one or more servers.
  • 26. The method of claim 1, wherein the user device comprises a microphone.
  • 27. The method of claim 1, wherein transmitting the state query to the first electronic device in accordance with the second audio input comprises: transmitting data corresponding to the second audio input to the one or more servers;receiving, from the one or more servers, an instruction to query a state of the first electronic device determined by the one or more servers based on the data corresponding to the second audio input; andtransmitting the state query to the first electronic device based on the instruction to query the state of the first electronic device.
  • 28. A non-transitory computer-readable storage medium comprising one or more programs for execution by one or more processors of a user device, the one or more programs including instructions which, when executed by the one or more processors, cause the user device to perform the method of: receiving an audio input comprising user speech;transmitting data corresponding to the audio input to one or more servers;receiving, from the one or more servers:an identification of a first electronic device determined by the one or more servers based on the data corresponding to the audio input; anda first command to be performed by the first electronic device determined by the one or more servers based on the data corresponding to the audio input;transmitting the first command to the first electronic device;receiving, after transmitting the first command to the first electronic device, a second audio input;transmitting a state query to the first electronic device in accordance with the second audio input;receiving, from the first electronic device, a current state of the first electronic device; andtransmitting the current state of the first electronic device to the one or more servers to be stored as at least a portion of a configuration, wherein the configuration defines a plurality of states of a plurality of corresponding electronic devices to use in response to a command that references the configuration.
  • 29. The non-transitory computer-readable storage medium of claim 28, the one or more programs further including instructions for: receiving, after transmitting the first command to the first electronic device and prior to receiving the second audio input, a current state of the first electronic device from the first electronic device; andtransmitting the current state of the first electronic device to the one or more servers.
  • 30. The non-transitory computer-readable storage medium of claim 29, the one or more programs further including instructions for: outputting a notification associated with the current state of the first electronic device in response to determining that a predetermined condition has been satisfied.
  • 31. The non-transitory computer-readable storage medium of claim 28, wherein the user device comprises a microphone.
  • 32. A system comprising: one or more processors;memory;one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for: receiving an audio input comprising user speech;transmitting data corresponding to the audio input to one or more servers; receiving, from the one or more servers:an identification of a first electronic device determined by the one or more servers based on the data corresponding to the audio input; anda first command to be performed by the first electronic device determined by the one or more servers based on the data corresponding to the audio input;transmitting the first command to the first electronic device;receiving, after transmitting the first command to the first electronic device, a second audio input;transmitting a state query to the first electronic device in accordance with the second audio input;receiving, from the first electronic device, a current state of the first electronic device; andtransmitting the current state of the first electronic device to the one or more servers to be stored as at least a portion of a configuration, wherein the configuration defines a plurality of states of a plurality of corresponding electronic devices to use in response to a command that references the configuration.
  • 33. The system of claim 32, further comprising instructions for: receiving, after transmitting the first command to the first electronic device and prior to receiving the second audio input, a current state of the first electronic device from the first electronic device; andtransmitting the current state of the first electronic device to the one or more servers.
  • 34. The system of claim 33, further comprising instructions for: outputting a notification associated with the current state of the first electronic device in response to determining that a predetermined condition has been satisfied.
  • 35. The system of claim 33, further comprising a database for storing a state of each of a plurality of electronic devices, the plurality of electronic devices comprising the first electronic device, and wherein the one or more programs further comprises instructions for updating a state of the first electronic device stored in the database based at least in part on the current state of the first electronic device received from the first electronic device.
  • 36. The system of claim 32, further comprising a microphone.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority from U.S. Provisional Ser. No. 62/005,893, filed on May 30, 2014, entitled INTELLIGENT ASSISTANT FOR HOME AUTOMATION, which is hereby incorporated by reference in its entirety for all purposes.

US Referenced Citations (2912)
Number Name Date Kind
1559320 Hirsh Oct 1925 A
2180522 Henne Nov 1939 A
3704345 Coker et al. Nov 1972 A
3710321 Rubenstein Jan 1973 A
3828132 Flanagan et al. Aug 1974 A
3979557 Schulman et al. Sep 1976 A
4013085 Wright Mar 1977 A
4081631 Feder Mar 1978 A
4090216 Constable May 1978 A
4107784 Van Bemmelen Aug 1978 A
4108211 Tanaka Aug 1978 A
4159536 Kehoe et al. Jun 1979 A
4181821 Pirz et al. Jan 1980 A
4204089 Key et al. May 1980 A
4241286 Gordon Dec 1980 A
4253477 Eichman Mar 1981 A
4278838 Antonov Jul 1981 A
4282405 Taguchi Aug 1981 A
4310721 Manley et al. Jan 1982 A
4332464 Bartulis et al. Jun 1982 A
4348553 Baker et al. Sep 1982 A
4384169 Mozer et al. May 1983 A
4386345 Narveson et al. May 1983 A
4433377 Eustis et al. Feb 1984 A
4451849 Fuhrer May 1984 A
4485439 Rothstein Nov 1984 A
4495644 Parks et al. Jan 1985 A
4513379 Wilson et al. Apr 1985 A
4513435 Sakoe et al. Apr 1985 A
4555775 Pike Nov 1985 A
4577343 Oura Mar 1986 A
4586158 Brandle Apr 1986 A
4587670 Levinson et al. May 1986 A
4589022 Prince et al. May 1986 A
4611346 Bednar et al. Sep 1986 A
4615081 Lindahl Oct 1986 A
4618984 Das et al. Oct 1986 A
4642790 Minshull et al. Feb 1987 A
4653021 Takagi Mar 1987 A
4654875 Srihari et al. Mar 1987 A
4655233 Laughlin Apr 1987 A
4658425 Julstrom Apr 1987 A
4670848 Schramm Jun 1987 A
4677570 Taki Jun 1987 A
4680429 Murdock et al. Jul 1987 A
4680805 Scott Jul 1987 A
4688195 Thompson et al. Aug 1987 A
4692941 Jacks et al. Sep 1987 A
4698625 McCaskill et al. Oct 1987 A
4709390 Atal et al. Nov 1987 A
4713775 Scott et al. Dec 1987 A
4718094 Bahl et al. Jan 1988 A
4724542 Williford Feb 1988 A
4726065 Froessl Feb 1988 A
4727354 Lindsay Feb 1988 A
4736296 Katayama et al. Apr 1988 A
4750122 Kaji et al. Jun 1988 A
4754489 Bokser Jun 1988 A
4755811 Slavin et al. Jul 1988 A
4776016 Hansen Oct 1988 A
4783804 Juang et al. Nov 1988 A
4783807 Marley Nov 1988 A
4785413 Atsumi Nov 1988 A
4790028 Ramage Dec 1988 A
4797930 Goudie Jan 1989 A
4802223 Lin et al. Jan 1989 A
4803729 Baker Feb 1989 A
4807752 Chodorow Feb 1989 A
4811243 Racine Mar 1989 A
4813074 Marcus Mar 1989 A
4819271 Bahl et al. Apr 1989 A
4827518 Feustel et al. May 1989 A
4827520 Zeinstra May 1989 A
4829576 Porter May 1989 A
4829583 Monroe et al. May 1989 A
4831551 Schalk et al. May 1989 A
4833712 Bahl et al. May 1989 A
4833718 Sprague May 1989 A
4837798 Cohen et al. Jun 1989 A
4837831 Gillick et al. Jun 1989 A
4839853 Deerwester et al. Jun 1989 A
4852168 Sprague Jul 1989 A
4862504 Nomura Aug 1989 A
4875187 Smith Oct 1989 A
4878230 Murakami et al. Oct 1989 A
4887212 Zamora et al. Dec 1989 A
4896359 Yamamoto et al. Jan 1990 A
4903305 Gillick et al. Feb 1990 A
4905163 Garber et al. Feb 1990 A
4908867 Silverman Mar 1990 A
4914586 Swinehart et al. Apr 1990 A
4914590 Loatman et al. Apr 1990 A
4918723 Iggulden et al. Apr 1990 A
4926491 Maeda et al. May 1990 A
4928307 Lynn May 1990 A
4935954 Thompson et al. Jun 1990 A
4939639 Lee et al. Jul 1990 A
4941488 Marxer et al. Jul 1990 A
4944013 Gouvianakis et al. Jul 1990 A
4945504 Nakama et al. Jul 1990 A
4953106 Gansner et al. Aug 1990 A
4955047 Morganstein et al. Sep 1990 A
4965763 Zamora Oct 1990 A
4972462 Shibata Nov 1990 A
4974191 Amirghodsi et al. Nov 1990 A
4975975 Filipski Dec 1990 A
4977598 Doddington et al. Dec 1990 A
4980916 Zinser Dec 1990 A
4985924 Matsuura Jan 1991 A
4992972 Brooks et al. Feb 1991 A
4994966 Hutchins Feb 1991 A
4994983 Landell et al. Feb 1991 A
5003577 Ertz et al. Mar 1991 A
5007095 Nara et al. Apr 1991 A
5007098 Kumagai Apr 1991 A
5010574 Wang Apr 1991 A
5016002 Levanto May 1991 A
5020112 Chou May 1991 A
5021971 Lindsay Jun 1991 A
5022081 Hirose et al. Jun 1991 A
5027110 Chang et al. Jun 1991 A
5027406 Roberts et al. Jun 1991 A
5027408 Kroeker et al. Jun 1991 A
5029211 Ozawa Jul 1991 A
5031217 Nishimura Jul 1991 A
5032989 Tornetta Jul 1991 A
5033087 Bahl et al. Jul 1991 A
5040218 Vitale et al. Aug 1991 A
5046099 Nishimura Sep 1991 A
5047614 Bianco Sep 1991 A
5050215 Nishimura Sep 1991 A
5053758 Cornett et al. Oct 1991 A
5054084 Tanaka et al. Oct 1991 A
5057915 Von Kohorn Oct 1991 A
5067158 Arjmand Nov 1991 A
5067503 Stile Nov 1991 A
5072452 Brown et al. Dec 1991 A
5075896 Wilcox et al. Dec 1991 A
5079723 Herceg et al. Jan 1992 A
5083119 Trevett et al. Jan 1992 A
5083268 Hemphill et al. Jan 1992 A
5086792 Chodorow Feb 1992 A
5090012 Kajiyama et al. Feb 1992 A
5091790 Silverberg Feb 1992 A
5091945 Kleijn Feb 1992 A
5103498 Lanier et al. Apr 1992 A
5109509 Katayama et al. Apr 1992 A
5111423 Kopec, Jr. et al. May 1992 A
5119079 Hube et al. Jun 1992 A
5122951 Kamiya Jun 1992 A
5123103 Ohtaki et al. Jun 1992 A
5125022 Hunt et al. Jun 1992 A
5125030 Nomura et al. Jun 1992 A
5127043 Hunt et al. Jun 1992 A
5127053 Koch Jun 1992 A
5127055 Larkey Jun 1992 A
5128672 Kaehler Jul 1992 A
5133011 McKiel, Jr. Jul 1992 A
5133023 Bokser Jul 1992 A
5142584 Ozawa Aug 1992 A
5148541 Lee et al. Sep 1992 A
5153913 Kandefer et al. Oct 1992 A
5157610 Asano et al. Oct 1992 A
5161102 Griffin et al. Nov 1992 A
5164900 Bernath Nov 1992 A
5164982 Davis Nov 1992 A
5165007 Bahl et al. Nov 1992 A
5167004 Netsch et al. Nov 1992 A
5175536 Aschliman et al. Dec 1992 A
5175803 Yeh Dec 1992 A
5175814 Anick et al. Dec 1992 A
5179627 Sweet et al. Jan 1993 A
5179652 Rozmanith et al. Jan 1993 A
5194950 Murakami et al. Mar 1993 A
5195034 Garneau et al. Mar 1993 A
5195167 Bahl et al. Mar 1993 A
5197005 Shwartz et al. Mar 1993 A
5199077 Wilcox et al. Mar 1993 A
5201034 Matsuura et al. Apr 1993 A
5202952 Gillick et al. Apr 1993 A
5208862 Ozawa May 1993 A
5210689 Baker et al. May 1993 A
5212638 Bernath May 1993 A
5212821 Gorin et al. May 1993 A
5216747 Hardwick et al. Jun 1993 A
5218700 Beechick Jun 1993 A
5220629 Kosaka et al. Jun 1993 A
5220639 Lee Jun 1993 A
5220657 Bly et al. Jun 1993 A
5222146 Bahl et al. Jun 1993 A
5230036 Akamine et al. Jul 1993 A
5231670 Goldhor et al. Jul 1993 A
5235680 Bijnagte Aug 1993 A
5237502 White et al. Aug 1993 A
5241619 Schwartz et al. Aug 1993 A
5253325 Clark Oct 1993 A
5257387 Richek et al. Oct 1993 A
5260697 Barrett et al. Nov 1993 A
5266931 Tanaka Nov 1993 A
5266949 Rossi Nov 1993 A
5267345 Brown et al. Nov 1993 A
5268990 Cohen et al. Dec 1993 A
5274771 Hamilton et al. Dec 1993 A
5274818 Vasilevsky et al. Dec 1993 A
5276616 Kuga et al. Jan 1994 A
5276794 Lamb, Jr. Jan 1994 A
5278980 Pedersen et al. Jan 1994 A
5282265 Rohra Suda et al. Jan 1994 A
5283818 Klausner et al. Feb 1994 A
5287448 Nicol et al. Feb 1994 A
5289562 Mizuta et al. Feb 1994 A
RE34562 Murakami et al. Mar 1994 E
5291286 Murakami et al. Mar 1994 A
5293254 Eschbach Mar 1994 A
5293448 Honda Mar 1994 A
5293452 Picone et al. Mar 1994 A
5296642 Konishi Mar 1994 A
5297170 Eyuboglu et al. Mar 1994 A
5297194 Hunt et al. Mar 1994 A
5299125 Baker et al. Mar 1994 A
5299284 Roy Mar 1994 A
5301109 Landauer et al. Apr 1994 A
5303406 Hansen et al. Apr 1994 A
5305205 Weber et al. Apr 1994 A
5305768 Gross et al. Apr 1994 A
5309359 Katz et al. May 1994 A
5315689 Kanazawa et al. May 1994 A
5317507 Gallant May 1994 A
5317647 Pagallo May 1994 A
5325297 Bird et al. Jun 1994 A
5325298 Gallant Jun 1994 A
5325462 Farrett Jun 1994 A
5326270 Ostby et al. Jul 1994 A
5327342 Roy Jul 1994 A
5327498 Hamon Jul 1994 A
5329608 Bocchieri et al. Jul 1994 A
5333236 Bahl et al. Jul 1994 A
5333266 Boaz et al. Jul 1994 A
5333275 Wheatley et al. Jul 1994 A
5335011 Addeo et al. Aug 1994 A
5335276 Thompson et al. Aug 1994 A
5341293 Vertelney et al. Aug 1994 A
5341466 Perlin et al. Aug 1994 A
5345536 Hoshimi et al. Sep 1994 A
5349645 Zhao Sep 1994 A
5353374 Wilson et al. Oct 1994 A
5353376 Oh et al. Oct 1994 A
5353377 Kuroda et al. Oct 1994 A
5353408 Kato et al. Oct 1994 A
5353432 Richek et al. Oct 1994 A
5357431 Nakada et al. Oct 1994 A
5367640 Hamilton et al. Nov 1994 A
5369575 Lamberti et al. Nov 1994 A
5369577 Kadashevich et al. Nov 1994 A
5371853 Kao et al. Dec 1994 A
5373566 Murdock Dec 1994 A
5377103 Lamberti et al. Dec 1994 A
5377301 Rosenberg et al. Dec 1994 A
5377303 Firman Dec 1994 A
5384671 Fisher Jan 1995 A
5384892 Strong Jan 1995 A
5384893 Hutchins Jan 1995 A
5386494 White Jan 1995 A
5386556 Hedin et al. Jan 1995 A
5390236 Klausner et al. Feb 1995 A
5390279 Strong Feb 1995 A
5390281 Luciw et al. Feb 1995 A
5392419 Walton Feb 1995 A
5396625 Parkes Mar 1995 A
5400434 Pearson Mar 1995 A
5404295 Katz et al. Apr 1995 A
5406305 Shimomura et al. Apr 1995 A
5408060 Muurinen Apr 1995 A
5412756 Bauman et al. May 1995 A
5412804 Krishna May 1995 A
5412806 Du et al. May 1995 A
5418951 Damashek May 1995 A
5422656 Allard et al. Jun 1995 A
5424947 Nagao et al. Jun 1995 A
5425108 Hwang et al. Jun 1995 A
5428731 Powers, III Jun 1995 A
5434777 Luciw Jul 1995 A
5440615 Caccuro et al. Aug 1995 A
5442598 Haikawa et al. Aug 1995 A
5442780 Takanashi et al. Aug 1995 A
5444823 Nguyen Aug 1995 A
5449368 Kuzmak Sep 1995 A
5450523 Zhao Sep 1995 A
5455888 Iyengar et al. Oct 1995 A
5457768 Tsuboi et al. Oct 1995 A
5459488 Geiser Oct 1995 A
5463696 Beernink et al. Oct 1995 A
5463725 Henckel et al. Oct 1995 A
5465401 Thompson Nov 1995 A
5469529 Bimbot et al. Nov 1995 A
5471611 McGregor Nov 1995 A
5473728 Luginbuhl et al. Dec 1995 A
5475587 Anick et al. Dec 1995 A
5475796 Iwata Dec 1995 A
5477447 Luciw et al. Dec 1995 A
5477448 Golding et al. Dec 1995 A
5477451 Brown et al. Dec 1995 A
5479488 Lennig et al. Dec 1995 A
5481739 Staats Jan 1996 A
5485372 Golding et al. Jan 1996 A
5485543 Aso Jan 1996 A
5488727 Agrawal et al. Jan 1996 A
5490234 Narayan Feb 1996 A
5491758 Bellegarda et al. Feb 1996 A
5491772 Hardwick et al. Feb 1996 A
5493677 Balogh et al. Feb 1996 A
5495604 Harding et al. Feb 1996 A
5497319 Chong et al. Mar 1996 A
5500903 Gulli Mar 1996 A
5500905 Martin et al. Mar 1996 A
5500937 Thompson-Rohrlich Mar 1996 A
5502774 Bellegarda et al. Mar 1996 A
5502790 Yi Mar 1996 A
5502791 Nishimura et al. Mar 1996 A
5515475 Gupta et al. May 1996 A
5521816 Roche et al. May 1996 A
5524140 Klausner et al. Jun 1996 A
5533182 Bates et al. Jul 1996 A
5535121 Roche et al. Jul 1996 A
5536902 Serra et al. Jul 1996 A
5537317 Schabes et al. Jul 1996 A
5537618 Boulton et al. Jul 1996 A
5537647 Hermansky et al. Jul 1996 A
5543588 Bisset et al. Aug 1996 A
5543897 Altrieth, III Aug 1996 A
5544264 Bellegarda et al. Aug 1996 A
5548507 Martino et al. Aug 1996 A
5555343 Luther Sep 1996 A
5555344 Zunkler Sep 1996 A
5559301 Bryan, Jr. et al. Sep 1996 A
5559945 Beaudet et al. Sep 1996 A
5564446 Wiltshire Oct 1996 A
5565888 Selker Oct 1996 A
5568536 Tiller et al. Oct 1996 A
5568540 Greco et al. Oct 1996 A
5570324 Geil Oct 1996 A
5572576 Klausner et al. Nov 1996 A
5574823 Hassanein et al. Nov 1996 A
5574824 Slyh et al. Nov 1996 A
5577135 Grajski et al. Nov 1996 A
5577164 Kaneko et al. Nov 1996 A
5577241 Spencer Nov 1996 A
5578808 Taylor Nov 1996 A
5579037 Tahara et al. Nov 1996 A
5579436 Chou et al. Nov 1996 A
5581484 Prince Dec 1996 A
5581652 Abe et al. Dec 1996 A
5581655 Cohen et al. Dec 1996 A
5583993 Foster et al. Dec 1996 A
5584024 Shwartz Dec 1996 A
5594641 Kaplan et al. Jan 1997 A
5596260 Moravec et al. Jan 1997 A
5596676 Swaminathan et al. Jan 1997 A
5596994 Bro Jan 1997 A
5608624 Luciw Mar 1997 A
5608698 Yamanoi et al. Mar 1997 A
5608841 Tsuboka Mar 1997 A
5610812 Schabes et al. Mar 1997 A
5613036 Strong Mar 1997 A
5613122 Burnard et al. Mar 1997 A
5615378 Nishino et al. Mar 1997 A
5615384 Allard et al. Mar 1997 A
5616876 Cluts Apr 1997 A
5617386 Choi Apr 1997 A
5617507 Lee et al. Apr 1997 A
5617539 Ludwig et al. Apr 1997 A
5619583 Page et al. Apr 1997 A
5619694 Shimazu Apr 1997 A
5621859 Schwartz et al. Apr 1997 A
5621903 Luciw et al. Apr 1997 A
5627939 Huang et al. May 1997 A
5634084 Malsheen et al. May 1997 A
5636325 Farrett Jun 1997 A
5638425 Meador, III et al. Jun 1997 A
5638489 Tsuboka Jun 1997 A
5638523 Mullet et al. Jun 1997 A
5640487 Lau et al. Jun 1997 A
5642464 Yue et al. Jun 1997 A
5642466 Narayan Jun 1997 A
5642519 Martin Jun 1997 A
5644656 Akra et al. Jul 1997 A
5644727 Atkins Jul 1997 A
5649060 Ellozy et al. Jul 1997 A
5652828 Silverman Jul 1997 A
5652884 Palevich Jul 1997 A
5652897 Linebarger et al. Jul 1997 A
5661787 Pocock Aug 1997 A
5664055 Kroon Sep 1997 A
5670985 Cappels, Sr. et al. Sep 1997 A
5675819 Schuetze Oct 1997 A
5682475 Johnson et al. Oct 1997 A
5682539 Conrad et al. Oct 1997 A
5684513 Decker Nov 1997 A
5687077 Gough, Jr. Nov 1997 A
5689287 Mackinlay et al. Nov 1997 A
5689618 Gasper et al. Nov 1997 A
5696962 Kupiec Dec 1997 A
5699082 Marks et al. Dec 1997 A
5701400 Amado Dec 1997 A
5706442 Anderson et al. Jan 1998 A
5708659 Rostoker et al. Jan 1998 A
5708822 Wical Jan 1998 A
5710886 Christensen et al. Jan 1998 A
5710922 Alley et al. Jan 1998 A
5712949 Kato et al. Jan 1998 A
5712957 Waibel et al. Jan 1998 A
5715468 Budzinski Feb 1998 A
5717877 Orion et al. Feb 1998 A
5721827 Logan et al. Feb 1998 A
5721949 Smith et al. Feb 1998 A
5724406 Juster Mar 1998 A
5724985 Snell et al. Mar 1998 A
5726672 Hernandez et al. Mar 1998 A
5727950 Cook et al. Mar 1998 A
5729694 Holzrichter et al. Mar 1998 A
5732216 Logan et al. Mar 1998 A
5732390 Katayanagi et al. Mar 1998 A
5732395 Silverman Mar 1998 A
5734750 Arai et al. Mar 1998 A
5734791 Acero et al. Mar 1998 A
5736974 Selker Apr 1998 A
5737487 Bellegarda et al. Apr 1998 A
5737734 Schultz Apr 1998 A
5739451 Winksy et al. Apr 1998 A
5740143 Suetomi Apr 1998 A
5742705 Parthasarathy Apr 1998 A
5742736 Haddock Apr 1998 A
5745116 Pisutha-Arnond Apr 1998 A
5745873 Braida et al. Apr 1998 A
5748512 Vargas May 1998 A
5748974 Johnson May 1998 A
5749071 Silverman May 1998 A
5749081 Whiteis May 1998 A
5751906 Silverman May 1998 A
5757358 Osga May 1998 A
5757979 Hongo et al. May 1998 A
5758079 Ludwig et al. May 1998 A
5758314 McKenna May 1998 A
5759101 Von Kohorn Jun 1998 A
5761640 Kalyanswamy et al. Jun 1998 A
5765131 Stentiford et al. Jun 1998 A
5765168 Burrows Jun 1998 A
5771276 Wolf Jun 1998 A
5774834 Visser Jun 1998 A
5774855 Foti et al. Jun 1998 A
5774859 Houser et al. Jun 1998 A
5777614 Ando et al. Jul 1998 A
5778405 Ogawa Jul 1998 A
5790978 Olive et al. Aug 1998 A
5794050 Dahlgren et al. Aug 1998 A
5794182 Manduchi et al. Aug 1998 A
5794207 Walker et al. Aug 1998 A
5794237 Gore, Jr. Aug 1998 A
5797008 Burrows Aug 1998 A
5799268 Boguraev Aug 1998 A
5799269 Schabes et al. Aug 1998 A
5799276 Komissarchik et al. Aug 1998 A
5801692 Muzio et al. Sep 1998 A
5802466 Gallant et al. Sep 1998 A
5802526 Fawcett et al. Sep 1998 A
5812697 Sakai et al. Sep 1998 A
5812698 Platt et al. Sep 1998 A
5815142 Allard et al. Sep 1998 A
5815225 Nelson Sep 1998 A
5818451 Bertram et al. Oct 1998 A
5818924 King et al. Oct 1998 A
5822288 Shinada Oct 1998 A
5822730 Roth et al. Oct 1998 A
5822743 Gupta et al. Oct 1998 A
5825349 Meier et al. Oct 1998 A
5825881 Colvin, Sr. Oct 1998 A
5826261 Spencer Oct 1998 A
5828768 Eatwell et al. Oct 1998 A
5828999 Bellegarda et al. Oct 1998 A
5832433 Yashchin et al. Nov 1998 A
5832435 Silverman Nov 1998 A
5835077 Dao et al. Nov 1998 A
5835721 Donahue et al. Nov 1998 A
5835732 Kikinis et al. Nov 1998 A
5835893 Ushioda Nov 1998 A
5839106 Bellegarda Nov 1998 A
5841902 Tu Nov 1998 A
5842165 Raman et al. Nov 1998 A
5845255 Mayaud Dec 1998 A
5850480 Scanlon Dec 1998 A
5850629 Holm et al. Dec 1998 A
5854893 Ludwig et al. Dec 1998 A
5855000 Waibel et al. Dec 1998 A
5857184 Lynch Jan 1999 A
5860063 Gorin et al. Jan 1999 A
5860064 Henton Jan 1999 A
5860075 Hashizume et al. Jan 1999 A
5862223 Walker et al. Jan 1999 A
5864806 Mokbel et al. Jan 1999 A
5864815 Rozak et al. Jan 1999 A
5864844 James et al. Jan 1999 A
5864855 Ruocco et al. Jan 1999 A
5864868 Contois Jan 1999 A
5867799 Lang et al. Feb 1999 A
5870710 Ozawa et al. Feb 1999 A
5873056 Liddy et al. Feb 1999 A
5875427 Yamazaki Feb 1999 A
5875437 Atkins Feb 1999 A
5876396 Lo et al. Mar 1999 A
5877751 Kanemitsu et al. Mar 1999 A
5878393 Hata et al. Mar 1999 A
5878394 Muhling Mar 1999 A
5878396 Henton Mar 1999 A
5880731 Liles et al. Mar 1999 A
5884039 Ludwig et al. Mar 1999 A
5884323 Hawkins et al. Mar 1999 A
5890117 Silverman Mar 1999 A
5890122 Van et al. Mar 1999 A
5891180 Greeninger et al. Apr 1999 A
5895448 Vysotsky et al. Apr 1999 A
5895464 Bhandari et al. Apr 1999 A
5895466 Goldberg et al. Apr 1999 A
5896321 Miller et al. Apr 1999 A
5896500 Ludwig et al. Apr 1999 A
5899972 Miyazawa et al. May 1999 A
5909666 Gould et al. Jun 1999 A
5912951 Checchio et al. Jun 1999 A
5912952 Brendzel Jun 1999 A
5913193 Huang et al. Jun 1999 A
5915236 Gould et al. Jun 1999 A
5915238 Tjaden Jun 1999 A
5915249 Spencer Jun 1999 A
5917487 Ulrich Jun 1999 A
5918303 Yamaura et al. Jun 1999 A
5920327 Seidensticker, Jr. Jul 1999 A
5920836 Gould et al. Jul 1999 A
5920837 Gould et al. Jul 1999 A
5923757 Hocker et al. Jul 1999 A
5924068 Richard et al. Jul 1999 A
5926769 Valimaa et al. Jul 1999 A
5926789 Barbara et al. Jul 1999 A
5930408 Seto Jul 1999 A
5930751 Cohrs et al. Jul 1999 A
5930754 Karaali et al. Jul 1999 A
5930769 Rose Jul 1999 A
5930783 Li et al. Jul 1999 A
5933477 Wu Aug 1999 A
5933806 Beyerlein et al. Aug 1999 A
5933822 Braden-Harder et al. Aug 1999 A
5936926 Yokouchi et al. Aug 1999 A
5940811 Norris Aug 1999 A
5940841 Schmuck et al. Aug 1999 A
5941944 Messerly Aug 1999 A
5943043 Furuhata et al. Aug 1999 A
5943049 Matsubara et al. Aug 1999 A
5943052 Allen et al. Aug 1999 A
5943443 Itonori et al. Aug 1999 A
5943670 Prager Aug 1999 A
5948040 DeLorme et al. Sep 1999 A
5949961 Sharman Sep 1999 A
5950123 Schwelb et al. Sep 1999 A
5952992 Helms Sep 1999 A
5953541 King et al. Sep 1999 A
5956021 Kubota et al. Sep 1999 A
5956699 Wong et al. Sep 1999 A
5960394 Gould et al. Sep 1999 A
5960422 Prasad Sep 1999 A
5963924 Williams et al. Oct 1999 A
5966126 Szabo Oct 1999 A
5970474 LeRoy et al. Oct 1999 A
5973676 Kawakura Oct 1999 A
5974146 Randle et al. Oct 1999 A
5977950 Rhyne Nov 1999 A
5982352 Pryor Nov 1999 A
5982891 Ginter et al. Nov 1999 A
5982902 Terano Nov 1999 A
5983179 Gould et al. Nov 1999 A
5987132 Rowney Nov 1999 A
5987140 Rowney et al. Nov 1999 A
5987401 Trudeau Nov 1999 A
5987404 Della Pietra et al. Nov 1999 A
5987440 O'Neil et al. Nov 1999 A
5990887 Redpath et al. Nov 1999 A
5991441 Jourjine Nov 1999 A
5995460 Takagi et al. Nov 1999 A
5995590 Brunet et al. Nov 1999 A
5998972 Gong Dec 1999 A
5999169 Lee Dec 1999 A
5999895 Forest Dec 1999 A
5999908 Abelow Dec 1999 A
5999927 Tukey et al. Dec 1999 A
6006274 Hawkins et al. Dec 1999 A
6009237 Hirabayashi et al. Dec 1999 A
6011585 Anderson Jan 2000 A
6014428 Wolf Jan 2000 A
6016471 Kuhn et al. Jan 2000 A
6018705 Gaudet Jan 2000 A
6018711 French-St. George et al. Jan 2000 A
6020881 Naughton et al. Feb 2000 A
6023536 Visser Feb 2000 A
6023676 Erell Feb 2000 A
6023684 Pearson Feb 2000 A
6024288 Gottlich et al. Feb 2000 A
6026345 Shah et al. Feb 2000 A
6026375 Hall et al. Feb 2000 A
6026388 Liddy et al. Feb 2000 A
6026393 Gupta et al. Feb 2000 A
6029132 Kuhn et al. Feb 2000 A
6035267 Watanabe et al. Mar 2000 A
6035303 Baer et al. Mar 2000 A
6035336 Lu et al. Mar 2000 A
6038533 Buchsbaum et al. Mar 2000 A
6040824 Maekawa et al. Mar 2000 A
6041023 Lakhansingh Mar 2000 A
6047255 Williamson Apr 2000 A
6052654 Gaudet et al. Apr 2000 A
6052656 Suda et al. Apr 2000 A
6054990 Tran Apr 2000 A
6055514 Wren Apr 2000 A
6055531 Bennett et al. Apr 2000 A
6064767 Muir et al. May 2000 A
6064959 Young et al. May 2000 A
6064960 Bellegarda et al. May 2000 A
6064963 Gainsboro May 2000 A
6067519 Lowry May 2000 A
6069648 Suso et al. May 2000 A
6070138 Iwata May 2000 A
6070139 Miyazawa et al. May 2000 A
6070147 Harms et al. May 2000 A
6073033 Campo Jun 2000 A
6073036 Heikkinen et al. Jun 2000 A
6073097 Gould et al. Jun 2000 A
6076051 Messerly et al. Jun 2000 A
6076060 Lin et al. Jun 2000 A
6076088 Paik et al. Jun 2000 A
6078914 Redfern Jun 2000 A
6081750 Hoffberg et al. Jun 2000 A
6081774 de Hita et al. Jun 2000 A
6081780 Lumelsky Jun 2000 A
6088671 Gould et al. Jul 2000 A
6088731 Kiraly et al. Jul 2000 A
6092043 Squires et al. Jul 2000 A
6094649 Bowen et al. Jul 2000 A
6097391 Wilcox Aug 2000 A
6101468 Gould et al. Aug 2000 A
6101470 Eide et al. Aug 2000 A
6105865 Hardesty Aug 2000 A
6108627 Sabourin Aug 2000 A
6108640 Slotznick Aug 2000 A
6111562 Downs et al. Aug 2000 A
6111572 Blair et al. Aug 2000 A
6116907 Baker et al. Sep 2000 A
6119101 Peckover Sep 2000 A
6121960 Carroll et al. Sep 2000 A
6122340 Darley et al. Sep 2000 A
6122614 Kahn et al. Sep 2000 A
6122616 Henton Sep 2000 A
6125284 Moore et al. Sep 2000 A
6125346 Nishimura et al. Sep 2000 A
6125356 Brockman et al. Sep 2000 A
6129582 Wilhite et al. Oct 2000 A
6138098 Shieber et al. Oct 2000 A
6141642 Oh Oct 2000 A
6141644 Kuhn et al. Oct 2000 A
6144377 Oppermann et al. Nov 2000 A
6144938 Surace et al. Nov 2000 A
6144939 Pearson et al. Nov 2000 A
6151401 Annaratone Nov 2000 A
6154551 Frenkel Nov 2000 A
6154720 Onishi et al. Nov 2000 A
6157935 Tran et al. Dec 2000 A
6161084 Messerly et al. Dec 2000 A
6161087 Wightman et al. Dec 2000 A
6161944 Leman Dec 2000 A
6163769 Acero et al. Dec 2000 A
6163809 Buckley Dec 2000 A
6167369 Schulze Dec 2000 A
6169538 Nowlan et al. Jan 2001 B1
6172948 Keller et al. Jan 2001 B1
6173194 Vanttila Jan 2001 B1
6173251 Ito et al. Jan 2001 B1
6173261 Arai et al. Jan 2001 B1
6173263 Conkie Jan 2001 B1
6173279 Levin et al. Jan 2001 B1
6177905 Welch Jan 2001 B1
6177931 Alexander et al. Jan 2001 B1
6179432 Zhang et al. Jan 2001 B1
6182028 Karaali et al. Jan 2001 B1
6185533 Holm et al. Feb 2001 B1
6188999 Moody Feb 2001 B1
6191939 Burnett Feb 2001 B1
6192253 Charlier et al. Feb 2001 B1
6192340 Abecassis Feb 2001 B1
6195641 Loring et al. Feb 2001 B1
6205456 Nakao Mar 2001 B1
6208044 Viswanadham et al. Mar 2001 B1
6208932 Ohmura et al. Mar 2001 B1
6208956 Motoyama Mar 2001 B1
6208964 Sabourin Mar 2001 B1
6208967 Pauws et al. Mar 2001 B1
6208971 Bellegarda et al. Mar 2001 B1
6216102 Martino et al. Apr 2001 B1
6216131 Liu et al. Apr 2001 B1
6217183 Shipman Apr 2001 B1
6222347 Gong Apr 2001 B1
6226403 Parthasarathy May 2001 B1
6226533 Akahane May 2001 B1
6226614 Mizuno et al. May 2001 B1
6230322 Saib et al. May 2001 B1
6232539 Looney et al. May 2001 B1
6232966 Kurlander May 2001 B1
6233545 Datig May 2001 B1
6233559 Balakrishnan May 2001 B1
6233578 Machihara et al. May 2001 B1
6237025 Ludwig et al. May 2001 B1
6240303 Katzur May 2001 B1
6243681 Guji et al. Jun 2001 B1
6246981 Papineni et al. Jun 2001 B1
6248946 Dwek Jun 2001 B1
6249606 Kiraly et al. Jun 2001 B1
6259436 Moon et al. Jul 2001 B1
6259826 Pollard et al. Jul 2001 B1
6260011 Heckerman et al. Jul 2001 B1
6260013 Sejnoha Jul 2001 B1
6260016 Holm et al. Jul 2001 B1
6260024 Shkedy Jul 2001 B1
6266637 Donovan et al. Jul 2001 B1
6268859 Andresen et al. Jul 2001 B1
6269712 Zentmyer Aug 2001 B1
6271835 Hoeksma Aug 2001 B1
6272456 De Campos Aug 2001 B1
6272464 Kiraz et al. Aug 2001 B1
6275795 Tzirkel-Hancock Aug 2001 B1
6275824 O'Flaherty et al. Aug 2001 B1
6278970 Milner Aug 2001 B1
6282507 Horiguchi et al. Aug 2001 B1
6285785 Bellegarda et al. Sep 2001 B1
6285786 Seni et al. Sep 2001 B1
6289085 Miyashita et al. Sep 2001 B1
6289124 Okamoto Sep 2001 B1
6289301 Higginbotham et al. Sep 2001 B1
6289353 Hazlehurst et al. Sep 2001 B1
6292772 Kantrowitz Sep 2001 B1
6292778 Sukkar Sep 2001 B1
6295390 Kobayashi et al. Sep 2001 B1
6295541 Bodnar et al. Sep 2001 B1
6297818 Ulrich et al. Oct 2001 B1
6298314 Blackadar et al. Oct 2001 B1
6298321 Karlov et al. Oct 2001 B1
6304844 Pan et al. Oct 2001 B1
6304846 George et al. Oct 2001 B1
6307548 Flinchem et al. Oct 2001 B1
6308149 Gaussier et al. Oct 2001 B1
6311157 Strong Oct 2001 B1
6311189 deVries et al. Oct 2001 B1
6317237 Nakao et al. Nov 2001 B1
6317594 Gossman et al. Nov 2001 B1
6317707 Bangalore et al. Nov 2001 B1
6317831 King Nov 2001 B1
6321092 Fitch et al. Nov 2001 B1
6324512 Junqua et al. Nov 2001 B1
6330538 Breen Dec 2001 B1
6332175 Birrell et al. Dec 2001 B1
6334103 Surace et al. Dec 2001 B1
6335722 Tani et al. Jan 2002 B1
6336365 Blackadar et al. Jan 2002 B1
6336727 Kim Jan 2002 B1
6340937 Stepita-Klauco Jan 2002 B1
6341316 Kloba et al. Jan 2002 B1
6343267 Kuhn et al. Jan 2002 B1
6345250 Martin Feb 2002 B1
6351522 Vitikainen Feb 2002 B1
6351762 Ludwig et al. Feb 2002 B1
6353442 Masui Mar 2002 B1
6353794 Davis et al. Mar 2002 B1
6356854 Schubert et al. Mar 2002 B1
6356864 Foltz et al. Mar 2002 B1
6356905 Gershman et al. Mar 2002 B1
6357147 Darley et al. Mar 2002 B1
6359572 Vale Mar 2002 B1
6359970 Burgess Mar 2002 B1
6360227 Aggarwal et al. Mar 2002 B1
6360237 Schulz et al. Mar 2002 B1
6363348 Besling et al. Mar 2002 B1
6366883 Campbell et al. Apr 2002 B1
6366884 Bellegarda et al. Apr 2002 B1
6374217 Bellegarda Apr 2002 B1
6377530 Burrows Apr 2002 B1
6377925 Greene, Jr. et al. Apr 2002 B1
6377928 Saxena et al. Apr 2002 B1
6385586 Dietz May 2002 B1
6385662 Moon et al. May 2002 B1
6389114 Dowens et al. May 2002 B1
6397183 Baba et al. May 2002 B1
6397186 Bush et al. May 2002 B1
6400996 Hoffberg et al. Jun 2002 B1
6401065 Kanevsky et al. Jun 2002 B1
6405169 Kondo et al. Jun 2002 B1
6408272 White et al. Jun 2002 B1
6411932 Molnar et al. Jun 2002 B1
6415250 Van Den Akker Jul 2002 B1
6421305 Gioscia et al. Jul 2002 B1
6421672 McAllister et al. Jul 2002 B1
6421707 Miller et al. Jul 2002 B1
6424944 Hikawa Jul 2002 B1
6430551 Thelen et al. Aug 2002 B1
6434522 Tsuboka Aug 2002 B1
6434524 Weber Aug 2002 B1
6434604 Harada et al. Aug 2002 B1
6437818 Ludwig et al. Aug 2002 B1
6438523 Oberteuffer et al. Aug 2002 B1
6442518 Van Thong et al. Aug 2002 B1
6442523 Siegel Aug 2002 B1
6446076 Burkey et al. Sep 2002 B1
6448485 Barile Sep 2002 B1
6448986 Smith Sep 2002 B1
6449620 Draper et al. Sep 2002 B1
6453281 Walters et al. Sep 2002 B1
6453292 Ramaswamy et al. Sep 2002 B2
6453315 Weissman et al. Sep 2002 B1
6456616 Rantanen Sep 2002 B1
6456972 Gladstein et al. Sep 2002 B1
6460015 Hetherington et al. Oct 2002 B1
6460029 Fries et al. Oct 2002 B1
6462778 Abram et al. Oct 2002 B1
6463128 Elwin Oct 2002 B1
6466654 Cooper et al. Oct 2002 B1
6467924 Shipman Oct 2002 B2
6469712 Hilpert, Jr. et al. Oct 2002 B1
6469722 Kinoe et al. Oct 2002 B1
6469732 Chang et al. Oct 2002 B1
6470347 Gillam Oct 2002 B1
6473630 Baranowski et al. Oct 2002 B1
6477488 Bellegarda Nov 2002 B1
6477494 Hyde-Thomson et al. Nov 2002 B2
6487533 Hyde-Thomson et al. Nov 2002 B2
6487534 Thelen et al. Nov 2002 B1
6487663 Jaisimha et al. Nov 2002 B1
6489951 Wong et al. Dec 2002 B1
6490560 Ramaswamy et al. Dec 2002 B1
6493428 Hillier Dec 2002 B1
6493652 Ohlenbusch et al. Dec 2002 B1
6493667 De Souza et al. Dec 2002 B1
6499013 Weber Dec 2002 B1
6499014 Chihara Dec 2002 B1
6501937 Ho et al. Dec 2002 B1
6502194 Berman et al. Dec 2002 B1
6505158 Conkie Jan 2003 B1
6505175 Silverman et al. Jan 2003 B1
6505183 Loofbourrow et al. Jan 2003 B1
6510406 Marchisio Jan 2003 B1
6510417 Woods et al. Jan 2003 B1
6513008 Pearson et al. Jan 2003 B2
6513063 Julia et al. Jan 2003 B1
6519565 Clements et al. Feb 2003 B1
6519566 Boyer et al. Feb 2003 B1
6523026 Gillis Feb 2003 B1
6523061 Halverson et al. Feb 2003 B1
6523172 Martinez-Guerra et al. Feb 2003 B1
6526351 Whitham Feb 2003 B2
6526382 Yuschik Feb 2003 B1
6526395 Morris Feb 2003 B1
6529592 Khan Mar 2003 B1
6529608 Gersabeck et al. Mar 2003 B2
6532444 Weber Mar 2003 B1
6532446 King Mar 2003 B1
6535610 Stewart Mar 2003 B1
6535852 Eide Mar 2003 B2
6535983 McCormack et al. Mar 2003 B1
6536139 Darley et al. Mar 2003 B2
6538665 Crow et al. Mar 2003 B2
6542171 Satou et al. Apr 2003 B1
6542584 Sherwood et al. Apr 2003 B1
6546262 Freadman Apr 2003 B1
6546367 Otsuka Apr 2003 B2
6546388 Edlund et al. Apr 2003 B1
6549497 Miyamoto et al. Apr 2003 B2
6553343 Kagoshima et al. Apr 2003 B1
6553344 Bellegarda et al. Apr 2003 B2
6556971 Rigsby et al. Apr 2003 B1
6556983 Altschuler et al. Apr 2003 B1
6560903 Darley May 2003 B1
6563769 Van Der Meulen May 2003 B1
6564186 Kiraly et al. May 2003 B1
6582342 Kaufman Jun 2003 B2
6583806 Ludwig et al. Jun 2003 B2
6584464 Warthen Jun 2003 B1
6587403 Keller et al. Jul 2003 B1
6587404 Keller et al. Jul 2003 B1
6591379 LeVine et al. Jul 2003 B1
6594673 Smith et al. Jul 2003 B1
6594688 Ludwig et al. Jul 2003 B2
6597345 Hirshberg Jul 2003 B2
6598021 Shambaugh et al. Jul 2003 B1
6598022 Yuschik Jul 2003 B2
6598039 Livowsky Jul 2003 B1
6598054 Schuetze et al. Jul 2003 B2
6601026 Appelt et al. Jul 2003 B2
6601234 Bowman-Amuah Jul 2003 B1
6603837 Kesanupalli et al. Aug 2003 B1
6604059 Strubbe et al. Aug 2003 B2
6606388 Townsend et al. Aug 2003 B1
6606632 Saulpaugh et al. Aug 2003 B1
6611789 Darley Aug 2003 B1
6615172 Bennett et al. Sep 2003 B1
6615175 Gazdzinski Sep 2003 B1
6615176 Lewis et al. Sep 2003 B2
6615220 Austin et al. Sep 2003 B1
6621768 Keller et al. Sep 2003 B1
6621892 Banister et al. Sep 2003 B1
6622121 Crepy et al. Sep 2003 B1
6622136 Russell Sep 2003 B2
6623529 Lakritz Sep 2003 B1
6625583 Silverman et al. Sep 2003 B1
6628808 Bach et al. Sep 2003 B1
6631186 Adams et al. Oct 2003 B1
6631346 Karaorman et al. Oct 2003 B1
6633846 Bennett et al. Oct 2003 B1
6633932 Bork et al. Oct 2003 B1
6643401 Kashioka et al. Nov 2003 B1
6647260 Dusse et al. Nov 2003 B2
6650735 Burton et al. Nov 2003 B2
6654740 Tokuda et al. Nov 2003 B2
6658389 Alpdemir Dec 2003 B1
6658577 Huppi et al. Dec 2003 B2
6662023 Helle Dec 2003 B1
6665639 Mozer et al. Dec 2003 B2
6665640 Bennett et al. Dec 2003 B1
6665641 Coorman et al. Dec 2003 B1
6671672 Heck Dec 2003 B1
6671683 Kanno Dec 2003 B2
6671856 Gillam Dec 2003 B1
6675169 Bennett et al. Jan 2004 B1
6675233 Du et al. Jan 2004 B1
6680675 Suzuki Jan 2004 B1
6684187 Conkie Jan 2004 B1
6684376 Kerzman et al. Jan 2004 B1
6690387 Zimmerman et al. Feb 2004 B2
6690800 Resnick Feb 2004 B2
6690828 Meyers Feb 2004 B2
6691064 Vroman Feb 2004 B2
6691090 Laurila et al. Feb 2004 B1
6691111 Lazaridis et al. Feb 2004 B2
6691151 Cheyer et al. Feb 2004 B1
6694295 Lindholm et al. Feb 2004 B2
6694297 Sato Feb 2004 B2
6697780 Beutnagel et al. Feb 2004 B1
6697824 Bowman-Amuah Feb 2004 B1
6701294 Ball et al. Mar 2004 B1
6701305 Holt et al. Mar 2004 B1
6701318 Fox et al. Mar 2004 B2
6704015 Bovarnick et al. Mar 2004 B1
6704698 Paulsen, Jr. et al. Mar 2004 B1
6704710 Strong Mar 2004 B2
6708153 Brittan et al. Mar 2004 B2
6711585 Copperman et al. Mar 2004 B1
6714221 Christie et al. Mar 2004 B1
6716139 Hosseinzadeh-Dolkhani et al. Apr 2004 B1
6718324 Edlund et al. Apr 2004 B2
6718331 Davis et al. Apr 2004 B2
6720980 Lui et al. Apr 2004 B1
6721728 McGreevy Apr 2004 B2
6721734 Subasic et al. Apr 2004 B1
6724370 Dutta et al. Apr 2004 B2
6725197 Wuppermann et al. Apr 2004 B1
6728675 Maddalozzo, Jr. et al. Apr 2004 B1
6728729 Jawa et al. Apr 2004 B1
6731312 Robbin May 2004 B2
6732142 Bates et al. May 2004 B1
6735632 Kiraly et al. May 2004 B1
6738738 Henton May 2004 B2
6741264 Lesser May 2004 B1
6742021 Halverson et al. May 2004 B1
6751592 Shiga Jun 2004 B1
6751595 Busayapongchai et al. Jun 2004 B2
6751621 Calistri-Yeh et al. Jun 2004 B1
6754504 Reed Jun 2004 B1
6757362 Cooper et al. Jun 2004 B1
6757365 Bogard Jun 2004 B1
6757646 Marchisio Jun 2004 B2
6757653 Buth et al. Jun 2004 B2
6757718 Halverson et al. Jun 2004 B1
6760412 Loucks Jul 2004 B1
6760700 Lewis et al. Jul 2004 B2
6760754 Isaacs et al. Jul 2004 B1
6762741 Weindorf Jul 2004 B2
6763089 Feigenbaum Jul 2004 B2
6766294 MacGinite et al. Jul 2004 B2
6766320 Wang et al. Jul 2004 B1
6766324 Carlson et al. Jul 2004 B2
6768979 Menendez-Pidal et al. Jul 2004 B1
6772123 Cooklev et al. Aug 2004 B2
6772195 Hatlelid et al. Aug 2004 B1
6775358 Breitenbach et al. Aug 2004 B1
6778951 Contractor Aug 2004 B1
6778952 Bellegarda Aug 2004 B2
6778962 Kasai et al. Aug 2004 B1
6778970 Au Aug 2004 B2
6778979 Grefenstetie et al. Aug 2004 B2
6782510 Gross et al. Aug 2004 B1
6784901 Harvey et al. Aug 2004 B1
6789094 Rudoff et al. Sep 2004 B2
6789231 Reynar et al. Sep 2004 B1
6790704 Doyle et al. Sep 2004 B2
6792082 Levine Sep 2004 B1
6792086 Saylor et al. Sep 2004 B1
6792407 Kibre et al. Sep 2004 B2
6794566 Pachet Sep 2004 B2
6795059 Endo Sep 2004 B2
6799226 Robbin et al. Sep 2004 B1
6801604 Maes et al. Oct 2004 B2
6801964 Mahdavi Oct 2004 B1
6803905 Capps et al. Oct 2004 B1
6804649 Miranda Oct 2004 B2
6804677 Shadmon et al. Oct 2004 B2
6807536 Achlioptas et al. Oct 2004 B2
6807574 Partovi et al. Oct 2004 B1
6810379 Vermeulen et al. Oct 2004 B1
6813218 Antonelli et al. Nov 2004 B1
6813491 McKinney Nov 2004 B1
6813607 Faruquie et al. Nov 2004 B1
6816578 Kredo et al. Nov 2004 B1
6820055 Saindon et al. Nov 2004 B2
6829018 Lin et al. Dec 2004 B2
6829603 Chai et al. Dec 2004 B1
6832194 Mozer et al. Dec 2004 B1
6832381 Mathur et al. Dec 2004 B1
6836760 Bellegarda et al. Dec 2004 B1
6839464 Hawkins et al. Jan 2005 B2
6839669 Gould et al. Jan 2005 B1
6839670 Stammler et al. Jan 2005 B1
6839742 Dyer et al. Jan 2005 B1
6842767 Partovi et al. Jan 2005 B1
6847966 Sommer et al. Jan 2005 B1
6847979 Allemang et al. Jan 2005 B2
6850775 Berg Feb 2005 B1
6850887 Epstein et al. Feb 2005 B2
6851115 Cheyer et al. Feb 2005 B1
6857800 Zhang et al. Feb 2005 B2
6859931 Cheyer et al. Feb 2005 B1
6862568 Case Mar 2005 B2
6862710 Marchisio Mar 2005 B1
6865533 Addison et al. Mar 2005 B2
6868045 Schroder Mar 2005 B1
6868385 Gerson Mar 2005 B1
6870529 Davis Mar 2005 B1
6871346 Kumbalimutt et al. Mar 2005 B1
6873986 McConnell et al. Mar 2005 B2
6876947 Darley et al. Apr 2005 B1
6877003 Ho et al. Apr 2005 B2
6879957 Pechter et al. Apr 2005 B1
6882335 Saarinen Apr 2005 B2
6882747 Thawonmas et al. Apr 2005 B2
6882955 Ohlenbusch et al. Apr 2005 B1
6882971 Craner Apr 2005 B2
6885734 Eberle et al. Apr 2005 B1
6889361 Bates et al. May 2005 B1
6895084 Saylor et al. May 2005 B1
6895257 Boman et al. May 2005 B2
6895380 Sepe, Jr. May 2005 B2
6895558 Loveland May 2005 B1
6898550 Blackadar et al. May 2005 B1
6901364 Nguyen et al. May 2005 B2
6901399 Corston et al. May 2005 B1
6904405 Suominen Jun 2005 B2
6907112 Guedalia et al. Jun 2005 B1
6907140 Matsugu et al. Jun 2005 B2
6910004 Tarbouriech et al. Jun 2005 B2
6910007 Stylianou et al. Jun 2005 B2
6910186 Kim Jun 2005 B2
6911971 Suzuki et al. Jun 2005 B2
6912407 Clarke et al. Jun 2005 B1
6912498 Stevens et al. Jun 2005 B2
6912499 Sabourin et al. Jun 2005 B1
6915138 Kraft Jul 2005 B2
6915246 Gusler et al. Jul 2005 B2
6917373 Vong et al. Jul 2005 B2
6918677 Shipman Jul 2005 B2
6924828 Hirsch Aug 2005 B1
6925438 Mohamed et al. Aug 2005 B2
6928149 Panjwani et al. Aug 2005 B1
6928614 Everhart Aug 2005 B1
6931255 Mekuria Aug 2005 B2
6931384 Horvitz et al. Aug 2005 B1
6932708 Yamashita et al. Aug 2005 B2
6934394 Anderson Aug 2005 B1
6934684 Alpdemir et al. Aug 2005 B2
6934756 Maes Aug 2005 B2
6934812 Robbin et al. Aug 2005 B1
6937975 Elworthy Aug 2005 B1
6937986 Denenberg et al. Aug 2005 B2
6944593 Kuzunuki et al. Sep 2005 B2
6948094 Schultz et al. Sep 2005 B2
6950087 Knox et al. Sep 2005 B2
6950502 Jenkins Sep 2005 B1
6954755 Reisman Oct 2005 B2
6954899 Anderson Oct 2005 B1
6956845 Baker et al. Oct 2005 B2
6957076 Hunzinger Oct 2005 B2
6957183 Malayath et al. Oct 2005 B2
6960734 Park Nov 2005 B1
6961699 Kahn et al. Nov 2005 B1
6963841 Handal et al. Nov 2005 B2
6964023 Maes et al. Nov 2005 B2
6965376 Tani et al. Nov 2005 B2
6968311 Knockeart et al. Nov 2005 B2
6970820 Junqua et al. Nov 2005 B2
6970881 Mohan et al. Nov 2005 B1
6970915 Partovi et al. Nov 2005 B1
6970935 Maes Nov 2005 B1
6976090 Ben-Shaul et al. Dec 2005 B2
6978127 Bulthuis et al. Dec 2005 B1
6978239 Chu et al. Dec 2005 B2
6980949 Ford Dec 2005 B2
6980955 Okutani et al. Dec 2005 B2
6983251 Umemoto et al. Jan 2006 B1
6985858 Frey et al. Jan 2006 B2
6985865 Packingham et al. Jan 2006 B1
6988071 Gazdzinski Jan 2006 B1
6990450 Case et al. Jan 2006 B2
6996520 Levin Feb 2006 B2
6996531 Korall et al. Feb 2006 B2
6996575 Cox et al. Feb 2006 B2
6999066 Litwiller Feb 2006 B2
6999914 Boerner et al. Feb 2006 B1
6999925 Fischer et al. Feb 2006 B2
6999927 Mozer et al. Feb 2006 B2
7000189 Dutta et al. Feb 2006 B2
7003099 Zhang et al. Feb 2006 B1
7003463 Maes et al. Feb 2006 B1
7006969 Atal Feb 2006 B2
7007239 Hawkins et al. Feb 2006 B1
7010581 Brown et al. Mar 2006 B2
7013289 Horn et al. Mar 2006 B2
7013429 Fujimoto et al. Mar 2006 B2
7020685 Chen et al. Mar 2006 B1
7024363 Comerford et al. Apr 2006 B1
7024364 Guerra et al. Apr 2006 B2
7024366 Deyoe et al. Apr 2006 B1
7024460 Koopmas et al. Apr 2006 B2
7027568 Simpson et al. Apr 2006 B1
7027974 Busch et al. Apr 2006 B1
7027990 Sussman Apr 2006 B2
7028252 Baru et al. Apr 2006 B1
7031530 Driggs et al. Apr 2006 B2
7031909 Mao et al. Apr 2006 B2
7035794 Sirivara Apr 2006 B2
7035801 Jimenez-Feltstrom Apr 2006 B2
7035807 Brittain et al. Apr 2006 B1
7036128 Julia et al. Apr 2006 B1
7038659 Rajkowski May 2006 B2
7039588 Okutani et al. May 2006 B2
7043420 Ratnaparkhi May 2006 B2
7043422 Gao et al. May 2006 B2
7046230 Zadesky et al. May 2006 B2
7046850 Braspenning et al. May 2006 B2
7047193 Bellegarda May 2006 B1
7050550 Steinbiss et al. May 2006 B2
7050976 Packingham May 2006 B1
7050977 Bennett May 2006 B1
7051096 Krawiec et al. May 2006 B1
7054419 Culliss May 2006 B2
7054888 LaChapelle et al. May 2006 B2
7057607 Mayoraz et al. Jun 2006 B2
7058569 Coorman et al. Jun 2006 B2
7058888 Gjerstad et al. Jun 2006 B1
7058889 Trovato et al. Jun 2006 B2
7062223 Gerber et al. Jun 2006 B2
7062225 White Jun 2006 B2
7062428 Hogenhout et al. Jun 2006 B2
7062438 Kobayashi et al. Jun 2006 B2
7065185 Koch Jun 2006 B1
7065485 Chong-White et al. Jun 2006 B1
7069213 Thompson Jun 2006 B2
7069220 Coffman et al. Jun 2006 B2
7069560 Cheyer et al. Jun 2006 B1
7072686 Schrager Jul 2006 B1
7072941 Griffin et al. Jul 2006 B2
7076527 Bellegarda et al. Jul 2006 B2
7082322 Harano Jul 2006 B2
7084758 Cole Aug 2006 B1
7084856 Huppi Aug 2006 B2
7085723 Ross et al. Aug 2006 B2
7085960 Bouat et al. Aug 2006 B2
7092370 Jiang et al. Aug 2006 B2
7092887 Mozer et al. Aug 2006 B2
7092928 Elad et al. Aug 2006 B1
7092950 Wong et al. Aug 2006 B2
7093693 Gazdzinski Aug 2006 B1
7095733 Yarlagadda et al. Aug 2006 B1
7096183 Junqua Aug 2006 B2
7103548 Squibbs et al. Sep 2006 B2
7107204 Liu et al. Sep 2006 B1
7111248 Mulvey et al. Sep 2006 B2
7113803 Dehlin Sep 2006 B2
7113943 Bradford et al. Sep 2006 B2
7115035 Tanaka Oct 2006 B2
7117231 Fischer et al. Oct 2006 B2
7123696 Lowe Oct 2006 B2
7124081 Bellegarda Oct 2006 B1
7124082 Freedman Oct 2006 B2
7124164 Chemtob Oct 2006 B1
7127046 Smith et al. Oct 2006 B1
7127396 Chu et al. Oct 2006 B2
7127403 Saylor et al. Oct 2006 B1
7133900 Szeto Nov 2006 B1
7136710 Hoftberg et al. Nov 2006 B1
7136818 Cosatto et al. Nov 2006 B1
7137126 Coffman et al. Nov 2006 B1
7139697 Häkkinen et al. Nov 2006 B2
7139714 Bennett et al. Nov 2006 B2
7139722 Perrella et al. Nov 2006 B2
7143028 Hillis et al. Nov 2006 B2
7143038 Katae Nov 2006 B2
7143040 Durston et al. Nov 2006 B2
7146319 Hunt Dec 2006 B2
7146437 Robbin et al. Dec 2006 B2
7149319 Roeck Dec 2006 B2
7149695 Bellegarda Dec 2006 B1
7149964 Cottrille et al. Dec 2006 B1
7152070 Musick et al. Dec 2006 B1
7152093 Ludwig et al. Dec 2006 B2
7154526 Foote et al. Dec 2006 B2
7155668 Holland et al. Dec 2006 B2
7158647 Azima et al. Jan 2007 B2
7159174 Johnson et al. Jan 2007 B2
7162412 Yamada et al. Jan 2007 B2
7162482 Dunning Jan 2007 B1
7165073 Vandersluis Jan 2007 B2
7166791 Robbin et al. Jan 2007 B2
7171360 Huang et al. Jan 2007 B2
7174295 Kivimaki Feb 2007 B1
7174297 Guerra et al. Feb 2007 B2
7174298 Sharma Feb 2007 B2
7177794 Mani et al. Feb 2007 B2
7177798 Hsu et al. Feb 2007 B2
7177817 Khosla et al. Feb 2007 B1
7181386 Mohri et al. Feb 2007 B2
7181388 Tian Feb 2007 B2
7185276 Keswa Feb 2007 B2
7188085 Pelletier Mar 2007 B2
7190794 Hinde Mar 2007 B2
7191118 Bellegarda Mar 2007 B2
7191131 Nagao Mar 2007 B1
7193615 Kim et al. Mar 2007 B2
7194186 Strub et al. Mar 2007 B1
7194413 Mahoney et al. Mar 2007 B2
7194471 Nagatsuka et al. Mar 2007 B1
7194611 Bear et al. Mar 2007 B2
7194699 Thomson et al. Mar 2007 B2
7197120 Luehrig et al. Mar 2007 B2
7197460 Gupta et al. Mar 2007 B1
7200550 Menezes et al. Apr 2007 B2
7200558 Kato et al. Apr 2007 B2
7200559 Wang Apr 2007 B2
7203646 Bennett Apr 2007 B2
7206809 Ludwig et al. Apr 2007 B2
7216008 Sakata May 2007 B2
7216073 Lavi et al. May 2007 B2
7216080 Tsiao et al. May 2007 B2
7218920 Hyon May 2007 B2
7218943 Klassen et al. May 2007 B2
7219063 Schalk et al. May 2007 B2
7219123 Fiechter et al. May 2007 B1
7225125 Bennett et al. May 2007 B2
7228278 Nguyen et al. Jun 2007 B2
7231343 Treadgold et al. Jun 2007 B1
7233790 Kjellberg et al. Jun 2007 B2
7233904 Luisi Jun 2007 B2
7234026 Robbin et al. Jun 2007 B2
7236932 Grajski Jun 2007 B1
7240002 Minamino et al. Jul 2007 B2
7243305 Schabes et al. Jul 2007 B2
7246151 Isaacs et al. Jul 2007 B2
7251454 White Jul 2007 B2
7254773 Bates et al. Aug 2007 B2
7260529 Lengen Aug 2007 B1
7263373 Mattisson Aug 2007 B2
7266189 Day Sep 2007 B1
7266495 Beaufays et al. Sep 2007 B1
7266496 Wang et al. Sep 2007 B2
7266499 Surace et al. Sep 2007 B2
7269544 Simske Sep 2007 B2
7269556 Kiss et al. Sep 2007 B2
7275063 Horn Sep 2007 B2
7277088 Robinson et al. Oct 2007 B2
7277854 Bennett et al. Oct 2007 B2
7277855 Acker et al. Oct 2007 B1
7280958 Pavlov et al. Oct 2007 B2
7283072 Plachta et al. Oct 2007 B1
7290039 Lisitsa et al. Oct 2007 B1
7292579 Morris Nov 2007 B2
7292979 Karas et al. Nov 2007 B2
7299033 Kjellberg et al. Nov 2007 B2
7302392 Thenthiruperai et al. Nov 2007 B1
7302686 Togawa Nov 2007 B2
7308404 Venkataraman et al. Dec 2007 B2
7308408 Stifelman et al. Dec 2007 B1
7310329 Vieri et al. Dec 2007 B2
7310600 Garner et al. Dec 2007 B1
7310605 Janakiraman et al. Dec 2007 B2
7313523 Bellegarda et al. Dec 2007 B1
7315818 Stevens et al. Jan 2008 B2
7319957 Robinson et al. Jan 2008 B2
7321783 Kim Jan 2008 B2
7324833 White et al. Jan 2008 B2
7324947 Jordan et al. Jan 2008 B2
7328155 Endo et al. Feb 2008 B2
7349953 Lisitsa et al. Mar 2008 B2
7353139 Burrell et al. Apr 2008 B1
7359493 Wang et al. Apr 2008 B1
7359671 Richenstein et al. Apr 2008 B2
7359851 Tong et al. Apr 2008 B2
7362738 Taube et al. Apr 2008 B2
7363227 Mapes-Riordan et al. Apr 2008 B2
7365260 Kawashima Apr 2008 B2
7366461 Brown Apr 2008 B1
7373612 Risch et al. May 2008 B2
7376556 Bennett May 2008 B2
7376632 Sadek et al. May 2008 B1
7376645 Bernard May 2008 B2
7378963 Begault et al. May 2008 B1
7379874 Schmid et al. May 2008 B2
7380203 Keely et al. May 2008 B2
7383170 Mills et al. Jun 2008 B2
7386438 Franz et al. Jun 2008 B1
7386449 Sun et al. Jun 2008 B2
7386799 Clanton et al. Jun 2008 B1
7389224 Elworthy Jun 2008 B1
7389225 Jensen et al. Jun 2008 B1
7392185 Bennett Jun 2008 B2
7394947 Li et al. Jul 2008 B2
7398209 Kennewick et al. Jul 2008 B2
7401300 Nurmi Jul 2008 B2
7403938 Harrison et al. Jul 2008 B2
7404143 Freelander et al. Jul 2008 B2
7409337 Potter et al. Aug 2008 B1
7409347 Bellegarda Aug 2008 B1
7412470 Masuno et al. Aug 2008 B2
7415100 Cooper et al. Aug 2008 B2
7418389 Chu et al. Aug 2008 B2
7418392 Mozer et al. Aug 2008 B1
7426467 Nashida et al. Sep 2008 B2
7426468 Coifman et al. Sep 2008 B2
7427024 Gazdzinski et al. Sep 2008 B1
7428541 Houle Sep 2008 B2
7433869 Gollapudi Oct 2008 B2
7433921 Ludwig et al. Oct 2008 B2
7441184 Frerebeau et al. Oct 2008 B2
7443316 Lim Oct 2008 B2
7447360 Li et al. Nov 2008 B2
7447635 Konopka et al. Nov 2008 B1
7454351 Jeschke et al. Nov 2008 B2
7460652 Chang Dec 2008 B2
7467087 Gillick et al. Dec 2008 B1
7467164 Marsh Dec 2008 B2
7472061 Alewine et al. Dec 2008 B1
7472065 Aaron et al. Dec 2008 B2
7475010 Chao Jan 2009 B2
7475063 Datta et al. Jan 2009 B2
7477238 Fux et al. Jan 2009 B2
7477240 Yanagisawa Jan 2009 B2
7478037 Strong Jan 2009 B2
7478091 Mojsilovic et al. Jan 2009 B2
7478129 Chemtob Jan 2009 B1
7483832 Tischer Jan 2009 B2
7483894 Cao Jan 2009 B2
7487089 Mozer Feb 2009 B2
7487093 Mutsuno et al. Feb 2009 B2
7490034 Finnigan et al. Feb 2009 B2
7496498 Chu et al. Feb 2009 B2
7496512 Zhao et al. Feb 2009 B2
7499923 Kawatani Mar 2009 B2
7502738 Kennewick et al. Mar 2009 B2
7505795 Lim et al. Mar 2009 B1
7508324 Suraqui Mar 2009 B2
7508373 Lin et al. Mar 2009 B2
7516123 Betz et al. Apr 2009 B2
7519327 White Apr 2009 B2
7522927 Fitch et al. Apr 2009 B2
7523036 Akabane et al. Apr 2009 B2
7523108 Cao Apr 2009 B2
7526466 Au Apr 2009 B2
7526738 Ording et al. Apr 2009 B2
7528713 Singh et al. May 2009 B2
7529671 Rockenbeck et al. May 2009 B2
7529676 Koyama May 2009 B2
7535997 McQuaide, Jr. et al. May 2009 B1
7536029 Choi et al. May 2009 B2
7536565 Girish et al. May 2009 B2
7538685 Cooper et al. May 2009 B1
7539619 Seligman et al. May 2009 B1
7539656 Fratkina et al. May 2009 B2
7541940 Upton Jun 2009 B2
7542967 Hurst-Hiller et al. Jun 2009 B2
7543232 Easton, Jr. et al. Jun 2009 B2
7546382 Healey et al. Jun 2009 B2
7546529 Reynar et al. Jun 2009 B2
7548895 Pulsipher Jun 2009 B2
7552045 Barliga et al. Jun 2009 B2
7552055 Lecoeuche Jun 2009 B2
7555431 Bennett Jun 2009 B2
7555496 Lantrip et al. Jun 2009 B1
7558381 Ali et al. Jul 2009 B1
7558730 Davis et al. Jul 2009 B2
7559026 Girish et al. Jul 2009 B2
7561069 Horstemeyer Jul 2009 B2
7562007 Hwang Jul 2009 B2
7565104 Brown et al. Jul 2009 B1
7565380 Venkatachary Jul 2009 B1
7571106 Cao et al. Aug 2009 B2
7577522 Rosenberg Aug 2009 B2
7580551 Srihari et al. Aug 2009 B1
7580576 Wang et al. Aug 2009 B2
7580839 Tamura et al. Aug 2009 B2
7584093 Potter et al. Sep 2009 B2
7593868 Margiloff et al. Sep 2009 B2
7596499 Anguera et al. Sep 2009 B2
7599918 Shen et al. Oct 2009 B2
7603381 Burke et al. Oct 2009 B2
7609179 Diaz-Gutierrez et al. Oct 2009 B2
7613264 Wells et al. Nov 2009 B2
7617094 Aoki et al. Nov 2009 B2
7620407 Donald et al. Nov 2009 B1
7620549 Di Cristo et al. Nov 2009 B2
7624007 Bennett Nov 2009 B2
7627481 Kuo et al. Dec 2009 B1
7630901 Omi Dec 2009 B2
7634409 Kennewick et al. Dec 2009 B2
7634413 Kuo et al. Dec 2009 B1
7636657 Ju et al. Dec 2009 B2
7640160 Di Cristo et al. Dec 2009 B2
7643990 Bellegarda Jan 2010 B1
7647225 Bennett et al. Jan 2010 B2
7649454 Singh et al. Jan 2010 B2
7649877 Vieri et al. Jan 2010 B2
7656393 King et al. Feb 2010 B2
7657424 Bennett Feb 2010 B2
7664558 Lindahl et al. Feb 2010 B2
7664638 Cooper et al. Feb 2010 B2
7669134 Christie et al. Feb 2010 B1
7672841 Bennett Mar 2010 B2
7672952 Isaacson et al. Mar 2010 B2
7673238 Girish et al. Mar 2010 B2
7673340 Cohen et al. Mar 2010 B1
7676026 Baxter, Jr. Mar 2010 B1
7676365 Hwang et al. Mar 2010 B2
7676463 Thompson et al. Mar 2010 B2
7679534 Kay et al. Mar 2010 B2
7680649 Park Mar 2010 B2
7681126 Roose Mar 2010 B2
7683886 Willey Mar 2010 B2
7684985 Dominach et al. Mar 2010 B2
7684990 Caskey et al. Mar 2010 B2
7684991 Stohr et al. Mar 2010 B2
7689408 Chen et al. Mar 2010 B2
7689409 Heinecke Mar 2010 B2
7689421 Li et al. Mar 2010 B2
7693715 Hwang et al. Apr 2010 B2
7693717 Kahn et al. Apr 2010 B2
7693719 Chu et al. Apr 2010 B2
7693720 Kennewick et al. Apr 2010 B2
7698131 Bennett Apr 2010 B2
7702500 Blaedow Apr 2010 B2
7702508 Bennett Apr 2010 B2
7706510 Ng Apr 2010 B2
7707026 Liu Apr 2010 B2
7707027 Balchandran et al. Apr 2010 B2
7707032 Wang et al. Apr 2010 B2
7707221 Dunning et al. Apr 2010 B1
7707267 Lisitsa et al. Apr 2010 B2
7710262 Ruha May 2010 B2
7711129 Lindahl et al. May 2010 B2
7711565 Gazdzinski May 2010 B1
7711672 Au May 2010 B2
7712053 Bradford et al. May 2010 B2
7716056 Weng et al. May 2010 B2
7720674 Kaiser et al. May 2010 B2
7720683 Vermeulen et al. May 2010 B1
7721301 Wong et al. May 2010 B2
7725307 Bennett May 2010 B2
7725318 Gavalda et al. May 2010 B2
7725320 Bennett May 2010 B2
7725321 Bennett May 2010 B2
7725838 Williams May 2010 B2
7729904 Bennett Jun 2010 B2
7729916 Coffman et al. Jun 2010 B2
7734461 Kwak et al. Jun 2010 B2
7735012 Naik Jun 2010 B2
7743188 Haitani et al. Jun 2010 B2
7747616 Yamada et al. Jun 2010 B2
7752152 Paek et al. Jul 2010 B2
7756868 Lee Jul 2010 B2
7757173 Beaman Jul 2010 B2
7757182 Elliott et al. Jul 2010 B2
7761296 Bakis et al. Jul 2010 B1
7763842 Hsu et al. Jul 2010 B2
7774204 Mozer et al. Aug 2010 B2
7774388 Runchey Aug 2010 B1
7778432 Larsen Aug 2010 B2
7778595 White et al. Aug 2010 B2
7778632 Kurlander et al. Aug 2010 B2
7779353 Grigoriu et al. Aug 2010 B2
7779357 Naik Aug 2010 B2
7783283 Kuusinen et al. Aug 2010 B2
7783486 Rosser et al. Aug 2010 B2
7797265 Brinker et al. Sep 2010 B2
7797269 Rieman et al. Sep 2010 B2
7797331 Theimer et al. Sep 2010 B2
7801721 Rosart et al. Sep 2010 B2
7801728 Ben-David et al. Sep 2010 B2
7801729 Mozer Sep 2010 B2
7805299 Coifman Sep 2010 B2
7809565 Coifman Oct 2010 B2
7809569 Attwater et al. Oct 2010 B2
7809570 Kennewick et al. Oct 2010 B2
7809610 Cao Oct 2010 B2
7809744 Nevidomski et al. Oct 2010 B2
7818165 Carlgren et al. Oct 2010 B2
7818176 Freeman et al. Oct 2010 B2
7818291 Ferguson et al. Oct 2010 B2
7822608 Cross, Jr. et al. Oct 2010 B2
7823123 Sabbouh Oct 2010 B2
7826945 Zhang et al. Nov 2010 B2
7827047 Anderson et al. Nov 2010 B2
7831423 Schubert Nov 2010 B2
7831426 Bennett Nov 2010 B2
7831432 Bodin et al. Nov 2010 B2
7840400 Lavi et al. Nov 2010 B2
7840447 Kleinrock et al. Nov 2010 B2
7840581 Ross et al. Nov 2010 B2
7848924 Nurminen et al. Dec 2010 B2
7848926 Goto et al. Dec 2010 B2
7853444 Wang et al. Dec 2010 B2
7853445 Bachenko et al. Dec 2010 B2
7853574 Kraenzel et al. Dec 2010 B2
7853577 Sundaresan et al. Dec 2010 B2
7853664 Wang et al. Dec 2010 B1
7869999 Amato et al. Jan 2011 B2
7870118 Jiang et al. Jan 2011 B2
7873519 Bennett Jan 2011 B2
7873654 Bernard Jan 2011 B2
7877705 Chambers et al. Jan 2011 B2
7880730 Robinson et al. Feb 2011 B2
7881936 Longe et al. Feb 2011 B2
7885844 Cohen et al. Feb 2011 B1
7890330 Ozkaragoz et al. Feb 2011 B2
7890652 Bull et al. Feb 2011 B2
7899666 Varone Mar 2011 B2
7908287 Katragadda Mar 2011 B1
7912699 Saraclar et al. Mar 2011 B1
7912702 Bennett Mar 2011 B2
7917367 Di Cristo et al. Mar 2011 B2
7917497 Harrison et al. Mar 2011 B2
7920678 Cooper et al. Apr 2011 B2
7920682 Byrne et al. Apr 2011 B2
7920857 Lau et al. Apr 2011 B2
7925525 Chin Apr 2011 B2
7925610 Elbaz et al. Apr 2011 B2
7929805 Wang et al. Apr 2011 B2
7930168 Weng et al. Apr 2011 B2
7930183 Odell et al. Apr 2011 B2
7930197 Ozzie et al. Apr 2011 B2
7941009 Li et al. May 2011 B2
7949529 Weider et al. May 2011 B2
7949534 Davis et al. May 2011 B2
7953679 Chidlovskii et al. May 2011 B2
7962179 Huang Jun 2011 B2
7974844 Sumita Jul 2011 B2
7974972 Cao Jul 2011 B2
7983478 Liu et al. Jul 2011 B2
7983915 Knight et al. Jul 2011 B2
7983917 Kennewick et al. Jul 2011 B2
7983919 Conkie Jul 2011 B2
7983997 Allen et al. Jul 2011 B2
7984062 Dunning et al. Jul 2011 B2
7986431 Emori et al. Jul 2011 B2
7987151 Schott et al. Jul 2011 B2
7987244 Lewis et al. Jul 2011 B1
7991614 Washio et al. Aug 2011 B2
7996228 Miller et al. Aug 2011 B2
7999669 Singh et al. Aug 2011 B2
8000453 Cooper et al. Aug 2011 B2
8005664 Hanumanthappa Aug 2011 B2
8005679 Jordan et al. Aug 2011 B2
8006180 Tunning et al. Aug 2011 B2
8015006 Kennewick et al. Sep 2011 B2
8015011 Nagano et al. Sep 2011 B2
8015144 Zheng et al. Sep 2011 B2
8019271 Izdepski Sep 2011 B1
8024195 Mozer et al. Sep 2011 B2
8027836 Baker et al. Sep 2011 B2
8032383 Bhardwaj et al. Oct 2011 B1
8036901 Mozer Oct 2011 B2
8037034 Plachta et al. Oct 2011 B2
8041557 Liu Oct 2011 B2
8041570 Mirkovic et al. Oct 2011 B2
8041611 Kleinrock et al. Oct 2011 B2
8046363 Cha et al. Oct 2011 B2
8050500 Batty et al. Nov 2011 B1
8055502 Clark et al. Nov 2011 B2
8055708 Chitsaz et al. Nov 2011 B2
8060824 Brownrigg et al. Nov 2011 B2
8065143 Yanagihara Nov 2011 B2
8065155 Gazdzinski Nov 2011 B1
8065156 Gazdzinski Nov 2011 B2
8069046 Kennewick et al. Nov 2011 B2
8069422 Sheshagiri et al. Nov 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8078473 Gazdzinski Dec 2011 B1
8082153 Coffman et al. Dec 2011 B2
8082498 Salamon et al. Dec 2011 B2
8090571 Elshishiny et al. Jan 2012 B2
8095364 Longe et al. Jan 2012 B2
8099289 Mozer et al. Jan 2012 B2
8099418 Inoue et al. Jan 2012 B2
8103510 Sato Jan 2012 B2
8107401 John et al. Jan 2012 B2
8112275 Kennewick et al. Feb 2012 B2
8112280 Lu Feb 2012 B2
8117037 Gazdzinski Feb 2012 B2
8122094 Kotab Feb 2012 B1
8122353 Bouta Feb 2012 B2
8131557 Davis et al. Mar 2012 B2
8135115 Hogg, Jr. et al. Mar 2012 B1
8138912 Singh et al. Mar 2012 B2
8140335 Kennewick et al. Mar 2012 B2
8140567 Padovitz et al. Mar 2012 B2
8150694 Kennewick et al. Apr 2012 B2
8150700 Shin et al. Apr 2012 B2
8155956 Cho et al. Apr 2012 B2
8156005 Vieri Apr 2012 B2
8165321 Paquier et al. Apr 2012 B2
8165886 Gagnon et al. Apr 2012 B1
8166019 Lee et al. Apr 2012 B1
8170790 Lee et al. May 2012 B2
8179370 Yamasani et al. May 2012 B1
8188856 Singh et al. May 2012 B2
8190359 Bourne May 2012 B2
8195467 Mozer et al. Jun 2012 B2
8200495 Braho et al. Jun 2012 B2
8204238 Mozer Jun 2012 B2
8205788 Gazdzinski et al. Jun 2012 B1
8209183 Patel et al. Jun 2012 B1
8219115 Nelissen Jul 2012 B1
8219406 Yu et al. Jul 2012 B2
8219407 Roy et al. Jul 2012 B1
8219608 alSafadi et al. Jul 2012 B2
8224649 Chaudhari et al. Jul 2012 B2
8239207 Seligman et al. Aug 2012 B2
8255217 Stent et al. Aug 2012 B2
8275621 Alewine et al. Sep 2012 B2
8285546 Reich Oct 2012 B2
8285551 Gazdzinski Oct 2012 B2
8285553 Gazdzinski Oct 2012 B2
8290777 Nguyen et al. Oct 2012 B1
8290778 Gazdzinski Oct 2012 B2
8290781 Gazdzinski Oct 2012 B2
8296146 Gazdzinski Oct 2012 B2
8296153 Gazdzinski Oct 2012 B2
8296383 Lindahl Oct 2012 B2
8301456 Gazdzinski Oct 2012 B2
8311834 Gazdzinski Nov 2012 B1
8332224 Di Cristo et al. Dec 2012 B2
8345665 Vieri et al. Jan 2013 B2
8352183 Thota et al. Jan 2013 B2
8352268 Naik et al. Jan 2013 B2
8352272 Rogers et al. Jan 2013 B2
8355919 Silverman et al. Jan 2013 B2
8359234 Vieri Jan 2013 B2
8370158 Gazdzinski Feb 2013 B2
8371503 Gazdzinski Feb 2013 B2
8374871 Ehsani et al. Feb 2013 B2
8380504 Peden et al. Feb 2013 B1
8381107 Rottler et al. Feb 2013 B2
8396714 Rogers et al. Mar 2013 B2
8423288 Stahl et al. Apr 2013 B2
8428758 Naik et al. Apr 2013 B2
8447612 Gazdzinski May 2013 B2
8489599 Bellotti Jul 2013 B2
8498857 Kopparapu et al. Jul 2013 B2
8521513 Millett et al. Aug 2013 B2
8583416 Huang et al. Nov 2013 B2
8595004 Koshinaka Nov 2013 B2
8620659 Di Cristo et al. Dec 2013 B2
8645137 Bellegarda et al. Feb 2014 B2
8654936 Eslambolchi et al. Feb 2014 B1
8655901 Li et al. Feb 2014 B1
8660849 Gruber et al. Feb 2014 B2
8660970 Fiedorowicz Feb 2014 B1
8760537 Johnson et al. Jun 2014 B2
20010005859 Okuyama et al. Jun 2001 A1
20010020259 Sekiguchi et al. Sep 2001 A1
20010027396 Sato Oct 2001 A1
20010029455 Chin et al. Oct 2001 A1
20010030660 Zainoulline Oct 2001 A1
20010032080 Fukada Oct 2001 A1
20010041021 Boyle et al. Nov 2001 A1
20010042107 Palm Nov 2001 A1
20010044724 Hon et al. Nov 2001 A1
20010047264 Roundtree Nov 2001 A1
20010056342 Piehn et al. Dec 2001 A1
20010056347 Chazan et al. Dec 2001 A1
20020001395 Davis et al. Jan 2002 A1
20020002039 Qureshey et al. Jan 2002 A1
20020002413 Tokue Jan 2002 A1
20020002461 Tetsumoto Jan 2002 A1
20020004703 Gaspard, II Jan 2002 A1
20020010581 Euler et al. Jan 2002 A1
20020010584 Schultz et al. Jan 2002 A1
20020010726 Rogson Jan 2002 A1
20020010798 Ben-Shaul et al. Jan 2002 A1
20020013707 Shaw et al. Jan 2002 A1
20020013784 Swanson Jan 2002 A1
20020013852 Janik Jan 2002 A1
20020015064 Robotham et al. Feb 2002 A1
20020021278 Hinckley et al. Feb 2002 A1
20020026315 Miranda Feb 2002 A1
20020026456 Bradford Feb 2002 A1
20020031254 Lantrip et al. Mar 2002 A1
20020031262 Imagawa et al. Mar 2002 A1
20020032564 Ehsani et al. Mar 2002 A1
20020032751 Bharadwaj Mar 2002 A1
20020035467 Morimoto et al. Mar 2002 A1
20020035469 Holzapfel Mar 2002 A1
20020035474 Alpdemir Mar 2002 A1
20020040359 Green et al. Apr 2002 A1
20020042707 Zhao et al. Apr 2002 A1
20020045438 Tagawa et al. Apr 2002 A1
20020045961 Gibbs et al. Apr 2002 A1
20020046025 Hain Apr 2002 A1
20020046315 Miller et al. Apr 2002 A1
20020052730 Nakao May 2002 A1
20020052740 Charlesworth et al. May 2002 A1
20020052747 Sarukkai May 2002 A1
20020054094 Matsuda May 2002 A1
20020055844 L'Esperance et al. May 2002 A1
20020055934 Lipscomb et al. May 2002 A1
20020059066 O'hagan May 2002 A1
20020059068 Rose et al. May 2002 A1
20020065659 Isono et al. May 2002 A1
20020067308 Robertson Jun 2002 A1
20020069063 Buchner et al. Jun 2002 A1
20020069220 Tran Jun 2002 A1
20020072816 Shdema et al. Jun 2002 A1
20020072908 Case et al. Jun 2002 A1
20020072914 Alshawi et al. Jun 2002 A1
20020077082 Cruickshank Jun 2002 A1
20020077817 Atal Jun 2002 A1
20020078041 Wu Jun 2002 A1
20020080163 Morey Jun 2002 A1
20020085037 Leavitt et al. Jul 2002 A1
20020087508 Hull et al. Jul 2002 A1
20020091511 Hellwig et al. Jul 2002 A1
20020095286 Ross et al. Jul 2002 A1
20020099547 Chu et al. Jul 2002 A1
20020099552 Rubin et al. Jul 2002 A1
20020103641 Kuo et al. Aug 2002 A1
20020103646 Kochanski et al. Aug 2002 A1
20020107684 Gao Aug 2002 A1
20020109709 Sagar Aug 2002 A1
20020111810 Khan et al. Aug 2002 A1
20020116082 Gudorf Aug 2002 A1
20020116171 Russell Aug 2002 A1
20020116185 Cooper et al. Aug 2002 A1
20020116189 Yeh et al. Aug 2002 A1
20020120697 Generous et al. Aug 2002 A1
20020120925 Logan Aug 2002 A1
20020122053 Dutta et al. Sep 2002 A1
20020123894 Woodward Sep 2002 A1
20020126097 Savolainen Sep 2002 A1
20020128827 Bu et al. Sep 2002 A1
20020128840 Hinde et al. Sep 2002 A1
20020133347 Schoneburg et al. Sep 2002 A1
20020133348 Pearson et al. Sep 2002 A1
20020135565 Gordon et al. Sep 2002 A1
20020135618 Maes et al. Sep 2002 A1
20020138254 Isaka et al. Sep 2002 A1
20020138265 Stevens et al. Sep 2002 A1
20020138270 Bellegarda et al. Sep 2002 A1
20020138616 Basson et al. Sep 2002 A1
20020140679 Wen Oct 2002 A1
20020143533 Lucas et al. Oct 2002 A1
20020143542 Eide Oct 2002 A1
20020143551 Sharma et al. Oct 2002 A1
20020143826 Day et al. Oct 2002 A1
20020151297 Remboski et al. Oct 2002 A1
20020152045 Dowling et al. Oct 2002 A1
20020152255 Smith et al. Oct 2002 A1
20020154160 Hosokawa Oct 2002 A1
20020161865 Nguyen Oct 2002 A1
20020163544 Baker et al. Nov 2002 A1
20020164000 Cohen et al. Nov 2002 A1
20020165918 Bettis Nov 2002 A1
20020169592 Aityan Nov 2002 A1
20020169605 Damiba et al. Nov 2002 A1
20020173273 Spurgat et al. Nov 2002 A1
20020173889 Odinak et al. Nov 2002 A1
20020173961 Guerra Nov 2002 A1
20020173962 Tang et al. Nov 2002 A1
20020173966 Henton Nov 2002 A1
20020177993 Veditz et al. Nov 2002 A1
20020184189 Hay et al. Dec 2002 A1
20020189426 Hirade et al. Dec 2002 A1
20020191029 Gillespie et al. Dec 2002 A1
20020193996 Squibbs et al. Dec 2002 A1
20020198714 Zhou Dec 2002 A1
20020198715 Belrose Dec 2002 A1
20030001881 Mannheimer et al. Jan 2003 A1
20030002632 Bhogal et al. Jan 2003 A1
20030013483 Ausems et al. Jan 2003 A1
20030016770 Trans et al. Jan 2003 A1
20030020760 Takatsu et al. Jan 2003 A1
20030026402 Clapper Feb 2003 A1
20030028380 Freeland et al. Feb 2003 A1
20030033153 Olson et al. Feb 2003 A1
20030033214 Mikkelsen et al. Feb 2003 A1
20030037073 Tokuda et al. Feb 2003 A1
20030037254 Fischer et al. Feb 2003 A1
20030040908 Yang et al. Feb 2003 A1
20030046401 Abbott et al. Mar 2003 A1
20030046434 Flanagin et al. Mar 2003 A1
20030050781 Tamura et al. Mar 2003 A1
20030051136 Curtis et al. Mar 2003 A1
20030061317 Brown et al. Mar 2003 A1
20030074198 Sussman Apr 2003 A1
20030074457 Kluth Apr 2003 A1
20030076301 Tsuk et al. Apr 2003 A1
20030078766 Appelt et al. Apr 2003 A1
20030078780 Kochanski et al. Apr 2003 A1
20030078969 Sprague et al. Apr 2003 A1
20030079024 Hough et al. Apr 2003 A1
20030079038 Robbin et al. Apr 2003 A1
20030080991 Crow et al. May 2003 A1
20030083878 Lee et al. May 2003 A1
20030083884 Odinak et al. May 2003 A1
20030088414 Huang et al. May 2003 A1
20030090467 Hohl et al. May 2003 A1
20030090474 Schaefer May 2003 A1
20030095096 Robbin et al. May 2003 A1
20030097210 Horst et al. May 2003 A1
20030097379 Ireton May 2003 A1
20030097408 Kageyama et al. May 2003 A1
20030098892 Hiipakka May 2003 A1
20030099335 Tanaka et al. May 2003 A1
20030101045 Moffatt et al. May 2003 A1
20030115060 Junqua et al. Jun 2003 A1
20030115064 Gusler et al. Jun 2003 A1
20030115186 Wilkinson et al. Jun 2003 A1
20030115552 Jahnke et al. Jun 2003 A1
20030117365 Shteyn Jun 2003 A1
20030120494 Jost et al. Jun 2003 A1
20030122787 Zimmerman et al. Jul 2003 A1
20030125927 Seme Jul 2003 A1
20030126559 Fuhrmann Jul 2003 A1
20030128819 Lee et al. Jul 2003 A1
20030133694 Yeo Jul 2003 A1
20030134678 Tanaka Jul 2003 A1
20030135740 Talmor et al. Jul 2003 A1
20030144846 Denenberg et al. Jul 2003 A1
20030145285 Miyahira et al. Jul 2003 A1
20030147512 Abburi Aug 2003 A1
20030149557 Cox et al. Aug 2003 A1
20030149567 Schmitz et al. Aug 2003 A1
20030149978 Plotnick Aug 2003 A1
20030152203 Berger et al. Aug 2003 A1
20030154081 Chu et al. Aug 2003 A1
20030157968 Boman et al. Aug 2003 A1
20030158735 Yamada et al. Aug 2003 A1
20030158737 Csicsatka Aug 2003 A1
20030160702 Tanaka Aug 2003 A1
20030163316 Addison et al. Aug 2003 A1
20030164848 Dutta et al. Sep 2003 A1
20030167167 Gong Sep 2003 A1
20030167318 Robbin et al. Sep 2003 A1
20030167335 Alexander Sep 2003 A1
20030171928 Falcon et al. Sep 2003 A1
20030171936 Sall et al. Sep 2003 A1
20030179222 Noma et al. Sep 2003 A1
20030182115 Malayath et al. Sep 2003 A1
20030187655 Dunsmuir Oct 2003 A1
20030187659 Cho et al. Oct 2003 A1
20030187844 Li et al. Oct 2003 A1
20030187925 Inala et al. Oct 2003 A1
20030188005 Yoneda et al. Oct 2003 A1
20030190074 Loudon et al. Oct 2003 A1
20030191645 Zhou Oct 2003 A1
20030193481 Sokolsky Oct 2003 A1
20030195741 Mani et al. Oct 2003 A1
20030197736 Murphy Oct 2003 A1
20030197744 Irvine Oct 2003 A1
20030200858 Xie Oct 2003 A1
20030204392 Finnigan et al. Oct 2003 A1
20030204492 Wolf et al. Oct 2003 A1
20030208756 Macrae et al. Nov 2003 A1
20030210266 Cragun et al. Nov 2003 A1
20030212961 Soin et al. Nov 2003 A1
20030214519 Smith et al. Nov 2003 A1
20030224760 Day Dec 2003 A1
20030228863 Vander Veen et al. Dec 2003 A1
20030228909 Tanaka et al. Dec 2003 A1
20030229490 Etter Dec 2003 A1
20030229616 Wong Dec 2003 A1
20030233230 Ammicht et al. Dec 2003 A1
20030233237 Garside et al. Dec 2003 A1
20030233240 Kaatrasalo Dec 2003 A1
20030234824 Litwiller Dec 2003 A1
20030236663 Dimitrova et al. Dec 2003 A1
20040001396 Keller et al. Jan 2004 A1
20040006467 Anisimovich et al. Jan 2004 A1
20040012556 Yong et al. Jan 2004 A1
20040013252 Craner Jan 2004 A1
20040021676 Chen et al. Feb 2004 A1
20040022373 Suder et al. Feb 2004 A1
20040023643 Vander Veen et al. Feb 2004 A1
20040030556 Bennett Feb 2004 A1
20040030560 Takami et al. Feb 2004 A1
20040030996 Van Liempd et al. Feb 2004 A1
20040036715 Warren Feb 2004 A1
20040048627 Olvera-Hernandez Mar 2004 A1
20040049391 Polanyi et al. Mar 2004 A1
20040051729 Borden, IV Mar 2004 A1
20040052338 Celi, Jr. et al. Mar 2004 A1
20040054533 Bellegarda Mar 2004 A1
20040054534 Junqua Mar 2004 A1
20040054535 Mackie et al. Mar 2004 A1
20040054541 Kryze et al. Mar 2004 A1
20040054690 Hillerbrand et al. Mar 2004 A1
20040055446 Robbin et al. Mar 2004 A1
20040056899 Sinclair, II et al. Mar 2004 A1
20040059577 Pickering Mar 2004 A1
20040059790 Austin-Lane et al. Mar 2004 A1
20040061717 Menon et al. Apr 2004 A1
20040062367 Fellenstein et al. Apr 2004 A1
20040064593 Sinclair et al. Apr 2004 A1
20040069122 Wilson Apr 2004 A1
20040070567 Longe et al. Apr 2004 A1
20040070612 Sinclair et al. Apr 2004 A1
20040073427 Moore Apr 2004 A1
20040073428 Zlokarnik et al. Apr 2004 A1
20040076086 Keller et al. Apr 2004 A1
20040078382 Mercer et al. Apr 2004 A1
20040085162 Agarwal et al. May 2004 A1
20040086120 Akins, III et al. May 2004 A1
20040093213 Conkie May 2004 A1
20040093215 Gupta et al. May 2004 A1
20040094018 Ueshima et al. May 2004 A1
20040096105 Holtsberg May 2004 A1
20040100479 Nakano et al. May 2004 A1
20040106432 Kanamori et al. Jun 2004 A1
20040107169 Lowe Jun 2004 A1
20040111266 Coorman et al. Jun 2004 A1
20040111332 Baar et al. Jun 2004 A1
20040114731 Gillett et al. Jun 2004 A1
20040122656 Abir Jun 2004 A1
20040124583 Landis Jul 2004 A1
20040125088 Zimmerman et al. Jul 2004 A1
20040125922 Specht Jul 2004 A1
20040127198 Roskind et al. Jul 2004 A1
20040127241 Shostak Jul 2004 A1
20040128137 Bush et al. Jul 2004 A1
20040133817 Choi Jul 2004 A1
20040135701 Yasuda et al. Jul 2004 A1
20040135774 La Monica Jul 2004 A1
20040136510 Vander Veen Jul 2004 A1
20040138869 Heinecke Jul 2004 A1
20040145607 Alderson Jul 2004 A1
20040153306 Tanner et al. Aug 2004 A1
20040160419 Padgitt Aug 2004 A1
20040162741 Flaxer et al. Aug 2004 A1
20040176958 Salmenkaita et al. Sep 2004 A1
20040177319 Horn Sep 2004 A1
20040178994 Kairls, Jr. Sep 2004 A1
20040183833 Chua Sep 2004 A1
20040186713 Gomas et al. Sep 2004 A1
20040186714 Baker Sep 2004 A1
20040186777 Margiloff et al. Sep 2004 A1
20040193398 Chu et al. Sep 2004 A1
20040193420 Kennewick et al. Sep 2004 A1
20040193421 Blass Sep 2004 A1
20040193426 Maddux et al. Sep 2004 A1
20040196256 Wobbrock et al. Oct 2004 A1
20040198436 Alden Oct 2004 A1
20040199375 Ehsani et al. Oct 2004 A1
20040199387 Wang et al. Oct 2004 A1
20040199663 Horvitz et al. Oct 2004 A1
20040203520 Schirtzinger et al. Oct 2004 A1
20040205151 Sprigg et al. Oct 2004 A1
20040205671 Sukehiro et al. Oct 2004 A1
20040208302 Urban et al. Oct 2004 A1
20040210634 Ferrer et al. Oct 2004 A1
20040215731 Tzann-en Szeto Oct 2004 A1
20040218451 Said et al. Nov 2004 A1
20040220798 Chi et al. Nov 2004 A1
20040223485 Arellano et al. Nov 2004 A1
20040223599 Bear et al. Nov 2004 A1
20040224638 Fadell et al. Nov 2004 A1
20040225650 Cooper et al. Nov 2004 A1
20040225746 Niell et al. Nov 2004 A1
20040236778 Junqua et al. Nov 2004 A1
20040242286 Benco et al. Dec 2004 A1
20040243412 Gupta et al. Dec 2004 A1
20040243419 Wang Dec 2004 A1
20040249629 Webster Dec 2004 A1
20040249667 Oon Dec 2004 A1
20040252119 Hunleth et al. Dec 2004 A1
20040252604 Johnson et al. Dec 2004 A1
20040252966 Holloway et al. Dec 2004 A1
20040254791 Coifman et al. Dec 2004 A1
20040254792 Busayapongchai et al. Dec 2004 A1
20040257432 Girish et al. Dec 2004 A1
20040259536 Keskar et al. Dec 2004 A1
20040263636 Cutler et al. Dec 2004 A1
20040267825 Novak et al. Dec 2004 A1
20040268262 Gupta et al. Dec 2004 A1
20050002507 Timmins et al. Jan 2005 A1
20050015254 Beaman Jan 2005 A1
20050015772 Saare et al. Jan 2005 A1
20050022114 Shanahan et al. Jan 2005 A1
20050024341 Gillespie et al. Feb 2005 A1
20050024345 Easily et al. Feb 2005 A1
20050027385 Yueh Feb 2005 A1
20050030175 Wolfe Feb 2005 A1
20050031106 Henderson Feb 2005 A1
20050033582 Gadd et al. Feb 2005 A1
20050033771 Schmitter et al. Feb 2005 A1
20050034164 Sano et al. Feb 2005 A1
20050043946 Ueyama et al. Feb 2005 A1
20050043949 Roth et al. Feb 2005 A1
20050044569 Marcus Feb 2005 A1
20050045373 Born Mar 2005 A1
20050049880 Roth et al. Mar 2005 A1
20050055403 Brittan Mar 2005 A1
20050058438 Hayashi Mar 2005 A1
20050060155 Chu et al. Mar 2005 A1
20050071165 Hofstader et al. Mar 2005 A1
20050071332 Ortega et al. Mar 2005 A1
20050071437 Bear et al. Mar 2005 A1
20050074113 Mathew et al. Apr 2005 A1
20050080613 Colledge et al. Apr 2005 A1
20050080625 Bennett et al. Apr 2005 A1
20050080632 Endo et al. Apr 2005 A1
20050080780 Colledge et al. Apr 2005 A1
20050086059 Bennett Apr 2005 A1
20050086605 Ferrer et al. Apr 2005 A1
20050091118 Fano Apr 2005 A1
20050099398 Garside et al. May 2005 A1
20050100214 Zhang et al. May 2005 A1
20050102144 Rapoport May 2005 A1
20050102614 Brockett et al. May 2005 A1
20050102625 Lee et al. May 2005 A1
20050105712 Williams et al. May 2005 A1
20050108001 Aarskog May 2005 A1
20050108017 Esser et al. May 2005 A1
20050108074 Bloechl et al. May 2005 A1
20050108338 Simske et al. May 2005 A1
20050108344 Tafoya et al. May 2005 A1
20050114124 Liu et al. May 2005 A1
20050114140 Brackett et al. May 2005 A1
20050119890 Hirose Jun 2005 A1
20050119897 Bennett et al. Jun 2005 A1
20050125216 Chitrapura et al. Jun 2005 A1
20050125235 Lazay et al. Jun 2005 A1
20050131951 Zhang et al. Jun 2005 A1
20050132301 Ikeda Jun 2005 A1
20050136949 Barnes, Jr. Jun 2005 A1
20050138305 Zellner Jun 2005 A1
20050140504 Marshall et al. Jun 2005 A1
20050143972 Gopalakrishnan et al. Jun 2005 A1
20050144003 Iso-Sipila Jun 2005 A1
20050144070 Cheshire Jun 2005 A1
20050144568 Gruen et al. Jun 2005 A1
20050148356 Ferguson et al. Jul 2005 A1
20050149214 Yoo et al. Jul 2005 A1
20050149330 Katae Jul 2005 A1
20050149332 Kuzunuki et al. Jul 2005 A1
20050149510 Shafrir Jul 2005 A1
20050152558 Van Tassel Jul 2005 A1
20050152602 Chen et al. Jul 2005 A1
20050154578 Tong et al. Jul 2005 A1
20050162395 Unruh Jul 2005 A1
20050165607 Di Fabbrizio et al. Jul 2005 A1
20050166153 Eytchison et al. Jul 2005 A1
20050177445 Church Aug 2005 A1
20050181770 Helferich Aug 2005 A1
20050182616 Kotipalli Aug 2005 A1
20050182627 Tanaka et al. Aug 2005 A1
20050182628 Choi Aug 2005 A1
20050182629 Coorman et al. Aug 2005 A1
20050182630 Miro et al. Aug 2005 A1
20050187773 Filoche et al. Aug 2005 A1
20050190970 Griffin Sep 2005 A1
20050192801 Lewis et al. Sep 2005 A1
20050195429 Archbold Sep 2005 A1
20050196733 Budra et al. Sep 2005 A1
20050201572 Lindahl et al. Sep 2005 A1
20050203747 Lecoeuche Sep 2005 A1
20050203991 Kawamura et al. Sep 2005 A1
20050209848 Ishii Sep 2005 A1
20050210394 Crandall et al. Sep 2005 A1
20050216331 Ahrens et al. Sep 2005 A1
20050222843 Kahn et al. Oct 2005 A1
20050222973 Kaiser Oct 2005 A1
20050228665 Kobayashi et al. Oct 2005 A1
20050245243 Zuniga Nov 2005 A1
20050246350 Canaran Nov 2005 A1
20050246365 Lowles et al. Nov 2005 A1
20050271216 Lashkari Dec 2005 A1
20050273337 Erell et al. Dec 2005 A1
20050273626 Pearson et al. Dec 2005 A1
20050278297 Nelson Dec 2005 A1
20050278643 Ukai et al. Dec 2005 A1
20050278647 Leavitt et al. Dec 2005 A1
20050283364 Longe et al. Dec 2005 A1
20050283726 Lunati Dec 2005 A1
20050288934 Omi Dec 2005 A1
20050288936 Busayapongchai et al. Dec 2005 A1
20050289463 Wu et al. Dec 2005 A1
20060001652 Chiu et al. Jan 2006 A1
20060004570 Ju et al. Jan 2006 A1
20060004744 Nevidomski et al. Jan 2006 A1
20060007174 Shen Jan 2006 A1
20060009973 Nguyen et al. Jan 2006 A1
20060013414 Shih Jan 2006 A1
20060015341 Baker Jan 2006 A1
20060015819 Hawkins et al. Jan 2006 A1
20060018446 Schmandt et al. Jan 2006 A1
20060018492 Chiu et al. Jan 2006 A1
20060025999 Feng et al. Feb 2006 A1
20060026233 Tenembaum et al. Feb 2006 A1
20060026521 Hotelling et al. Feb 2006 A1
20060026535 Hotelling et al. Feb 2006 A1
20060033724 Chaudhri et al. Feb 2006 A1
20060035632 Sorvari et al. Feb 2006 A1
20060041424 Todhunter et al. Feb 2006 A1
20060041431 Maes Feb 2006 A1
20060047632 Zhang Mar 2006 A1
20060050865 Kortum et al. Mar 2006 A1
20060053379 Henderson et al. Mar 2006 A1
20060058999 Barker et al. Mar 2006 A1
20060061488 Dunton Mar 2006 A1
20060067535 Culbert et al. Mar 2006 A1
20060067536 Culbert et al. Mar 2006 A1
20060069567 Tischer et al. Mar 2006 A1
20060072248 Watanabe et al. Apr 2006 A1
20060072716 Pham Apr 2006 A1
20060074628 Elbaz et al. Apr 2006 A1
20060074660 Waters et al. Apr 2006 A1
20060074674 Zhang et al. Apr 2006 A1
20060074750 Clark et al. Apr 2006 A1
20060074898 Gavalda et al. Apr 2006 A1
20060077055 Basir Apr 2006 A1
20060080098 Campbell Apr 2006 A1
20060085187 Barquilla Apr 2006 A1
20060085465 Nori et al. Apr 2006 A1
20060095265 Chu et al. May 2006 A1
20060095846 Nurmi May 2006 A1
20060095848 Naik May 2006 A1
20060100848 Cozzi et al. May 2006 A1
20060100849 Chan May 2006 A1
20060106592 Brockett et al. May 2006 A1
20060106594 Brockett et al. May 2006 A1
20060106595 Brockett et al. May 2006 A1
20060111906 Cross et al. May 2006 A1
20060111909 Maes et al. May 2006 A1
20060116874 Samuelsson et al. Jun 2006 A1
20060116877 Pickering et al. Jun 2006 A1
20060117002 Swen Jun 2006 A1
20060119582 Ng et al. Jun 2006 A1
20060122834 Bennett Jun 2006 A1
20060122836 Cross et al. Jun 2006 A1
20060129929 Weber et al. Jun 2006 A1
20060143007 Koh et al. Jun 2006 A1
20060143576 Gupta et al. Jun 2006 A1
20060148520 Baker et al. Jul 2006 A1
20060152496 Knaven Jul 2006 A1
20060153040 Girish et al. Jul 2006 A1
20060156252 Sheshagiri et al. Jul 2006 A1
20060156307 Kunjithapatham et al. Jul 2006 A1
20060161872 Rytivaara et al. Jul 2006 A1
20060167676 Plumb Jul 2006 A1
20060168150 Naik et al. Jul 2006 A1
20060168507 Hansen Jul 2006 A1
20060168539 Hawkins et al. Jul 2006 A1
20060172720 Islam et al. Aug 2006 A1
20060174207 Deshpande Aug 2006 A1
20060183466 Lee et al. Aug 2006 A1
20060184886 Chung et al. Aug 2006 A1
20060187073 Lin et al. Aug 2006 A1
20060190269 Tessel et al. Aug 2006 A1
20060190577 Yamada Aug 2006 A1
20060193518 Dong Aug 2006 A1
20060195206 Moon et al. Aug 2006 A1
20060195323 Monne et al. Aug 2006 A1
20060197753 Hotelling Sep 2006 A1
20060197755 Bawany Sep 2006 A1
20060200253 Hoffberg et al. Sep 2006 A1
20060200342 Corston-Oliver et al. Sep 2006 A1
20060200347 Kim et al. Sep 2006 A1
20060205432 Hawkins et al. Sep 2006 A1
20060206454 Forstall et al. Sep 2006 A1
20060212415 Backer et al. Sep 2006 A1
20060217967 Goertzen et al. Sep 2006 A1
20060218244 Rasmussen et al. Sep 2006 A1
20060221788 Lindahl et al. Oct 2006 A1
20060229870 Kobal Oct 2006 A1
20060229876 Aaron et al. Oct 2006 A1
20060234680 Doulton Oct 2006 A1
20060235550 Csicsatka et al. Oct 2006 A1
20060235700 Wong et al. Oct 2006 A1
20060235841 Betz et al. Oct 2006 A1
20060236262 Bathiche et al. Oct 2006 A1
20060239419 Joseph et al. Oct 2006 A1
20060239471 Mao et al. Oct 2006 A1
20060240866 Eilts et al. Oct 2006 A1
20060242190 Wnek Oct 2006 A1
20060246955 Nirhamo et al. Nov 2006 A1
20060247931 Caskey et al. Nov 2006 A1
20060252457 Schrager Nov 2006 A1
20060253210 Rosenberg Nov 2006 A1
20060253787 Fogg Nov 2006 A1
20060256934 Mazor Nov 2006 A1
20060262876 LaDue Nov 2006 A1
20060265208 Assadollahi Nov 2006 A1
20060265503 Jones et al. Nov 2006 A1
20060265648 Rainisto et al. Nov 2006 A1
20060274051 Longe et al. Dec 2006 A1
20060274905 Lindahl et al. Dec 2006 A1
20060277058 J″maev et al. Dec 2006 A1
20060282264 Denny et al. Dec 2006 A1
20060282415 Shibata et al. Dec 2006 A1
20060288024 Braica Dec 2006 A1
20060293876 Kamatani et al. Dec 2006 A1
20060293880 Elshishiny et al. Dec 2006 A1
20060293886 Odell et al. Dec 2006 A1
20070003026 Hodge et al. Jan 2007 A1
20070004451 Anderson Jan 2007 A1
20070005849 Oliver Jan 2007 A1
20070006098 Krumm et al. Jan 2007 A1
20070011154 Musgrove et al. Jan 2007 A1
20070016563 Omoigui Jan 2007 A1
20070016865 Johnson et al. Jan 2007 A1
20070021956 Qu et al. Jan 2007 A1
20070025704 Tsukazaki et al. Feb 2007 A1
20070026852 Logan et al. Feb 2007 A1
20070027732 Hudgens Feb 2007 A1
20070028009 Robbin et al. Feb 2007 A1
20070032247 Shaffer et al. Feb 2007 A1
20070033003 Morris Feb 2007 A1
20070036117 Taube et al. Feb 2007 A1
20070038436 Cristo et al. Feb 2007 A1
20070038609 Wu Feb 2007 A1
20070040813 Kushler et al. Feb 2007 A1
20070041361 Iso-Sipila Feb 2007 A1
20070043568 Dhanakshirur et al. Feb 2007 A1
20070044038 Horentrup et al. Feb 2007 A1
20070046641 Lim Mar 2007 A1
20070047719 Dhawan et al. Mar 2007 A1
20070050184 Drucker et al. Mar 2007 A1
20070050191 Weider et al. Mar 2007 A1
20070050393 Vogel et al. Mar 2007 A1
20070050712 Hull et al. Mar 2007 A1
20070052586 Horstemeyer Mar 2007 A1
20070055493 Lee Mar 2007 A1
20070055514 Beattie et al. Mar 2007 A1
20070055525 Kennewick et al. Mar 2007 A1
20070055529 Kanevsky et al. Mar 2007 A1
20070058832 Hug et al. Mar 2007 A1
20070061487 Moore et al. Mar 2007 A1
20070061712 Bodin et al. Mar 2007 A1
20070061754 Ardhanari et al. Mar 2007 A1
20070067173 Bellegarda Mar 2007 A1
20070067272 Flynt et al. Mar 2007 A1
20070073540 Hirakawa et al. Mar 2007 A1
20070073541 Tian Mar 2007 A1
20070080936 Tsuk et al. Apr 2007 A1
20070083467 Lindahl et al. Apr 2007 A1
20070083623 Nishimura et al. Apr 2007 A1
20070088556 Andrew Apr 2007 A1
20070089132 Qureshey et al. Apr 2007 A1
20070089135 Qureshey et al. Apr 2007 A1
20070093277 Cavacuiti et al. Apr 2007 A1
20070094026 Ativanichayaphong et al. Apr 2007 A1
20070098195 Holmes May 2007 A1
20070100206 Lin et al. May 2007 A1
20070100602 Kim May 2007 A1
20070100635 Mahajan et al. May 2007 A1
20070100790 Cheyer et al. May 2007 A1
20070100883 Rose et al. May 2007 A1
20070106512 Acero et al. May 2007 A1
20070106513 Boillot et al. May 2007 A1
20070106674 Agrawal et al. May 2007 A1
20070116195 Thompson et al. May 2007 A1
20070118377 Badino et al. May 2007 A1
20070118378 Skuratovsky May 2007 A1
20070121846 Altberg et al. May 2007 A1
20070124149 Shen et al. May 2007 A1
20070124676 Amundsen et al. May 2007 A1
20070127888 Hayashi et al. Jun 2007 A1
20070128777 Yin et al. Jun 2007 A1
20070129059 Nadarajah et al. Jun 2007 A1
20070130014 Altberg et al. Jun 2007 A1
20070130128 Garg et al. Jun 2007 A1
20070132738 Lowles et al. Jun 2007 A1
20070135949 Snover et al. Jun 2007 A1
20070136064 Carroll Jun 2007 A1
20070136778 Birger et al. Jun 2007 A1
20070143163 Weiss et al. Jun 2007 A1
20070152978 Kocienda et al. Jul 2007 A1
20070155346 Mijatovic et al. Jul 2007 A1
20070156410 Stohr et al. Jul 2007 A1
20070157268 Girish et al. Jul 2007 A1
20070162296 Altberg et al. Jul 2007 A1
20070162414 Horowitz et al. Jul 2007 A1
20070173233 Vander Veen et al. Jul 2007 A1
20070173267 Klassen et al. Jul 2007 A1
20070174188 Fish Jul 2007 A1
20070174396 Kumar et al. Jul 2007 A1
20070179776 Segond et al. Aug 2007 A1
20070179778 Gong et al. Aug 2007 A1
20070180383 Naik Aug 2007 A1
20070182595 Ghasabian Aug 2007 A1
20070185551 Meadows et al. Aug 2007 A1
20070185754 Schmidt Aug 2007 A1
20070185831 Churcher Aug 2007 A1
20070185917 Prahlad et al. Aug 2007 A1
20070188901 Heckerman et al. Aug 2007 A1
20070192027 Lee et al. Aug 2007 A1
20070192105 Neeracher et al. Aug 2007 A1
20070192293 Swen Aug 2007 A1
20070192403 Heine et al. Aug 2007 A1
20070192744 Reponen Aug 2007 A1
20070198269 Braho et al. Aug 2007 A1
20070198273 Hennecke Aug 2007 A1
20070198566 Sustik Aug 2007 A1
20070207785 Chatterjee et al. Sep 2007 A1
20070208569 Subramanian et al. Sep 2007 A1
20070208579 Peterson Sep 2007 A1
20070208726 Krishnaprasad et al. Sep 2007 A1
20070211071 Slotznick et al. Sep 2007 A1
20070213099 Bast Sep 2007 A1
20070213857 Bodin et al. Sep 2007 A1
20070219777 Chu et al. Sep 2007 A1
20070219803 Chiu et al. Sep 2007 A1
20070225980 Sumita Sep 2007 A1
20070225984 Milstein et al. Sep 2007 A1
20070226652 Kikuchi et al. Sep 2007 A1
20070229323 Plachta et al. Oct 2007 A1
20070233490 Yao Oct 2007 A1
20070233497 Paek et al. Oct 2007 A1
20070233725 Michmerhuizen et al. Oct 2007 A1
20070238520 Kacmarcik Oct 2007 A1
20070239429 Johnson et al. Oct 2007 A1
20070244702 Kahn et al. Oct 2007 A1
20070255435 Cohen et al. Nov 2007 A1
20070255979 Deily et al. Nov 2007 A1
20070258642 Thota Nov 2007 A1
20070260460 Hyatt Nov 2007 A1
20070260595 Beatty et al. Nov 2007 A1
20070260822 Adams Nov 2007 A1
20070261080 Saetti Nov 2007 A1
20070265831 Dinur et al. Nov 2007 A1
20070271104 McKay Nov 2007 A1
20070271510 Grigoriu et al. Nov 2007 A1
20070274468 Cai Nov 2007 A1
20070276651 Bliss et al. Nov 2007 A1
20070276714 Beringer Nov 2007 A1
20070276810 Rosen Nov 2007 A1
20070282595 Tunning et al. Dec 2007 A1
20070285958 Platchta et al. Dec 2007 A1
20070286363 Burg et al. Dec 2007 A1
20070288241 Cross et al. Dec 2007 A1
20070288449 Datta et al. Dec 2007 A1
20070291108 Huber et al. Dec 2007 A1
20070294077 Narayanan et al. Dec 2007 A1
20070294263 Punj et al. Dec 2007 A1
20070299664 Peters et al. Dec 2007 A1
20080010355 Vieri et al. Jan 2008 A1
20080012950 Lee et al. Jan 2008 A1
20080013751 Hiselius Jan 2008 A1
20080015864 Ross et al. Jan 2008 A1
20080016575 Vincent et al. Jan 2008 A1
20080021708 Bennett et al. Jan 2008 A1
20080022208 Morse Jan 2008 A1
20080031475 Goldstein Feb 2008 A1
20080034032 Healey et al. Feb 2008 A1
20080034044 Bhakta et al. Feb 2008 A1
20080040339 Zhou et al. Feb 2008 A1
20080042970 Liang et al. Feb 2008 A1
20080043936 Liebermann Feb 2008 A1
20080043943 Sipher et al. Feb 2008 A1
20080046239 Boo Feb 2008 A1
20080046422 Lee et al. Feb 2008 A1
20080046948 Verosub Feb 2008 A1
20080048908 Sato Feb 2008 A1
20080052063 Bennett et al. Feb 2008 A1
20080052073 Goto et al. Feb 2008 A1
20080052077 Bennett et al. Feb 2008 A1
20080056459 Vallier et al. Mar 2008 A1
20080056579 Guha Mar 2008 A1
20080057922 Kokes et al. Mar 2008 A1
20080059190 Chu et al. Mar 2008 A1
20080059200 Puli Mar 2008 A1
20080059876 Hantler et al. Mar 2008 A1
20080065382 Gerl et al. Mar 2008 A1
20080071529 Silverman et al. Mar 2008 A1
20080071544 Beaufays et al. Mar 2008 A1
20080075296 Lindahl et al. Mar 2008 A1
20080077310 Murlidar et al. Mar 2008 A1
20080077384 Agapi et al. Mar 2008 A1
20080077391 Chino et al. Mar 2008 A1
20080077393 Gao et al. Mar 2008 A1
20080077406 Ganong, III Mar 2008 A1
20080077859 Schabes et al. Mar 2008 A1
20080079566 Singh et al. Apr 2008 A1
20080082332 Mallett et al. Apr 2008 A1
20080082338 O'Neil et al. Apr 2008 A1
20080082390 Hawkins et al. Apr 2008 A1
20080082576 Bodin et al. Apr 2008 A1
20080082651 Singh et al. Apr 2008 A1
20080091406 Baldwin et al. Apr 2008 A1
20080091426 Rempel et al. Apr 2008 A1
20080091443 Strope et al. Apr 2008 A1
20080096726 Riley et al. Apr 2008 A1
20080097937 Hadjarian Apr 2008 A1
20080098302 Roose Apr 2008 A1
20080100579 Robinson et al. May 2008 A1
20080109222 Liu May 2008 A1
20080114480 Harb May 2008 A1
20080114598 Prieto et al. May 2008 A1
20080114841 Lambert May 2008 A1
20080118143 Gordon et al. May 2008 A1
20080120102 Rao May 2008 A1
20080120112 Jordan et al. May 2008 A1
20080120342 Reed et al. May 2008 A1
20080122796 Jobs et al. May 2008 A1
20080126077 Thorn May 2008 A1
20080126091 Clark et al. May 2008 A1
20080126100 Grost et al. May 2008 A1
20080129520 Lee Jun 2008 A1
20080130867 Bowen Jun 2008 A1
20080131006 Oliver Jun 2008 A1
20080133215 Sarukkai Jun 2008 A1
20080133228 Rao Jun 2008 A1
20080133241 Baker et al. Jun 2008 A1
20080140413 Millman et al. Jun 2008 A1
20080140416 Shostak Jun 2008 A1
20080140652 Millman et al. Jun 2008 A1
20080140657 Azvine et al. Jun 2008 A1
20080141180 Reed et al. Jun 2008 A1
20080146290 Sreeram et al. Jun 2008 A1
20080147408 Da Palma et al. Jun 2008 A1
20080147411 Dames et al. Jun 2008 A1
20080147874 Yoneda et al. Jun 2008 A1
20080154600 Tian et al. Jun 2008 A1
20080154612 Evermann et al. Jun 2008 A1
20080154828 Antebi et al. Jun 2008 A1
20080157867 Krah Jul 2008 A1
20080163131 Hirai et al. Jul 2008 A1
20080165144 Forstall et al. Jul 2008 A1
20080165980 Pavlovic et al. Jul 2008 A1
20080165994 Caren et al. Jul 2008 A1
20080167013 Novick et al. Jul 2008 A1
20080167858 Christie et al. Jul 2008 A1
20080168366 Kocienda et al. Jul 2008 A1
20080183473 Nagano et al. Jul 2008 A1
20080189099 Friedman et al. Aug 2008 A1
20080189106 Low et al. Aug 2008 A1
20080189110 Freeman et al. Aug 2008 A1
20080189114 Fail et al. Aug 2008 A1
20080189606 Rybak Aug 2008 A1
20080195312 Aaron et al. Aug 2008 A1
20080195601 Ntoulas et al. Aug 2008 A1
20080195940 Gail et al. Aug 2008 A1
20080200142 Abdel-Kader et al. Aug 2008 A1
20080201306 Cooper et al. Aug 2008 A1
20080201375 Khedouri et al. Aug 2008 A1
20080204379 Perez-Noguera Aug 2008 A1
20080207176 Brackbill et al. Aug 2008 A1
20080208585 Ativanichayaphong et al. Aug 2008 A1
20080208587 Ben-David et al. Aug 2008 A1
20080212796 Denda Sep 2008 A1
20080221866 Katragadda et al. Sep 2008 A1
20080221880 Cerra et al. Sep 2008 A1
20080221889 Cerra et al. Sep 2008 A1
20080221903 Kanevsky et al. Sep 2008 A1
20080222118 Scian et al. Sep 2008 A1
20080228463 Mod et al. Sep 2008 A1
20080228485 Owen Sep 2008 A1
20080228490 Fischer et al. Sep 2008 A1
20080228496 Yu et al. Sep 2008 A1
20080228928 Donelli et al. Sep 2008 A1
20080229185 Lynch Sep 2008 A1
20080235024 Goldberg et al. Sep 2008 A1
20080240569 Tonouchi Oct 2008 A1
20080242280 Shapiro et al. Oct 2008 A1
20080244390 Fux et al. Oct 2008 A1
20080247519 Abella et al. Oct 2008 A1
20080248797 Freeman et al. Oct 2008 A1
20080249770 Kim et al. Oct 2008 A1
20080253577 Eppolito Oct 2008 A1
20080255845 Bennett Oct 2008 A1
20080256613 Grover Oct 2008 A1
20080259022 Mansfield et al. Oct 2008 A1
20080262838 Nurminen et al. Oct 2008 A1
20080262846 Burns et al. Oct 2008 A1
20080270118 Kuo et al. Oct 2008 A1
20080270138 Knight et al. Oct 2008 A1
20080270139 Shi et al. Oct 2008 A1
20080270140 Hertz et al. Oct 2008 A1
20080277473 Kotlarsky et al. Nov 2008 A1
20080281510 Shahine Nov 2008 A1
20080292112 Valenzuela et al. Nov 2008 A1
20080294651 Masuyama et al. Nov 2008 A1
20080298766 Wen et al. Dec 2008 A1
20080299523 Chai et al. Dec 2008 A1
20080300871 Gilbert Dec 2008 A1
20080300878 Bennett Dec 2008 A1
20080306727 Thurmair et al. Dec 2008 A1
20080312909 Hermansen et al. Dec 2008 A1
20080313335 Jung et al. Dec 2008 A1
20080319753 Hancock Dec 2008 A1
20080319763 Di Fabbrizio et al. Dec 2008 A1
20090003115 Lindahl et al. Jan 2009 A1
20090005012 Van Heugten Jan 2009 A1
20090005891 Batson et al. Jan 2009 A1
20090006097 Etezadi et al. Jan 2009 A1
20090006099 Sharpe et al. Jan 2009 A1
20090006100 Badger et al. Jan 2009 A1
20090006343 Platt et al. Jan 2009 A1
20090006488 Lindahl et al. Jan 2009 A1
20090006671 Batson et al. Jan 2009 A1
20090007001 Morin et al. Jan 2009 A1
20090011709 Akasaka et al. Jan 2009 A1
20090012748 Beish et al. Jan 2009 A1
20090012775 El Hady et al. Jan 2009 A1
20090018828 Nakadai et al. Jan 2009 A1
20090018835 Cooper et al. Jan 2009 A1
20090018839 Cooper et al. Jan 2009 A1
20090018840 Lutz et al. Jan 2009 A1
20090022329 Mahowald Jan 2009 A1
20090028435 Wu et al. Jan 2009 A1
20090030800 Grois Jan 2009 A1
20090030978 Johnson et al. Jan 2009 A1
20090043583 Agapi et al. Feb 2009 A1
20090048821 Yam et al. Feb 2009 A1
20090048845 Burckart et al. Feb 2009 A1
20090049067 Murray Feb 2009 A1
20090055179 Cho et al. Feb 2009 A1
20090055186 Lance et al. Feb 2009 A1
20090058823 Kocienda Mar 2009 A1
20090060472 Bull et al. Mar 2009 A1
20090063974 Bull et al. Mar 2009 A1
20090064031 Bull et al. Mar 2009 A1
20090070097 Wu et al. Mar 2009 A1
20090070102 Maegawa Mar 2009 A1
20090070114 Staszak Mar 2009 A1
20090074214 Bradford et al. Mar 2009 A1
20090076792 Lawson-Tancred Mar 2009 A1
20090076796 Daraselia Mar 2009 A1
20090076819 Wouters et al. Mar 2009 A1
20090076821 Brenner et al. Mar 2009 A1
20090076825 Bradford et al. Mar 2009 A1
20090077165 Rhodes et al. Mar 2009 A1
20090083035 Huang et al. Mar 2009 A1
20090083036 Zhao et al. Mar 2009 A1
20090083037 Gleason et al. Mar 2009 A1
20090083047 Lindahl et al. Mar 2009 A1
20090092260 Powers Apr 2009 A1
20090092261 Bard Apr 2009 A1
20090092262 Costa et al. Apr 2009 A1
20090094029 Koch et al. Apr 2009 A1
20090094033 Mozer et al. Apr 2009 A1
20090100049 Cao Apr 2009 A1
20090100454 Weber Apr 2009 A1
20090106026 Ferrieux Apr 2009 A1
20090106376 Tom et al. Apr 2009 A1
20090106397 O'Keefe Apr 2009 A1
20090112572 Thorn Apr 2009 A1
20090112677 Rhett Apr 2009 A1
20090112892 Cardie et al. Apr 2009 A1
20090119587 Allen et al. May 2009 A1
20090123021 Jung et al. May 2009 A1
20090123071 Iwasaki May 2009 A1
20090125477 Lu et al. May 2009 A1
20090137286 Luke et al. May 2009 A1
20090138736 Chin May 2009 A1
20090138828 Schultz et al. May 2009 A1
20090144049 Haddad et al. Jun 2009 A1
20090144609 Liang et al. Jun 2009 A1
20090146848 Ghassabian Jun 2009 A1
20090150147 Jacoby et al. Jun 2009 A1
20090150156 Kennewick et al. Jun 2009 A1
20090154669 Wood et al. Jun 2009 A1
20090157382 Bar Jun 2009 A1
20090157384 Toutanova et al. Jun 2009 A1
20090157401 Bennett Jun 2009 A1
20090158423 Orlassino et al. Jun 2009 A1
20090164441 Cheyer Jun 2009 A1
20090164655 Pettersson et al. Jun 2009 A1
20090167508 Fadell et al. Jul 2009 A1
20090167509 Fadell et al. Jul 2009 A1
20090171578 Kim et al. Jul 2009 A1
20090171664 Kennewick et al. Jul 2009 A1
20090172542 Girish et al. Jul 2009 A1
20090174667 Kocienda et al. Jul 2009 A1
20090177461 Ehsani et al. Jul 2009 A1
20090182445 Girish et al. Jul 2009 A1
20090187577 Reznik et al. Jul 2009 A1
20090191895 Singh et al. Jul 2009 A1
20090192782 Drewes Jul 2009 A1
20090198497 Kwon Aug 2009 A1
20090204409 Mozer et al. Aug 2009 A1
20090213134 Stephanick et al. Aug 2009 A1
20090216704 Zheng et al. Aug 2009 A1
20090222488 Boerries et al. Sep 2009 A1
20090228273 Wang et al. Sep 2009 A1
20090228281 Singleton et al. Sep 2009 A1
20090234655 Kwon Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090240485 Dalal et al. Sep 2009 A1
20090241760 Georges Oct 2009 A1
20090247237 Mitileman et al. Oct 2009 A1
20090248182 Logan et al. Oct 2009 A1
20090249198 Davis et al. Oct 2009 A1
20090252350 Seguin Oct 2009 A1
20090253457 Seguin Oct 2009 A1
20090253463 Shin et al. Oct 2009 A1
20090254339 Seguin Oct 2009 A1
20090254345 Fleizach et al. Oct 2009 A1
20090271109 Lee et al. Oct 2009 A1
20090271175 Bodin et al. Oct 2009 A1
20090271176 Bodin et al. Oct 2009 A1
20090271178 Bodin et al. Oct 2009 A1
20090274315 Carnes et al. Nov 2009 A1
20090281789 Waibel et al. Nov 2009 A1
20090287583 Holmes Nov 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090296552 Hicks et al. Dec 2009 A1
20090299745 Kennewick et al. Dec 2009 A1
20090299849 Cao et al. Dec 2009 A1
20090300488 Salamon et al. Dec 2009 A1
20090304198 Herre et al. Dec 2009 A1
20090306967 Nicolov et al. Dec 2009 A1
20090306980 Shin Dec 2009 A1
20090306981 Cromack et al. Dec 2009 A1
20090306985 Roberts et al. Dec 2009 A1
20090306989 Kaji Dec 2009 A1
20090307162 Bui et al. Dec 2009 A1
20090307201 Dunning et al. Dec 2009 A1
20090313026 Coffman et al. Dec 2009 A1
20090313544 Wood et al. Dec 2009 A1
20090313564 Rottler et al. Dec 2009 A1
20090316943 Frigola Munoz et al. Dec 2009 A1
20090318198 Carroll Dec 2009 A1
20090319266 Brown et al. Dec 2009 A1
20090326936 Nagashima Dec 2009 A1
20090326938 Marila et al. Dec 2009 A1
20090326949 Douthitt et al. Dec 2009 A1
20090327977 Bachfischer et al. Dec 2009 A1
20100004931 Ma et al. Jan 2010 A1
20100005081 Bennett Jan 2010 A1
20100023318 Lemoine Jan 2010 A1
20100023320 Di Cristo et al. Jan 2010 A1
20100030928 Conroy et al. Feb 2010 A1
20100031143 Rao et al. Feb 2010 A1
20100036655 Cecil et al. Feb 2010 A1
20100036660 Bennett Feb 2010 A1
20100042400 Block et al. Feb 2010 A1
20100049514 Kennewick et al. Feb 2010 A1
20100054512 Solum Mar 2010 A1
20100057457 Ogata et al. Mar 2010 A1
20100057643 Yang Mar 2010 A1
20100060646 Unsal et al. Mar 2010 A1
20100063804 Sato et al. Mar 2010 A1
20100063825 Williams et al. Mar 2010 A1
20100063961 Guiheneuf et al. Mar 2010 A1
20100064113 Lindahl et al. Mar 2010 A1
20100067723 Bergmann et al. Mar 2010 A1
20100070899 Hunt et al. Mar 2010 A1
20100076760 Kraenzel et al. Mar 2010 A1
20100080398 Waldmann Apr 2010 A1
20100080470 Deluca et al. Apr 2010 A1
20100081456 Singh et al. Apr 2010 A1
20100081487 Chen et al. Apr 2010 A1
20100082327 Rogers et al. Apr 2010 A1
20100082328 Rogers et al. Apr 2010 A1
20100082329 Silverman et al. Apr 2010 A1
20100082346 Rogers et al. Apr 2010 A1
20100082347 Rogers et al. Apr 2010 A1
20100082348 Silverman et al. Apr 2010 A1
20100082349 Bellegarda et al. Apr 2010 A1
20100082970 Lindahl et al. Apr 2010 A1
20100086152 Rank et al. Apr 2010 A1
20100086153 Hagen et al. Apr 2010 A1
20100086156 Rank et al. Apr 2010 A1
20100088020 Sano et al. Apr 2010 A1
20100088093 Lee et al. Apr 2010 A1
20100088100 Lindahl Apr 2010 A1
20100100212 Lindahl et al. Apr 2010 A1
20100100384 Ju et al. Apr 2010 A1
20100103776 Chan Apr 2010 A1
20100106500 McKee et al. Apr 2010 A1
20100125460 Mellott et al. May 2010 A1
20100131273 Aley-Raz et al. May 2010 A1
20100138215 Williams Jun 2010 A1
20100138224 Bedingfield, Sr. Jun 2010 A1
20100138416 Bellotti Jun 2010 A1
20100142740 Roerup Jun 2010 A1
20100145694 Ju et al. Jun 2010 A1
20100145700 Kennewick et al. Jun 2010 A1
20100146442 Nagasaka et al. Jun 2010 A1
20100153115 Klee et al. Jun 2010 A1
20100161313 Karttunen Jun 2010 A1
20100161554 Datuashvili et al. Jun 2010 A1
20100164897 Morin et al. Jul 2010 A1
20100169075 Raffa et al. Jul 2010 A1
20100169097 Nachman et al. Jul 2010 A1
20100169098 Patch Jul 2010 A1
20100179991 Nachman et al. Jul 2010 A1
20100185448 Meisel Jul 2010 A1
20100204986 Kennewick et al. Aug 2010 A1
20100211199 Naik et al. Aug 2010 A1
20100217604 Baldwin et al. Aug 2010 A1
20100222098 Garg Sep 2010 A1
20100228540 Bennett Sep 2010 A1
20100228691 Yang et al. Sep 2010 A1
20100231474 Yamagajo et al. Sep 2010 A1
20100235167 Bourdon Sep 2010 A1
20100235341 Bennett Sep 2010 A1
20100250542 Fujimaki Sep 2010 A1
20100250599 Schmidt et al. Sep 2010 A1
20100257160 Cao Oct 2010 A1
20100257478 Longe et al. Oct 2010 A1
20100262599 Nitz Oct 2010 A1
20100268539 Xu et al. Oct 2010 A1
20100274753 Liberty et al. Oct 2010 A1
20100277579 Cho et al. Nov 2010 A1
20100278320 Arsenault et al. Nov 2010 A1
20100278453 King Nov 2010 A1
20100280983 Cho et al. Nov 2010 A1
20100281034 Petrou et al. Nov 2010 A1
20100286985 Kennewick et al. Nov 2010 A1
20100299133 Kopparapu et al. Nov 2010 A1
20100299138 Kim Nov 2010 A1
20100299142 Freeman et al. Nov 2010 A1
20100302056 Dutton et al. Dec 2010 A1
20100305807 Basir et al. Dec 2010 A1
20100305947 Schwarz et al. Dec 2010 A1
20100312547 Van Os et al. Dec 2010 A1
20100312566 Odinak et al. Dec 2010 A1
20100318576 Kim Dec 2010 A1
20100322438 Siotis Dec 2010 A1
20100324905 Kurzweil et al. Dec 2010 A1
20100325588 Reddy et al. Dec 2010 A1
20100332224 Mäkelä et al. Dec 2010 A1
20100332235 David Dec 2010 A1
20100332280 Bradley et al. Dec 2010 A1
20100332348 Cao Dec 2010 A1
20100332976 Fux et al. Dec 2010 A1
20110002487 Panther et al. Jan 2011 A1
20110010178 Lee et al. Jan 2011 A1
20110022292 Shen et al. Jan 2011 A1
20110022952 Wu et al. Jan 2011 A1
20110029616 Wang et al. Feb 2011 A1
20110033064 Johnson et al. Feb 2011 A1
20110038489 Visser et al. Feb 2011 A1
20110047072 Ciurea Feb 2011 A1
20110047161 Myaeng et al. Feb 2011 A1
20110054901 Qin et al. Mar 2011 A1
20110055256 Phillips et al. Mar 2011 A1
20110060584 Ferrucci et al. Mar 2011 A1
20110060587 Phillips et al. Mar 2011 A1
20110060807 Martin et al. Mar 2011 A1
20110066468 Huang et al. Mar 2011 A1
20110076994 Kim et al. Mar 2011 A1
20110082688 Kim et al. Apr 2011 A1
20110083079 Farrell et al. Apr 2011 A1
20110087491 Wittenstein et al. Apr 2011 A1
20110090078 Kim et al. Apr 2011 A1
20110093261 Angott Apr 2011 A1
20110093265 Stent et al. Apr 2011 A1
20110099000 Rai et al. Apr 2011 A1
20110103682 Chidlovskii et al. May 2011 A1
20110106736 Aharonson et al. May 2011 A1
20110110502 Daye et al. May 2011 A1
20110112827 Kennewick et al. May 2011 A1
20110112921 Kennewick et al. May 2011 A1
20110119049 Ylonen May 2011 A1
20110119051 Li et al. May 2011 A1
20110125540 Jang et al. May 2011 A1
20110130958 Stahl et al. Jun 2011 A1
20110131036 DiCristo et al. Jun 2011 A1
20110131038 Oyaizu et al. Jun 2011 A1
20110131045 Cristo et al. Jun 2011 A1
20110143811 Rodriguez Jun 2011 A1
20110144973 Bocchieri et al. Jun 2011 A1
20110144999 Jang et al. Jun 2011 A1
20110153209 Geelen Jun 2011 A1
20110153330 Yazdani et al. Jun 2011 A1
20110161076 Davis et al. Jun 2011 A1
20110161309 Lung et al. Jun 2011 A1
20110175810 Markovic et al. Jul 2011 A1
20110179002 Dumitru et al. Jul 2011 A1
20110179372 Moore et al. Jul 2011 A1
20110184721 Subramanian et al. Jul 2011 A1
20110184730 LeBeau et al. Jul 2011 A1
20110191271 Baker et al. Aug 2011 A1
20110191344 Jin et al. Aug 2011 A1
20110195758 Damale et al. Aug 2011 A1
20110201387 Paek et al. Aug 2011 A1
20110218855 Cao et al. Sep 2011 A1
20110224972 Millett et al. Sep 2011 A1
20110231182 Weider et al. Sep 2011 A1
20110231188 Kennewick et al. Sep 2011 A1
20110231474 Locker et al. Sep 2011 A1
20110238407 Kent Sep 2011 A1
20110238408 Larcheveque et al. Sep 2011 A1
20110260861 Singh et al. Oct 2011 A1
20110264643 Cao Oct 2011 A1
20110274303 Filson et al. Nov 2011 A1
20110276598 Kozempel Nov 2011 A1
20110279368 Klein et al. Nov 2011 A1
20110288861 Kurzweil et al. Nov 2011 A1
20110298585 Barry Dec 2011 A1
20110306426 Novak et al. Dec 2011 A1
20110314404 Kotler et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120011138 Dunning et al. Jan 2012 A1
20120016678 Gruber et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120022787 LeBeau et al. Jan 2012 A1
20120022857 Baldwin et al. Jan 2012 A1
20120022860 Lloyd et al. Jan 2012 A1
20120022868 LeBeau et al. Jan 2012 A1
20120022869 Lloyd et al. Jan 2012 A1
20120022870 Kristjansson et al. Jan 2012 A1
20120022872 Gruber et al. Jan 2012 A1
20120022874 Lloyd et al. Jan 2012 A1
20120022876 LeBeau et al. Jan 2012 A1
20120023088 Cheng et al. Jan 2012 A1
20120034904 LeBeau et al. Feb 2012 A1
20120035907 Lebeau et al. Feb 2012 A1
20120035908 Lebeau et al. Feb 2012 A1
20120035924 Jitkoff et al. Feb 2012 A1
20120035931 LeBeau et al. Feb 2012 A1
20120035932 Jitkoff et al. Feb 2012 A1
20120042343 Laligand et al. Feb 2012 A1
20120053815 Montanari et al. Mar 2012 A1
20120053945 Gupta et al. Mar 2012 A1
20120078627 Wagner Mar 2012 A1
20120082317 Pance et al. Apr 2012 A1
20120084086 Gilbert et al. Apr 2012 A1
20120108221 Thomas et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120136572 Norton May 2012 A1
20120137367 Dupont et al. May 2012 A1
20120149394 Singh et al. Jun 2012 A1
20120150580 Norton Jun 2012 A1
20120158293 Burnham Jun 2012 A1
20120158422 Burnham et al. Jun 2012 A1
20120173464 Tur et al. Jul 2012 A1
20120185237 Gajic et al. Jul 2012 A1
20120197998 Kessel et al. Aug 2012 A1
20120214141 Raya et al. Aug 2012 A1
20120214517 Singh et al. Aug 2012 A1
20120221339 Wang et al. Aug 2012 A1
20120232886 Capuozzo et al. Sep 2012 A1
20120245719 Story, Jr. et al. Sep 2012 A1
20120245944 Gruber et al. Sep 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120271625 Bernard Oct 2012 A1
20120271635 Ljolje Oct 2012 A1
20120271676 Aravamudan et al. Oct 2012 A1
20120284027 Mallett et al. Nov 2012 A1
20120290300 Lee et al. Nov 2012 A1
20120296649 Bansal et al. Nov 2012 A1
20120309363 Gruber et al. Dec 2012 A1
20120310642 Cao et al. Dec 2012 A1
20120310649 Cannistraro et al. Dec 2012 A1
20120310652 O'Sullivan Dec 2012 A1
20120311583 Gruber et al. Dec 2012 A1
20120311584 Gruber et al. Dec 2012 A1
20120311585 Gruber et al. Dec 2012 A1
20120330660 Jaiswal Dec 2012 A1
20120330661 Lindahl Dec 2012 A1
20130006633 Grokop et al. Jan 2013 A1
20130006638 Lindahl Jan 2013 A1
20130080167 Mozer Mar 2013 A1
20130110505 Gruber et al. May 2013 A1
20130110515 Guzzoni et al. May 2013 A1
20130110518 Gruber et al. May 2013 A1
20130110519 Cheyer et al. May 2013 A1
20130110520 Cheyer et al. May 2013 A1
20130111348 Gruber et al. May 2013 A1
20130111487 Cheyer et al. May 2013 A1
20130115927 Gruber et al. May 2013 A1
20130117022 Chen et al. May 2013 A1
20130176592 Sasaki Jul 2013 A1
20130185074 Gruber et al. Jul 2013 A1
20130185081 Cheyer et al. Jul 2013 A1
20130225128 Gomar Aug 2013 A1
20130238647 Thompson Sep 2013 A1
20130325443 Begeja et al. Dec 2013 A1
20140074472 Lin Mar 2014 A1
20140098247 Rao et al. Apr 2014 A1
20140152577 Yuen et al. Jun 2014 A1
20140203939 Harrington Jul 2014 A1
20140316585 Boesveld Oct 2014 A1
20150066516 Nishikawa Mar 2015 A1
20150148013 Baldwin May 2015 A1
20150170664 Doherty Jun 2015 A1
Foreign Referenced Citations (271)
Number Date Country
681573 Apr 1993 CH
1673939 Sep 2005 CN
1864204 Nov 2006 CN
3837590 May 1990 DE
4126902 Feb 1992 DE
4334773 Apr 1994 DE
4445023 Jun 1996 DE
10-2004-029203 Dec 2005 DE
19841541 Dec 2007 DE
0030390 Jun 1981 EP
0057514 Aug 1982 EP
0138061 Apr 1985 EP
0218859 Apr 1987 EP
0262938 Apr 1988 EP
0138061 Jun 1988 EP
0283995 Sep 1988 EP
0293259 Nov 1988 EP
0299572 Jan 1989 EP
0313975 May 1989 EP
0314908 May 1989 EP
0327408 Aug 1989 EP
0389271 Sep 1990 EP
0411675 Feb 1991 EP
0441089 Aug 1991 EP
0464712 Jan 1992 EP
0476972 Mar 1992 EP
0558312 Sep 1993 EP
0559349 Sep 1993 EP
0570660 Nov 1993 EP
0575146 Dec 1993 EP
0578604 Jan 1994 EP
0586996 Mar 1994 EP
0609030 Aug 1994 EP
0651543 May 1995 EP
0679005 Oct 1995 EP
0795811 Sep 1997 EP
0476972 May 1998 EP
0845894 Jun 1998 EP
0863453 Sep 1998 EP
0863469 Sep 1998 EP
0867860 Sep 1998 EP
0869697 Oct 1998 EP
0559349 Jan 1999 EP
0889626 Jan 1999 EP
0917077 May 1999 EP
0691023 Sep 1999 EP
0946032 Sep 1999 EP
0981236 Feb 2000 EP
0982732 Mar 2000 EP
0984430 Mar 2000 EP
1001588 May 2000 EP
1014277 Jun 2000 EP
1028425 Aug 2000 EP
1028426 Aug 2000 EP
1047251 Oct 2000 EP
1076302 Feb 2001 EP
1091615 Apr 2001 EP
1107229 Jun 2001 EP
1229496 Aug 2002 EP
1233600 Aug 2002 EP
1245023 Oct 2002 EP
1246075 Oct 2002 EP
1311102 May 2003 EP
1315084 May 2003 EP
1315086 May 2003 EP
1347361 Sep 2003 EP
1379061 Jan 2004 EP
1432219 Jun 2004 EP
1480421 Nov 2004 EP
1517228 Mar 2005 EP
1536612 Jun 2005 EP
1566948 Aug 2005 EP
1693829 Aug 2006 EP
1818786 Aug 2007 EP
1892700 Feb 2008 EP
1912205 Apr 2008 EP
1939860 Jul 2008 EP
0651543 Sep 2008 EP
1909263 Jan 2009 EP
1335620 Mar 2009 EP
2094032 Aug 2009 EP
2109295 Oct 2009 EP
1720375 Jul 2010 EP
2205010 Jul 2010 EP
2400373 Dec 2011 EP
2431842 Mar 2012 EP
2293667 Apr 1996 GB
2310559 Aug 1997 GB
2342802 Apr 2000 GB
2384399 Jul 2003 GB
2402855 Dec 2004 GB
2445436 Jul 2008 GB
FI20010199 Apr 2003 IT
57-41731 Mar 1982 JP
59-57336 Apr 1984 JP
63-280559 Nov 1988 JP
2-86397 Mar 1990 JP
2-153415 Jun 1990 JP
3-113578 May 1991 JP
4-236624 Aug 1992 JP
5-79951 Mar 1993 JP
5-165459 Jul 1993 JP
5-293126 Nov 1993 JP
6-19965 Jan 1994 JP
6-69954 Mar 1994 JP
6-274586 Sep 1994 JP
6-332617 Dec 1994 JP
7-199379 Aug 1995 JP
7-320051 Dec 1995 JP
7-320079 Dec 1995 JP
8-63330 Mar 1996 JP
8-185265 Jul 1996 JP
8-227341 Sep 1996 JP
9-18585 Jan 1997 JP
9-55792 Feb 1997 JP
9-259063 Oct 1997 JP
9-265457 Oct 1997 JP
10-105324 Apr 1998 JP
11-6743 Jan 1999 JP
11-45241 Feb 1999 JP
2000-99225 Apr 2000 JP
2000-134407 May 2000 JP
2000-339137 Dec 2000 JP
2001-56233 Feb 2001 JP
2001-125896 May 2001 JP
2001-148899 May 2001 JP
2002-14954 Jan 2002 JP
2002-024212 Jan 2002 JP
2002-82893 Mar 2002 JP
2002-281170 Sep 2002 JP
2003-44091 Feb 2003 JP
2003-84877 Mar 2003 JP
2003-517158 May 2003 JP
2003-233568 Aug 2003 JP
2004-48804 Feb 2004 JP
2004-505525 Feb 2004 JP
2004-86150 Mar 2004 JP
2004-152063 May 2004 JP
2005-86624 Mar 2005 JP
2005-92441 Apr 2005 JP
2005-181386 Jul 2005 JP
2005-221678 Aug 2005 JP
2005-311864 Nov 2005 JP
2006-118221 May 2006 JP
2006-146008 Jun 2006 JP
2007-4633 Jan 2007 JP
2008-26381 Feb 2008 JP
2008-97003 Apr 2008 JP
2008-236448 Oct 2008 JP
2008-271481 Nov 2008 JP
2009-036999 Feb 2009 JP
2009-98490 May 2009 JP
2009-110300 May 2009 JP
2009-294913 Dec 2009 JP
2010-535377 Nov 2010 JP
2011-250027 Dec 2011 JP
10-1999-0073234 Oct 1999 KR
10-2002-0069952 Sep 2002 KR
10-2003-0016993 Mar 2003 KR
1020040044632 May 2004 KR
10-2005-0083561 Aug 2005 KR
10-2006-0012730 Feb 2006 KR
10-2006-0073574 Jun 2006 KR
10-2007-0071675 Jul 2007 KR
10-0757496 Sep 2007 KR
10-0776800 Nov 2007 KR
10-0801227 Feb 2008 KR
10-0810500 Mar 2008 KR
10-2008-0049647 Jun 2008 KR
10-2008-0109322 Dec 2008 KR
10-2009-0001716 Jan 2009 KR
10-2009-0086805 Aug 2009 KR
10-0920267 Oct 2009 KR
10-2010-0119519 Nov 2010 KR
10-1032792 May 2011 KR
10-2011-0113414 Oct 2011 KR
101193668 Dec 2012 KR
1014847 Oct 2001 NL
1993020640 Oct 1993 WO
1994029788 Dec 1994 WO
1995002221 Jan 1995 WO
1995016950 Jun 1995 WO
1995017746 Jun 1995 WO
1997010586 Mar 1997 WO
1997026612 Jul 1997 WO
1997029614 Aug 1997 WO
1997038488 Oct 1997 WO
1998009270 Mar 1998 WO
1998033111 Jul 1998 WO
1998041956 Sep 1998 WO
1999001834 Jan 1999 WO
1999008238 Feb 1999 WO
1999016181 Apr 1999 WO
1999056227 Nov 1999 WO
2000019697 Apr 2000 WO
2000022820 Apr 2000 WO
2000029964 May 2000 WO
2000030070 May 2000 WO
2000038041 Jun 2000 WO
2000044173 Jul 2000 WO
2000060435 Oct 2000 WO
2000063766 Oct 2000 WO
2000068936 Nov 2000 WO
2001006489 Jan 2001 WO
2001030046 Apr 2001 WO
2001060435 Apr 2001 WO
2001033569 May 2001 WO
2001035391 May 2001 WO
2001046946 Jun 2001 WO
2001065413 Sep 2001 WO
2001067753 Sep 2001 WO
2002025610 Mar 2002 WO
2002031814 Apr 2002 WO
2002037469 May 2002 WO
2002073603 Sep 2002 WO
02071259 Sep 2002 WO
2003003152 Jan 2003 WO
2003003765 Jan 2003 WO
2003023786 Mar 2003 WO
2003041364 May 2003 WO
2003049494 Jun 2003 WO
2003056789 Jul 2003 WO
2003067202 Aug 2003 WO
2003084196 Oct 2003 WO
2004008801 Jan 2004 WO
2004025938 Mar 2004 WO
2004047415 Jun 2004 WO
2004055637 Jul 2004 WO
2004057486 Jul 2004 WO
2004061850 Jul 2004 WO
2004084413 Sep 2004 WO
2005003920 Jan 2005 WO
2005008505 Jan 2005 WO
2005008899 Jan 2005 WO
2005010725 Feb 2005 WO
2005027472 Mar 2005 WO
2005027485 Mar 2005 WO
2005031737 Apr 2005 WO
2005034085 Apr 2005 WO
2005041455 May 2005 WO
2005059895 Jun 2005 WO
2006020305 Feb 2006 WO
2006054724 May 2006 WO
2006056822 Jun 2006 WO
2006078246 Jul 2006 WO
2006101649 Sep 2006 WO
2006129967 Dec 2006 WO
2006133571 Dec 2006 WO
2007002753 Jan 2007 WO
2007080559 Jul 2007 WO
2007083894 Jul 2007 WO
2008071231 Jun 2008 WO
2008085742 Jul 2008 WO
2008109835 Sep 2008 WO
2008130095 Oct 2008 WO
2008140236 Nov 2008 WO
2008153639 Dec 2008 WO
2009009240 Jan 2009 WO
2009017280 Feb 2009 WO
2009156438 Dec 2009 WO
2010075623 Jul 2010 WO
2011057346 May 2011 WO
2011088053 Jul 2011 WO
2011116309 Sep 2011 WO
2011133543 Oct 2011 WO
2011150730 Dec 2011 WO
2011163350 Dec 2011 WO
2012154317 Nov 2012 WO
2012167168 Dec 2012 WO
2013048880 Apr 2013 WO
2015084659 Jun 2015 WO
Non-Patent Literature Citations (960)
Entry
“Top 10 Best Practices for Voice User Interface Design” available at <http://www.developer.com/voice/article.php/1567051/Top-10-Best-Practices-for-Voice-UserInterface-Design.htm>, Nov. 1, 2002, 4 pages.
Combined Search Report and Examination Report under Sections 17 and 18(3) received for GB Patent Application No. 1009318.5, dated Oct. 8, 2010, 5 pages.
Combined Search Report and Examination Report under Sections 17 and 18(3) received for GB Patent Application No. 1217449.6, dated Jan. 17, 2013, 6 pages.
Aikawa et al., “Speech Recognition Using Time-Warping Neural Networks”, Proceedings of the 1991, IEEE Workshop on Neural Networks for Signal Processing, 1991, 10 pages.
Bellegarda et al., “Performance of the IBM Large Vocabulary Continuous Speech Recognition System on the ARPA Wall Street Journal Task”, Signal Processing VII: Theories and Applications, European Association for Signal Processing, 1994, 4 pages.
Bellegarda et al., “The Metamorphic Algorithm: A Speaker Mapping Approach to Data Augmentation”, IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 8 pages.
Belvin et al., “Development of the HRL Route Navigation Dialogue System”, Proceedings of the First International Conference on Human Language Technology Research, Paper, 2001, 5 pages.
Berry et al., “PTIME: Personalized Assistance for Calendaring”, ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Jul. 2011, pp. 1-22.
Berry et al., “Task Management under Change and Uncertainty Constraint Solving Experience with the CALO Project”, Proceedings of CP'05 Workshop on Constraint Solving under Change, 2005, 5 pages.
Black et al., “Automatically Clustering Similar Units for Unit Selection in Speech Synthesis”, Proceedings of Eurospeech, vol. 2, 1997, 4 pages.
Blair et al., “An Evaluation of Retrieval Effectiveness for a Full-Text Document-Retrieval System”, Communications of the ACM, vol. 28, No. 3, Mar. 1985, 11 pages.
Bobrow et al., “Knowledge Representation for Syntactic/Semantic Processing”, From: AAA-80 Proceedings, Copyright 1980, AAAI, 1980, 8 pages.
Bouchou et al., “Using Transducers in Natural Language Database Query”, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, Jun. 1999, 17 pages.
Bratt et al., “The SRI Telephone-Based ATIS System”, Proceedings of ARPA Workshop on Spoken Language Technology, 1995, 3 pages.
Briner, L. L., “Identifying Keywords in Text Data Processing”, In Zelkowitz, Marvin V., ED, Directions and Challenges, 15th Annual Technical Symposium, Gaithersbury, Maryland, Jun. 17, 1976, 7 pages.
Bulyko et al., “Error-Correction Detection and Response Generation in a Spoken Dialogue System”, Speech Communication, vol. 45, 2005, pp. 271-288.
Bulyko et al., “Joint Prosody Prediction and Unit Selection for Concatenative Speech Synthesis”, Electrical Engineering Department, University of Washington, Seattle, 2001, 4 pages.
Burke et al., “Question Answering from Frequently Asked Question Files”, AI Magazine, vol. 18, No. 2, 1997, 10 pages.
Burns et al., “Development of a Web-Based Intelligent Agent for the Fashion Selection and Purchasing Process via Electronic Commerce”, Proceedings of the Americas Conference on Information System (AMCIS), Dec. 31, 1998, 4 pages.
Bussey, et al., “Service Architecture, Prototype Description and Network Implications of a Personalized Information Grazing Service”, INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Available online at <http://slrohall.com/oublications/>, Jun. 1990, 8 pages.
Bussler et al., “Web Service Execution Environment (WSMX)”, retrieved from Internet on Sep. 17, 2012, available at <http://www.w3.org/Submission/WSMX>, Jun. 3, 2005, 29 pages.
Butcher, Mike, “EVI Arrives in Town to go Toe-to-Toe with Siri”, TechCrunch, Jan. 23, 2012, 2 pages.
Buzo et al., “Speech Coding Based Upon Vector Quantization”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. Assp-28, No. 5, Oct. 1980, 13 pages.
Caminero-Gil et al., “Data-Driven Discourse Modeling for Semantic Interpretation”, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, May 1996, 6 pages.
Car Working Group, “Hands-Free Profile 1.5 HFP1.5_SPEC”, Bluetooth Doc, available at <www.bluetooth.org>, Nov. 25, 2005, 93 pages.
Carter, D., “Lexical Acquisition in the Core Language Engine”, Proceedings of the Fourth Conference of the European Chapter of the Association for Computational Linguistics, 1989, 8 pages.
Carter et al., “The Speech-Language Interface in the Spoken Language Translator”, SRI International, Nov. 23, 1994, 9 pages.
Cawley, Gavin C. “The Application of Neural Networks to Phonetic Modelling”, PhD. Thesis, University of Essex, Mar. 1996, 13 pages.
Chai et al., “Comparative Evaluation of a Natural Language Dialog Based System and a Menu Driven System for Information Access: A Case Study”, Proceedings of the International Conference on Multimedia Information Retrieval (RIAO), Paris, Apr. 2000, 11 pages.
Chang et al., “A Segment-Based Speech Recognition System for Isolated Mandarin Syllables”, Proceedings TEN CON '93, IEEE Region 10 Conference on Computer, Communication, Control and Power Engineering, vol. 3, Oct. 1993, 6 pages.
Chen, Yi, “Multimedia Siri Finds and Plays Whatever You Ask for”, PSFK Report, Feb. 9, 2012, 9 pages.
Cheyer, Adam, “A Perspective on AI & Agent Technologies for SCM”, VerticalNet Presentation, 2001, 22 pages.
Cheyer, Adam, “About Adam Cheyer”, available at <http://www.adam.cheyer.com/about.html>, retrieved on Sep. 17, 2012, 2 pages.
Cheyer et al., “Multimodal Maps: An Agent-Based Approach”, International Conference on Co-operative Multimodal Communication, 1995, 15 pages.
Cheyer et al., “Spoken Language and Multimodal Applications for Electronic Realties”, Virtual Reality, vol. 3, 1999, pp. 1-15.
Cheyer et al., “The Open Agent Architecture”, Autonomous Agents and Multi-Agent Systems, vol. 4, Mar. 1, 2001, 6 pages.
Cheyer et al., “The Open Agent Architecture: Building Communities of Distributed Software Agents”, Artificial Intelligence Center, SRI International, Power Point Presentation, Available online at <http://www.ai.sri.com/-oaa/>, retrieved on Feb. 21, 1998, 25 pages.
Codd, E. F., “Databases: Improving Usability and Responsiveness—How About Recently”, Copyright 1978, Academic Press, Inc., 1978, 28 pages.
Cohen et al., “An Open Agent Architecture”, available at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.480>, 1994, 8 pages.
Cohen et al., “Voice User Interface Design,”, Excerpts from Chapter 1 and Chapter 10, 2004, 36 pages.
Coles et al., “Chemistry Question-Answering”, SRI International, Jun. 1969, 15 pages.
Coles et al., “Techniques for Information Retrieval Using an Inferential Question-Answering System with Natural-Language Input”, SRI International, Nov. 1972, 198 Pages.
Coles et al., “The Application of Theorem Proving to Information Retrieval”, SRI International, Jan. 1971, 21 pages.
Conklin, Jeff, “Hypertext: An Introduction and Survey”, Computer Magazine, Sep. 1987, 25 pages.
Connolly et al., “Fast Algorithms for Complex Matrix Multiplication Using Surrogates”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 6, Jun. 1989, 13 pages.
Constantinides et al., “A Schema Based Approach to Dialog Control”, Proceedings of the International Conference on Spoken Language Processing, 1998, 4 pages.
Cox et al., “Speech and Language Processing for Next-Millennium Communications Services”, Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 24 pages.
Craig et al., “Deacon: Direct English Access and Control”, AFIPS Conference Proceedings, vol. 19, San Francisco, Nov. 1966, 18 pages.
Cutkosky et al., “PACT: An Experiment in Integrating Concurrent Engineering Systems”, Journal & Magazines, Computer, vol. 26, No. 1, Jan. 1993, 14 pages.
Dar et al., “DTL's DataSpot: Database Exploration Using Plain Language”, Proceedings of the 24th VLDB Conference, New York, 1998, 5 pages.
Gruber, Tom, “2021: Mass Collaboration and the Really New Economy”, TNTY Futures, vol. 1, No. 6, Available online at <http://tomgruber.org/writing/tnty2001.htm>, Aug. 2001, 5 pages.
Gruber, Tom, “Collaborating Around Shared Content on the WWW, W3C Workshop on WWW and Collaboration”, available at <http://www.w3.org/Collaboration/Workshop/Proceedings/P9.html>, Sep. 1995, 1 page.
Gruber, Tom, “Collective Knowledge Systems: Where the Social Web Meets the Semantic Web”, Web Semantics: Science, Services and Agents on the World Wide Web, 2007, pp. 1-19.
Gruber, Tom, “Despite Our Best Efforts, Ontologies are not the Problem”, AAAI Spring Symposium, Available online at <http://tomgruber.org/writing/aaai-ss08.htm>, Mar. 2008, pp. 1-40.
Gruber, Tom, “Enterprise Collaboration Management with Intraspect”, Intraspect Technical White Paper, Jul. 2001, pp. 1-24.
Gruber, Tom, “Every Ontology is a Treaty—A Social Agreement—Among People with Some Common Motive in Sharing”, Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, No. 3, 2004, pp. 1-5.
Gruber, Tom, “Helping Organizations Collaborate, Communicate, and Learn”, Presentation to NASA Ames Research, Available online at <http://tomgruber.org/writing/organizational-intelligence-talk.htm>, Mar.-Oct. 2003, 30 pages.
Gruber, Tom, “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience”, Presentation at Semantic Technologies Conference, Available online at <http://tomgruber.org/writing/semtech08.htm>, May 20, 2008, pp. 1-40.
Gruber, Tom, “It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing”, Proceedings of the International CIDOC CRM Symposium, Available online at <http://tomgruber.org/writing/cidoc-ontology.htm>, Mar. 26, 2003, 21 pages.
Gruber, Tom, “Ontologies, Web 2.0 and Beyond”, Ontology Summit, Available online at <http://tomgruber.org/writing/ontolog-social-web-keynote.htm>, Apr. 2007, 17 pages.
Gruber, Tom, “Ontology of Folksonomy: A Mash-Up of Apples and Oranges”, Int'l Journal on Semantic Web & Information Systems, vol. 3, No. 2, 2007, 7 pages.
Gruber, Tom, “Siri, A Virtual Personal Assistant-Bringing Intelligence to the Interface”, Semantic Technologies Conference, Jun. 16, 2009, 21 pages.
Gruber, Tom, “TagOntology”, Presentation to Tag Camp, Oct. 29, 2005, 20 pages.
Gruber, Tom, “Where the Social Web Meets the Semantic Web”, Presentation at the 5th International Semantic Web Conference, Nov. 2006, 38 pages.
Guida et al., “NLI: A Robust Interface for Natural Language Person-Machine Communication”, International Journal of Man-Machine Studies, vol. 17, 1982, 17 pages.
Guzzoni et al., “A Unified Platform for Building Intelligent Web Interaction Assistants”, Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Computer Society, 2006, 4 pages.
Guzzoni et al., “Active, A Platform for Building Intelligent Operating Rooms”, Surgetica 2007 Computer-Aided Medical Interventions: Tools and Applications, 2007, pp. 191-198.
Guzzoni et al., “Active, A platform for Building Intelligent Software”, Computational Intelligence, available at <http://www.informatik.uni-trier.del-ley/pers/hd/g/Guzzoni:Didier >, 2006, 5 pages.
Guzzoni et al., “Active, A Tool for Building Intelligent User Interfaces”, ASC 2007, Palma de Mallorca, Aug. 2007, 6 pages.
Guzzoni, D., “Active: A Unified Platform for Building Intelligent Assistant Applications”, Oct. 25, 2007, 262 pages.
Guzzoni et al., “Many Robots Make Short Work”, AAAI Robot Contest, SRI International, 1996, 9 pages.
Guzzoni et al., “Modeling Human-Agent Interaction with Active Ontologies”, AAAI Spring Symposium, Interaction Challenges for Intelligent Assistants, Stanford University, Palo Alto, California, 2007, 8 pages.
Haas et al., “An Approach to Acquiring and Applying Knowledge”, SRI international, Nov. 1980, 22 pages.
Hadidi et al., “Student's Acceptance of Web-Based Course Offerings: An Empirical Assessment”, Proceedings of the Americas Conference on Information Systems(AMCIS), 1998, 4 pages.
Hardwar, Devindra, “Driving App Waze Builds its own Siri for Hands-Free Voice Control”, Available online at <http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/>, retrieved on Feb. 9, 2012, 4 pages.
Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform”, In Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, 34 pages.
Hawkins et al., “Hierarchical Temporal Memory: Concepts, Theory and Terminology”, Numenta, Inc., Mar. 27, 2007, 20 pages.
He et al., “Personal Security Agent: KQML-Based PKI”, The Robotics Institute, Carnegie-Mellon University, Paper, 1997, 14 pages.
Helm et al., “Building Visual Language Parsers”, Proceedings of CHI'91, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1991, 8 pages.
Hendrix et al., “Developing a Natural Language Interface to Complex Data”, ACM Transactions on Database Systems, vol. 3, No. 2, Jun. 1978, pp. 105-147.
Hendrix, Gary G., “Human Engineering for Applied Natural Language Processing”, SRI International, Technical Note 139, Feb. 1977, 27 pages.
Hendrix, Gary G., “Klaus: A System for Managing Information and Computational Resources”, SRI International, Technical Note 230, Oct. 1980, 34 pages.
Hendrix, Gary G., “Lifer: A Natural Language Interface Facility”, SRI Stanford Research Institute, Technical Note 135, Dec. 1976, 9 pages.
Hendrix, Gary G., “Natural-Language Interface”, American Journal of Computational Linguistics, vol. 8, No. 2, Apr.-Jun. 1982, pp. 56-61.
Hendrix, Gary G., “The Lifer Manual: A Guide to Building Practical Natural Language Interfaces”, SRI International, Technical Note 138, Feb. 1977, 76 pages.
Hendrix et al., “Transportable Natural-Language Interfaces to Databases”, SRI International, Technical Note 228, Apr. 30, 1981, 18 pages.
Hermansky, H., “Perceptual Linear Predictive (PLP) Analysis of Speech”, Journal of the Acoustical Society of America, vol. 87, No. 4, Apr. 1990, 15 pages.
Hermansky, H., “Recognition of Speech in Additive and Convolutional Noise Based on Rasta Spectral Processing”, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'93), Apr. 1993, 4 pages.
Hirschman et al., “Multi-Site Data Collection and Evaluation in Spoken Language Understanding”, Proceedings of the Workshop on Human Language Technology, 1993, pp. 19-24.
Hobbs et al., “Fastus: A System for Extracting Information from Natural-Language Text”, SRI International, Technical Note 519, Nov. 19, 1992, 26 pages.
Hobbs et al., “Fastus: Extracting Information from Natural-Language Texts”, SRI International, 1992, pp. 1-22.
Hobbs, Jerry R., “Sublanguage and Knowledge”, SRI International, Technical Note 329, Jun. 1984, 30 pages.
Hodjat et al., “Iterative Statistical Language Model Generation for use with an Agent-Oriented Natural Language Interface”, Proceedings of HCI International, vol. 4, 2003, pp. 1422-1426.
Hoehfeld et al., “Learning with Limited Numerical Precision Using the Cascade-Correlation Algorithm”, IEEE Transactions on Neural Networks, vol. 3, No. 4, Jul. 1992, 18 pages.
Holmes, J. N., “Speech Synthesis and Recognition-Stochastic Models for Word Recognition”, Published by Chapman & Hall, London, ISBN 0 412 534304, 1998, 7 pages.
Hon et al., “CMU Robust Vocabulary-Independent Speech Recognition System”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-91), Apr. 1991, 4 pages.
Horvitz et al., “Handsfree Decision Support: Toward a Non-invasive Human-Computer Interface”, Proceedings of the Symposium on Computer Applications in Medical Care, IEEE Computer Society Press, 1995, p. 955.
Horvitz et al., “In Pursuit of Effective Handsfree Decision Support: Coupling Bayesian Inference, Speech Understanding, and User Models”, 1995, 8 pages.
Huang et al., “The SPHINX-II Speech Recognition System: An Overview”, Computer, Speech and Language, vol. 7, No. 2, 1993, 14 pages.
IBM, “Speech Editor”, IBM Technical Disclosure Bulletin, vol. 29, No. 10, Mar. 10, 1987, 3 pages.
Markel et al., “Linear Prediction of Speech”, Springer-Verlag, Berlin, Heidelberg, New York, 1976, 12 pages.
Martin et al., “Building and Using Practical Agent Applications”, SRI International, PAAM Tutorial, 1998, 78 pages.
Martin et al., “Building Distributed Software Systems with the Open Agent Architecture”, Proceedings of the Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Mar. 1998, pp. 355-376.
Martin et al., “Development Tools for the Open Agent Architecture”, Proceedings of the International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Apr. 1996, pp. 1-17.
Martin et al., “Information Brokering in an Agent Architecture”, Proceedings of the Second International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Apr. 1997, pp. 1-20.
Martin et al., “Transportability and Generality in a Natural-Language Interface System”, Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Technical Note 293, Aug. 1983, 21 pages.
Martin et al., “The Open Agent Architecture: A Framework for Building Distributed Software Systems”, Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, available at <http://adam.cheyer.com/papers/oaa.pdf>>, retrieved from internet on Jan.-Mar. 1999.
Matiasek et al., “Tamic-P: A System for NL Access to Social Insurance Database”, 4th International Conference on Applications of Natural Language to Information Systems, Jun. 1999, 7 pages.
McGuire et al., “SHADE: Technology for Knowledge-Based Collaborative Engineering”, Journal of Concurrent Engineering Applications and Research (CERA), 1993, 18 pages.
Meng et al., “Wheels: A Conversational System in the Automobile Classified Domain”, Proceedings of Fourth International Conference on Spoken Language, ICSLP 96, vol. 1, Oct. 1996, 4 pages.
Michos et al., “Towards an Adaptive Natural Language Interface to Command Languages”, Natural Language Engineering, vol. 2, No. 3, 1996, pp. 191-209.
Milstead et al., “Metadata: Cataloging by Any Other Name”, available at <http://www.iicm.tugraz.at/thesis/cguetl_diss/literatur/Kapitel06/References/Milstead_et_al._999/metadata.html>, Jan. 1999, 18 pages.
Milward et al., “D2.2: Dynamic Multimodal Interface Reconfiguration, Talk and Look: Tools for Ambient Linguistic Knowledge”, available at <http://www.ihmc.us/users/nblaylock!Pubs/Files/talk d2.2.pdf>, Aug. 8, 2006, 69 pages.
Minker et al., “Hidden Understanding Models for Machine Translation”, Proceedings of ETRW on Interactive Dialogue in Multi-Modal Systems, Jun. 1999, pp. 1-4.
Mitra et al., “A Graph-Oriented Model for Articulation of Ontology Interdependencies”, Advances in Database Technology, Lecture Notes in Computer Science, vol. 1777, 2000, pp. 1-15.
Modi et al., “CMRadar: A Personal Assistant Agent for Calendar Management”, AAAI, Intelligent Systems Demonstrations, 2004, pp. 1020-1021.
Moore et al., “Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing for ATIS”, SRI International, Artificial Intelligence Center, 1995, 4 pages.
Moore, Robert C., “Handling Complex Queries in a Distributed Data Base”, SRI International, Technical Note 170, Oct. 8, 1979, 38 pages.
Moore, Robert C., “Practical Natural-Language Processing by Computer”, SRI International, Technical Note 251, Oct. 1981, 34 pages.
Moore et al., “SRI's Experience with the ATIS Evaluation”, Proceedings of the Workshop on Speech and Natural Language, Jun. 1990, pp. 147-148.
Moore et al., “The Information Warfare Advisor: An Architecture for Interacting with Intelligent Agents Across the Web”, Proceedings of Americas Conference on Information Systems (AMCIS), Dec. 31, 1998, pp. 186-188.
Moore, Robert C., “The Role of Logic in Knowledge Representation and Commonsense Reasoning”, SRI International, Technical Note 264, Jun. 1982, 19 pages.
Moore, Robert C., “Using Natural-Language Knowledge Sources in Speech Recognition”, SRI International, Artificial Intelligence Center, Jan. 1999, pp. 1-24.
Moran et al., “Intelligent Agent-Based User Interfaces”, Proceedings of International Workshop on Human Interface Technology, Oct. 1995, pp. 1-4.
Moran et al., “Multimodal User Interfaces in the Open Agent Architecture”, International Conference on Intelligent User Interfaces (IUI97), 1997, 8 pages.
Moran, Douglas B., “Quantifier Scoping in the SRI Core Language Engine”, Proceedings of the 26th Annual Meeting on Association for Computational Linguistics, 1988, pp. 33-40.
Morgan, B., “Business Objects (Business Objects for Windows) Business Objects Inc.”, DBMS, vol. 5, No. 10, Sep. 1992, 3 pages.
Motro, Amihai, “Flex: A Tolerant and Cooperative User Interface to Databases”, IEEE Transactions on Knowledge and Data Engineering, vol. 2, No. 2, Jun. 1990, pp. 231-246.
Mountford et al., “Talking and Listening to Computers”, The Art of Human-Computer Interface Design, Apple Computer, Inc., Addison-Wesley Publishing Company, Inc., 1990, 17 pages.
Mozer, Michael C., “An Intelligent Environment must be Adaptive”, IEEE Intelligent Systems, 1999, pp. 11-13.
Murty et al., “Combining Evidence from Residual Phase and MFCC Features for Speaker Recognition”, IEEE Signal Processing Letters, vol. 13, No. 1, Jan. 2006, 4 pages.
Murveit et al., “Integrating Natural Language Constraints into HMM-Based Speech Recognition”, International Conference on Acoustics, Speech and Signal Processing, Apr. 1990, 5 pages.
Murveit et al., “Speech Recognition in SRI's Resource Management and ATIS Systems”, Proceedings of the Workshop on Speech and Natural Language, 1991, pp. 94-100.
Nakagawa et al., “Speaker Recognition by Combining MFCC and Phase Information”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2010, 4 pages.
Naone, Erica, “TR10: Intelligent Software Assistant”, Technology Review, Mar.-Apr. 2009, 2 pages.
Neches et al., “Enabling Technology for Knowledge Sharing”, Fall, 1991, pp. 37-56.
Niesler et al., “A Variable-Length Category-Based N-Gram Language Model”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'96), vol. 1, May 1996, 6 pages.
Noth et al., “Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System”, IEEE Transactions on Speech and Audio Processing, vol. 8, No. 5, Sep. 2000, pp. 519-532.
Odubiyi et al., “SAIRE-A Scalable Agent-Based Information Retrieval Engine”, Proceedings of the First International Conference on Autonomous Agents, 1997, 12 pages.
Owei et al., “Natural Language Query Filtration in the Conceptual Query Language”, IEEE, 1997, pp. 539-549.
Pannu et al., “A Learning Personal Agent for Text Filtering and Notification”, Proceedings of the International Conference of Knowledge Based Systems, 1996, pp. 1-11.
Papadimitriou et al., “Latent Semantic Indexing: A Probabilistic Analysis”, Available online at <http://citeseerx.ist.psu.edu/messaqes/downloadsexceeded.html>, Nov. 14, 1997, 21 pages.
Parson, T. W., “Voice and Speech Processing”, Pitch and Formant Estimation, McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 1987, 15 pages.
Parsons, T. W., “Voice and Speech Processing”, Linguistics and Technical Fundamentals, Articulatory Phonetics and Phonemics, McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 1987, 5 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1993/012637, dated Apr. 10, 1995, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1993/012666, dated Mar. 1, 1995, 5 pages.
International Search Report received for PCT Patent Application No. PCT/US1993/012666, dated Nov. 9, 1994, 8 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1994/011011, dated Feb. 28, 1996, 4 pages.
International Search Report received for PCT Patent Application No. PCT/US1994/011011, dated Feb. 8, 1995, 7 pages.
Written Opinion received for PCT Patent Application No. PCT/US1994/011011, dated Aug. 21, 1995, 4 pages.
Shimazu et al., “CAPIT: Natural Language Interface Design Tool with Keyword Analyzer and Case-Based Parser”, NEG Research & Development, vol. 33, No. 4, Oct. 1992, 11 pages.
Shinkle, L., “Team User's Guide”, SRI International, Artificial Intelligence Center, Nov. 1984, 78 pages.
Shklar et al., “InfoHarness: Use of Automatically Generated Metadata for Search and Retrieval of Heterogeneous Information”, Proceedings of CAiSE'95, Finland, 1995, 14 pages.
Sigurdsson et al., “Mel Frequency Cepstral Co-efficients: An Evaluation of Robustness of MP3 Encoded Music”, Proceedings of the 7th International Conference on Music Information Retrieval, 2006, 4 pages.
Silverman et al., “Using a Sigmoid Transformation for Improved Modeling of Phoneme Duration”, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Mar. 1999, 5 pages.
Simonite, Tom, “One Easy Way to Make Siri Smarter”, Technology Review, Oct. 18, 2011, 2 pages.
Singh, N., “Unifying Heterogeneous Information Models”, Communications of the ACM, 1998, 13 pages.
SRI International, “The Open Agent Architecture TM 1.0 Distribution”, Open Agent Architecture (OAA), 1999, 2 pages.
Starr et al., “Knowledge—Intensive Query Processing”, Proceedings of the 5th KRDB Workshop, Seattle, May 31, 1998, 6 pages.
Stent et al., “The CommandTalk Spoken Dialogue System”, SRI International, 1999, pp. 183-190.
Stern et al., “Multiple Approaches to Robust Speech Recognition”, Proceedings of Speech and Natural Language Workshop, 1992, 6 pages.
Stickel, Mark E., “A Nonclausal Connection—Graph Resolution Theorem-Proving Program”, Proceedings of AAAI'82, 1982, 5 pages.
Sugumaran, V., “A Distributed Intelligent Agent-Based Spatial Decision Support System”, Proceedings of the Americas Conference on Information systems (AMCIS), Dec. 31, 1998, 4 pages.
Sycara et al., “Coordination of Multiple Intelligent Software Agents”, International Journal of Cooperative Information Systems (IJCIS), vol. 5, No. 2 & 3, 1996, 31 pages.
Sycara et al., “Distributed Intelligent Agents”, IEEE Expert, vol. 11, No. 6, Dec. 1996, 32 pages.
Sycara et al., “Dynamic Service Matchmaking among Agents in Open Information Environments”, SIGMOD Record, 1999, 7 pages.
Sycara et al., “The RETSINA MAS Infrastructure”, Autonomous Agents and Multi-Agent Systems, vol. 7, 2003, 20 pages.
Tenenbaum et al., “Data Structure Using Pascal”, Prentice-Hall, Inc., 1981, 34 pages.
Textndrive, “Text'nDrive App Demo—Listen and Reply to your Messages by Voice while Driving!”, YouTube Video available at <http://www.youtube.com/watch?v=WaGfzoHsAMw>, Apr. 27, 2010, 1 page.
Tofel, Kevin C., “SpeakTolt: A Personal Assistant for Older iPhones, iPads”, Apple News, Tips and Reviews, Feb. 9, 2012, 7 pages.
Tsai et al., “Attributed Grammar—A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition”, IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-10, No. 12, Dec. 1980, 13 pages.
Tucker, Joshua, “Too Lazy to Grab Your TV Remote? Use Siri Instead”, Engadget, Nov. 30, 2011, 8 pages.
Tur et al., “The CALO Meeting Assistant System”, IEEE Transactions on Audio, Speech and Language Processing, vol. 18, No. 6, Aug. 2010, pp. 1601-1611.
Tur et al., “The CALO Meeting Speech Recognition and Understanding System”, Proc. IEEE Spoken Language Technology Workshop, 2008, 4 pages.
Tyson et al., “Domain-Independent Task Specification in the TACITUS Natural Language System”, SRI International, Artificial Intelligence Center, May 1990, 16 pages.
Udell, J., “Computer Telephony”, BYTE, vol. 19, No. 7, Jul. 1994, 9 pages.
Van Santen, J. P.H., “Contextual Effects on Vowel Duration”, Journal Speech Communication, vol. 11, No. 6, Dec. 1992, pp. 513-546.
Vepa et al., “New Objective Distance Measures for Spectral Discontinuities in Concatenative Speech Synthesis”, Proceedings of the IEEE 2002 Workshop on Speech Synthesis, 2002, 4 pages.
Verschelde, Jan, “MATLAB Lecture 8. Special Matrices in MATLAB”, UIC, Dept. of Math, Stat. & CS, MCS 320, Introduction to Symbolic Computation, 2007, 4 pages.
Vingron, Martin, “Near-Optimal Sequence Alignment”, Current Opinion in Structural Biology, vol. 6, No. 3, 1996, pp. 346-352.
Vlingo, “Vlingo Launches Voice Enablement Application on Apple App Store”, Press Release, Dec. 3, 2008, 2 pages.
Vlingo Incar, “Distracted Driving Solution with Vlingo InCar”, YouTube Video, Available online at <http://www.youtube.com/watch?v=Vqs8XfXxgz4>, Oct. 2010, 2 pages.
Voiceassist, “Send Text, Listen to and Send E-Mail by Voice”, YouTube Video, Available online at <http://www.youtube.com/watch?v=0tEU61nHHA4>, Jul. 30, 2009, 1 page.
Voiceonthego, “Voice on the Go (BlackBerry)”, YouTube Video, available online at <http://www.youtube.com/watch?v=pJqpWgQS98w>, Jul. 27, 2009, 1 page.
Wahlster et al., “Smartkom: Multimodal Communication with a Life-Like Character”, Eurospeech—Scandinavia, 7th European Conference on Speech Communication and Technology, 2001, 5 pages.
Waldinger et al., “Deductive Question Answering from Multiple Resources”, New Directions in Question Answering, Published by AAAI, Menlo Park, 2003, 22 pages.
Walker et al., “Natural Language Access to Medical Text”, SRI International, Artificial Intelligence Center, Mar. 1981, 23 pages.
Waltz, D., “An English Language Question Answering System for a Large Relational Database”, ACM, vol. 21, No. 7, 1978, 14 pages.
Ward et al., “A Class Based Language Model for Speech Recognition”, IEEE, 1996, 3 pages.
Ward et al., “Recent Improvements in the CMU Spoken Language Understanding System”, ARPA Human Language Technology Workshop, 1994, 4 pages.
Ward, Wayne, “The CMU Air Travel Information Service: Understanding Spontaneous Speech”, Proceedings of the Workshop on Speech and Natural Language, HLT '90, 1990, pp. 127-129.
Warren et al., “An Efficient Easily Adaptable System for Interpreting Natural Language Queries”, American Journal of Computational Linguistics, vol. 8, No. 3-4 , 1982, 11 pages.
Weizenbaum, J., “ELIZA—A Computer Program for the Study of Natural Language Communication Between Man and Machine”, Communications of the ACM, vol. 9, No. 1, Jan. 1966, 10 pages.
Werner et al., “Prosodic Aspects of Speech, Universite de Lausanne”, Fundamentals of Speech Synthesis and Speech Recognition: Basic Concepts, State of the Art and Future Challenges, 1994, 18 pages.
Winiwarter et al., “Adaptive Natural Language Interfaces to FAQ Knowledge Bases”, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, Jun. 1999, 22 pages.
Wolff, M., “Post Structuralism and the ARTFUL Database: Some Theoretical Considerations”, Information Technology and Libraries, vol. 13, No. 1, Mar. 1994, 10 pages.
Wu, M., “Digital Speech Processing and Coding”, Multimedia Signal Processing, Lecture-2 Course Presentation, University of Maryland, College Park, 2003, 8 pages.
Wu et al., “KDA: A Knowledge-Based Database Assistant”, Proceeding of the Fifth International Conference on Engineering (IEEE Cat.No. 89CH2695-5), 1989, 8 pages.
Wu, M., “Speech Recognition, Synthesis, and H.C.I.”, Multimedia Signal Processing, Lecture-3 Course Presentation, University of Maryland, College Park, 2003, 11 pages.
Wyle, M. F., “A Wide Area Network Information Filter”, Proceedings of First International Conference on Artificial Intelligence on Wall Street, Oct. 1991, 6 pages.
Apple Computer, Inc., “iTunes 2: Specification Sheet”, 2001, 2 pages.
Apple Computer, Inc., “iTunes, Playlist Related Help Screens”, iTunes v1.0, 2000-2001, 8 pages.
Apple Computer, Inc., “QuickTime Movie Playback Programming Guide”, Aug. 11, 2005, pp. 1-58.
Apple Computer, Inc., “QuickTime Overview”, Aug. 11, 2005, pp. 1-34.
Apple Computer, Inc., “Welcome to Tiger”, available at <http://www.maths.dundee.ac.uk/software/Welcome_to_Mac_OS_X_v10.4_Tiger.pdf>, 2005, pp. 1-32.
“Corporate Ladder”, BLOC Publishing Corporation, 1991, 1 page.
Arango et al., “Touring Machine: A Software Platform for Distributed Multimedia Applications”, 1992 IFIP International Conference on Upper Layer Protocols, Architectures, and Applications, May 1992, pp. 1-11.
Arons, Barry M., “The Audio-Graphical Interface to a Personal Integrated Telecommunications System”, Thesis Submitted to the Department of Architecture at the Massachusetts Institute of Technology, Jun. 1984, 88 pages.
Badino et al., “Language Independent Phoneme Mapping for Foreign TTS”, 5th ISCA Speech Synthesis Workshop, Pittsburgh, PA, Jun. 14-16, 2004, 2 pages.
Baechtle et al., “Adjustable Audio Indicator”, IBM Technical Disclosure Bulletin, Jul. 1, 1984, 2 pages.
Baeza-Yates, Ricardo, “Visualization of Large Answers in Text Databases”, AVI '96 Proceedings of the Workshop on Advanced Visual Interfaces, 1996, pp. 101-107.
Bahl et al., “Recognition of a Continuously Read Natural Corpus”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, Apr. 1978, pp. 422-424.
Bajarin, Tim, “With Low End Launched, Apple Turns to Portable Future”, PC Week, vol. 7, Oct. 1990, p. 153 (1).
Barthel, B., “Information Access for Visually Impaired Persons: Do We Still Keep a “Document” in “Documentation”?”, Professional Communication Conference, Sep. 1995, pp. 62-66.
Baudel et al., “2 Techniques for Improved HC Interaction: Toolglass & Magic Lenses: The See-Through Interface”, Apple Inc., Video Clip, CHI'94 Video Program on a CD, 1994.
Beck et al., “Integrating Natural Language, Query Processing, and Semantic Data Models”, COMCON Spring '90. IEEE Computer Society International Conference, 1990, Feb. 26-Mar. 2, 1990, pp. 538-543.
Bederson et al., “Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics”, UIST' 94 Proceedings of the 7th Annual ACM symposium on User Interface Software and Technology, Nov. 1994, pp. 17-26.
Bederson et al., “The Craft of Information Visualization”, Elsevier Science, Inc., 2003, 435 pages.
“Diagrammaker”, Action Software, 1989.
“Diagram-Master”, Ashton-Tate, 1989.
Benel et al., “Optimal Size and Spacing of Touchscreen Input Areas”, Human-Computer Interaction—INTERACT, 1987, pp. 581-585.
Beringer et al., “Operator Behavioral Biases Using High-Resolution Touch Input Devices”, Proceedings of the Human Factors and Ergonomics Society 33rd Annual Meeting, 1989, 3 pages.
Beringer, Dennis B., “Target Size, Location, Sampling Point and Instruction Set: More Effects on Touch Panel Operation”, Proceedings of the Human Factors and Ergonomics Society 34th Annual Meeting, 1990, 5 pages.
Bernabei et al., “Graphical I/O Devices for Medical Users”, 14th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, vol. 3, 1992, pp. 834-836.
Bernstein, Macrophone, “Speech Corpus”, IEEE/ICASSP, Apr. 22, 1994, pp. 1-81 to 1-84.
Berry et al., “Symantec”, New version of more.tm, Apr. 10, 1990, 1 page.
Best Buy, “When it Comes to Selecting a Projection TV, Toshiba Makes Everything Perfectly Clear”, Previews of New Releases, available at <http://www.bestbuy.com/HomeAudioVideo/Specials/ToshibaTVFeatures.asp>, retrieved on Jan. 23, 2003, 5 pages.
Betts et al., “Goals and Objectives for User Interface Software”, Computer Graphics, vol. 21, No. 2, Apr. 1987, pp. 73-78.
Biemann, Chris, “Unsupervised Part-of-Speech Tagging Employing Efficient Graph Clustering”, Proceeding COLING ACL '06 Proceedings of the 21st International Conference on computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, 2006, pp. 7-12.
Bier et al., “Toolglass and Magic Lenses: The See-Through Interface”, Computer Graphics (SIGGRAPH '93 Proceedings), vol. 27, 1993, pp. 73-80.
Birrell, Andrew, “Personal Jukebox (PJB)”, available at <http://birrell.org/andrew/talks/pjb-overview.ppt>, Oct. 13, 2000, 6 pages.
Black et al., “Multilingual Text-to-Speech Synthesis”, Acoustics, Speech and Signal Processing (ICASSP'04) Proceedings of the IEEE International Conference, vol. 3, May 17-21, 2004, 4 pages.
Bleher et al., “A Graphic Interactive Application Monitor”, IBM Systems Journal, vol. 19, No. 3, Sep. 1980, pp. 382-402.
Bluetooth PC Headsets, “‘Connecting’ Your Bluetooth Headset with Your Computer”, Enjoy Wireless VoIP Conversations, available at <http://www.bluetoothpcheadsets.com/connect.htm>, retrieved on Apr. 29, 2006, 4 pages.
Bocchieri et al., “Use of Geographical Meta-Data in ASR Language and Acoustic Models”, IEEE International Conference on Acoustics Speech and Signal Processing, 2010, pp. 5118-5121.
Bociurkiw, Michael, “Product Guide: Vanessa Matz”, available at <http://www.forbes.com/asap/2000/1127/vmartz_print.html>, retrieved on Jan. 23, 2003, 2 pages.
“Glossary of Adaptive Technologies: Word Prediction”, available at <http://www.utoronto.ca/atrc/reference/techwordpred.html>, retrieved on Dec. 6, 2005, 5 pages.
Borenstein, Nathaniel S., “Cooperative Work in the Andrew Message System”, Information Technology Center and Computer Science Department, Carnegie Mellon University; Thyberg, Chris A. Academic Computing, Carnegie Mellon University, 1988, pp. 306-323.
Boy, Guy A., “Intelligent Assistant Systems”, Harcourt Brace Jovanovicy, 1991, 1 page.
“iAP Sports Lingo 0×09 Protocol V1.00”, May 1, 2006, 17 pages.
Brown et al., “Browing Graphs Using a Fisheye View”, Apple Inc., Video Clip, Systems Research Center, CHI '92 Continued Proceedings on a CD, 1992.
Brown et al., “Browsing Graphs Using a Fisheye View”, CHI '93 Proceedings of the INTERACT '93 and CHI '93 Conference on Human Factors in Computing Systems, 1993, p. 516.
Burger, D., “Improved Access to Computers for the Visually Handicapped: New Prospects and Principles”, IEEE Transactions on Rehabilitation Engineering, vol. 2, No. 3, Sep. 1994, pp. 111-118.
“IEEE 1394 (Redirected from Firewire”, Wikipedia, The Free Encyclopedia, available at <http://www.wikipedia.org/wiki/Firewire>, retrieved on Jun. 8, 2003, 2 pages.
Butler, Travis, “Archos Jukebox 6000 Challenges Nomad Jukebox”, available at <http://tidbits.com/article/6521>, Aug. 13, 2001, 5 pages.
Butler, Travis, “Portable MP3: The Nomad Jukebox”, available at <http://tidbits.com/article/6261>, Jan. 8, 2001, 4 pages.
Buxton et al., “EuroPARC's Integrated Interactive Intermedia Facility (IIIF): Early Experiences”, Proceedings of the IFIP WG 8.4 Conference on Multi-User Interfaces and Applications, 1990, pp. 11-34.
Call Centre, “Word Prediction”, The CALL Centre & Scottish Executive Education Dept., 1999, pp. 63-73.
Campbell et al., “An Expandable Error-Protected 4800 BPS CELP Coder (U.S. Federal Standard 4800 BPS Voice Coder)”, (Proceedings of IEEE Int'l Acoustics, Speech, and Signal Processing Conference, May 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 328-330.
Card et al., “Readings in Information Visualization Using Vision to Think”, Interactive Technologies, 1999, 712 pages.
“Interactive Voice”, available at <http://www.helloivee.com/company/>, retrieved on Feb. 10, 2014, 2 pages.
“Meet Ivee, Your Wi-Fi Voice Activated Assistant”, available at <http://www.helloivee.com/>, retrieved on Feb. 10, 2014, 8 pages.
“Speaker Recognition”, Wikipedia, The Free Enclyclopedia, Nov. 2, 2010, 4 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/029810, dated Oct. 3, 2013, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/029810, dated Aug. 17, 2012, 11 pages.
Extended European Search Report and Search Opinion received for European Patent Application No. 12185276.8, dated Dec. 18, 2012, 4 pages.
Extended European Search Report received for European Patent Application No. 12186663.6, dated Jul. 16, 2013, 6 pages.
Apple Computer, “Knowledge Navigator”, published by Apple Computer no later than 2008, as depicted in Exemplary Screenshots from video entitled ‘Knowledge Navigator’, 2008, 7 pages.
Applebaum et al., “Enhancing the Discrimination of Speaker Independent Hidden Markov Models with Corrective Training”, International Conference on Acoustics, Speech, and Signal Processing, May 23, 1989, pp. 302-305.
Bellegarda, Jerome R. “Latent Semantic Mapping”, IEEE Signal Processing Magazine, vol. 22, No. 5, Sep. 2005, pp. 70-80.
Bellegarda et al., “Tied Mixture Continuous Parameter Modeling for Speech Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 38, No. 12, Dec. 1990, pp. 2033-2045.
Chang et al., “Discriminative Training of Dynamic Programming based Speech Recognizers”, IEEE Transactions on Speech and Audio Processing, vol. 1, No. 2, Apr. 1993, pp. 135-143.
Cheyer et al., “Demonstration Video of Multimodal Maps Using an Agent Architecture”, published by SRI International no later than 1996, as depicted in Exemplary Screenshots from video entitled Demonstration Video of Multimodal Maps Using an Agent Architecture, 1996, 6 pages.
Cheyer et al., “Demonstration Video of Multimodal Maps Using an Open-Agent Architecture”, published by SRI International no later than 1996, as depicted in Exemplary Screenshots from video entitled Demonstration Video of Multimodal Maps Using an Open-Agent Architecture, 6 pages.
Cheyer, A., “Demonstration Video of Vanguard Mobile Portal”, published by SRI International no later than 2004, as depicted in ‘Exemplary Screenshots from video entitled Demonstration Video of Vanguard Mobile Portal’, 2004, 10 pages.
Choi et al., “Acoustic and Visual Signal based Context Awareness System for Mobile Application”, IEEE Transactions on Consumer Electronics, vol. 57, No. 2, May 2011, pp. 738-746.
Kickstarter, “Ivee Sleek: Wi-Fi Voice-Activated Assistant”, available at <https://www.kickstarter.com/projects/ivee/ivee-sleek-wi-fi-voice-activated-assistant>, retrieved on Feb. 10, 2014, 13 pages.
Navigli, Roberto, “Word Sense Disambiguation: A Survey”, ACM Computing Surveys, vol. 41, No. 2, Feb. 2009, 70 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/015418, dated Aug. 26, 2014, 17 pages.
Guim, Mark, “How to Set a Person-Based Reminder with Cortana”, available at <http://www.wpcentral.com/how-to-person-based-reminder-cortana>, Apr. 26, 2014, 15 pages.
Miller, Chance, “Google Keyboard Updated with New Personalized Suggestions Feature”, available at <http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/>, Mar. 19, 2014, 4 pages.
Roddy et al., “Interface Issues in Text Based Chat Rooms”, SIGCHI Bulletin, vol. 30, No. 2, Apr. 1998, pp. 119-123.
Viegas et al., “Chat Circles”, SIGCHI Conference on Human Factors in Computing Systems, May 15-20, 1999, pp. 9-16.
IBM, “Integrated Audio-Graphics User Interface”, IBM Technical Disclosure Bulletin, vol. 33, No. 11, Apr. 1991, 4 pages.
IBM, “Speech Recognition with Hidden Markov Models of Speech Waveforms”, IBM Technical Disclosure Bulletin, vol. 34, No. 1, Jun. 1991, 10 pages.
Intraspect Software, “The Intraspect Knowledge Management Solution: Technical Overview”, available at <http://tomgruber.org/writing/intraspect-whitepaper-1998.pdf>, 1998, 18 pages.
Iowegian International, “FIR Filter Properties, DSPGuru, Digital Signal Processing Central”, available at <http://www.dspguru.com/dsp/faq/fir/properties> retrieved on Jul. 28, 2010, 6 pages.
Issar et al., “CMU's Robust Spoken Language Understanding System”, Proceedings of Eurospeech, 1993, 4 pages.
Issar, Sunil, “Estimation of Language Models for New Spoken Language Applications”, Proceedings of 4th International Conference on Spoken language Processing, Oct. 1996, 4 pages.
Jacobs et al., “Scisor: Extracting Information from On-Line News”, Communications of the ACM, vol. 33, No. 11, Nov. 1990, 10 pages.
Janas, Jurgen M., “The Semantics-Based Natural Language Interface to Relational Databases”, Chapter 6, Cooperative Interfaces to Information Systems, 1986, pp. 143-188.
Jelinek, F., “Self-Organized Language Modeling for Speech Recognition”, Readings in Speech Recognition, Edited by Alex Waibel and Kai-Fu Lee, Morgan Kaufmann Publishers, Inc., ISBN: 1-55860-124-4, 1990, 63 pages.
Jennings et al., “A Personal News Service Based on a User Model Neural Network”, IEICE Transactions on Information and Systems, vol. E75-D, No. 2, Mar. 1992, 12 pages.
Ji et al., “A Method for Chinese Syllables Recognition Based upon Sub-syllable Hidden Markov Model”, 1994 International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, Apr. 1994, 4 pages.
Johnson, Julia Ann., “A Data Management Strategy for Transportable Natural Language Interfaces”, Doctoral Thesis Submitted to the Department of Computer Science, University of British Columbia, Canada, Jun. 1989, 285 pages.
Jones, J., “Speech Recognition for Cyclone”, Apple Computer, Inc., E.R.S. Revision 2.9, Sep. 10, 1992, 93 pages.
Julia et al., “http://www.speech.sri.com/demos/atis.html”, Proceedings of AAAI, Spring Symposium, 1997, 5 pages.
Julia et al., “Un Editeur Interactif De Tableaux Dessines a Main Levee (An Interactive Editor for Hand-Sketched Tables)”, Traitement du Signal, vol. 12, No. 6, 1995, pp. 619-626.
Kahn et al., “CoABS Grid Scalability Experiments”, Autonomous Agents and Multi-Agent Systems, vol. 7, 2003, pp. 171-178.
Kamel et al., “A Graph Based Knowledge Retrieval System”, IEEE International Conference on Systems, Man and Cybernetics, 1990, pp. 269-275.
Karp, P. D., “A Generic Knowledge-Base Access Protocol”, Available online at <http://lecture.cs.buu.ac.th/-f50353/Document/gfp.pdf>, May 12, 1994, 66 pages.
Katz, Boris, “A Three-Step Procedure for Language Generation”, Massachusetts Institute of Technology, A.I. Memo No. 599, Dec. 1980, pp. 1-40.
Katz, Boris, “Annotating the World Wide Web Using Natural Language”, Proceedings of the 5th RIAO Conference on Computer Assisted Information Searching on the Internet, 1997, 7 pages.
Katz, S. M., “Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-35, No. 3, Mar. 1987, 3 pages.
Katz et al., “Exploiting Lexical Regularities in Designing Natural Language Systems”, Proceedings of the 12th International Conference on Computational Linguistics, 1988, pp. 1-22.
Katz et al., “REXTOR: A System for Generating Relations from Natural Language”, Proceedings of the ACL Workshop on Natural Language Processing and Information Retrieval (NLP&IR), Oct. 2000, 11 pages.
Katz, Boris, “Using English for Indexing and Retrieving”, Proceedings of the 1st RIAO Conference on User-Oriented Content-Based Text and Image Handling, 1988, pp. 314-332.
Kitano, H., “PhiDM-Dialog, An Experimental Speech-to-Speech Dialog Translation System”, Computer, vol. 24, No. 6, Jun. 1991, 13 pages.
Klabbers et al., “Reducing Audible Spectral Discontinuities”, IEEE Transactions on Speech and Audio Processing, vol. 9, No. 1, Jan. 2001, 13 pages.
Klatt et al., “Linguistic Uses of Segmental Duration in English: Acoustic and Perpetual Evidence”, Journal of the Acoustical Society of America, vol. 59, No. 5, May 1976, 16 pages.
Knownav, “Knowledge Navigator”, YouTube Video available at <http://www.youtube.com/watch?v=QRH8eimU_20>, Apr. 29, 2008, 1 page.
Kominek et al., “Impact of Durational Outlier Removal from Unit Selection Catalogs”, 5th ISCA Speech Synthesis Workshop, Jun. 14-16, 2004, 6 pages.
Konolige, Kurt, “A Framework for a Portable Natural-Language Interface to Large Data Bases”, SRI International, Technical Note 197, Oct. 12, 1979, 54 pages.
Kubala et al., “Speaker Adaptation from a Speaker-Independent Training Corpus”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), Apr. 1990, 4 pages.
Kubala et al., “The Hub and Spoke Paradigm for CSR Evaluation”, Proceedings of the Spoken Language Technology Workshop, Mar. 1994, 9 pages.
Laird et al., “SOAR: An Architecture for General Intelligence”, Artificial Intelligence, vol. 33, 1987, pp. 1-64.
Langley et al., “A Design for the ICARUS Architechture”, SIGART Bulletin, vol. 2, No. 4, 1991, pp. 104-109.
Larks, “Intelligent Software Agents”, available at <http://www.cs.cmu.edu/˜softagents/larks.html> retrieved on Mar. 15, 2013, 2 pages.
Lee et al., “A Real-Time Mandarin Dictation Machine for Chinese Language with Unlimited Texts and Very Large Vocabulary”, International Conference on Acoustics, Speech and Signal Processing, vol. 1, Apr. 1990, 5 pages.
Lee et al., “Golden Mandarin (II)—An Improved Single-Chip Real-Time Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary”, IEEE International Conference of Acoustics, Speech and Signal Processing, vol. 2, 1993, 4 pages.
Lee et al., “Golden Mandarin (II)—An Intelligent Mandarin Dictation Machine for Chinese Character Input with Adaptation/Learning Functions”, International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, Apr. 1994, 5 pages.
Lee, K. F., “Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX System”, Partial Fulfillment of the Requirements for the Degree of Doctorof Philosophy, Computer Science Department, Carnegie Mellon University, Apr. 1988, 195 pages.
Lee et al., “System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters”, International Conference on Computer Processing of Chinese & Oriental Languages, vol. 5, No. 3 & 4, Nov. 1991, 16 pages.
Lemon et al., “Multithreaded Context for Robust Conversational Interfaces: Context—Sensitive Speech Recognition and Interpretation of Corrective Fragments”, ACM Transactions on Computer-Human Interaction, vol. 11, No. 3, Sep. 2004, pp. 241-267.
Leong et al., “CASIS: A Context-Aware Speech Interface System”, Proceedings of the 10th International Conference on Intelligent User Interfaces, Jan. 2005, pp. 231-238.
Lieberman et al., “Out of Context: Computer Systems that Adapt to, and Learn from, Context”, IBM Systems Journal, vol. 39, No. 3 & 4, 2000, pp. 617-632.
Lin et al., “A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History”, Available on line at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.272>, 1999, 4 pages.
Lin et al., “A New Framework for Recognition of Mandarin Syllables with Tones Using Sub-syllabic Unites”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-93), Apr. 1993, 4 pages.
Linde et al., “An Algorithm for Vector Quantizer Design”, IEEE Transactions on Communications, vol. 28, No. 1, Jan. 1980, 12 pages.
Liu et al., “Efficient Joint Compensation of Speech for the Effects of Additive Noise and Linear Filtering”, IEEE International Conference of Acoustics, Speech and Signal Processing, ICASSP-92, Mar. 1992, 4 pages.
Logan et al., “Mel Frequency Cepstral Co-efficients for Music Modeling”, International Symposium on Music Information Retrieval, 2000, 2 pages.
Lowerre, B. T., “The-Harpy Speech Recognition System”, Doctoral Dissertation, Department of Computer Science, Carnegie Mellon University, Apr. 1976, 20 pages.
Maghbouleh, Arman, “An Empirical Comparison of Automatic Decision Tree and Linear Regression Models for Vowel Durations”, Revised Version of a Paper Presented at the Computational Phonology in Speech Technology Workshop, 1996 Annual Meeting of the Association for Computational Linguistics in Santa Cruz, California, 7 pages.
Jabra, “Bluetooth Introduction”, 2004, 15 pages.
Jabra Corporation, “FreeSpeak: BT200 User Manual”, 2002, 42 pages.
Jaybird, “Everything Wrong with AIM: Because We've All Thought About It”, available at <http://www.psychonoble.com/archives/articles/82.html>, May 24, 2006, 3 pages.
Jeffay et al., “Kernel Support for Live Digital Audio and Video”, In Proc. of the Second Intl. Workshop on Network and Operating System Support for Digital Audio and Video, vol. 614, Nov. 1991, pp. 10-21.
Jelinek et al., “Interpolated Estimation of Markov Source Parameters from Sparse Data”, In Proceedings of the Workshop on Pattern Recognition in Practice May 1980, pp. 381-397.
Johnson, Jeff A., “A Comparison of User Interfaces for Panning on a Touch-Controlled Display”, CHI '95 Proceedings, 1995, 8 pages.
Kaeppner et al., “Architecture of HeiPhone: A Testbed for Audio/Video Teleconferencing”, IBM European Networking Center, 1993.
Kamba et al., “Using Small Screen Space More Efficiently”, CHI '96 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 13-18, 1996, pp. 383-390.
Kang et al., “Quality Improvement of LPC-Processed Noisy Speech by Using Spectral Subtraction”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 6, Jun. 1989, pp. 939-942.
Keahey et al., “Non-Linear Image Magnification”, Apr. 24, 1996, 11 pages.
Keahey et al., “Nonlinear Magnification Fields”, Proceedings of the 1997 IEEE Symposium on Information Visualization, 1997, 12 pages.
Keahey et al., “Techniques for Non-Linear Magnification Transformations”, IEEE Proceedings of Symposium on Information Visualization, Oct. 1996, pp. 38-45.
Keahey et al., “Viewing Text With Non-Linear Magnification: An Experimental Study”, Department of Computer Science, Indiana University, Apr. 24, 1996, pp. 1-9.
Kennedy, P J., “Digital Data Storage Using Video Disc”, IBM Technical Disclosure Bulletin, vol. 24, No. 2, Jul. 1981, p. 1171.
Kerr, “An Incremental String Search in C: This Data Matching Algorithm Narrows the Search Space with each Keystroke”, Computer Language, vol. 6, No. 12, Dec. 1989, pp. 35-39.
Abut et al., “Vector Quantization of Speech and Speech-Like Waveforms”, (IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 258-270.
Kim, E.A. S., “The Structure and Processing of Fundamental Frequency Contours”, University of Cambridge, Doctoral Thesis, Apr. 1987, 378 pages.
Kirstein et al., “Piloting of Multimedia Integrated Communications for European Researchers”, Proc. INET '93, 1993, pp. 1-12.
Kjelldahl et al., “Multimedia—Principles, Systems, and Applications”, Proceedings of the 1991 Eurographics Workshop on Multimedia Systems, Applications, and Interaction, Apr. 1991.
Kline et al., “Improving GUI Accessibility for People with Low Vision”, CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 7-11, 1995, pp. 114-121.
Kline et al., “UnWindows 1.0: X Windows Tools for Low Vision Users”, ACM SIGCAPH Computers and the Physically Handicapped, No. 49, Mar. 1994, pp. 1-5.
Knight et al., “Heuristic Search”, Production Systems, Artificial Intelligence, 2nd ed., McGraw-Hill, Inc., 1983-1991.
Kroon et al., “Quantization Procedures for the Excitation in CELP Coders”, (Proceedings of IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1987), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 320-323.
Kuo et al., “A Radical-Partitioned coded Block Adaptive Neural Network Structure for Large-Volume Chinese Characters Recognition”, International Joint Conference on Neural Networks, vol. 3, Jun. 1992, pp. 597-601.
Kuo et al., “A Radical-Partitioned Neural Network System Using a Modified Sigmoid Function and a Weight-Dotted Radical Selector for Large-Volume Chinese Character Recognition VLSI”, IEEE Int. Symp. Circuits and Systems, Jun. 1994, pp. 3862-3865.
Kurlander et al., “Comic Chat”, [Online], 1996 [Retrieved on: Feb. 4, 2013], SIGGRAPH '96 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, [Retrieved from: http://delivery.acm.org/10.1145/240000/237260/p225-kurlander.pdf], 1996, pp. 225-236.
Laface et al., “A Fast Segmental Viterbi Algorithm for Large Vocabulary Recognition”, International Conference on Acoustics, Speech, and Signal Processing, vol. 1, May 1995, pp. 560-563.
Lafferty et al., “Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data”, Proceedings of the 18th International Conference on Machine Learning, 2001, 9 pages.
Adium, “AboutAdium—Adium X—Trac”, available at <http://web.archive.org/web/20070819113247/http://trac.adiumx.com/wiki/AboutAdium>, retrieved on Nov. 25, 2011, 2 pages.
Lamping et al., “Laying Out and Visualizing Large Trees Using a Hyperbolic Space”, Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 13-14.
Lamping et al., “Visualizing Large Trees Using the Hyperbolic Browser”, Apple Inc., Video Clip, MIT Media Library, on a CD, 1995.
Lantz et al., “Towards a Universal Directory Service”, Departments of Computer Science and Electrical Engineering, Stanford University, 1985, pp. 250-260.
Lantz, Keith, “An Experiment in Integrated Multimedia Conferencing”, 1986, pp. 267-275.
Lauwers et al., “Collaboration Awareness in Support of Collaboration Transparency: Requirements for the Next Generation of Shared Window Systems”, CHI'90 Proceedings, 1990, pp. 303-311.
Lauwers et al., “Replicated Architectures for Shared Window Systems: A Critique”, COCS '90 Proceedings of the ACM SIGOIS and IEEE CS TC-OA conference on Office information systems, ACM SIGOIS Bulletin, 1990, pp. 249-260.
Lazzaro, Joseph J., “Adapting Desktop Computers to Meet the Needs of Disabled Workers is Easier Than You Might Think”, Computers for the Disabled, BYTE Magazine, Jun. 1993, 4 pages.
Leahy et al., “Effect of Touch Screen Target Location on User Accuracy”, Proceedings of the Human Factors Society 34th Annual Meeting, 1990, 5 pages.
Lee, Kai-Fu, “Automatic Speech Recognition”, 1989, 14 pages (Table of Contents).
Leung et al., “A Review and Taxonomy of Distortion-Oriented Presentation Techniques”, ACM Transactions on Computer-Human Interaction (TOCHI), vol. 1, No. 2, Jun. 1994, pp. 126-160.
Levinson et al., “Speech synthesis in telecommunications”, IEEE Communications Magazine, vol. 31, No. 11, Nov. 1993, pp. 46-53.
Lewis, “Speech synthesis in a computer aided learning environment”, UK IT, Mar. 19-22, 1990, pp. 294-298.
Lewis, Peter, “Two New Ways to Buy Your Bits”, CNN Money, available at <http://money.cnn.com/2003/12/30/commentary/ontechnology/download/>,, Dec. 31, 2003, 4 pages.
Lieberman, Henry, “A Multi-Scale, Multi-Layer, Translucent Virtual Space”, Proceedings of IEEE Conference on Information Visualization, Aug. 1997, pp. 124-131.
Lieberman, Henry, “Powers of Ten Thousand: Navigating in Large Information Spaces”, Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 1-2.
Lyon, R., “A Computational Model of Binaural Localization and Separation”, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 1983, pp. 1148-1151.
Ahlberg et al., “The Alphaslider: A Compact and Rapid Selector”, CHI '94 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 365-371.
Lyons, Richard F., “CCD Correlators for Auditory Models”, Proceedings of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers, Nov. 4-6, 1991, pp. 785-789.
MacKenzie et al., “Alphanumeric Entry on Pen-Based Computers”, International Journal of Human-Computer Studies, vol. 41, 1994, pp. 775-792.
MacKinlay et al., “The Perspective Wall: Detail and Context Smoothly Integrated”, ACM, 1991, pp. 173-179.
Ahlberg et al., “Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 24-28, 1994, pp. 313-317.
Mactech, “KeyStrokes 3.5 for Mac OS X Boosts Word Prediction”, available at <http://www.mactech.com/news/?p=1007129>, retrieved on Jan. 7, 2008, 3 pages.
Mahedero et al., “Natural Language Processing of Lyrics”, In Proceedings of the 13th Annual ACM International Conference on Multimedia, ACM, Nov. 6-11, 2005, 4 pages.
Marcus et al., “Building a Large Annotated Corpus of English: The Penn Treebank”, Computational Linguistics, vol. 19, No. 2, 1993, pp. 313-330.
Markel et al., “Linear Production of Speech”, Reviews, 1976, pp. xii, 288.
Masui, Toshiyuki, “POBox: An Efficient Text Input Method for Handheld and Ubiquitous Computers”, Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, 1999, 12 pages.
Matsui et al., “Speaker Adaptation of Tied-Mixture-Based Phoneme Models for Text-Prompted Speaker Recognition”, 1994 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19-22, 1994, 1-125-1-128.
Matsuzawa, A, “Low-Voltage and Low-Power Circuit Design for Mixed Analog/Digital Systems in Portable Equipment”, IEEE Journal of Solid-State Circuits, vol. 29, No. 4, 1994, pp. 470-480.
Mellinger, David K., “Feature-Map Methods for Extracting Sound Frequency Modulation”, IEEE Computer Society Press, 1991, pp. 795-799.
Menico, Costas, “Faster String Searches”, Dr. Dobb's Journal, vol. 14, No. 7, Jul. 1989, pp. 74-77.
Menta, Richard, “1200 Song MP3 Portable is a Milestone Player”, available at <http://www.mp3newswire.net/stories/personaljuke.html>, Jan. 11, 2000, 4 pages.
Meyer, Mike, “A Shell for Modern Personal Computers”, University of California, Aug. 1987, pp. 13-19.
Meyrowitz et al., “Bruwin: An Adaptable Design Strategy for Window Manager/Virtual Terminal Systems”, Department of Computer Science, Brown University, 1981, pp. 180-189.
Miastkowski, Stan, “paperWorks Makes Paper Intelligent”, Byte Magazine, Jun. 1992.
Microsoft, “Turn On and Use Magnifier”, available at <http://www.microsoft.com/windowsxp/using/accessibility/magnifiertumon.mspx>, retrieved on Jun. 6, 2009.
Microsoft Corporation, Microsoft Office Word 2003 (SP2), Microsoft Corporation, SP3 as of 2005, pp. MSWord 2003 Figures 1-5, 1983-2003.
Microsoft Corporation, “Microsoft MS-DOS Operating System User's Guide”, Microsoft Corporation, 1982, pp. 4-1 to 4-16, 5-1 to 5-19.
Microsoft Press, “Microsoft Windows User's Guide for the Windows Graphical Environment”, version 3.0, 1985-1990, pp. 33-41 & 70-74.
Microsoft Windows XP, “Magnifier Utility”, Oct. 25, 2001, 2 pages.
Microsoft Word 2000 Microsoft Corporation, pp. MSWord Figures 1-5, 1999.
Microsoft/Ford, “Basic Sync Commands”, www.SyncMyRide.com, Sep. 14, 2007, 1 pages.
Milner, N. P., “A Review of Human Performance and Preferences with Different Input Devices to Computer Systems”, Proceedings of the Fourth Conference of the British Computer Society on People and Computers, Sep. 5-9, 1988, pp. 341-352.
Miniman, Jared, “Applian Software's Replay Radio and Player v1.02”, pocketnow.com—Review, available at <http://www.pocketnow.com/reviews/replay/replay.htm>, Jul. 31, 2001, 16 pages.
Moberg et al., “Cross-Lingual Phoneme Mapping for Multilingual Synthesis Systems”, Proceedings of the 8th International Conference on Spoken Language Processing, Jeju Island, Korea, INTERSPEECH 2004, Oct. 4-8, 2004, 4 pages.
Moberg, M., “Contributions to Multilingual Low-Footprint TTS System for Hand-Held Devices”, Doctoral Thesis, Tampere University of Technology, Aug. 17, 2007, 82 pages.
Mobile Tech News, “T9 Text Input Software Updated”, available at <http://www.mobiletechnews.com/info/2004/11/23/122155.html>, Nov. 23, 2004, 4 pages.
Mok et al., “Media Searching on Mobile Devices”, IEEE EIT 2007 Proceedings, 2007, pp. 126-129.
Morland, D. V., “Human Factors Guidelines for Terminal Interface Design”, Communications ofthe ACM vol. 26, No. 7, Jul. 1983, pp. 484-494.
Morris et al., “Andrew: A Distributed Personal Computing Environment”, Communications of the ACM, (Mar. 1986); vol. 29 No. 3,, Mar. 1986, pp. 184-201.
Muller et al., “CSCW'92 Demonstrations”, 1992, pp. 11-14.
Musicmatch, “Musicmatch and Xing Technology Introduce Musicmatch Jukebox”, Press Releases, available at <http://www.musicmatch.com/info/company/press/releases/?year= 1998&release=2>, May 18, 1998, 2 pages.
Muthesamy et al., “Speaker-Independent Vowel Recognition: Spectograms versus Cochleagrams”, IEEE, Apr. 1990.
My Cool Aids, “What's New”, available at <http://www.mycoolaids.com/>, 2012, 1 page.
Myers, Brad A., “Shortcutter for Palm”, available at <http://www.cs.cmu.edu/˜pebbles/v5/shortcutter/palm/index.html>, retrieved on Jun. 18, 2014, 10 pages.
Nadoli et al., “Intelligent Agents in the Simulation of Manufacturing Systems”, Proceedings of the SCS Multiconference on AI and Simulation, 1989, 1 page.
Nakagawa et al., “Unknown Word Guessing and Part-of-Speech Tagging Using Support Vector Machines”, Proceedings of the 6th NLPRS, 2001, pp. 325-331.
Ahlstrom et al., “Overcoming Touchscreen User Fatigue by Workplace Design”, CHI '92 Posters and Short Talks of the 1992 SIGCHI Conference on Human Factors in Computing Systems, 1992, pp. 101-102.
NCIP, “NCIP Library: Word Prediction Collection”, available at <http://www2.edc.org/ncip/library/wp/toc.htm>, 1998, 4 pages.
NCIP, “What is Word Prediction?”, available at <http://www2.edc.org/NCIP/library/wp/what_is.htm>, 1998, 2 pages.
NCIP Staff, “Magnification Technology”, available at <http://www2.edc.org/ncip/library/vi/magnifi.htm>, 1994, 6 pages.
Newton, Harry, “Newton's Telecom Dictionary”, Mar. 1998, pp. 62, 155, 610-611, 771.
Nguyen et al., “Generic Manager for Spoken Dialogue Systems”, In DiaBruck: 7th Workshop on the Semantics and Pragmatics of Dialogue, Proceedings, 2003, 2 pages.
Nilsson, B. A., “Microsoft Publisher is an Honorable Start for DTP Beginners”, Computer Shopper, Feb. 1, 1992, 2 pages.
Noik, Emanuel G., “Layout-Independent Fisheye Views of Nested Graphs”, IEEE Proceedings of Symposium on Visual Languages, 1993, 6 pages.
Nonhoff-Arps et al., “StraBenmusik: Portable MP3-Spieler mit USB Anschluss”, CT Magazin Fuer Computer Technik, Verlag Heinz Heise GMBH, Hannover DE, No. 25, 2000, pp. 166-175.
Northern Telecom, “Meridian Mail PC User Guide”, 1988, 17 Pages.
Notenboom, Leo A., “Can I Retrieve Old MSN Messenger Conversations?”, available at <http://ask-leo.com/can_i_retrieve_old_msn_messenger_conversations.html>, Mar. 11, 2004, 23 pages.
O'Connor, Rory J., “Apple Banking on Newton's Brain”, San Jose Mercury News, Apr. 22, 1991.
Ohsawa et al., “A computational Model of an Intelligent Agent Who Talks with a Person”, Research Reports on Information Sciences, Series C, No. 92, Apr. 1989, pp. 1-18.
Ohtomo et al., “Two-Stage Recognition Method of Hand-Written Chinese Characters Using an Integrated Neural Network Model”, Denshi Joohoo Tsuushin Gakkai Ronbunshi, D-II, vol. J74, Feb. 1991, pp. 158-165.
Okazaki et al., “Multi-Fisheye Transformation Method for Large-Scale Network Maps”, IEEE Japan, vol. 44, No. 6, 1995, pp. 495-500.
Omologo et al., “Microphone Array Based Speech Recognition with Different Talker-Array Positions”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, Apr. 21-24, 1997, pp. 227-230.
Oregon Scientific, “512MB Waterproof MP3 Player with FM Radio & Built-in Pedometer”, available at <http://www2.oregonscientific.com/shop/product.asp?cid=4&scid=11&pid=581>, retrieved on Jul. 31, 2006, 2 pages.
Oregon Scientific, “Waterproof Music Player with FM Radio and Pedometer (MP121)—User Manual”, 2005, 24 pages.
Padilla, Alfredo, “Palm Treo 750 Cell Phone Review—Messaging”, available at <http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm>, Mar. 17, 2007, 6 pages.
Palay et al., “The Andrew Toolkit: An Overview”, Information Technology Center, Carnegie-Mellon University, 1988, pp. 1-15.
Palm, Inc., “User Guide : Your Palm® Treo.TM. 755p Smartphone”, 2005-2007, 304 pages.
Panasonic, “Toughbook 28: Powerful, Rugged and Wireless”, Panasonic: Toughbook Models, available at <http://www.panasonic.com/computer/notebook/htm1/01a_s8.htm>, retrieved on Dec. 19, 2002, 3 pages.
Parks et al., “Classification of Whale and Ice Sounds with a cochlear Model”, IEEE, Mar. 1992.
Patterson et al., “Rendezvous: An Architecture for Synchronous Multi-User Applications”, CSCW '90 Proceedings, 1990, pp. 317-328.
International Search Report received for PCT Patent Application No. PCT/US2002/033330, dated Feb. 4, 2003, 6 pages.
Ahmed et al., “Intelligent Natural Language Query Processor”, TENCON '89, Fourth IEEE Region 10 International Conference, Nov. 22-24, 1989, pp. 47-49.
Ahuja et al., “A Comparison of Application Sharing Mechanisms in Real-Time Desktop Conferencing Systems”, AT&T Bell Laboratories, 1990, pp. 238-248.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2005/038819, dated Apr. 5, 2006, 12 pages.
International Search Report received for PCT Patent Application No. PCT/US2005/046797, dated Nov. 24, 2006, 6 pages.
Invitation to Pay Additional Fees and Partial Search Report received for PCT Application No. PCT/US2005/046797, dated Jul. 3, 2006, 6 pages.
Written Opinion received for PCT Patent Application No. PCT/US2005/046797, dated Nov. 24, 2006, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048669, dated Jul. 2, 2007, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048670, dated May 21, 2007, 11 pages.
Invitation to Pay Addition Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2006/048738, dated Jul. 10, 2007, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048753, dated Jun. 19, 2007, 15 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/026243, dated Mar. 31, 2008, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/077424, dated Jun. 19, 2008, 13 pages.
Invitation to Pay Additional Fees received for PCT Application No. PCT/US2007/077424, dated Apr. 29, 2008, 6 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/077443, dated Feb. 21, 2008, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088872, dated May 8, 2008, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088873, dated May 8, 2008, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000032, dated Jun. 12, 2008, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000042, dated May 21, 2008, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000043, dated Oct. 10, 2008, 12 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000043, dated Jun. 27, 2008, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000045, dated Jun. 12, 2008, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000047, dated Sep. 11, 2008, 12 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000047, dated Jul. 4, 2008, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000059, dated Sep. 19, 2008, 18 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000061, dated Jul. 1, 2008, 13 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/050083, dated Jul. 4, 2008, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020350, dated Jun. 30, 2011, 17 pages.
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2011/020350, dated Apr. 14, 2011, 5 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/020861, dated Aug. 2, 2012, 11 pages.
Aikawa, K. “Time-Warping Neural Network for Phoneme Recognition”, IEEE International Joint Conference on Neural Networks, vol. 3, Nov. 18-21, 1991, pp. 2122-2127.
Allen et al., “Automated Natural Spoken Dialog”, Computer, vol. 35, No. 4, Apr. 2002, pp. 51-56.
Alleva et al., “Applying SPHINX-II to DARPA Wall Street Journal CSR Task”, Proceedings of Speech and Natural Language Workshop, Feb. 1992, pp. 393-398.
Amrel Corporation, “Rocky Matrix BackLit Keyboard”, available at <http://www.amrel.com/asi_matrixkeyboard.html>, retrieved on Dec. 19, 2002, 1 page.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/034028, dated Jun. 11, 2012, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040931, dated Feb. 1, 2013, 4 pages (International Search Report only).
Apple, “VoiceOver”, available at <http://www.apple.com/accessibility/voiceover/>, Feb. 2009, 5 pages.
Apple Computer, Inc., “Apple—iPod—Technical Specifications, iPod 20GB and 60GB Mac + PC”, available at <http://www.apple.com/ipod/color/specs.html>, 2005, 3 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/041225, dated Aug. 23, 2013, 3 pages (International Search Report only).
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2013/047659, dated Feb. 27, 2014, 7 pages.
Invitation to Pay Additional Fees received for PCT Application No. PCT/US2013/052558, dated Nov. 7, 2013, 6 pages.
Pearl, Amy, “System Support for Integrated Desktop Video Conferencing”, Sunmicrosystems Laboratories, Dec. 1992, pp. 1-15.
Penn et al., “Ale for Speech: A Translation Prototype”, Bell Laboratories, 1999, 4 pages.
Phillipps, Ben, “Touchscreens are Changing the Face of Computers—Today's Users Have Five Types of Touchscreens to Choose from, Each with its Own Unique Characteristics”, Electronic Products, Nov. 1994, pp. 63-70.
Phillips, Dick, “The Multi-Media Workstation”, SIGGRAPH '89 Panel Proceedings, 1989, pp. 93-109.
Pickering, J. A., “Touch-Sensitive Screens: The Technologies and Their Application”, International Journal of Man-Machine Studies, vol. 25, No. 3, Sep. 1986, pp. 249-269.
Pingali et al., “Audio-Visual Tracking for Natural Interactivity”, ACM Multimedia, Oct. 1999, pp. 373-382.
Plaisant et al., “Touchscreen Interfaces for Alphanumeric Data Entry”, Proceedings of the Human Factors and Ergonomics Society 36th Annual Meeting, 1992, pp. 293-297.
Plaisant et al., “Touchscreen Toggle Design”, CHI'92, May 3-7, 1992, pp. 667-668.
Poly-Optical Products, Inc., “Poly-Optical Fiber Optic Membrane Switch Backlighting”, available at <http://www.poly-optical.com/membrane_switches.html>, retrieved on Dec. 19, 2002, 3 pages.
Poor, Alfred, “Microsoft Publisher”, PC Magazine, vol. 10, No. 20, Nov. 26, 1991, 1 page.
Potter et al., “An Experimental Evaluation of Three Touch Screen Strategies within a Hypertext Database”, International Journal of Human-Computer Interaction, vol. 1, No. 1, 1989, pp. 41-52.
Potter et al., “Improving the Accuracy of Touch Screens: An Experimental Evaluation of Three Strategies”, CHI '88 ACM, 1988, pp. 27-32.
Public Safety Technologies, “Tracer 2000 Computer”, available at <http://www.pst911.com/tracer.html>, retrieved on Dec. 19, 2002, 3 pages.
Apple Computer, Inc., “Apple Announces iTunes 2”, Press Release, Oct. 23, 2001, 2 pages.
Rabiner et al., “Digital Processing of Speech Signals”, Prentice Hall, 1978, pp. 274-277.
Rampe et al., “SmartForm Designer and SmartForm Assistant”, News release, Claris Corp., Jan. 9, 1989, 1 page.
Rao et al., “Exploring Large Tables with the Table Lens”, Apple Inc., Video Clip, Xerox Corp., on a CD, 1994.
Rao et al., “Exploring Large Tables with the Table Lens”, CHI'95 Mosaic of Creativity, ACM, May 7-11, 1995, pp. 403-404.
Rao et al., “The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus+Context Visualization for Tabular Information”, Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 1-7.
Raper, Larry K. ,“The C-MU PC Server Project”, (CMU-ITC-86-051), Dec. 1986, pp. 1-30.
Ratcliffe et al., “Intelligent Agents Take U.S. Bows”, MacWeek, vol. 6, No. 9, Mar. 2, 1992, 1 page.
Reddy, D. R., “Speech Recognition by Machine: A Review”, Proceedings of the IEEE, Apr. 1976, pp. 501-531.
Reininger et al., “Speech and Speaker Independent Codebook Design in VQ Coding Schemes”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 271-273.
Ren et al., “Efficient Strategies for Selecting Small Targets on Pen-Based Systems: An Evaluation Experiment for Selection Strategies and Strategy Classifications”, Proceedings of the IFIP TC2/TC13 WG2.7/WG13.4 Seventh Working Conference on Engineering for Human-Computer Interaction, vol. 150, 1998, pp. 19-37.
Ren et al., “Improving Selection Performance on Pen-Based Systems: A Study of Pen-Based Interaction for Selection Tasks”, ACM Transactions on Computer-Human Interaction, vol. 7, No. 3, Sep. 2000, pp. 384-416.
Ren et al., “The Best among Six Strategies for Selecting a Minute Target and the Determination of the Minute Maximum Size of the Targets on a Pen-Based Computer”, Human-Computer Interaction INTERACT, 1997, pp. 85-92.
Apple Computer, Inc., “Apple Introduces iTunes—World's Best and Easiest to Use Jukebox Software”, Macworld Expo, Jan. 9, 2001, 2 pages.
Riecken, R D., “Adaptive Direct Manipulation”, IEEE Xplore, 1991, pp. 1115-1120.
Rioport, “Rio 500: Getting Started Guide”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000023453.pdf>, 1999, 2 pages.
Robbin et al., “MP3 Player and Encoder for Macintosh!”, SoundJam MP Plus, Version 2.0, 2000, 76 pages.
Robertson et al., “Information Visualization Using 3D Interactive Animation”, Communications of the ACM, vol. 36, No. 4, Apr. 1993, pp. 57-71.
Robertson et al., “The Document Lens”, UIST '93, Nov. 3-5, 1993, pp. 101-108.
Root, Robert, “Design of a Multi-Media Vehicle for Social Browsing”, Bell Communications Research, 1988, pp. 25-38.
Roseberry, Catherine, “How to Pair a Bluetooth Headset & Cell Phone”, available at <http://mobileoffice.about.com/od/usingyourphone/ht/blueheadset_p.htm>, retrieved on Apr. 29, 2006, 2 pages.
Rosenberg et al., “An Overview of the Andrew Message System”, Information Technology Center Carnegie-Mellon University, Jul. 1987, pp. 99-108.
Rosner et al., “In Touch: A Graphical User Interface Development Tool”, IEEE Colloquium on Software Tools for Interface Design, Nov. 8, 1990, pp. 12/1-12/7.
Rossfrank, “Konstenlose Sprachmitteilungins Festnetz”, XP002234425, Dec. 10, 2000, pp. 1-4.
Roucos et al., “A Segment Vocoder at 150 B/S”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 246-249.
Roucos et al., “High Quality Time-Scale Modification for Speech”, Proceedings of the 1985 IEEE Conference on Acoustics, Speech and Signal Processing, 1985, pp. 493-496.
Sabin et al., “Product Code Vector Quantizers for Waveform and Voice Coding”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1984), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 274-288.
Apple Computer, Inc., “Apple's iPod Available in Stores Tomorrow”, Press Release, Nov. 9, 2001, 1 page.
Santen, Jan P., “Assignment of Segmental Duration in Text-to-Speech Synthesis”, Computer Speech and Language, vol. 8, No. 2, Apr. 1994, pp. 95-128.
Sarawagi, Sunita, “CRF Package Page”, available at <http://crf.sourceforge.net/>, retrieved on Apr. 6, 2011, 2 pages.
Sarkar et al., “Graphical Fisheye Views”, Communications of the ACM, vol. 37, No. 12, Dec. 1994, pp. 73-83.
Sarkar et al., “Graphical Fisheye Views of Graphs”, Systems Research Center, Digital Equipment Corporation,, Mar. 17, 1992, 31 pages.
Sarkar et al., “Graphical Fisheye Views of Graphs”, CHI '92 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 3-7, 1992, pp. 83-91.
Sarkar et al., “Stretching the Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens”, UIST'93, ACM, Nov. 3-5, 1993, pp. 81-91.
Sastry, Ravindra W., “A Need for Speed: A New Speedometer for Runners”, submitted to the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, 1999, pp. 1-42.
Schafer et al., “Digital Representations of Speech Signals”, Proceedings of the IEEE, vol. 63, No. 4, Apr. 1975, pp. 662-677.
Schaffer et al., “Navigating Hierarchically Clustered Networks through Fisheye and Full-Zoom Methods”, ACM Transactions on Computer-Human Interaction, vol. 3, No. 2, Jun. 1996, pp. 162-188.
Decker et al., “Designing Behaviors for Information Agents”, The Robotics Institute, Carnegie-Mellon University, Paper, Jul. 1996, 15 pages.
Decker et al., “Matchmaking and Brokering”, The Robotics Institute, Carnegie-Mellon University, Paper, May 1996, 19 pages.
Deerwester et al., “Indexing by Latent Semantic Analysis”, Journal of the American Society for Information Science, vol. 41, No. 6, Sep. 1990, 19 pages.
Deller, Jr. et al., “Discrete-Time Processing of Speech Signals”, Prentice Hall, ISBN: 0-02-328301-7, 1987, 14 pages.
Digital Equipment Corporation, “Open VMS Software Overview”, Software Manual, Dec. 1995, 159 pages.
Domingue et al., “Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services”, Position Paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, Jun. 2005, 6 pages.
Donovan, R. E., “A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers”, available at <http://citeseerx.ist.osu.edu/viewdoc/summarv?doi=1 0.1.1.21.6398>, 2001, 4 pages.
Dowding et al., “Gemini: A Natural Language System for Spoken-Language Understanding”, Proceedings of the Thirty-First Annual Meeting of the Association for Computational Linguistics, 1993, 8 pages.
Dowding et al., “Interleaving Syntax and Semantics in an Efficient Bottom-Up Parser”, Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, 1994, 7 pages.
Elio et al., “On Abstract Task Models and Conversation Policies”, Proc. Workshop on Specifying and Implementing Conversation Policies, Autonomous Agents'99 Conference, 1999, pp. 1-10.
Epstein et al., “Natural Language Access to a Melanoma Data Base”, SRI International, Sep. 1978, 7 pages.
Ericsson et al., “Software Illustrating a Unified Approach to Multimodality and Multilinguality in the In-Home Domain”, Talk and Look: Tools for Ambient Linguistic Knowledge, Dec. 2006, 127 pages.
Evi, “Meet Evi: The One Mobile Application that Provides Solutions for your Everyday Problems”, Feb. 2012, 3 pages.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results”, List of Publications Manually Reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Feigenbaum et al., “Computer-Assisted Semantic Annotation of Scientific Life Works”, Oct. 15, 2007, 22 pages.
Ferguson et al., “TRIPS: An Integrated Intelligent Problem-Solving Assistant”, Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) and Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), 1998, 7 pages.
Fikes et al., “A Network-Based Knowledge Representation and its Natural Deduction System”, SRI International, Jul. 1977, 43 pages.
Frisse, M. E., “Searching for Information in a Hypertext Medical Handbook”, Communications of the ACM, vol. 31, No. 7, Jul. 1988, 8 pages.
Gamback et al., “The Swedish Core Language Engine”, NOTEX Conference, 1992, 17 pages.
Gannes, Liz, “Alfred App Gives Personalized Restaurant Recommendations”, AllThingsD, Jul. 18, 2011, pp. 1-3.
Gautier et al., “Generating Explanations of Device Behavior Using Compositional Modeling and Causal Ordering”, CiteSeerx, 1993, pp. 89-97.
Gervasio et al., “Active Preference Learning for Personalized Calendar Scheduling Assistance”, CiteSeerx, Proceedings of IUI'05, Jan. 2005, pp. 90-97.
Glass, Alyssa, “Explaining Preference Learning”, CiteSeerx, 2006, pp. 1-5.
Glass et al., “Multilingual Language Generation Across Multiple Domains”, International Conference on Spoken Language Processing, Japan, Sep. 1994, 5 pages.
Glass et al., “Multilingual Spoken-Language Understanding in the Mit Voyager System”, Available online at <http://groups.csail.mit.edu/sls/publications/1995/speechcomm95-voyager.pdf>, Aug. 1995, 29 pages.
Goddeau et al., “A Form-Based Dialogue Manager for Spoken Language Applications”, Available online at <http://phasedance.com/pdf!icslp96.pdf>, Oct. 1996, 4 pages.
Goddeau et al., “Galaxy: A Human-Language Interface to On-Line Travel Information”, International Conference on Spoken Language Processing, Yokohama, 1994, pp. 707-710.
Goldberg et al., “Using Collaborative Filtering to Weave an Information Tapestry”, Communications of the ACM, vol. 35, No. 12, Dec. 1992, 10 pages.
Gong et al., “Guidelines for Handheld Mobile Device Interface Design”, Proceedings of DSI 2004 Annual Meeting, 2004, pp. 3751-3756.
Gorin et al., “On Adaptive Acquisition of Language”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), vol. 1, Apr. 1990, 5 pages.
Gotoh et al., “Document Space Models Using Latent Semantic Analysis”, In Proceedings of Eurospeech, 1997, 4 pages.
Gray, R. M., “Vector Quantization”, IEEE ASSP Magazine, Apr. 1984, 26 pages.
Green, C., “The Application of Theorem Proving to Question-Answering Systems”, SRI Stanford Research Institute, Artificial Intelligence Group, Jun. 1969, 169 pages.
Gregg et al., “DSS Access on the WWW: An Intelligent Agent Prototype”, Proceedings of the Americas Conference on Information Systems, Association for Information Systems, 1998, 3 pages.
Grishman et al., “Computational Linguistics: An Introduction”, Cambridge University Press, 1986, 172 pages.
Grosz et al., “Dialogic: A Core Natural-Language Processing System”, SRI International, Nov. 1982, 17 pages.
Grosz et al., “Research on Natural-Language Processing at SRI”, SRI International, Nov. 1981, 21 pages.
Grosz, B., “Team: A Transportable Natural-Language Interface System”, Proceedings of the First Conference on Applied Natural Language Processing, 1983, 7 pages.
Grosz et al., “TEAM: An Experiment in the Design of Transportable Natural-Language Interfaces”, Artificial Intelligence, vol. 32, 1987, 71 pages.
Gruber, Tom, “(Avoiding) the Travesty of the Commons”, Presentation at NPUC, New Paradigms for User Computing, IBM Almaden Research Center, Jul. 24, 2006, 52 pages.
Gruber, Thomas R., “A Translation Approach to Portable Ontology Specifications”, Knowledge Acquisition, vol. 5, No. 2, Jun. 1993, pp. 199-220.
Gruber et al., “An Ontology for Engineering Mathematics”, Fourth International Conference on Principles of Knowledge Representation and Reasoning, Available online at <http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html>, 1994, pp. 1-22.
Gruber, Thomas R., “Automated Knowledge Acquisition for Strategic Knowledge”, Machine Learning, vol. 4, 1989, pp. 293-336.
Gruber, Tom, “Big Think Small Screen: How Semantic Computing in the Cloud will Revolutionize the Consumer Experience on the Phone”, Keynote Presentation at Web 3.0 Conference, Jan. 2010, 41 pages.
Gruber et al., “Generative Design Rationale: Beyond the Record and Replay Paradigm”, Knowledge Systems Laboratory, Technical Report KSL 92-59, Dec. 1991, Updated Feb. 1993, 24 pages.
Gruber, Thomas R., “Interactive Acquisition of Justifications: Learning “Why” by Being Told “What””, Knowledge Systems Laboratory, Technical Report KSL 91-17, Original Oct. 1990, Revised Feb. 1991, 24 pages.
Gruber et al., “Machine-Generated Explanations of Engineering Models: A Compositional Modeling Approach”, Proceedings of International Joint Conference on Artificial Intelligence, 1993, 7 pages.
Gruber et al., “NIKE: A National Infrastructure for Knowledge Exchange”, A Whitepaper Advocating and ATP Initiative on Technologies for Lifelong Learning, Oct. 1994, pp. 1-10.
Gruber et al., “Toward a Knowledge Medium for Collaborative Product Development”, Proceedings of the Second International Conference on Artificial Intelligence in Design, Jun. 1992, pp. 1-19.
Gruber, Thomas R., “Toward Principles for the Design of Ontologies used for Knowledge Sharing?”, International Journal of Human-Computer Studies, vol. 43, No. 5-6, Nov. 1995, pp. 907-928.
Sullivan, Danny, “How Google Instant's Autocomplete Suggestions Work”, available at <http://searchengineland.com/how-google-instant-autocomplete-suggestions-work-62592>, Apr. 6, 2011, 12 pages.
Summerfield et al., “ASIC Implementation of the Lyon Cochlea Model”, Proceedings of the 1992 International Conference on Acoustics, Speech and Signal Processing, IEEE, vol. V, 1992, pp. 673-676.
T3 Magazine, “Creative MuVo TX 256MB”, available at <http://www.t3.co.uk/reviews/entertainment/mp3_player/creative_muvo_tx_256mb>, Aug. 17, 2004, 1 page.
TAOS, “TAOS, Inc. Announces Industry's First Ambient Light Sensor to Convert Light Intensity to Digital Signals”, News Release, available at <http://www.taosinc.com/presssrelease_090902.htm>, Sep. 16, 2002, 3 pages.
Apple Computer, Inc., “iTunes 2, Playlist Related Help Screens”, iTunes v2.0, 2000-2001, 8 pages.
Tello, Ernest R., “Natural-Language Systems”, Mastering AI Tools and Techniques, Howard W. Sams & Company, 1988.
TG3 Electronics, Inc., “BL82 Series Backlit Keyboards”, available at <http://www.tg3electronics.com/products/backlit/backlit.htm>, retrieved on Dec. 19, 2002, 2 pages.
The HP 150, “Hardware: Compact, Powerful, and Innovative”, vol. 8, No. 10, Oct. 1983, pp. 36-50.
Tidwell, Jenifer, “Animated Transition”, Designing Interfaces, Patterns for effective Interaction Design, Nov. 2005, First Edition, 4 pages.
Touch, Joseph, “Zoned Analog Personal Teleconferencing”, USC / Information Sciences Institute, 1993, pp. 1-19.
Toutanova et al., “Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network”, Computer Science Dept., Stanford University, Stanford CA 94305-9040, 2003, 8 pages.
Trigg et al., “Hypertext Habitats: Experiences of Writers in NoteCards”, Hypertext '87 Papers; Intelligent Systems Laboratory, Xerox Palo Alto Research Center, 1987, pp. 89-108.
Trowbridge, David, “Using Andrew for Development of Educational Applications”, Center for Design of Educational Computing, Carnegie-Mellon University (CMU-ITC-85-065), Jun. 2, 1985, pp. 1-6.
Tsao et al., “Matrix Quantizer Design for LPC Speech Using the Generalized Lloyd Algorithm”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 237-245.
Turletti, Thierry, “The INRIA Videoconferencing System (IVS)”, Oct. 1994, pp. 1-7.
Uslan et al., “A Review of Henter-Joyce's MAGic for Windows NT”, Journal of Visual Impairment and Blindness, Dec. 1999, pp. 666-668.
Uslan et al., “A Review of Supernova Screen Magnification Program for Windows”, Journal of Visual Impairment & Blindness, Feb. 1999, pp. 108-110.
Uslan et al., “A Review of Two Screen Magnification Programs for Windows 95: Magnum 95 and LP-Windows”, Journal of Visual Impairment & Blindness, Sep.-Oct. 1997, pp. 9-13.
Veiga, Alex, “AT&T Wireless Launching Music Service”, available at <http://bizyahoo.com/ap/041005/at_t_mobile_music_5.html?printer=1>, Oct. 5, 2004, 2 pages.
Vogel et al., “Shift: A Technique for Operating Pen-Based Interfaces Using Touch”, CHI '07 Proceedings, Mobile Interaction Techniques I, Apr. 28-May 3, 2007, pp. 657-666.
W3C Working Draft, “Speech Synthesis Markup Language Specification for the Speech Interface Framework”, available at <http://www.w3org./TR/speech-synthesis>, retrieved on Dec. 14, 2000, 42 pages.
Wadlow, M. G., “The Role of Human Interface Guidelines in the Design of Multimedia Applications”, Carnegie Mellon University (To be Published in Current Psychology: Research and Reviews, Summer 1990 (CMU-ITC-91-101), 1990, pp. 1-22.
Walker et al., “The LOCUS Distributed Operating System 1”, University of California Los Angeles, 1983, pp. 49-70.
Wang et al., “An Initial Study on Large Vocabulary Continuous Mandarin Speech Recognition with Limited Training Data Based on Sub-Syllabic Models”, International Computer Symposium, vol. 2, 1994, pp. 1140-1145.
Wang et al., “Tone Recognition of Continuous Mandarin Speech Based on Hidden Markov Model”, International Journal of Pattern Recognition and Artificial Intelligence, vol. 8, 1994, pp. 233-245.
Ware et al., “The DragMag Image Magnifier”, CHI '95 Mosaic of Creativity, May 7-11, 1995, pp. 407-408.
Ware et al., “The DragMag Image Magnifier Prototype I”, Apple Inc., Video Clip, Marlon, on a CD, Applicant is not Certain about the Date for the Video Clip., 1995.
Watabe et al., “Distributed Multiparty Desktop Conferencing System: MERMAID”, CSCW 90 Proceedings, Oct. 1990, pp. 27-38.
White, George M., “Speech Recognition, Neural Nets, and Brains”, Jan. 1992, pp. 1-48.
Wikipedia, “Acoustic Model”, available at <http://en.wikipedia.org/wiki/AcousticModel>, retrieved on Sep. 14, 2011, 2 pages.
Wikipedia, “Language Model”, available at <http://en.wikipedia.org/wiki/Language_model>, retrieved on Sep. 14, 2011, 3 pages.
Wikipedia, “Speech Recognition”, available at <http://en.wikipedia.org/wiki/Speech_recognition>, retrieved on Sep. 14, 2011, 10 pages.
Wilensky et al., “Talking to UNIX in English: An Overview of UC”, Communications of the ACM, vol. 27, No. 6, Jun. 1984, pp. 574-593.
Wilson, Mark, “New iPod Shuffle Moves Buttons to Headphones, Adds Text to Speech”, available at <http://gizmodo.com/5167946/new-ipod-shuffle-moves-buttons-to-headphones-adds-text-to-speech>, Mar. 11, 2009, 13 pages.
Wirelessinfo, “SMS/MMS Ease of Use (8.0)”, available at <http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm>, Mar. 2007, 3 pages.
Wong et al., “An 800 Bit/s Vector Quantization LPC Vocoder”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Oct. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 222-232.
Wong et al., “Very Low Data Rate Speech Compression with LPC Vector and Matrix Quantization”, (Proceedings of the IEEE Int'l Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 233-236.
Wu et al., “Automatic Generation of Synthesis Units and Prosodic Information for Chinese Concatenative Synthesis”, Speech Communication, vol. 35, No. 3-4, Oct. 2001, pp. 219-237.
Yang et al., “Auditory Representations of Acoustic Signals”, IEEE Transactions of Information Theory, vol. 38, No. 2, Mar. 1992, pp. 824-839.
Yang et al., “Hidden Markov Model for Mandarin Lexical Tone Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 36, No. 7, Jul. 1988, pp. 988-992.
Yiourgalis et al., “Text-to-Speech system for Greek”, ICASSP 91, vol. 1, May 14-17, 1991., pp. 525-528.
Zainab, “Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]”, available at <http://www.addictivetips.com/internet-tips/google-input-tools-shows-multiple-language-onscreen-keyboards-chrome/>, Jan. 3, 2012, 3 pages.
Zelig, “A Review of the Palm Treo 750v”, available at <http://www.mtekk.com.au/Articles/tabid/54/articleType/ArticleView/articleld/769/A-Review-of-the-Palm-Treo-750v.aspx>, Feb. 5, 2007, 3 pages.
Zhang et al., “Research of Text Classification Model Based on Latent Semantic Analysis and Improved HS-SVM”, Intelligent Systems and Applications (ISA), 2010 2nd International Workshop, May 22-23, 2010, 5 pages.
Ziegler, K, “A Distributed Information System Study”, IBM Systems Journal, vol. 18, No. 3, 1979, pp. 374-401.
Zipnick et al., “U.S. Appl. No. 10/859,661, filed Jun. 2, 2004”.
“2004 Chrysler Pacifica: U-Connect Hands-Free Communication System”, The Best and Brightest of 2004, Brief Article, Automotive Industries, Sep. 2003, 1 page.
“2007 Lexus GS 450h 4dr Sedan (3.5L 6cyl Gas/Electric Hybrid CVT)”, available at <http://review.cnet.com/4505-10865_16-31833144.html>, retrieved on Aug. 3, 2006, 10 pages.
“All Music Website”, available at <http://www.allmusic.com/>, retrieved on Mar. 19, 2007, 2 pages.
“BluePhoneElite: About”, available at <http://www.reelintelligence.com/BluePhoneElite>, retrieved on Sep. 25, 2006, 2 pages.
“BluePhoneElite: Features”, available at <http://www.reelintelligence.com/BluePhoneElite/features.shtml,>, retrieved on Sep. 25, 2006, 2 pages.
“Digital Audio in the New Era”, Electronic Design and Application, No. 6, Jun. 30, 2003, 3 pages.
“Mobile Speech Solutions, Mobile Accessibility”, SVOX AG Product Information Sheet, available at <http://www.svox.com/site/bra840604/con782768/mob965831936.aSQ?osLang=1>, Sep. 27, 2012, 1 page.
“N200 Hands-Free Bluetooth Car Kit”, available at <www.wirelessground.com>, retrieved on Mar. 19, 2007, 3 pages.
“PhatNoise”, Voice Index on Tap, Kenwood Music Keg, available at <http://www. phatnoise.com/kenwood/kenwoodssamail.html>, retrieved on Jul. 13, 2006, 1 page.
“What is Fuzzy Logic?”, available at <http://www.cs.cmu.edu>, retrieved on Apr. 15, 1993, 5 pages.
“Windows XP: A Big Surprise!—Experiencing Amazement from Windows XP”, New Computer, No. 2, Feb. 28, 2002, 8 pages.
Aikawa et al., “Generation for Multilingual MT”, available at <http://mtarchive.info/MTS-2001-Aikawa.pdf>, retrieved on Sep. 18, 2001, 6 pages.
Anhui USTC IFL Ytek Co. Ltd., “Flytek Research Center Information Datasheet”, available at <http://www.iflttek.com/english/Research.htm>, retrieved on Oct. 15, 2004, 3 pages.
Borden IV, G.R., “An Aural User Interface for Ubiquitous Computing”, Proceedings of the 6th International Symposium on Wearable Computers, IEEE, 2002, 2 pages.
Brain, Marshall, “How MP3 Files Work”, available at <http://www.howstuffworks.com>, retrieved on Mar. 19, 2007, 4 pages.
Busemann et al., “Natural Language Diaglogue Service for Appointment Scheduling Agents”, Technical Report RR-97-02, Deutsches Forschungszentrum fur Kunstliche Intelligenz GmbH, 1997, 8 pages.
Dusan et al., “Multimodal Interaction on PDA's Integrating Speech and Pen Inputs”, Eurospeech Geneva, 2003, 4 pages.
Lamel et al., “Generation and synthesis of Broadcast Messages”, Proceedings of ESCA-NATO Workshop: Applications of Speech Technology, Sep. 1, 1993, 4 pages.
Lyons et al., “Augmenting Conversations Using Dual-Purpose Speech”, Proceedings of the 17th Annual ACM Symposium on User interface Software and Technology, 2004, 10 pages.
Macsimum News, “Apple Files Patent for an Audio Interface for the iPod”, available at <http://www.macsimumnews.com/index.php/archive/apple_files_patent_for_an_audio_interface_for_the_ipod>, retrieved on Jul. 13, 2006, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2004/016519, dated Nov. 3, 2005, 6 pages.
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2004/016519, dated Aug. 4, 2005, 6 pages.
International Search Report received for PCT Patent Application No. PCT/US2011/037014, dated Oct. 4, 2011, 6 pages.
Invitation to Pay Additional Search Fees received for PCT Application No. PCT/US2011/037014, dated Aug. 2, 2011, 6 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/043098, dated Nov. 14, 2012, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/040971, dated Nov. 12, 2013, 11 pages.
Quazza et al., “Actor: A Multilingual Unit-Selection Speech Synthesis System”, Proceedings of 4th ISCA Tutorial and Research Workshop on Speech Synthesis, Jan. 1, 2001, 6 pages.
Ricker, Thomas, “Apple Patents Audio User Interface”, Engadget, available at <http://www.engadget.com/2006/05/04/apple-patents-audio-user-interface/>, May 4, 2006, 6 pages.
Santaholma, Marianne E., “Grammar Sharing Techniques for Rule-based Multilingual NLP Systems”, Proceedings of the 16th Nordic Conference of Computational Linguistics, Nodalida 2007, May 25, 2007, 8 pages.
Taylor et al., “Speech Synthesis by Phonological Structure Matching”, International Speech Communication Association, vol. 2, Section 3, 1999, 4 pages.
Xu et al., “Speech-Based Interactive Games for Language Learning: Reading, Translation, and Question-Answering”, Computational Linguistics and Chinese Language Processing, vol. 14, No. 2, Jun. 2009, pp. 133-160.
Yunker, John, “Beyond Borders: Web Globalization Strategies”, New Riders, Aug. 22, 2002, 11 pages.
Yang et al., “Smart Sight: A Tourist Assistant System”, Proceedings of Third International Symposium on Wearable Computers, 1999, 6 pages.
Yankelovich et al., “Intermedia: The Concept and the Construction of a Seamless Information Environment”, Computer Magazine, IEEE, Jan. 1988, 16 pages.
Yoon et al., “Letter-to-Sound Rules for Korean”, Department of Linguistics, The Ohio State University, 2002, 4 pages.
Zeng et al., “Cooperative Intelligent Software Agents”, The Robotics Institute, Carnegie-Mellon University, Mar. 1995, 13 pages.
Zhao, Y., “An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition”, IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, pp. 380-394.
Zhao et al., “Intelligent Agents for Flexible Workflow Systems”, Proceedings of the Americas Conference on Information Systems (AMCIS), Oct. 1998, 4 pages.
Zovato et al., “Towards Emotional Speech Synthesis: A Rule based Approach”, Proceedings of 5th ISCA Speech Synthesis Workshop-Pittsburgh, 2004, pp. 219-220.
Zue, Victor, “Conversational Interfaces: Advances and Challenges”, Spoken Language System Group, Sep. 1997, 10 pages.
Zue et al., “From Interface to Content: Translingual Access and Delivery of On-Line Information”, Eurospeech, 1997, 4 pages.
Zue et al., “Jupiter: A Telephone-Based Conversational Interface for Weather Information”, IEEE Transactions on Speech and Audio Processing, Jan. 2000, 13 pages.
Zue et al., “Pegasus: A Spoken Dialogue Interface for On-Line Air Travel Planning”, Speech Communication, vol. 15, 1994, 10 pages.
Zue et al., “The Voyager Speech Understanding System: Preliminary Development and Evaluation”, Proceedings of IEEE, International Conference on Acoustics, Speech and Signal Processing, 1990, 4 pages.
Zue, Victor W., “Toward Systems that Understand Spoken Language”, ARPA Strategic Computing Institute, Feb. 1994, 9 pages.
International Search Report received for PCT Patent Application No. PCT/GB2009/051684, dated Mar. 12, 2010, 4 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/GB2009/051684, dated Jun. 23, 2011, 10 pages.
Cucerzan et al., “Bootstrapping a Multilingual Part-of-Speech Tagger in One Person-Day”, In Proceedings of the 6th Conference on Natural Language Learning, vol. 20, 2002, pp. 1-7.
Schone et al., “Knowledge-Free Induction of Morphology Using Latent Semantic Analysis”, Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, vol. 7, 2000, pp. 67-72.
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 12727027.0, dated Sep. 26, 2014, 7 pages.
Biemann, et al., “Disentangling from Babylonian Confusion—Unsupervised Language Identification”, CICLing'05 Proceedings of the 6th international conference on Computational Linguistics and Intelligent Text Processing, vol. 3406, 2005, pp. 773-784.
Choularton, et al., “User Responses to Speech Recognition Errors: Consistency of Behaviour Across Domains”, Proceedings of the 10th Australian International Conference on Speech Science & Technology, Dec. 8-10, 2004, pp. 457-462.
Guay, “Location-Driven Productivity with Task Ave”, available at <http://iphone.appstorm.net/reviews/productivity/location-driven-productivity-with-task-ave/>, Feb. 19, 2011, 7 pages.
Henrich, et al., “Language Identification for the Automatic Grapheme-To-Phoneme Conversion of Foreign Words in a German Text-To-Speech System”, Proceedings of the European Conference on Speech Communication and Technology, vol. 2, Sep. 1989, pp. 220-223.
Jiang, et al., “A Syllable-based Name Transliteration System”, Proceedings of the 2009 Named Entities Workshop, Aug. 7, 2009, pp. 96-99.
Kazemzadeh, et al., “Acoustic Correlates of User Response to Error in Human-Computer Dialogues”, Automatic Speech Recognition and Understanding, 2003, pp. 215-220.
Kikui, “Identifying the Coding System and Language of On-Line Documents on the Internet”, COLING '96, Proceedings of the 16th conference on Computational linguistics—vol. 2, 1996, pp. 652-657.
Meng, et al., “Generating Phonetic Cognates to Handle Named Entities in English-Chinese Cross-Language Spoken Document Retrieval”, Automatic Speech Recognition and Understanding, 2001, pp. 311-314.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040571, dated Dec. 19, 2013, 10 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/056382, dated Apr. 10, 2014, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/028412, dated Sep. 12, 2014, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/028412, dated Sep. 26, 2013, 17 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/028920, dated Sep. 18, 2014, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/028920, dated Jun. 27, 2013, 14 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/029156, dated Sep. 18, 2014, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/029156, dated Jul. 15, 2013, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/041233, dated Nov. 18, 2014, 8 pages.
International Search Report received for PCT Patent Application No. PCT/US2013/041233, dated Nov. 22, 2013, 3 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/058916, dated Sep. 8, 2014, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/028785, dated Oct. 17, 2014, 23 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/029050, dated Jul. 31, 2014, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/029562, dated Sep. 18, 2014, 21 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040401, dated Sep. 4, 2014, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040403, dated Sep. 23, 2014, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/041159, dated Sep. 26, 2014, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/041173, dated Sep. 10, 2014, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/049568, dated Nov. 14, 2014, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/23822 dated Sep. 25, 2014, 14 pages.
Russo, et al., “Urgency is a Non-Monotonic Function of Pulse Rate”, Journal of the Acoustical Society of America, vol. 122, No. 5, Nov. 2007, pp. EL 185-EL 190.
Sethy, et al., “A Syllable Based Approach for Improved Recognition of Spoken Names”, ITRW on Pronunciation Modeling and Lexicon Adaptation for Spoken language Technology (PMLA2002), Sep. 14-15, 2002, pp. 30-35.
Strom, et al., “Intelligent Barge-In in Conversational Systems”, Proceedings ICSLP, 2000, 4 pages.
Waibel, “Interactive Translation of Conversational Speech”, Computer, vol. 29, No. 7, Jul. 1996, pp. 41-48.
Scheifler, R. W., “The X Window System”, MIT Laboratory for Computer Science and Gettys, Jim Digital Equipment Corporation and MIT Project Athena; ACM Transactions on Graphics, vol. 5, No. 2, Apr. 1986, pp. 79-109.
Schluter et al., “Using Phase Spectrum Information for Improved Speech Recognition Performance”, IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, pp. 133-136.
Schmandt et al., “A Conversational Telephone Messaging System”, IEEE Transactions on Consumer Electronics, vol. CE-30, Aug. 1984, pp. xxi-xxiv.
Schmandt et al., “Phone Slave: A Graphical Telecommunications Interface”, Society for Information Display, International Symposium Digest of Technical Papers, Jun. 1984, 4 pages.
Schmandt et al., “Phone Slave: A Graphical Telecommunications Interface”, Proceedings of the SID, vol. 26, No. 1, 1985, pp. 79-82.
Schmid, H., “Part-of-speech tagging with neural networks”, COLING '94 Proceedings of the 15th conference on Computational linguistics—vol. 1, 1994, pp. 172-176.
Schooler et al., “A Packet-switched Multimedia Conferencing System”, by Eve Schooler, et al; ACM SIGOIS Bulletin, vol. I, No. 1, Jan. 1989, pp. 12-22.
Schooler et al., “An Architecture for Multimedia Connection Management”, Proceedings IEEE 4th Comsoc International Workshop on Multimedia Communications, Apr. 1992, pp. 271-274.
Schooler et al., “Multimedia Conferencing: Has it Come of Age?”, Proceedings 24th Hawaii International Conference on System Sciences, vol. 3, Jan. 1991, pp. 707-716.
Schooler et al., “The Connection Control Protocol: Architecture Overview”, USC/Information Sciences Institute, Jan. 28, 1992, pp. 1-6.
Schooler, Eve, “A Distributed Architecture for Multimedia Conference Control”, ISI Research Report, Nov. 1991, pp. 1-18.
Schooler, Eve M., “Case Study: Multimedia Conference Control in a Packet-Switched Teleconferencing System”, Journal of Internetworking: Research and Experience, vol. 4, No. 2, Jun. 1993, pp. 99-120.
Schooler, Eve M., “The Impact of Scaling on a Multimedia Connection Architecture”, Multimedia Systems, vol. 1, No. 1, 1993, pp. 2-9.
Schütze, H., “Distributional part-of-speech tagging”, EACL '95 Proceedings of the seventh conference on European chapter of the Association for Computational Linguistics, 1995, pp. 141-148.
Schütze, Hinrich, “Part-of-speech induction from scratch”, ACL '93 Proceedings of the 31st annual meeting on Association for Computational Linguistics, 1993, pp. 251-258.
Schwartz et al., “Context-Dependent Modeling for Acoustic-Phonetic Recognition of Continuous Speech”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 10, Apr. 1985, pp. 1205-1208.
Schwartz et al., “Improved Hidden Markov Modeling of Phonemes for Continuous Speech Recognition”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 9, 1984, pp. 21-24.
Schwartz et al., “The N-Best Algorithm: An Efficient and Exact Procedure for Finding the N Most Likely Sentence Hypotheses”, IEEE, 1990, pp. 81-84.
Scott et al., “Designing Touch Screen Numeric Keypads: Effects of Finger Size, Key Size, and Key Spacing”, Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting, Oct. 1997, pp. 360-364.
Seagrave, Jim, “A Faster Way to Search Text”, EXE, vol. 5, No. 3, Aug. 1990, pp. 50-52.
Sears et al., “High Precision Touchscreens: Design Strategies and Comparisons with a Mouse”, International Journal of Man-Machine Studies, vol. 34, No. 4, Apr. 1991, pp. 593-613.
Sears et al., “Investigating Touchscreen Typing: The Effect of Keyboard Size on Typing Speed”, Behavior & Information Technology, vol. 12, No. 1, 1993, pp. 17-22.
Sears et al., “Touchscreen Keyboards”, Apple Inc., Video Clip, Human-Computer Interaction Laboratory, on a CD, Apr. 1991.
Seide et al., “Improving Speech Understanding by Incorporating Database Constraints and Dialogue History”, Proceedings of Fourth International Conference on Philadelphia,, 1996, pp. 1017-1020.
Shiraki et al., “LPC Speech Coding Based on Variable-Length Segment Quantization”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Sep. 1988), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 250-257.
Shneiderman, Ben, “Designing the User Interface: Strategies for Effective Human-Computer Interaction”, Second Edition, 1992, 599 pages.
Shneiderman, Ben, “Designing the User Interface: Strategies for Effective Human-Computer Interaction”, Third Edition, 1998, 669 pages.
Shneiderman, Ben, “Direct Manipulation for Comprehensible, Predictable and Controllable User Interfaces”, Proceedings of the 2nd International Conference on Intelligent User Interfaces, 1997, pp. 33-39.
Shneiderman, Ben, “Sparks of Innovation in Human-Computer Interaction”, 1993, (Table of Contents, Title Page, Ch. 4, Ch. 6 and List of References).
Shneiderman, Ben, “The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations”, IEEE Proceedings of Symposium on Visual Languages, 1996, pp. 336-343.
Shneiderman, Ben, “Touch Screens Now Offer Compelling Uses”, IEEE Software, Mar. 1991, pp. 93-94.
Shoham et al., “Efficient Bit and Allocation for an Arbitrary Set of Quantizers”, (IEEE Transactions on Acoustics, Speech, and Signal Processing, Sep. 1988) as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 289-296.
Simkovitz, Daniel, “LP-DOS Magnifies the PC Screen”, IEEE, 1992, pp. 203-204.
Singh et al., “Automatic Generation of Phone Sets and Lexical Transcriptions”, Acoustics, Speech and Signal Processing (ICASSP'00), 2000, 1 page.
Sinitsyn, Alexander, “A Synchronization Framework for Personal Mobile Servers”, Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, Piscataway, 2004, pp. 1, 3 and 5.
Slaney et al., “On the Importance of Time—A Temporal Representation of Sound”, Visual Representation of Speech Signals, 1993, pp. 95-116.
Smeaton, Alan F., “Natural Language Processing and Information Retrieval”, Information Processing and Management, vol. 26, No. 1, 1990, pp. 19-20.
Smith et al., “Guidelines for Designing User Interface Software”, User Lab, Inc., Aug. 1986, pp. 1-384.
Smith et al., “Relating Distortion to Performance in Distortion Oriented Displays”, Proceedings of Sixth Australian Conference on Computer-Human Interaction, Nov. 1996, pp. 6-11.
Sony Ericsson Corporate, “Sony Ericsson to introduce Auto pairing.TM. to Improve Bluetooth.TM. Connectivity Between Headsets and Phones”, Press Release, available at <http://www.sonyericsson.com/spg.jsp?cc=global&lc=en&ver=4001&template=pc3_1_ 1&z . . . >, Sep. 28, 2005, 2 pages.
Soong et al., “A High Quality Subband Speech Coder with Backward Adaptive Predictor and Optimal Time-Frequency Bit Assignment”, (Proceedings of the IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 316-319.
Spiller, Karen, “Low-Decibel Earbuds Keep Noise at a Reasonable Level”, available at <http://www. nashuatelegraph.com/apps/pbcs.dll/article?Date=20060813&Cate . . . >, Aug. 13, 2006, 3 pages.
Apple Computer, Inc., “Inside Macintosh”, vol. VI, 1985.
Srinivas et al., “Monet: A Multi-Media System for Conferencing and Application Sharing in Distributed Systems”, CERC Technical Report Series Research Note, Feb. 1992.
Stealth Computer Corporation, “Peripherals for Industrial Keyboards & Pointing Devices”, available at <http://www.stealthcomputer.com/peripherals_oem.htm>, retrieved on Dec. 19, 2002, 6 pages.
Steinberg, Gene, “Sonicblue Rio Car (10 GB, Reviewed: 6 GB)”, available at <http://electronics.cnet.com/electronics/0-6342420-1304-4098389.html>, Dec. 12, 2000, 2 pages.
Stent et al., “Geo-Centric Language Models for Local Business Voice Search”, AT&T Labs—Research, 2009, pp. 389-396.
Stone et al., “The Movable Filter as a User Interface Tool”, CHI '94 Human Factors in Computing Systems, 1994, pp. 306-312.
Su et al., “A Review of ZoomText Xtra Screen Magnification Program for Windows 95”, Journal of Visual Impairment & Blindness, Feb. 1998, pp. 116-119.
Su, Joseph C., “A Review of Telesensory's Vista PCI Screen Magnification System”, Journal of Visual Impairment & Blindness, Oct. 1998, pp. 705, 707-710.
Eslambolchilar et al., “Making Sense of Fisheye Views”, Second Dynamics and Interaction Workshop at University of Glasgow, Aug. 2005, 6 pages.
Eslambolchilar et al., “Multimodal Feedback for Tilt Controlled Speed Dependent Automatic Zooming”, UIST'04, Oct. 24-27, 2004, 2 pages.
Fanty et al., “A Comparison of DFT, PLP and Cochleagram for Alphabet Recognition”, IEEE, Nov. 1991.
Findlater et al., “Beyond QWERTY: Augmenting Touch-Screen Keyboards with Multi-Touch Gestures for Non-Alphanumeric Input”, CHI '12, Austin, Texas, USA, May 5-10, 2012, 4 pages.
Fisher et al., “Virtual Environment Display System”, Interactive 3D Graphics, Oct. 23-24, 1986, pp. 77-87.
Forsdick, Harry, “Explorations into Real-Time Multimedia Conferencing”, Proceedings of the Ifip Tc 6 International Symposium on Computer Message Systems, 1986, 331 pages.
Furnas et al., “Space-Scale Diagrams: Understanding Multiscale Interfaces”, CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1995, pp. 234-241.
Furnas, George W., “Effective View Navigation”, Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Mar. 1997, pp. 367-374.
Furnas, George W., “Generalized Fisheye Views”, CHI '86 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, vol. 17, No. 4, Apr. 1986, pp. 16-23.
Furnas, George W., “The Fisheye Calendar System”, Bellcore Technical Memorandum, Nov. 19, 1991.
Gardner, Jr., P. C., “A System for the Automated Office Environment”, IBM Systems Journal, vol. 20, No. 3, 1981, pp. 321-345.
Garretson, R., “IBM Adds ‘Drawing Assistant’ Design Tool to Graphic Series”, PC Week, vol. 2, No. 32, Aug. 13, 1985, 1 page.
Gaver et al., “One Is Not Enough: Multiple Views in a Media Space”, INTERCHI, Apr. 24-29, 1993, pp. 335-341.
Gaver et al., “Realizing a Video Environment: EuroPARC's RAVE System”, Rank Xerox Cambridge EuroPARC, 1992, pp. 27-35.
Giachin et al., “Word Juncture Modeling Using Inter-Word Context-Dependent Phone-Like Units”, Cselt Technical Reports, vol. 20, No. 1, Mar. 1992, pp. 43-47.
Gillespie, Kelly, “Adventures in Integration”, Data Based Advisor, vol. 9, No. 9, Sep. 1991, pp. 90-92.
Gillespie, Kelly, “Internationalize Your Applications with Unicode”, Data Based Advisor, vol. 10, No. 10, Oct. 1992, pp. 136-137.
Gilloire et al., “Innovative Speech Processing for Mobile Terminals: An Annotated Bibliography”, Signal Processing, vol. 80, No. 7, Jul. 2000, pp. 1149-1166.
Glinert-Stevens, Susan, “Microsoft Publisher: Desktop Wizardry”, PC Sources, vol. 3, No. 2, Feb. 1992, 1 page.
Gmail, “About Group Chat”, available at <http://mail.google.com/support/bin/answer.py?answer=81090>, Nov. 26, 2007, 2 pages.
Goldberg, Cheryl, “IBM Drawing Assistant: Graphics for the EGA”, PC Magazine, vol. 4, No. 26, Dec. 24, 1985, 1 page.
Good et al., “Building a User-Derived Interface”, Communications of the ACM; (Oct. 1984) vol. 27, No. 10, Oct. 1984, pp. 1032-1043.
Gray et al., “Rate Distortion Speech Coding with a Minimum Discrimination Information Distortion Measure”, (IEEE Transactions on Information Theory, Nov. 1981), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 208-221.
Greenberg, Saul, “A Fisheye Text Editor for Relaxed-WYSIWIS Groupware”, CHI '96 Companion, Vancouver, Canada, Apr. 13-18, 1996, 2 pages.
Griffin et al., “Signal Estimation From Modified Short-Time Fourier Transform”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-32, No. 2, Apr. 1984, pp. 236-243.
Gruhn et al., “A Research Perspective on Computer-Assisted Office Work”, IBM Systems Journal, vol. 18, No. 3, 1979, pp. 432-456.
Hain et al., “The Papageno TTS System”, Siemens AG, Corporate Technology, Munich, Germany TC-STAR Workshop, 2006, 6 pages.
Halbert, D. C., “Programming by Example”, Dept. Electrical Engineering and Comp. Sciences, University of California, Berkley, Nov. 1984, pp. 1-76.
Hall, William S., “Adapt Your Program for Worldwide Use with Windows.TM. Internationalization Support”, Microsoft Systems Journal, vol. 6, No. 6, Nov./Dec. 1991, pp. 29-58.
Haoui et al., “Embedded Coding of Speech: A Vector Quantization Approach”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 297-299.
Hartson et al., “Advances in Human-Computer Interaction”, Chapters 1, 5, and 6, vol. 3, 1992, 121 pages.
Heger et al., “KNOWBOT: An Adaptive Data Base Interface”, Nuclear Science and Engineering, V. 107, No. 2, Feb. 1991, pp. 142-157.
Hendrix et al., “The Intelligent Assistant: Technical Considerations Involved in Designing Q&A's Natural-Language Interface”, Byte Magazine, Issue 14, Dec. 1987, 1 page.
Heyer et al., “Exploring Expression Data: Identification and Analysis of Coexpressed Genes”, Genome Research, vol. 9, 1999, pp. 1106-1115.
Hill, R. D., “Some Important Features and Issues in User Interface Management System”, Dynamic Graphics Project, University of Toronto, CSRI, vol. 21, No. 2, Apr. 1987, pp. 116-120.
Hinckley et al., “A Survey of Design Issues in Spatial Input”, UIST '94 Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, 1994, pp. 213-222.
Hiroshi, “TeamWork Station: Towards a Seamless Shared Workspace”, NTT Human Interface Laboratories, CSCW 90 Proceedings, Oct. 1990, pp. 13-26.
Holmes, “Speech System and Research”, 1955, pp. 129-135, 152-153.
Hon et al., “Towards Large Vocabulary Mandarin Chinese Speech Recognition”, Conference on Acoustics, Speech, and Signal Processing, ICASSP-94, IEEE International, vol. 1, Apr. 1994, pp. 545-548.
Hopper, Andy, “Pandora—An Experimental System for Multimedia Applications”, Olivetti Research Laboratory, Apr. 1990, pp. 19-34.
Howard, John H., “(Abstract) An Overview of the Andrew File System”, Information Technology Center, Carnegie Mellon University; (CMU-ITC-88-062) to Appear in a future issue of the ACM Transactions on Computer Systems, 1988, pp. 1-6.
Huang et al., “Real-Time Software-Based Video Coder for Multimedia Communication Systems”, Department of Computer Science and Information Engineering, 1993, 10 pages.
Hukin, R. W., “Testing an Auditory Model by Resynthesis”, European Conference on Speech Communication and Technology, Sep. 26-29, 1989, pp. 243-246.
Hunt, “Unit Selection in a Concatenative Speech Synthesis System Using a Large Speech Database”, Copyright 1996 IEEE. “To appear in Proc. ICASSP-96, May 7-10, Atlanta, GA” ATR Interpreting Telecommunications Research Labs, Kyoto Japan, 1996, pp. 373-376.
IBM, “Why Buy: ThinkPad”, available at <http://www.pc.ibm.com/us/thinkpad/easeofuse.html>, retrieved on Dec. 19, 2002, 2 pages.
IBM Corporation, “Simon Says Here's How”, Users Manual, 1994, 3 pages.
Ichat AV, “Video Conferencing for the Rest of Us”, Apple—Mac OS X—iChat AV, available at <http://www.apple.com/macosx/features/ichat/>, retrieved on Apr. 13, 2006, 3 pages.
IPhone Hacks, “Native iPhone MMS Application Released”, available at <http://www.iphonehacks.com/2007/12/iPhone-mms-app.html>, retrieved on Dec. 25, 2007, 5 pages.
Iphonechat, “iChat for iPhone in JavaScript”, available at <http://www.publictivity.com/iPhoneChat/>, retrieved on Dec. 25, 2007, 2 pages.
Jabra, “Bluetooth Headset: User Manual”, 2005, 17 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1995/008369, dated Oct. 9, 1996, 4 pages.
International Search Report received for PCT Patent Application No. PCT/US1995/008369, dated Nov. 8, 1995, 6 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2010/037378, dated Aug. 25, 2010, 14 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020861, dated Nov. 29, 2011, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040571, dated Nov. 16, 2012, 14 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/056382, dated Dec. 20, 2012, 11 pages.
Pereira, Fernando, “Logic for Natural Language Analysis”, SRI International, Technical Note 275, Jan. 1983, 194 pages.
Perrault et al., “Natural-Language Interfaces”, SRI International, Technical Note 393, Aug. 22, 1986, 48 pages.
Phoenix Solutions, Inc., “Declaration of Christopher Schmandt Regarding the MIT Galaxy System”, West Interactive Corp., A Delaware Corporation, Document 40, Jul. 2, 2010, 162 pages.
Picone, J., “Continuous Speech Recognition using Hidden Markov Models”, IEEE ASSP Magazine, vol. 7, No. 3, Jul. 1990, 16 pages.
Pulman et al., “Clare: A Combined Language and Reasoning Engine”, Proceedings of JFIT Conference, available at <http://www.cam.sri.com/tr/crc042/paperps.Z>, 1993, 8 pages.
Rabiner et al., “Fundamental of Speech Recognition”, AT&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 1993, 17 pages.
Rabiner et al., “Note on the Properties of a Vector Quantizer for LPC Coefficients”, Bell System Technical Journal, vol. 62, No. 8, Oct. 1983, 9 pages.
Ratcliffe, M., “ClearAccess 2.0 Allows SQL Searches Off-Line (Structured Query Language) (ClearAccess Corp. Preparing New Version of Data-Access Application with Simplified User Interface, New Features) (Product Announcement)”, MacWeek, vol. 6, No. 41, Nov. 16, 1992, 2 pages.
Ravishankar, Mosur K., “Efficient Algorithms for Speech Recognition”, Doctoral Thesis Submitted to School of Computer Science, Computer Science Division, Carnegie Mellon University, Pittsburgh, May 15, 1996, 146 pages.
Rayner, M., “Abductive Equivalential Translation and its Application to Natural Language Database Interfacing”, Dissertation Paper, SRI International, Sep. 1993, 162 pages.
Rayner et al., “Adapting the Core Language Engine to French and Spanish”, Cornell University Library, available at <http:l/arxiv.org/abs/cmp-lg/9605015>, May 10, 1996, 9 pages.
Rayner et al., “Deriving Database Queries from Logical Forms by Abductive Definition Expansion”, Proceedings of the Third Conference on Applied Natural Language Processing, ANLC, 1992, 8 pages.
Rayner, Manny, “Linguistic Domain Theories: Natural-Language Database Interfacing from First Principles”, SRI International, Cambridge, 1993, 11 pages.
Rayner et al., “Spoken Language Translation with Mid-90's Technology: A Case Study”, Eurospeech, ISCA, Available online at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.8608>, 1993, 4 pages.
Remde et al., “SuperBook: An Automatic Tool for Information Exploration-Hypertext?”, In Proceedings of Hypertext, 87 Papers, Nov. 1987, 14 pages.
Reynolds, C. F., “On-Line Reviews: A New Application of the HICOM Conferencing System”, IEEE Colloquium on Human Factors in Electronic Mail and Conferencing Systems, Feb. 3, 1989, 4 pages.
Rice et al., “Monthly Program: Nov. 14, 1995”, The San Francisco Bay Area Chapter of ACM SIGCHI, available at <http://www.baychi.org/calendar/19951114>, Nov. 14, 1995, 2 pages.
Rice et al., “Using the Web Instead of a Window System”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI'96, 1996, pp. 1-14.
Rigoll, G., “Speaker Adaptation for Large Vocabulary Speech Recognition Systems Using Speaker Markov Models”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'89), May 1989, 4 pages.
Riley, M D., “Tree-Based Modelling of Segmental Durations”, Talking Machines Theories, Models and Designs, Elsevier Science Publishers B.V., North-Holland, ISBN: 08-444-89115.3, 1992, 15 pages.
Rivlin et al., “Maestro: Conductor of Multimedia Analysis Technologies”, SRI International, 1999, 7 pages.
Rivoira et al., “Syntax and Semantics in a Word-Sequence Recognition System”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'79), Apr. 1979, 5 pages.
Roddy et al., “Communication and Collaboration in a Landscape of B2B eMarketplaces”, VerticalNet Solutions, White Paper, Jun. 15, 2000, 23 pages.
Rosenfeld, R., “A Maximum Entropy Approach to Adaptive Statistical Language Modelling”, Computer Speech and Language, vol. 10, No. 3, Jul. 1996, 25 pages.
Roszkiewicz, A., “Extending your Apple”, Back Talk-Lip Service, A+ Magazine, The Independent Guide for Apple Computing, vol. 2, No. 2, Feb. 1984, 5 pages.
Rudnicky et al., “Creating Natural Dialogs in the Carnegie Mellon Communicator System”, Proceedings of Eurospeech, vol. 4, 1999, pp. 1531-1534.
Russell et al., “Artificial Intelligence, A Modern Approach”, Prentice Hall, Inc., 1995, 121 pages.
Sacerdoti et al., “A Ladder User's Guide (Revised)”, SRI International Artificial Intelligence Center, Mar. 1980, 39 pages.
Sagalowicz, D., “AD-Ladder User's Guide”, SRI International, Sep. 1980, 42 pages.
Sakoe et al., “Dynamic Programming Algorithm Optimization for Spoken Word Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-26, No. 1, Feb. 1978, 8 pages.
Salton et al., “On the Application of Syntactic Methodologies in Automatic Text Analysis”, Information Processing and Management, vol. 26, No. 1, Great Britain, 1990, 22 pages.
Sameshima et al., “Authorization with Security Attributes and Privilege Delegation Access control beyond the ACL”, Computer Communications, vol. 20, 1997, 9 pages.
San-Segundo et al., “Confidence Measures for Dialogue Management in the CU Communicator System”, Proceedings of Acoustics, Speech and Signal Processing (ICASSP'00), Jun. 2000, 4 pages.
Sato, H., “A Data Model, Knowledge Base and Natural Language Processing for Sharing a Large Statistical Database”, Statistical and Scientific Database Management, Lecture Notes in Computer Science, vol. 339, 1989, 20 pages.
Savoy, J., “Searching Information in Hypertext Systems Using Multiple Sources of Evidence”, International Journal of Man-Machine Studies, vol. 38, No. 6, Jun. 1996, 15 pages.
Scagliola, C., “Language Models and Search Algorithms for Real-Time Speech Recognition”, International Journal of Man-Machine Studies, vol. 22, No. 5, 1985, 25 pages.
Schmandt et al., “Augmenting a Window System with Speech Input”, IEEE Computer Society, Computer, vol. 23, No. 8, Aug. 1990, 8 pages.
Schnelle, Dirk, “Context Aware Voice User Interfaces for Workflow Support”, Dissertation paper, Aug. 27, 2007, 254 pages.
Schütze, H., “Dimensions of Meaning”, Proceedings of Supercomputing'92 Conference, Nov. 1992, 10 pages.
Seneff et al., “A New Restaurant Guide Conversational System: Issues in Rapid Prototyping for Specialized Domains”, Proceedings of Fourth International Conference on Spoken Language, vol. 2, 1996, 4 pages.
Sharoff et al., “Register-Domain Separation as a Methodology for Development of Natural Language Interfaces to Databases”, Proceedings of Human-Computer Interaction (INTERACT'99), 1999, 7 pages.
Sheth et al., “Evolving Agents for Personalized Information Filtering”, Proceedings of the Ninth Conference on Artificial Intelligence for Applications, Mar. 1993, 9 pages.
Sheth et al., “Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships”, Enhancing the Power of the Internet: Studies in Fuzziness and Soft Computing, Oct. 13, 2002, pp. 1-38.
Shikano et al., “Speaker Adaptation through Vector Quantization”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'86), vol. 11, Apr. 1986, 4 pages.
Davis et al., “A Personal Handheld Multi-Modal Shopping Assistant”, International Conference on Networking and Services, IEEE, 2006, 9 pages.
SRI, “SRI Speech: Products: Software Development Kits: EduSpeak”, available at <http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak>shtml, retrieved on Jun. 20, 2013, 2 pages.
“Mel Scale”, Wikipedia the Free Encyclopedia, Last modified on Oct. 13, 2009 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Mel_scale>, 2 pages.
“Minimum Phase”, Wikipedia the free Encyclopedia, Last modified on Jan. 12, 2010 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Minimum_phase>, 8 pages.
Acero et al., “Environmental Robustness in Automatic Speech Recognition”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), Apr. 1990, 4 pages.
Acero et al., “Robust Speech Recognition by Normalization of the Acoustic Space”, International Conference on Acoustics, Speech and Signal Processing, 1991, 4 pages.
Agnas et al., “Spoken Language Translator: First-Year Report”, SICS (ISSN 0283-3638), SRI and Telia Research AB, Jan. 1994, 161 pages.
Ahlbom et al., Modeling Spectral Speech Transitions Using Temporal Decomposition Techniques, IEEE International Conference of Acoustics, Speech and Signal Processing (ICASSP'87), vol. 12, Apr. 1987, 4 pages.
Alfred App, “Alfred”, available at <http://www.alfredapp.com/>, retrieved on Feb. 8, 2012, 5 pages.
Allen, J., “Natural Language Understanding”, 2nd Edition, The Benjamin/Cummings Publishing Company, Inc, 1995, 671 pages.
Alshawi et al., “CLARE: A Contextual Reasoning and Co-operative Response Framework for the Core Language Engine”, SRI International, Cambridge Computer Science Research Centre, Cambridge, Dec. 1992, 273 pages.
Alshawi et al., “Declarative Derivation of Database Queries from Meaning Representations”, Proceedings of the BANKAI Workshop on Intelligent Information Access, Oct. 1991, 12 pages.
Alshawi et al., “Logical Forms in the Core Language Engine”, Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, 1989, pp. 25-32.
Alshawi et al., “Overview of the Core Language Engine”, Proceedings of Future Generation Computing Systems, Tokyo, 13 pages.
Alshawi, H., “Translation and Monotonic Interpretation/Generation”, SRI International, Cambridge Computer Science Research Centre, Cambridge, available at <http://www.cam.sri.com/tr/crc024/paper.ps.Z1992>, Jul. 1992, 18 pages.
Ambite et al., “Design and Implementation of the CALO Query Manager”, American Association for Artificial Intelligence, 2006, 8 pages.
Ambite et al., “Integration of Heterogeneous Knowledge Sources in the CALO Query Manager”, The 4th International Conference on Ontologies, Databases and Applications of Semantics (ODBASE), 2005, 18 pages.
Anastasakos et al., “Duration Modeling in Large Vocabulary Speech Recognition”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'95), May 1995, pp. 628-631.
Anderson et al., “Syntax-Directed Recognition of Hand-Printed Two-Dimensional Mathematics”, Proceedings of Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, 1967, 12 pages.
Ansari et al., “Pitch Modification of Speech using a Low-Sensitivity Inverse Filter Approach”, IEEE Signal Processing Letters, vol. 5, No. 3, Mar. 1998, pp. 60-62.
Anthony et al., “Supervised Adaption for Signature Verification System”, IBM Technical Disclosure, Jun. 1, 1978, 3 pages.
Appelt et al., “Fastus: A Finite-State Processor for Information Extraction from Real-world Text”, Proceedings of IJCAI, 1993, 8 pages.
Appelt et al., “SRI International Fastus System MUC-6 Test Results and Analysis”, SRI International, Menlo Park, California, 1995, 12 pages.
Apple Computer, “Guide Maker User's Guide”, Apple Computer, Inc., Apr. 27, 1994, 8 pages.
Apple Computer, “Introduction to Apple Guide”, Apple Computer, Inc., Apr. 28, 1994, 20 pages.
Archbold et al., “A Team User's Guide”, SRI International, Dec. 21, 1981, 70 pages.
Asanovic et al., “Experimental Determination of Precision Requirements for Back-Propagation Training of Artificial Neural Networks”, Proceedings of the 2nd International Conference of Microelectronics for Neural Networks, 1991, www.ICSI.Berkelev.EDU, 1991, 7 pages.
Atal et al., “Efficient Coding of LPC Parameters by Temporal Decomposition”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'83), Apr. 1983, 4 pages.
Bahl et al., “A Maximum Likelihood Approach to Continuous Speech Recognition”, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1983, 13 pages.
Bahl et al., “A Tree-Based Statistical Language Model for Natural Language Speech Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 7, Jul. 1989, 8 pages.
Bahl et al., “Acoustic Markov Models Used in the Tangora Speech Recognition System”, Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP'88), vol. 1, Apr. 1988, 4 pages.
Bahl et al., “Large Vocabulary Natural Language Continuous Speech Recognition”, Proceedings of 1989 International Conference on Acoustics, Speech and Signal Processing, vol. 1, May 1989, 6 pages.
Bahl et al., “Multonic Markov Word Models for Large Vocabulary Continuous Speech Recognition”, IEEE Transactions on Speech and Audio Processing, vol. 1, No. 3, Jul. 1993, 11 pages.
Bahl et al., “Speech Recognition with Continuous-Parameter Hidden Markov Models”, Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP'88), vol. 1, Apr. 1988, 8 pages.
Banbrook, M., “Nonlinear Analysis of Speech from a Synthesis Perspective”, A Thesis Submitted for the Degree of Doctor of Philosophy, The University of Edinburgh, Oct. 15, 1996, 35 pages.
Bear et al., “A System for Labeling Self-Repairs in Speech”, SRI International, Feb. 22, 1993, 9 pages.
Bear et al., “Detection and Correction of Repairs in Human-Computer Dialog”, SRI International, May 1992, 11 pages.
Bear et al., “Integrating Multiple Knowledge Sources for Detection and Correction of Repairs in Human-Computer Dialog”, Proceedings of the 30th Annual Meeting on Association for Computational Linguistics (ACL), 1992, 8 pages.
Bear et al., “Using Information Extraction to Improve Document Retrieval”, SRI International, Menlo Park, California, 1998, 11 pages.
Belaid et al., “A Syntactic Approach for Handwritten Mathematical Formula Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, No. 1, Jan. 1984, 7 pages.
Bellegarda et al., “A Latent Semantic Analysis Framework for Large-Span Language Modeling”, 5th European Conference on Speech, Communication and Technology (EUROSPEECH'97), Sep. 1997, 4 pages.
Bellegarda et al., “A Multispan Language Modeling Framework for Large Vocabulary Speech Recognition”, IEEE Transactions on Speech and Audio Processing, vol. 6, No. 5, Sep. 1998, 12 pages.
Bellegarda et al., “A Novel Word Clustering Algorithm Based on Latent Semantic Analysis”, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'96), vol. 1, 1996, 4 pages.
Bellegarda et al., “Experiments Using Data Augmentation for Speaker Adaptation”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'95), May 1995, 4 pages.
Bellegarda, Jerome R., “Exploiting Latent Semantic Information in Statistical Language Modeling”, Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 18 pages.
Bellegarda, Jerome R., “Interaction-Driven Speech Input—A Data-Driven Approach to the Capture of both Local and Global Language Constraints”, available at <http://old.sig.chi.ora/bulletin/1998.2/bellegarda.html>, 1992, 7 pages.
Bellegarda, Jerome R., “Large Vocabulary Speech Recognition with Multispan Statistical Language Models”, IEEE Transactions on Speech and Audio Processing, vol. 8, No. 1, Jan. 2000, 9 pages.
Bellegarda et al., “On-Line Handwriting Recognition using Statistical Mixtures”, Advances in Handwriting and Drawings: A Multidisciplinary Approach, Europia, 6th International IGS Conference on Handwriting and Drawing, Paris, France, Jul. 1993, 11 pages.
Appelt et al., “SRI: Description of the JV-FASTUS System used for MUC-5”, SRI International, Artificial Intelligence Center, 1993, 19 pages.
Bellegarda, Jerome R., “Exploiting both Local and Global Constraints for Multi-Span Statistical Language Modeling”, Proceeding of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing (1CASSP'98), vol. 2, May 1998, 5 pages.
Carpendale et al., “3-Dimensional Pliable Surfaces: For the Effective Presentation of Visual Information”, UIST '95 Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology, Nov. 14-17, 1995, pp. 217-226.
Carpendale et al., “Extending Distortion Viewing from 2D to 3D”, IEEE Computer Graphics and Applications, Jul./Aug. 1997, pp. 42-51.
Carpendale et al., “Making Distortions Comprehensible”, IEEE Proceedings of Symposium on Visual Languages, 1997, 10 pages.
Casner et al., “N-Way Conferencing with Packet Video”, The Third International Workshop on Packet Video, Mar. 22-23, 1990, pp. 1-6.
Chakarova et al., “Digital Still Cameras—Downloading Images to a Computer”, Multimedia Reporting and Convergence, available at <http://journalism.berkeley.edu/multimedia/tutorials/stillcams/downloading.html>, retrieved on May 9, 2005, 2 pages.
Chartier, David, “Using Multi-Network Meebo Chat Service on Your iPhone”, available at <http://www.tuaw.com/2007/07/04/using-multi-network-meebo-chat-service-on-your-iphone/>, Jul. 4, 2007, 5 pages.
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 06256215.2, dated Feb. 20, 2007, 6 pages.
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 07863218.9, dated Dec. 9, 2010, 7 pages.
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 12186113.2, dated Apr. 28, 2014, 14 pages.
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 13155688.8, dated Aug. 22, 2013, 11 pages.
Abcom Pty. Ltd. “12.1″ 925 Candela Mobile PC”, LCDHardware.com, available at <http://www.lcdhardware.com/pane1/12_1_panel/default.asp.>, retrieved on Dec. 19, 2002, 2 pages.
Cisco Systems, Inc., “Cisco Unity Unified Messaging User Guide”, Release 4.0(5), Apr. 14, 2005, 152 pages.
Cisco Systems, Inc., “Installation Guide for Cisco Unity Unified Messaging with Microsoft Exchange 2003/2000 (With Failover Configured)”, Release 4.0(5), Apr. 14, 2005, 152 pages.
Cisco Systems, Inc., “Operations Manager Tutorial, Cisco's IPC Management Solution”, 2006, 256 pages.
Coleman, David W., “Meridian Mail Voice Mail System Integrates Voice Processing and Personal Computing”, Speech Technology, vol. 4, No. 2, Mar./Apr. 1988, pp. 84-87.
Compaq, “Personal Jukebox”, available at <http://research.compaq.com/SRC/pjb/>, 2001, 3 pages.
Compaq Inspiration Technology, “Personal Jukebox (PJB)—Systems Research Center and PAAD”, Oct. 13, 2000, 25 pages.
Conkie et al., “Preselection of Candidate Units in a Unit Selection-Based Text-to-Speech Synthesis System”, ISCA, 2000, 4 pages.
Conklin, Jeffrey, “A Survey of Hypertext”, MCC Software Technology Program, Dec. 1987, 40 pages.
Copperi et al., “CELP Coding for High Quality Speech at 8 kbits/s”, Proceedings of IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 324-327.
Corr, Paul, “Macintosh Utilities for Special Needs Users”, available at <http://homepage.mac.com/corrp/macsupt/columns/specneeds.html>, Feb. 1994 (content updated Sep. 19, 1999), 4 pages.
Creative, “Creative NOMAD MuVo”, available at <http://web.archive.org/web/20041024075901/www.creative.com/products/product.asp?category=213&subcategory=216&product=4983>, retrieved on Jun. 7, 2006, 1 page.
Creative, “Creative NOMAD MuVo TX”, available at <http://web.archive.org/web/20041024175952/www.creative.com/products/pfriendly.asp?product=9672>, retrieved on Jun. 6, 2006, 1 page.
Creative, “Digital MP3 Player”, available at <http://web.archive.org/web/20041024074823/www.creative.com/products/product.asp?category=213&subcategory=216&product=4983, 2004, 1 page.
Creative Technology Ltd., “Creative NOMAD®: Digital Audio Player: User Guide (On-Line Version)”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000010757.pdf>, Jun. 1999, 40 pages.
Creative Technology Ltd., “Creative NOMAD® II: Getting Started—User Guide (On Line Version)”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000026434.pdf>, Apr. 2000, 46 pages.
Creative Technology Ltd., “Nomad Jukebox”, User Guide, Version 1.0, Aug. 2000, 52 pages.
Croft et al., “Task Support in an Office System”, Proceedings of the Second ACM-SIGOA Conference on Office Information Systems, 1984, pp. 22-24.
Crowley et al., “MMConf: An Infrastructure for Building Shared Multimedia Applications”, CSCW 90 Proceedings, Oct. 1990, pp. 329-342.
Cuperman et al., “Vector Predictive Coding of Speech at 16 kbit s/s”, (IEEE Transactions on Communications, Jul. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 300-311.
ABF Software, “Lens—Magnifying Glass 1.5”, available at <http://download.com/3000-2437-10262078.html?tag=1st-0-1>, retrieved on Feb. 11, 2004, 1 page.
Davis et al., “Stone Soup Translation”, Department of Linguistics, Ohio State University, 2001, 11 pages.
De Herrera, Chris, “Microsoft ActiveSync 3.1”, Version 1.02, available at <http://www.cewindows.net/wce/activesync3.1.htm>, Oct. 13, 2000, 8 pages.
Degani et al., “‘Soft’ Controls for Hard Displays: Still a Challenge”, Proceedings of the 36th Annual Meeting of the Human Factors Society, 1992, pp. 52-56.
Del Strother, Jonathan, “Coverflow”, available at <http://www.steelskies.com/coverflow>, retrieved on Jun. 15, 2006, 14 pages.
Diamond Multimedia Systems, Inc., “Rio PMP300: User's Guide”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000022854.pdf>, 1998, 28 pages.
Dickinson et al., “Palmtips: Tiny Containers for All Your Data”, PC Magazine, vol. 9, Mar. 1990, p. 218(3).
Digital Equipment Corporation, “OpenVMS RTL DECtalk (DTK$) Manual”, May 1993, 56 pages.
Donahue et al., “Whiteboards: A Graphical Database Tool”, ACM Transactions on Office Information Systems, vol. 4, No. 1, Jan. 1986, pp. 24-41.
Dourish et al., “Portholes: Supporting Awareness in a Distributed Work Group”, CHI 1992;, May 1992, pp. 541-547.
Abut et al., “Low-Rate Speech Encoding Using Vector Quantization and Subband Coding”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization IEEE Press, 1990, pp. 312-315.
Dyslexic.com, “AlphaSmart 3000 with CoWriter SmartApplet: Don Johnston Special Needs”, available at <http://www.dyslexic.com/procuts.php?catid- 2&pid=465&PHPSESSID=2511b800000f7da>, retrieved on Dec. 6, 2005, 13 pages.
Edwards, John R., “Q&A: Integrated Software with Macros and an Intelligent Assistant”, Byte Magazine, vol. 11, No. 1, Jan. 1986, pp. 120-122.
Egido, Carmen, “Video Conferencing as a Technology to Support Group Work: A Review of its Failures”, Bell Communications Research, 1988, pp. 13-24.
Elliot, Chip, “High-Quality Multimedia Conferencing Through a Long-Haul Packet Network”, BBN Systems and Technologies, 1993, pp. 91-98.
Elliott et al., “Annotation Suggestion and Search for Personal Multimedia Objects on the Web”, CIVR, Jul. 7-9, 2008, pp. 75-84.
Elofson et al., “Delegation Technologies: Environmental Scanning with Intelligent Agents”, Jour. of Management Info. Systems, Summer 1991, vol. 8, No. 1, 1991, pp. 37-62.
Eluminx, “Illuminated Keyboard”, available at <http://www.elumix.com/>, retrieved on Dec. 19, 2002, 1 page.
Engst, Adam C., “SoundJam Keeps on Jammin”, available at <http://db.tidbits.com/getbits.acgi?tbart=05988>, Jun. 19, 2000, 3 pages.
Ericsson Inc., “Cellular Phone with Integrated MP3 Player”, Research Disclosure Journal No. 41815, Feb. 1999, 2 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/023593, dated Aug. 14, 2015, 16 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/023593, dated Dec. 15, 2016, 12 pages.
Notice of Acceptance received for Australian Patent Application No. 2015267612, dated Jan. 3, 2018, 3 pages.
Office Action received for Australian Patent Application No. 2015267612, dated Jun. 13, 2017, 4 pages.
Office Action received for Japanese Patent Application No. 2016-564974, dated Jan. 4, 2018, 9 pages (5 pages of English Translation and 4 pages of Official Copy).
Office Action received for Korean Patent Application No. 10-2016-7032258, dated Mar. 29, 2018, 6 pages (3 pages of English Translation and 3 pages of Official Copy).
Office Action received for Korean Patent Application No. 10-2016-7032258, dated Sep. 13, 2017, 15 pages (7 pages of English Translation and 8 pages of Official Copy).
Office Action received for Taiwanese Patent Application No. 104112907, dated Nov. 26, 2015, 5 pages (1 page of Search Report and 4 pages of Official Copy) (See Communication under 37 CFR § 1.98(a) (3)).
Notice of Allowance received for Korean Patent Application No. 10-2016-7032258, dated Jul. 30, 2018, 3 pages (1 page of English Translation and 2 pages of Official copy).
Related Publications (1)
Number Date Country
20150348554 A1 Dec 2015 US
Provisional Applications (1)
Number Date Country
62005893 May 2014 US