Intelligent automated assistant for TV user interactions

Information

  • Patent Grant
  • 11516537
  • Patent Number
    11,516,537
  • Date Filed
    Thursday, December 17, 2020
    3 years ago
  • Date Issued
    Tuesday, November 29, 2022
    a year ago
Abstract
Systems and processes are disclosed for controlling television user interactions using a virtual assistant. In an example process, a virtual assistant can interact with a television set-top box to control content shown on a television display. Speech input for the virtual assistant can be received from a device with a microphone. The speech input can comprise a query associated with content shown on the television display. A user intent of the query can be determined based on one or more of the content shown on the television display and a viewing history of media content. A result of the query can be caused to be displayed based on the determined user intent.
Description
FIELD

This relates generally to controlling television user interactions and, more specifically, to processing speech for a virtual assistant to control television user interactions.


BACKGROUND

Intelligent automated assistants (or virtual assistants) provide an intuitive interface between users and electronic devices. These assistants can allow users to interact with devices or systems using natural language in spoken and/or text forms. For example, a user can access the services of an electronic device by providing a spoken user input in natural language form to a virtual assistant associated with the electronic device. The virtual assistant can perform natural language processing on the spoken user input to infer the user's intent and operationalize the user's intent into tasks. The tasks can then be performed by executing one or more functions of the electronic device, and, in some examples, a relevant output can be returned to the user in natural language form.


While mobile telephones (e.g., smartphones), tablet computers, and the like have benefitted from virtual assistant control, many other user devices lack such convenient control mechanisms. For example, user interactions with media control devices (e.g., televisions, television set-top boxes, cable boxes, gaming devices, streaming media devices, digital video recorders, etc.) can be complicated and difficult to learn. Moreover, with the growing sources of media available through such devices (e.g., over-the-air TV, subscription TV service, streaming video services, cable on-demand video services, web-based video services, etc.), it can be cumbersome or even overwhelming for some users to find desired media content to consume. As a result, many media control devices can provide an inferior user experience that can be frustrating for many users.


SUMMARY

Systems and processes are disclosed for controlling television interactions using a virtual assistant. In one example, speech input can be received from a user. Media content can be determined based on the speech input. A first user interface having a first size can be displayed, and the first user interface can include selectable links to the media content. A selection of one of the selectable links can be received. In response to the selection, a second user interface can be displayed having a second size larger than the first size, and the second user interface can include the media content associated with the selection.


In another example, speech input can be received from a user at a first device having a first display. A user intent of the speech input can be determined based on content displayed on the first display. Media content can be determined based on the user intent. The media content can be played on a second device associated with a second display.


In another example, speech input can be received from a user, and the speech input can include a query associated with content shown on a television display. A user intent of the query can be determined based on the content shown on the television display and/or a viewing history of media content. A result of the query can be displayed based on the determined user intent.


In another example, media content can be displayed on a display. An input can be received from a user. Virtual assistant queries can be determined based on the media content and/or a viewing history of media content. The virtual assistant queries can be displayed on the display.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary system for controlling television user interaction using a virtual assistant.



FIG. 2 illustrates a block diagram of an exemplary user device according to various examples.



FIG. 3 illustrates a block diagram of an exemplary media control device in a system for controlling television user interaction.



FIGS. 4A-4E illustrate an exemplary speech input interface over video content.



FIG. 5 illustrates an exemplary media content interface over video content.



FIGS. 6A-6B illustrate an exemplary media detail interface over video content.



FIGS. 7A-7B illustrate an exemplary media transition interface.



FIGS. 8A-8B illustrate an exemplary speech input interface over menu content.



FIG. 9 illustrates an exemplary virtual assistant result interface over menu content.



FIG. 10 illustrates an exemplary process for controlling television interactions using a virtual assistant and displaying associated information using different interfaces.



FIG. 11 illustrates exemplary television media content on a mobile user device.



FIG. 12 illustrates exemplary television control using a virtual assistant.



FIG. 13 illustrates exemplary picture and video content on a mobile user device.



FIG. 14 illustrates exemplary media display control using a virtual assistant.



FIG. 15 illustrates exemplary virtual assistant interactions with results on a mobile user device and a media display device.



FIG. 16 illustrates exemplary virtual assistant interactions with media results on a media display device and a mobile user device.



FIG. 17 illustrates exemplary media device control based on proximity.



FIG. 18 illustrates an exemplary process for controlling television interactions using a virtual assistant and multiple user devices.



FIG. 19 illustrates an exemplary speech input interface with a virtual assistant query about background video content.



FIG. 20 illustrates an exemplary informational virtual assistant response over video content.



FIG. 21 illustrates an exemplary speech input interface with a virtual assistant query for media content associated with background video content.



FIG. 22 illustrates an exemplary virtual assistant response interface with selectable media content.



FIGS. 23A-23B illustrate exemplary pages of a program menu.



FIG. 24 illustrates an exemplary media menu divided into categories.



FIG. 25 illustrates an exemplary process for controlling television interactions using media content shown on a display and a viewing history of media content.



FIG. 26 illustrates an exemplary interface with virtual assistant query suggestions based on background video content.



FIG. 27 illustrates an exemplary interface for confirming selection of a suggested query.



FIGS. 28A-28B illustrate an exemplary virtual assistant answer interface based on a selected query.



FIG. 29 illustrates a media content notification and an exemplary interface with virtual assistant query suggestions based on the notification.



FIG. 30 illustrates a mobile user device with exemplary picture and video content that is playable on a media control device.



FIG. 31 illustrates an exemplary mobile user device interface with virtual assistant query suggestions based on playable user device content and based on video content shown on a separate display



FIG. 32 illustrates an exemplary interface with virtual assistant query suggestions based on playable content from a separate user device.



FIG. 33 illustrates an exemplary process for suggesting virtual assistant interactions for controlling media content.



FIG. 34 illustrates a functional block diagram of an electronic device configured to control television interactions using a virtual assistant and display associated information using different interfaces according to various examples.



FIG. 35 illustrates a functional block diagram of an electronic device configured to control television interactions using a virtual assistant and multiple user devices according to various examples.



FIG. 36 illustrates a functional block diagram of an electronic device configured to control television interactions using media content shown on a display and a viewing history of media content according to various examples.



FIG. 37 illustrates a functional block diagram of an electronic device configured to suggest virtual assistant interactions for controlling media content according to various examples.





DETAILED DESCRIPTION

In the following description of examples, reference is made to the accompanying drawings in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the various examples.


This relates to systems and processes for controlling television user interactions using a virtual assistant. In one example, a virtual assistant can be used to interact with a media control device, such as a television set-top box controlling content shown on a television display. A mobile user device or a remote control with a microphone can be used to receive speech input for the virtual assistant. The user's intent can be determined from the speech input, and the virtual assistant can execute tasks according to the user's intent, including causing playback of media on a connected television and controlling any other functions of a television set-top box or like device (e.g., managing video recordings, searching for media content, navigating menus, etc.).


Virtual assistant interactions can be shown on a connected television or other display. In one example, media content can be determined based on speech input received from a user. A first user interface with a first small size can be displayed, including selectable links to the determined media content. After receiving a selection of a media link, a second user interface with a second larger size can be displayed, including the media content associated with the selection. In other examples, the interface used to convey virtual assistant interactions can expand or contract to occupy a minimal amount of space while conveying desired information.


In some examples, multiple devices associated with multiple displays can be used to determine user intent from speech input as well as to convey information to users in different ways. For example, speech input can be received from a user at a first device having a first display. The user's intent can be determined from the speech input based on content displayed on the first display. Media content can be determined based on the user intent, and the media content can be played on a second device associated with a second display.


Television display content can also be used as contextual input for determining user intent from speech input. For example, speech input can be received from a user, including a query associated with content shown on a television display. The user intent of the query can be determined based on the content shown on the television display as well as a viewing history of media content on the television display (e.g., disambiguating the query based on characters in a playing TV show). The results of the query can then be displayed based on the determined user intent.


In some examples, virtual assistant query suggestions can be provided to the user (e.g., to acquaint the user with available commands, suggest interesting content, etc.). For example, media content can be shown on a display, and an input can be received from the user requesting virtual assistant query suggestions. Virtual assistant queries suggestions can be determined based on the media content shown on the display and a viewing history of media content shown on the display (e.g., suggesting queries related to a playing TV show). The suggested virtual assistant queries can then be shown on the display.


Controlling television user interactions using a virtual assistant according to the various examples discussed herein can provide an efficient and enjoyable user experience. User interactions with media control devices can be intuitive and simple using a virtual assistant capable of receiving natural language queries or commands. Available functions can be suggested to users as desired, including meaningful query suggestions based on playing content, which can aid users to learn control capabilities. In addition, available media can be made easily accessible using intuitive spoken commands. It should be understood, however, that still many other advantages can be achieved according to the various examples discussed herein.



FIG. 1 illustrates exemplary system 100 for controlling television user interaction using a virtual assistant. It should be understood that controlling television user interaction as discussed herein is merely one example of controlling media on one type of display technology and is used for reference, and the concepts discussed herein can be used for controlling any media content interactions generally, including on any of a variety of devices and associated displays (e.g., monitors, laptop displays, desktop computer displays, mobile user device displays, projector displays, etc.). The term “television” can thus refer to any type of display associated with any of a variety of devices. Moreover, the terms “virtual assistant,” “digital assistant,” “intelligent automated assistant,” or “automatic digital assistant” can refer to any information processing system that can interpret natural language input in spoken and/or textual form to infer user intent, and perform actions based on the inferred user intent. For example, to act on an inferred user intent, the system can perform one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent; inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the like; and generating output responses to the user in an audible (e.g., spoken) and/or visual form.


A virtual assistant can be capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request seeks either an informational answer or performance of a task by the virtual assistant (e.g., causing display of particular media). A satisfactory response to the user request can include provision of the requested informational answer, performance of the requested task, or a combination of the two. For example, a user can ask the virtual assistant a question, such as “Where am I right now?” Based on the user's current location, the virtual assistant can answer, “You are in Central Park.” The user can also request the performance of a task, for example, “Please remind me to call Mom at 4 p.m. today.” In response, the virtual assistant can acknowledge the request and then create an appropriate reminder item in the user's electronic schedule. During the performance of a requested task, the virtual assistant can sometimes interact with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a virtual assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the virtual assistant can also provide responses in other visual or audio forms (e.g., as text, alerts, music, videos, animations, etc.). Moreover, as discussed herein, an exemplary virtual assistant can control playback of media content (e.g., playing video on a television) and cause information to be displayed on a display.


An example of a virtual assistant is described in Applicants' U.S. Utility application Ser. No. 12/987,982 for “Intelligent Automated Assistant,” filed Jan. 10, 2011, the entire disclosure of which is incorporated herein by reference.


As shown in FIG. 1, in some examples, a virtual assistant can be implemented according to a client-server model. The virtual assistant can include a client-side portion executed on a user device 102 and a server-side portion executed on a server system 110. The client-side portion can also be executed on television set-top box 104 in conjunction with remote control 106. User device 102 can include any electronic device, such as a mobile phone (e.g., smartphone), tablet computer, portable media player, desktop computer, laptop computer, PDA, wearable electronic device (e.g., digital glasses, wristband, wristwatch, brooch, armband, etc.), or the like. Television set-top box 104 can include any media control device, such as a cable box, satellite box, video player, video streaming device, digital video recorder, gaming system, DVD player, Blu-ray Disc™ Player, a combination of such devices, or the like. Television set-top box 104 can be connected to display 112 and speakers 111 via a wired or wireless connection. Display 112 (with or without speakers 111) can be any type of display, such as a television display, monitor, projector, or the like. In some examples, television set-top box 104 can connect to an audio system (e.g., audio receiver), and speakers 111 can be separate from display 112. In other examples, display 112, speakers 111, and television set-top box 104 can be incorporated together in a single device, such as a smart television with advanced processing and network connectivity capabilities. In such examples, the functions of television set-top box 104 can be executed as an application on the combined device.


In some examples, television set-top box 104 can function as a media control center for multiple types and sources of media content. For example, television set-top box 104 can facilitate user access to live television (e.g., over-the-air, satellite, or cable television). As such, television set-top box 104 can include cable tuners, satellite tuners, or the like. In some examples, television set-top box 104 can also record television programs for later time-shifted viewing. In other examples, television set-top box 104 can provide access to one or more streaming media services, such as cable-delivered on-demand television shows, videos, and music as well as Internet-delivered television shows, videos, and music (e.g., from various free, paid, and subscription-based streaming services). In still other examples, television set-top box 104 can facilitate playback or display of media content from any other source, such as displaying photos from a mobile user device, playing videos from a coupled storage device, playing music from a coupled music player, or the like. Television set-top box 104 can also include various other combinations of the media control features discussed herein, as desired.


User device 102 and television set-top box 104 can communicate with server system 110 through one or more networks 108, which can include the Internet, an intranet, or any other wired or wireless public or private network. In addition, user device 102 can communicate with television set-top box 104 through network 108 or directly through any other wired or wireless communication mechanisms (e.g., Bluetooth, Wi-Fi, radio frequency, infrared transmission, etc.). As illustrated, remote control 106 can communicate with television set-top box 104 using any type of communication, such as a wired connection or any type of wireless communication (e.g., Bluetooth, Wi-Fi, radio frequency, infrared transmission, etc.), including via network 108. In some examples, users can interact with television set-top box 104 through user device 102, remote control 106, or interface elements integrated within television set-top box 104 (e.g., buttons, a microphone, a camera, a joystick, etc.). For example, speech input including media-related queries or commands for the virtual assistant can be received at user device 102 and/or remote control 106, and the speech input can be used to cause media-related tasks to be executed on television set-top box 104. Likewise, tactile commands for controlling media on television set-top box 104 can be received at user device 102 and/or remote control 106 (as well as from other devices not shown). The various functions of television set-top box 104 can thus be controlled in a variety of ways, giving users multiple options for controlling media content from multiple devices.


The client-side portion of the exemplary virtual assistant executed on user device 102 and/or television set-top box 104 with remote control 106 can provide client-side functionalities, such as user-facing input and output processing and communications with server system 110. Server system 110 can provide server-side functionalities for any number of clients residing on a respective user device 102 or respective television set-top box 104.


Server system 110 can include one or more virtual assistant servers 114 that can include a client-facing I/O interface 122, one or more processing modules 118, data and model storage 120, and an I/O interface to external services 116. The client-facing I/O interface 122 can facilitate the client-facing input and output processing for virtual assistant server 114. The one or more processing modules 118 can utilize data and model storage 120 to determine the user's intent based on natural language input, and can perform task execution based on inferred user intent. In some examples, virtual assistant server 114 can communicate with external services 124, such as telephony services, calendar services, information services, messaging services, navigation services, television programming services, streaming media services, and the like, through network(s) 108 for task completion or information acquisition. The I/O interface to external services 116 can facilitate such communications.


Server system 110 can be implemented on one or more standalone data processing devices or a distributed network of computers. In some examples, server system 110 can employ various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 110.


Although the functionality of the virtual assistant is shown in FIG. 1 as including both a client-side portion and a server-side portion, in some examples, the functions of an assistant (or speech recognition and media control in general) can be implemented as a standalone application installed on a user device, television set-top box, smart television, or the like. In addition, the division of functionalities between the client and server portions of the virtual assistant can vary in different examples. For instance, in some examples, the client executed on user device 102 or television set-top box 104 can be a thin client that provides only user-facing input and output processing functions, and delegates all other functionalities of the virtual assistant to a backend server.



FIG. 2 illustrates a block diagram of exemplary user device 102 according to various examples. As shown, user device 102 can include a memory interface 202, one or more processors 204, and a peripherals interface 206. The various components in user device 102 can be coupled together by one or more communication buses or signal lines. User device 102 can further include various sensors, subsystems, and peripheral devices that are coupled to the peripherals interface 206. The sensors, subsystems, and peripheral devices can gather information and/or facilitate various functionalities of user device 102.


For example, user device 102 can include a motion sensor 210, a light sensor 212, and a proximity sensor 214 coupled to peripherals interface 206 to facilitate orientation, light, and proximity sensing functions. One or more other sensors 216, such as a positioning system (e.g., a GPS receiver), a temperature sensor, a biometric sensor, a gyroscope, a compass, an accelerometer, and the like, can also be connected to peripherals interface 206, to facilitate related functionalities.


In some examples, a camera subsystem 220 and an optical sensor 222 can be utilized to facilitate camera functions, such as taking photographs and recording video clips. Communication functions can be facilitated through one or more wired and/or wireless communication subsystems 224, which can include various communication ports, radio frequency receivers and transmitters, and/or optical (e.g., infrared) receivers and transmitters. An audio subsystem 226 can be coupled to speakers 228 and microphone 230 to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and telephony functions.


In some examples, user device 102 can further include an I/O subsystem 240 coupled to peripherals interface 206. I/O subsystem 240 can include a touchscreen controller 242 and/or other input controller(s) 244. Touchscreen controller 242 can be coupled to a touchscreen 246. Touchscreen 246 and the touchscreen controller 242 can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, such as capacitive, resistive, infrared, and surface acoustic wave technologies; proximity sensor arrays; and the like. Other input controller(s) 244 can be coupled to other input/control devices 248, such as one or more buttons, rocker switches, a thumb-wheel, an infrared port, a USB port, and/or a pointer device, such as a stylus.


In some examples, user device 102 can further include a memory interface 202 coupled to memory 250. Memory 250 can include any electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device; a portable computer diskette (magnetic); a random access memory (RAM) (magnetic); a read-only memory (ROM) (magnetic); an erasable programmable read-only memory (EPROM) (magnetic); a portable optical disc such as CD, CD-R, CD-RW, DVD, DVD-R, or DVD-RW; or flash memory such as compact flash cards, secured digital cards, USB memory devices, memory sticks, and the like. In some examples, a non-transitory computer-readable storage medium of memory 250 can be used to store instructions (e.g., for performing portions or all of the various processes described herein) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device, and can execute the instructions. In other examples, the instructions (e.g., for performing portions or all of the various processes described herein) can be stored on a non-transitory computer-readable storage medium of server system 110, or can be divided between the non-transitory computer-readable storage medium of memory 250 and the non-transitory computer-readable storage medium of server system 110. In the context of this document, a “non-transitory computer-readable storage medium” can be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device.


In some examples, memory 250 can store an operating system 252, a communication module 254, a graphical user interface module 256, a sensor processing module 258, a phone module 260, and applications 262. Operating system 252 can include instructions for handling basic system services and for performing hardware-dependent tasks. Communication module 254 can facilitate communicating with one or more additional devices, one or more computers, and/or one or more servers. Graphical user interface module 256 can facilitate graphical user interface processing. Sensor processing module 258 can facilitate sensor-related processing and functions. Phone module 260 can facilitate phone-related processes and functions. Application module 262 can facilitate various functionalities of user applications, such as electronic messaging, web browsing, media processing, navigation, imaging, and/or other processes and functions.


As described herein, memory 250 can also store client-side virtual assistant instructions (e.g., in a virtual assistant client module 264) and various user data 266 (e.g., user-specific vocabulary data, preference data, and/or other data such as the user's electronic address book, to-do lists, shopping lists, television program favorites, etc.) to, for example, provide the client-side functionalities of the virtual assistant. User data 266 can also be used in performing speech recognition in support of the virtual assistant or for any other application.


In various examples, virtual assistant client module 264 can be capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., I/O subsystem 240, audio subsystem 226, or the like) of user device 102. Virtual assistant client module 264 can also be capable of providing output in audio (e.g., speech output), visual, and/or tactile forms. For example, output can be provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, virtual assistant client module 264 can communicate with the virtual assistant server using communication subsystem 224.


In some examples, virtual assistant client module 264 can utilize the various sensors, subsystems, and peripheral devices to gather additional information from the surrounding environment of user device 102 to establish a context associated with a user, the current user interaction, and/or the current user input. Such context can also include information from other devices, such as from television set-top box 104. In some examples, virtual assistant client module 264 can provide the contextual information or a subset thereof with the user input to the virtual assistant server to help infer the user's intent. The virtual assistant can also use the contextual information to determine how to prepare and deliver outputs to the user. The contextual information can further be used by user device 102 or server system 110 to support accurate speech recognition.


In some examples, the contextual information that accompanies the user input can include sensor information, such as lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, distance to another object, and the like. The contextual information can further include information associated with the physical state of user device 102 (e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signal strength, etc.) or the software state of user device 102 (e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc.). The contextual information can further include information associated with the state of connected devices or other devices associated with the user (e.g., media content displayed by television set-top box 104, media content available to television set-top box 104, etc.). Any of these types of contextual information can be provided to virtual assistant server 114 (or used on user device 102 itself) as contextual information associated with a user input.


In some examples, virtual assistant client module 264 can selectively provide information (e.g., user data 266) stored on user device 102 in response to requests from virtual assistant server 114 (or it can be used on user device 102 itself in executing speech recognition and/or virtual assistant functions). Virtual assistant client module 264 can also elicit additional input from the user via a natural language dialogue or other user interfaces upon request by virtual assistant server 114. Virtual assistant client module 264 can pass the additional input to virtual assistant server 114 to help virtual assistant server 114 in intent inference and/or fulfillment of the user's intent expressed in the user request.


In various examples, memory 250 can include additional instructions or fewer instructions. Furthermore, various functions of user device 102 can be implemented in hardware and/or in firmware, including in one or more signal processing and/or application specific integrated circuits.



FIG. 3 illustrates a block diagram of exemplary television set-top box 104 in system 300 for controlling television user interaction. System 300 can include a subset of the elements of system 100. In some examples, system 300 can execute certain functions alone and can function together with other elements of system 100 to execute other functions. For example, the elements of system 300 can process certain media control functions without interacting with server system 110 (e.g., playback of locally stored media, recording functions, channel tuning, etc.), and system 300 can process other media control functions in conjunction with server system 110 and other elements of system 100 (e.g., playback of remotely stored media, downloading media content, processing certain virtual assistant queries, etc.). In other examples, the elements of system 300 can perform the functions of the larger system 100, including accessing external services 124 through a network. It should be understood that functions can be divided between local devices and remote server devices in a variety of other ways.


As shown in FIG. 3, in one example, television set-top box 104 can include memory interface 302, one or more processors 304, and a peripherals interface 306. The various components in television set-top box 104 can be coupled together by one or more communication buses or signal lines. Television set-top box 104 can further include various subsystems and peripheral devices that are coupled to the peripherals interface 306. The subsystems and peripheral devices can gather information and/or facilitate various functionalities of television set-top box 104.


For example, television set-top box 104 can include a communications subsystem 324. Communication functions can be facilitated through one or more wired and/or wireless communication subsystems 324, which can include various communication ports, radio frequency receivers and transmitters, and/or optical (e.g., infrared) receivers and transmitters.


In some examples, television set-top box 104 can further include an I/O subsystem 340 coupled to peripherals interface 306. I/O subsystem 340 can include an audio/video output controller 370. Audio/video output controller 370 can be coupled to a display 112 and speakers 111 or can otherwise provide audio and video output (e.g., via audio/video ports, wireless transmission, etc.). I/O subsystem 340 can further include remote controller 342. Remote controller 342 can be communicatively coupled to remote control 106 (e.g., via a wired connection, Bluetooth, Wi-Fi, etc.). Remote control 106 can include microphone 372 for capturing audio input (e.g., speech input from a user), button(s) 374 for capturing tactile input, and transceiver 376 for facilitating communication with television set-top box 104 via remote controller 342. Remote control 106 can also include other input mechanisms, such as a keyboard, joystick, touchpad, or the like. Remote control 106 can further include output mechanisms, such as lights, a display, a speaker, or the like. Input received at remote control 106 (e.g., user speech, button presses, etc.) can be communicated to television set-top box 104 via remote controller 342. I/O subsystem 340 can also include other input controller(s) 344. Other input controller(s) 344 can be coupled to other input/control devices 348, such as one or more buttons, rocker switches, a thumb-wheel, an infrared port, a USB port, and/or a pointer device, such as a stylus.


In some examples, television set-top box 104 can further include a memory interface 302 coupled to memory 350. Memory 350 can include any electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device; a portable computer diskette (magnetic); a random access memory (RAM) (magnetic); a read-only memory (ROM) (magnetic); an erasable programmable read-only memory (EPROM) (magnetic); a portable optical disc such as CD, CD-R, CD-RW, DVD, DVD-R, or DVD-RW; or flash memory such as compact flash cards, secured digital cards, USB memory devices, memory sticks, and the like. In some examples, a non-transitory computer-readable storage medium of memory 350 can be used to store instructions (e.g., for performing portions or all of the various processes described herein) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device, and can execute the instructions. In other examples, the instructions (e.g., for performing portions or all of the various processes described herein) can be stored on a non-transitory computer-readable storage medium of server system 110, or can be divided between the non-transitory computer-readable storage medium of memory 350 and the non-transitory computer-readable storage medium of server system 110. In the context of this document, a “non-transitory computer-readable storage medium” can be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device.


In some examples, memory 350 can store an operating system 352, a communication module 354, a graphical user interface module 356, an on-device media module 358, an off-device media module 360, and applications 362. Operating system 352 can include instructions for handling basic system services and for performing hardware-dependent tasks. Communication module 354 can facilitate communicating with one or more additional devices, one or more computers, and/or one or more servers. Graphical user interface module 356 can facilitate graphical user interface processing. On-device media module 358 can facilitate storage and playback of media content stored locally on television set-top box 104 and other media content available locally (e.g., cable channel tuning). Off-device media module 360 can facilitate streaming playback or download of media content stored remotely (e.g., on a remote server, on user device 102, etc.). Application module 362 can facilitate various functionalities of user applications, such as electronic messaging, web browsing, media processing, gaming, and/or other processes and functions.


As described herein, memory 350 can also store client-side virtual assistant instructions (e.g., in a virtual assistant client module 364) and various user data 366 (e.g., user-specific vocabulary data, preference data, and/or other data such as the user's electronic address book, to-do lists, shopping lists, television program favorites, etc.) to, for example, provide the client-side functionalities of the virtual assistant. User data 366 can also be used in performing speech recognition in support of the virtual assistant or for any other application.


In various examples, virtual assistant client module 364 can be capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., I/O subsystem 340 or the like) of television set-top box 104. Virtual assistant client module 364 can also be capable of providing output in audio (e.g., speech output), visual, and/or tactile forms. For example, output can be provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, virtual assistant client module 364 can communicate with the virtual assistant server using communication subsystem 324.


In some examples, virtual assistant client module 364 can utilize the various subsystems and peripheral devices to gather additional information from the surrounding environment of television set-top box 104 to establish a context associated with a user, the current user interaction, and/or the current user input. Such context can also include information from other devices, such as from user device 102. In some examples, virtual assistant client module 364 can provide the contextual information or a subset thereof with the user input to the virtual assistant server to help infer the user's intent. The virtual assistant can also use the contextual information to determine how to prepare and deliver outputs to the user. The contextual information can further be used by television set-top box 104 or server system 110 to support accurate speech recognition.


In some examples, the contextual information that accompanies the user input can include sensor information, such as lighting, ambient noise, ambient temperature, distance to another object, and the like. The contextual information can further include information associated with the physical state of television set-top box 104 (e.g., device location, device temperature, power level, etc.) or the software state of television set-top box 104 (e.g., running processes, installed applications, past and present network activities, background services, error logs, resources usage, etc.). The contextual information can further include information associated with the state of connected devices or other devices associated with the user (e.g., content displayed on user device 102, playable content on user device 102, etc.). Any of these types of contextual information can be provided to virtual assistant server 114 (or used on television set-top box 104 itself) as contextual information associated with a user input.


In some examples, virtual assistant client module 364 can selectively provide information (e.g., user data 366) stored on television set-top box 104 in response to requests from virtual assistant server 114 (or it can be used on television set-top box 104 itself in executing speech recognition and/or virtual assistant functions). Virtual assistant client module 364 can also elicit additional input from the user via a natural language dialogue or other user interfaces upon request by virtual assistant server 114. Virtual assistant client module 364 can pass the additional input to virtual assistant server 114 to help virtual assistant server 114 in intent inference and/or fulfillment of the user's intent expressed in the user request.


In various examples, memory 350 can include additional instructions or fewer instructions. Furthermore, various functions of television set-top box 104 can be implemented in hardware and/or in firmware, including in one or more signal processing and/or application specific integrated circuits.


It should be understood that system 100 and system 300 are not limited to the components and configuration shown in FIG. 1 and FIG. 3, and user device 102, television set-top box 104, and remote control 106 are likewise not limited to the components and configuration shown in FIG. 2 and FIG. 3. System 100, system 300, user device 102, television set-top box 104, and remote control 106 can all include fewer or other components in multiple configurations according to various examples.


Throughout this disclosure, references to “the system” can include system 100, system 300, or one or more elements of either system 100 or system 300. For example, a typical system referred to herein can include at least television set-top box 104 receiving user input from remote control 106 and/or user device 102.



FIGS. 4A through 4E illustrate exemplary speech input interface 484 that can be shown on a display (such as display 112) to convey speech input information to a user. In one example, speech input interface 484 can be shown over video 480, which can include any moving images or paused video. For example, video 480 can include live television, a playing video, a streaming movie, playback of a recorded program, or the like. Speech input interface 484 can be configured to occupy a minimal amount of space so as not to significantly interfere with user viewing of video 480.


In one example, a virtual assistant can be triggered to listen for speech input containing a command or query (or to commence recording of speech input for subsequent processing or commence processing in real-time of speech input). Listening can be triggered in a variety of ways, including indications such as a user pressing a physical button on remote control 106, a user pressing a physical button on user device 102, a user pressing a virtual button on user device 102, a user uttering a trigger phrase that is recognizable by an always-listening device (e.g., uttering “Hey Assistant” to commence listening for a command), a user performing a gesture detectable by a sensor (e.g., motioning in front of a camera), or the like. In another example, a user can press and hold a physical button on remote control 106 or user device 102 to initiate listening. In still other examples, a user can press and hold a physical button on remote control 106 or user device 102 while speaking a query or command, and can release the button when finished. Various other indications can likewise be received to initiate receipt of speech input from the user.


In response to receiving an indication to listen for speech input, speech input interface 484 can be displayed. FIG. 4A illustrates notification area 482 expanding upward from the bottom portion of display 112. Speech input interface 484 can be displayed in notification area 482 upon receipt of an indication to listen for speech input, and the interface can be animated to slide upward from the bottom edge of the viewing area of display 112 as shown. FIG. 4B illustrates speech input interface 484 after sliding upward into view. Speech input interface 484 can be configured to occupy a minimal amount of space at the bottom of display 112 to avoid significantly interfering with video 480. In response to receiving the indication to listen for speech input, readiness confirmation 486 can be displayed. Readiness confirmation 486 can include a microphone symbol as shown, or can include any other image, icon, animation, or symbol to convey that the system (e.g., one or more elements of system 100) is ready to capture speech input from the user.


As the user begins to speak, listening confirmation 487 shown in FIG. 4C can be displayed to confirm that the system is capturing the speech input. In some examples, listening confirmation 487 can be displayed in response to receiving speech input (e.g., capturing speech). In other examples, readiness confirmation 486 can be displayed for a predetermined amount of time (e.g., 500 milliseconds, 1 second, 3 seconds, etc.) after which listening confirmation 487 can be displayed. Listening confirmation 487 can include a waveform symbol as shown, or can include an active waveform animation that moves (e.g., changes frequency) in response to user speech. In other examples, listening confirmation 487 can include any other image, icon, animation, or symbol to convey that the system is capturing speech input from the user.


Upon detecting that the user has finished speaking (e.g., based on a pause, speech interpretation indicating the end of a query, or any other endpoint detection method), processing confirmation 488 shown in FIG. 4D can be displayed to confirm that the system finished capturing the speech input and is processing the speech input (e.g., interpreting the speech input, determining user intent, and/or executing the associated tasks). Processing confirmation 488 can include an hourglass symbol as shown, or can include any other image, icon, animation, or symbol to convey that the system is processing the captured speech input. In another example, processing confirmation 488 can include an animation of a spinning circle or a colored/glowing point moving around a circle.


After the captured speech input is interpreted as text (or in response to successfully converting the speech input to text), command receipt confirmation 490 and/or transcription 492 shown in FIG. 4E can be displayed to confirm that the system received and interpreted the speech input. Transcription 492 can include a transcription of the received speech input (e.g., “What sporting events are on right now?”). In some examples, transcription 492 can be animated to slide up from the bottom of display 112, can be displayed momentarily in the position shown in FIG. 4E (e.g., a few seconds), and can then be slid up to the top of speech input interface 484 before disappearing from view (e.g., as though the text is scrolled up and eventually out of view). In other examples, a transcription may not be displayed, and the user's command or query can be processed and associated tasks can be executed without displaying a transcription (e.g., a simple channel change can be executed immediately without displaying a transcription of the user's speech).


In other examples, speech transcription can be performed in real-time as a user speaks. As words are transcribed, they can be displayed in speech input interface 484. For example, the words can be displayed alongside listening confirmation 487. After the user finishes speaking, command receipt confirmation 490 can be displayed briefly before executing the tasks associated with the user's command.


Moreover, in other examples, command receipt confirmation 490 can convey information about received and understood commands. For example, for a simple request to change to another channel, a logo or number associated with the channel can briefly be displayed as command receipt confirmation 490 (e.g., for a few seconds) as the channel is changed. In another example, for a request to pause a video (e.g., video 480), a pause symbol (e.g., two vertical, parallel bars) can be displayed as command receipt confirmation 490. The pause symbol can remain on the display until, for example, the user performs another action (e.g., issuing a play command to resume playback). Symbols, logos, animations, or the like can likewise be displayed for any other command (e.g., symbols for rewind, fast forward, stop, play, etc.). Command receipt confirmation 490 can thus be used to convey command-specific information.


In some examples, speech input interface 484 can be hidden after receipt of a user query or command. For example, speech input interface 484 can be animated as sliding downward until it is out of view of the bottom of display 112. Speech input interface 484 can be hidden in instances where further information need not be displayed to the user. For example, for common or straightforward commands (e.g., change to channel ten, change to the sports channel, play, pause, fast forward, rewind, etc.), speech input interface 484 can be hidden immediately after confirming command receipt, and the associated task or tasks can be performed immediately. Although various examples herein illustrate and describe an interface at a bottom or top edge of a display, it should be appreciated that any of the various interfaces can be positioned in other locations around a display. For example, speech input interface 484 can emerge from a side edge of display 112, in the center of display 112, in a corner of display 112, or the like. Similarly, the various other interface examples described herein can be arranged in a variety of different orientations in a variety of different locations on a display. Moreover, although various interfaces described herein are illustrated as opaque, any of the various interfaces can be transparent or otherwise allow an image (blurred or whole) to be viewed through the interface (e.g., overlaying interface content on media content without completely obscuring the underlying media content).


In other examples, the result of a query can be displayed within speech input interface 484 or in a different interface. FIG. 5 illustrates exemplary media content interface 510 over video 480 with an exemplary result of the transcribed query of FIG. 4E. In some examples, the result of a virtual assistant query can include media content instead of or in addition to textual content. For example, the result of a virtual assistant query can include television programs, videos, music, or the like. Some results can include media immediately available for playback, while other results can include media that may be available for purchase or the like.


As shown, media content interface 510 can be a larger size than speech input interface 484. In one example, speech input interface 484 can be of a smaller first size to accommodate speech input information, while media content interface 510 can be of a larger second size to accommodate query results, which can include text, still images, and moving images. In this manner, interfaces for conveying virtual assistant information can scale in size according to the content that is to be conveyed, thereby limiting screen real estate intrusion (e.g., minimally blocking other content, such as video 480).


As illustrated, media content interface 510 can include (as a result of a virtual assistant query) selectable video links 512, selectable text links 514, and additional content link 513. In some examples, links can be selected by navigating focus, a cursor, or the like to a particular element and selecting it using a remote control (e.g., remote control 106). In other examples, links can be selected using voice commands to the virtual assistant (e.g., watch that soccer game, show details about the basketball game, etc.). Selectable video links 512 can include still or moving images and can be selectable to cause playback of the associated video. In one example, selectable video link 512 can include a playing video of the associated video content. In another example, selectable video link 512 can include a live feed of a television channel. For example, selectable video link 512 can include a live feed of a soccer game on a sports channel as a result of a virtual assistant query about sporting events currently on television. Selectable video link 512 can also include any other video, animation, image, or the like (e.g., a triangular play symbol). Moreover, link 512 can link to any type of media content, such as a movie, television show, sporting event, music, or the like.


Selectable text links 514 can include textual content associated with selectable video links 512 or can include textual representations of results of a virtual assistant query. In one example, selectable text links 514 can include a description of media resulting from a virtual assistant query. For instance, selectable text link 514 can include the name of a television program, title of a movie, description of a sporting event, television channel name or number, or the like. In one example, selection of text link 514 can cause playback of the associated media content. In another example, selection of text link 514 can provide additional detailed information about the media content or other virtual assistant query result. Additional content link 513 can link to and cause display of additional results of a virtual assistant query.


Although certain media content examples are shown in FIG. 5, it should be appreciated that any type of media content can be included as a result of a virtual assistant query for media content. For example, media content that can be returned as a result of a virtual assistant can include videos, television programs, music, television channels, or the like. In addition, in some examples, categorical filters can be provided in any of the interfaces herein to allow users to filter search or query results or displayed media options. For example, selectable filters can be provided to filter results by type (e.g., movies, music albums, books, television shows, etc.). In other examples, selectable filters can include genre or content descriptors (e.g., comedy, interview, specific program, etc.). In still other examples, selectable filters can include times (e.g., this week, last week, last year, etc.). It should be appreciated that filters can be provided in any of the various interfaces described herein to allow users to filter results based on categories relevant to the displayed content (e.g., filter by type where media results have various types, filter by genre where media results have various genres, filter by times where media results have various times, etc.).


In other examples, media content interface 510 can include a paraphrase of a query in addition to media content results. For example, a paraphrase of the user's query can be displayed above the media content results (above selectable video links 512 and selectable text links 514). In the example of FIG. 5, such a paraphrase of the user's query can include the following: “Here are some sporting events that are on right now.” Other text introducing the media content results can likewise be displayed.


In some examples, after displaying any interface, including interface 510, a user can initiate capture of additional speech input with a new query (that may or may not be related to previous queries). User queries can include commands to act on interface elements, such as a command to select a video link 512. In another example, user speech can include a query associated with displayed content, such as displayed menu information, a playing video (e.g., video 480), or the like. A response can be determined for such a query based on the information shown (e.g., displayed text) and/or metadata associated with displayed content (e.g., metadata associated with a playing video). For example, a user can ask about a media result shown in an interface (e.g., interface 510), and metadata associated with that media can be searched to provide an answer or result. Such an answer or result can then be provided in another interface or within the same interface (e.g., in any of the interfaces discussed herein).


As noted above, in one example, additional detailed information about media content can be displayed in response to selection of a text link 514. FIGS. 6A and 6B illustrate exemplary media detail interface 618 over video 480 after selection of a text link 514. In one example, in providing addition detailed information, media content interface 510 can be expanded into media detail interface 618 as illustrated by interface expansion transition 616 of FIG. 6A. In particular, as shown in FIG. 6A, selected content can be expanded in size and additional textual information can be provided by expanding the interface upward on display 112 to occupy more of the screen real estate. The interface can be expanded to accommodate the additional detailed information desired by the user. In this manner, the size of the interface can scale with the amount of content desired by the user, thereby minimizing screen real estate intrusion while still conveying the desired content.



FIG. 6B illustrates detail interface 618 after full expansion. As shown, detail interface 618 can be of a larger size than either media content interface 510 or speech input interface 484 to accommodate the desired detailed information. Detail interface 618 can include detailed media information 622, which can include a variety of detailed information associated with media content or another result of a virtual assistant query. Detailed media information 622 can include a program title, program description, program air time, channel, episode synopsis, movie description, actor names, character names, sporting event participants, producer names, director names, or any other detailed information associated with a result of a virtual assistant query.


In one example, detail interface 618 can include selectable video link 620 (or another link to play media content), which can include a larger version of a corresponding selectable video link 512. As such, selectable video link 620 can include still or moving images and can be selectable to cause playback of the associated video. Selectable video link 620 can include a playing video of the associated video content, a live feed of a television channel (e.g., a live feed of a soccer game on a sports channel), or the like. Selectable video link 620 can also include any other video, animation, image, or the like (e.g., a triangular play symbol).


As noted above, a video can be played in response to selection of a video link, such as video link 620 or video links 512. FIGS. 7A and 7B illustrate an exemplary media transition interface that can be displayed in response to selection of a video link (or other command to play video content). As illustrated, video 480 can be replaced with video 726. In one example, video 726 can be expanded to overtake or cover video 480 as shown by interface expansion transition 724 in FIG. 7A. The result of the transition can include expanded media interface 728 of FIG. 7B. As with other interfaces, the size of expanded media interface 728 can be sufficient to provide the user with the desired information; here, that can include expanding to fill display 112. Expanded media interface 728 can thus be larger than any other interface as the desired information can include playing media content across the entire display. Although not shown, in some examples, descriptive information can briefly be overlaid on video 726 (e.g., along the bottom of the screen). Such descriptive information can include the name of the associated program, video, channel, or the like. The descriptive information can then be hidden from view (e.g., after a few seconds).



FIGS. 8A and 8B illustrate exemplary speech input interface 836 that can be shown on display 112 to convey speech input information to a user. In one example, speech input interface 836 can be shown over menu 830. Menu 830 can include various media options 832, and speech input interface 836 can similarly be displayed over any other type of menu (e.g., content menus, category menus, control menus, setup menus, program menus, etc.). In one example, speech input interface 836 can be configured to occupy a relatively large amount of screen real estate of display 112. For example, speech input interface 836 can be larger than speech input interface 484 discussed above. In one example, the size of speech input interface to use (e.g., either the smaller interface 484 or the larger interface 836) can be determined based on the background content. When the background content includes a moving image, for example, a small size speech input interface can be displayed (e.g., interface 484). On the other hand, when the background content includes a still image (e.g., a paused video) or a menu, for example, a large size speech input interface can be displayed (e.g., interface 836). In this manner, if a user is watching video content, a smaller speech input interface can be displayed that only minimally intrudes on the screen real estate; whereas if a user is navigating a menu or viewing a paused video or other still image, a larger speech input interface can be displayed that can convey more information or have a more profound effect by occupying additional real estate. Other interfaces discussed herein can likewise be sized differently based on background content.


As discussed above, a virtual assistant can be triggered to listen for speech input containing a command or query (or to commence recording of speech input for subsequent processing or commence processing in real-time of speech input). Listening can be triggered in a variety of ways, including indications such as a user pressing a physical button on remote control 106, a user pressing a physical button on user device 102, a user pressing a virtual button on user device 102, a user uttering a trigger phrase that is recognizable by an always-listening device (e.g., uttering “Hey Assistant” to commence listening for a command), a user performing a gesture detectable by a sensor (e.g., motioning in front of a camera), or the like. In another example, a user can press and hold a physical button on remote control 106 or user device 102 to initiate listening. In still other examples, a user can press and hold a physical button on remote control 106 or user device 102 while speaking a query or command, and can release the button when finished. Various other indications can likewise be received to initiate receipt of speech input from the user.


In response to receiving an indication to listen for speech input, speech input interface 836 can be displayed over menu 830. FIG. 8A illustrates large notification area 834 expanding upward from the bottom portion of display 112. Speech input interface 836 can be displayed in large notification area 834 upon receipt of an indication to listen for speech input, and the interface can be animated to slide upward from the bottom edge of the viewing area of display 112 as shown. In some examples, a background menu, paused video, still image, or other background content can be contracted and/or moved backward in the z direction (as if further into display 112) as an overlapping interface is displayed (e.g., in response to receiving an indication to listen for speech input). Background interface contraction transition 831 and the associated inward-pointing arrows illustrate how background content (e.g., menu 830) can be contracted—shrinking the displayed menu, images, text, etc. This can provide a visual effect of the background content appearing to move away from the user, out of the way of a new foreground interface (e.g., interface 836). FIG. 8B illustrates contracted background interface 833, including a contracted (shrunken) version of menu 830. As shown, contracted background interface 833 (which can include a border) can appear further from the user while ceding focus to the foreground interface 836. Background content in any of the other examples discussed herein (including background video content) can similarly be contracted and/or moved backward in the z direction as overlapping interfaces are displayed.



FIG. 8B illustrates speech input interface 836 after sliding upward into view. As discussed above, various confirmations can be displayed while receiving speech input. Although not shown here, speech input interface 836 can similarly display larger versions of readiness confirmation 486, listening confirmation 487, and/or processing confirmation 488 in a similar manner as speech input interface 484 discussed above with reference to FIGS. 4B, 4C, and 4D, respectively.


As shown in FIG. 8B, command receipt confirmation 838 can be shown (as with the smaller sized command receipt confirmation 490 discussed above) to confirm that the system received and interpreted the speech input. Transcription 840 can also be shown and can include a transcription of the received speech input (e.g., “What's the weather in New York?”). In some examples, transcription 840 can be animated to slide up from the bottom of display 112, can be displayed momentarily in the position shown in FIG. 8B (e.g., a few seconds), and can then be slid up to the top of speech input interface 836 before disappearing from view (e.g., as though the text is scrolled up and eventually out of view). In other examples, a transcription may not be displayed, and the user's command or query can be processed and associated tasks can be executed without displaying a transcription.


In other examples, speech transcription can be performed in real-time as a user speaks. As words are transcribed, they can be displayed in speech input interface 836. For example, the words can be displayed alongside a larger version of listening confirmation 487 discussed above. After the user finishes speaking, command receipt confirmation 838 can be displayed briefly before executing the tasks associated with the user's command.


Moreover, in other examples, command receipt confirmation 838 can convey information about received and understood commands. For example, for a simple request to tune to a particular channel, a logo or number associated with the channel can briefly be displayed as command receipt confirmation 838 (e.g., for a few seconds) as the channel is tuned. In another example, for a request to select a displayed menu item (e.g., one of media options 832), an image associated with the selected menu item can be displayed as command receipt confirmation 838. Command receipt confirmation 838 can thus be used to convey command-specific information.


In some examples, speech input interface 836 can be hidden after receipt of a user query or command. For example, speech input interface 836 can be animated as sliding downward until it is out of view of the bottom of display 112. Speech input interface 836 can be hidden in instances where further information need not be displayed to the user. For example, for common or straightforward commands (e.g., change to channel ten, change to the sports channel, play that movie, etc.), speech input interface 836 can be hidden immediately after confirming command receipt, and the associated task or tasks can be performed immediately.


In other examples, the result of a query can be displayed within speech input interface 836 or in a different interface. FIG. 9 illustrates exemplary virtual assistant result interface 942 over menu 830 (specifically over contracted background interface 833) with an exemplary result of the transcribed query of FIG. 8B. In some examples, the result of a virtual assistant query can include a textual answer, such as text answer 944. The result of a virtual assistant query can also include media content that addresses a user's query, such as the content associated with selectable video link 946 and purchase link 948. In particular, in this example, a user can ask for weather information for the specified location of New York. The virtual assistant can provide text answer 944 directly answering the user's query (e.g., indicating that the weather looks good and providing temperature information). Instead of or in addition to text answer 944, the virtual assistant can provide selectable video link 946 along with purchase link 948 and the associated text. The media associated with links 946 and 948 can also provide a response to the user's query. Here, the media associated with links 946 and 948 can include a ten-minute clip of weather information at the specified location—specifically, the five-day forecast for New York from a television channel called the Weather Forecast Channel.


In one example, the clip addressing the user's query can include a time-cued portion of previously-aired content (that may be available from a recording or from a streaming service). The virtual assistant can, in one example, identify such content based on the user intent associated with the speech input and by searching detailed information about available media content (e.g., including metadata for recorded programs along with detailed timing information or detailed information about streaming content). In some examples, a user may not have access to or may not have a subscription for certain content. In such instances, content can be offered for purchase, such as via purchase link 948. The cost of the content can be automatically withdrawn from a user account or charged to a user account upon selection of purchase link 948 or video link 946.



FIG. 10 illustrates exemplary process 1000 for controlling television interactions using a virtual assistant and displaying associated information using different interfaces. At block 1002, speech input can be received from a user. For example, speech input can be received at user device 102 or remote control 106 of system 100. In some examples, the speech input (or a data representation of some or all of the speech input) can be transmitted to and received by server system 110 and/or television set-top box 104. In response to a user initiating receipt of speech input, various notifications can be displayed on a display (such as display 112). For example, a readiness confirmation, listening confirmation, processing confirmation, and/or command receipt confirmation can be displayed as discussed above with reference to FIGS. 4A-4E. In addition, received user speech input can be transcribed, and a transcription can be displayed.


Referring again to process 1000 of FIG. 10, at block 1004, media content can be determined based on the speech input. For example, media content that addresses a user query directed at a virtual assistant can be determined (e.g., by searching available media content or the like). For instance, media content can be determined related to transcription 492 of FIG. 4E (“What sporting events are on right now?”). Such media content can include live sporting events being shown on one or more television channels available to the user for viewing.


At block 1006, a first user interface of a first size with selectable media links can be displayed. For example, media content interface 510 with selectable video links 512 and selectable text links 514 can be displayed on display 112 as shown in FIG. 5. As discussed above, media content interface 510 can be of a smaller size to avoid interfering with background video content.


At block 1008, a selection of one of the links can be received. For example, selection of one of links 512 and/or links 514 can be received. At block 1010, a second user interface of a larger second size with media content associated with the selection can be displayed. For example, detail interface 618 with selectable video link 620 and detailed media information 622 can be displayed as shown in FIG. 6B. As discussed above, detail interface 618 can be of a larger size to convey the desired additional detailed media information. Similarly, upon selection of video link 620, expanded media interface 728 can be displayed with video 726 as shown in FIG. 7B. As discussed above, expanded media interface 728 can be of a larger size still to provide the desired media content to the user. In this manner, the various interfaces discussed herein can be sized to accommodate desired content (including expanding into larger sized interfaces or contracting down to smaller sized interfaces) while otherwise occupying limited screen real estate. Process 1000 can thus be used to control television interactions using a virtual assistant and display associated information using different interfaces.


In another example, a larger size interface can be displayed over a control menu than over background video content. For example, speech input interface 836 can be displayed over menu 830 as shown in FIG. 8B, and assistant result interface 942 can be displayed over menu 830 as shown in FIG. 9, whereas smaller media content interface 510 can be displayed over video 480 as shown in FIG. 5. In this manner, the size of an interface (e.g., the amount of screen real estate occupied by an interface) can be determined, at least in part, by the type of background content.



FIG. 11 illustrates exemplary television media content on user device 102, which can include a mobile telephone, tablet computer, remote control, or the like with touchscreen 246 (or another display). FIG. 11 illustrates interface 1150 including a TV listing with multiple television programs 1152. Interface 1150 can, for example, correspond to a particular application on user device 102, such as a television control application, television content listing application, Internet application, or the like. In some examples, content shown on user device 102 (e.g., on touchscreen 246) can be used to determine user intent from speech input relating to that content, and the user intent can be used to cause playback or display of content on another device and display (e.g., on television set-top box 104 and display 112 and/or speakers 111). For example, content shown in interface 1150 on user device 102 can be used to disambiguate user requests and determine user intent from speech input, and the determined user intent can then be used to play or display media via television set-top box 104.



FIG. 12 illustrates exemplary television control using a virtual assistant. FIG. 12 illustrates interface 1254, which can include a virtual assistant interface formatted as a conversational dialog between the assistant and the user. For example, interface 1254 can include assistant greeting 1256 prompting the user to make a request. Subsequently-received user speech can then be transcribed, such as transcribed user speech 1258, showing the back and forth conversation. In some examples, interface 1254 can appear on user device 102 in response to a trigger to initiate receipt of speech input (triggers such as button presses, key phrases, or the like).


In one example, a user request to play content via television set-top box 104 (e.g., on display 112 and speakers 111) can include an ambiguous reference to something shown on user device 102. Transcribed user speech 1258, for example, includes a reference to “that” soccer game (“Put on that soccer game.”). The particular soccer game desired can be unclear from the speech input alone. In some examples, however, the content shown on user device 102 can be used to disambiguate user requests and determine user intent. In one example, content shown on user device 102 prior to the user making the request (e.g., prior to interface 1254 appearing on touchscreen 246) can be used to determine user intent (as can content appearing within interface 1254, such as previous queries and results). In the illustrated example, the content shown in interface 1150 of FIG. 11 can be used to determine the user intent from the command to put on “that” soccer game. The TV listing of television programs 1152 includes a variety of different programs, one of which is titled “Soccer” appearing on Channel 5. The appearance of the soccer listing can be used to determine the user's intent from uttering “that” soccer game. In particular, the user's reference to “that” soccer game can be resolved to the soccer program appearing in the TV listing of interface 1150. Accordingly, the virtual assistant can cause playback of that particular soccer game that the user desired (e.g., by causing television set-top box 104 to tune to the appropriate channel and show the game).


In other examples, a user can reference television programs shown in interface 1150 in a variety of other ways (e.g., the show on channel eight, the news, the drama show, the advertisement, the first show, etc.), and user intent can similarly be determined based on displayed content. It should be appreciated that metadata associated with displayed content (e.g., TV program descriptions), fuzzy matching techniques, synonym matching, and the like can further be used in conjunction with displayed content to determine user intent. For example, the term “advertisement” can be matched to the description “paid programming” (e.g., using synonyms and/or fuzzy matching techniques) to determine user intent from a request to show “the advertisement.” Likewise, the description of a particular TV program can be analyzed in determining user intent. For example, the term “law” could be identified in the detailed description of a courtroom drama, and the user intent can be determined from a user request to watch the “law” show based on the detailed description associated with the content shown in interface 1150. Displayed content and data associated with it can thus be used to disambiguate user requests and determine user intent.



FIG. 13 illustrates exemplary picture and video content on user device 102, which can include a mobile telephone, tablet computer, remote control, or the like with touchscreen 246 (or another display). FIG. 13 illustrates interface 1360 including a listing of photos and videos. Interface 1360 can, for example, correspond to a particular application on user device 102, such as a media content application, file navigation application, storage application, remote storage management application, camera application, or the like. As shown, interface 1360 can include video 1362, photo album 1364 (e.g., a group of multiple photos), and photos 1366. As discussed above with reference to FIG. 11 and FIG. 12, content shown on user device 102 can be used to determine user intent from speech input relating to that content. The user intent can then be used to cause playback or display of content on another device and display (e.g., on television set-top box 104 and display 112 and/or speakers 111). For example, content shown in interface 1360 on user device 102 can be used to disambiguate user requests and to determine user intent from speech input, and the determined user intent can then be used to play or display media via television set-top box 104.



FIG. 14 illustrates exemplary media display control using a virtual assistant. FIG. 14 illustrates interface 1254, which can include a virtual assistant interface formatted as a conversational dialog between the assistant and the user. As shown, interface 1254 can include assistant greeting 1256 prompting the user to make a request. Within the dialog, user speech can then be transcribed as shown by the examples of FIG. 14. In some examples, interface 1254 can appear on user device 102 in response to a trigger to initiate receipt of speech input (triggers such as button presses, key phrases, or the like).


In one example, a user request to play media content or display media via television set-top box 104 (e.g., on display 112 and speakers 111) can include an ambiguous reference to something shown on user device 102. Transcribed user speech 1468, for example, includes a reference to “that” video (“Show that video.”). The particular video referenced can be unclear from the speech input alone. In some examples, however, the content shown on user device 102 can be used to disambiguate user requests and determine user intent. In one example, content shown on user device 102 prior to the user making the request (e.g., prior to interface 1254 appearing on touchscreen 246) can be used to determine user intent (as can content appearing within interface 1254, such as previous queries and results). In the example of user speech 1468, the content shown in interface 1360 of FIG. 13 can be used to determine the user intent from the command to show “that” video. The listing of photos and videos in interface 1360 includes a variety of different photos and a video, including video 1362, photo album 1354, and photos 1366. As only one video appears in interface 1360 (e.g., video 1362), the appearance of video 1362 in interface 1360 can be used to determine the user's intent from uttering “that” video. In particular, the user's reference to “that” video can be resolved to video 1362 (titled “Graduation Video”) appearing in interface 1360. Accordingly, the virtual assistant can cause playback of video 1362 (e.g., by causing video 1362 to be transmitted to television set-top box 104 from user device 102 or remote storage and causing playback to commence).


In another example, transcribed user speech 1470 includes a reference to “that” album (“Play a slideshow of that album.”). The particular album referenced can be unclear from the speech input alone. The content shown on user device 102 can again be used to disambiguate the user request. In particular, the content shown in interface 1360 of FIG. 13 can be used to determine the user intent from the command to play a slideshow of “that” album. The listing of photos and videos in interface 1360 includes photo album 1354. The appearance of photo album 1364 in interface 1360 can be used to determine the user's intent from uttering “that” album. In particular, the user's reference to “that” album can be resolved to photo album 1364 (titled “Graduation Album”) appearing in interface 1360. In response to user speech 1470, therefore, the virtual assistant can cause a slideshow to be displayed including the photos from photo album 1364 (e.g., by causing the photos of photo album 1364 to be transmitted to television set-top box 104 from user device 102 or remote storage and causing a slideshow of the photos to commence).


In yet another example, transcribed user speech 1472 includes a reference to the “last” photo (“Display the last photo on the kitchen television.”). The particular photo referenced can be unclear from the speech input alone. The content shown on user device 102 can again be used to disambiguate the user request. In particular, the content shown in interface 1360 of FIG. 13 can be used to determine the user intent from the command to display the “last” photo. The listing of photos and videos in interface 1360 includes two individual photos 1366. The appearance of photos 1366 in interface 1360—and particularly the order of appearance of photos 1366 within the interface—can be used to determine the user's intent from utter the “last” photo. In particular, the user's reference to the “last” photo can be resolved to photo 1366 appearing at the bottom of interface 1360 (dated Jun. 21, 2014). In response to user speech 1472, therefore, the virtual assistant can cause the last photo 1366 shown in interface 1360 to be displayed (e.g., by causing the last photo 1366 to be transmitted to television set-top box 104 from user device 102 or remote storage and causing the photo to be displayed).


In other examples, a user can reference media content shown in interface 1360 in a variety of other ways (e.g., the last couple of photos, all of the videos, all of the photos, the graduation album, the graduation video, the photo from June 21st, etc.), and user intent can similarly be determined based on displayed content. It should be appreciated that metadata associated with displayed content (e.g., timestamps, location information, titles, descriptions, etc.), fuzzy matching techniques, synonym matching, and the like can further be used in conjunction with displayed content to determine user intent. Displayed content and data associated with it can thus be used to disambiguate user requests and determine user intent.


It should be understood that any type of displayed content in any application interface of any application can be used in determining user intent. For example, images displayed on a webpage in an Internet browser application can be referenced in speech input, and the displayed webpage content can be analyzed to identify the desired images. Similarly, a music track in a list of music in a music application can be referenced in speech input by title, genre, artist, band name, or the like, and the displayed content in the music application (and associated metadata in some examples) can be used to determine user intent from the speech input. As discussed above, the determined user intent can then be used to cause media display or playback via another device, such as via television set-top box 104.


In some examples, user identification, user authentication, and/or device authentication can be employed to determine whether media control can be permitted, determine media content available for display, determine access permissions, and the like. For example, it can be determined whether a particular user device (e.g., user device 102) is authorized to control media on, for example, television set-top box 104. A user device can be authorized based on a registration, pairing, trust determination, passcode, security question, system setup, or the like. In response to determining that a particular user device is authorized, attempts to control television set-top box 104 can be permitted (e.g., media content can be played in response to determining that a requesting device is authorized to control media). In contrast, media control commands or requests from unauthorized devices can be ignored, and/or users of such devices can be prompted to register their devices for use in controlling a particular television set-top box 104.


In another example, a particular user can be identified, and personal data associated with the user can be used to determine user intent of requests. For example, a user can be identified based on speech input, such as by voice recognition using a voiceprint of the user. In some examples, users can utter a particular phrase that is analyzed for voice recognition. In other examples, speech input requests directed to the virtual assistant can be analyzed using voice recognition to identify the speaker. A user can also be identified based on the source of the speech input sample (e.g., on a user's personal device 102). A user can also be identified based on passwords, passcodes, menu selection, or the like. Speech input received from the user can then be interpreted based on personal data of the identified user. For example, user intent of speech input can be determined based on previous requests from the user, media content owned by the user, media content stored on the user's device, user preferences, user settings, user demographics (e.g., languages spoken, etc.), user profile information, user payment methods, or a variety of other personal information associated with a particular identified user. For instance, speech input referencing a favorites list or the like can be disambiguated based on personal data, and the user's personal favorites list can be identified. Speech input referencing “my” photos, “my” videos, “my” shows, or the like can likewise be disambiguated based on user identification to correctly identify photos, videos, and shows associated with the identified user (e.g., photos stored on a personal user device or the like). Similarly, speech input requesting purchase of content can be disambiguated to determine that the identified user's payment method should be charged for the purchase (as opposed to another user's payment method).


In some examples, user authentication can be used to determine whether a user is allowed to access media content, purchase media content, or the like. For example, voice recognition can be used to verify the identity of a particular user (e.g., using their voiceprint) to permit the user to make purchases using the user's payment method. Similarly, passwords or the like can be used to authenticate the user to permit purchases. In another example, voice recognition can be used to verify the identity of a particular user to determine whether the user is allowed to watch a particular program (e.g., a program having a particular parental guideline rating, a movie having a particular age suitability rating, or the like). For instance, a child's request for a particular program can be denied based on voice recognition indicating that the requester is not an authorized user able to view such content (e.g., a parent). In other examples, voice recognition can be used to determine whether users have access to particular subscription content (e.g., restricting access to premium channel content based on voice recognition). In some examples, users can utter a particular phrase that is analyzed for voice recognition. In other examples, speech input requests directed to the virtual assistant can be analyzed using voice recognition to identify the speaker. Certain media content can thus be played in response to first determining that a user is authorized in any of a variety of ways.



FIG. 15 illustrates exemplary virtual assistant interactions with results on a mobile user device and a media display device. In some examples, a virtual assistant can provide information and control on more than one device, such as on user device 102 as well as on television set-top box 104. Moreover, in some examples, the same virtual assistant interface used for control and information on user device 102 can be used to issue requests for controlling media on television set-top box 104. As such, the virtual assistant system can determine whether to display results or execute tasks on user device 102 or on television set-top box 104. In some examples, when employing user device 102 to control television set-top box 104, virtual assistant interface intrusion on a display associated with television set-top box 104 (e.g., display 112) can be minimized by displaying information on user device 102 (e.g., on touchscreen 246). In other examples, virtual assistant information can be displayed on display 112 alone, or virtual assistant information can be displayed on both user device 102 and display 112.


In some examples, a determination can be made as to whether results of a virtual assistant query should be displayed on user device 102 directly or on display 112 associated with television set-top box 104. In one example, in response to determining that the user intent of a query includes a request for information, an informational response can be displayed on user device 102. In another example, in response to determining that the user intent of a query includes a request to play media content, media content responsive to the query can be played via television set-top box 104.



FIG. 15 illustrates virtual assistant interface 1254 with a conversational dialog example between a virtual assistant and a user. Assistant greeting 1256 can prompt the user to make a request. In the first query, transcribed user speech 1574 (which can also be typed or entered in other ways) includes a request for an informational answer associated with displayed media content. In particular, transcribed user speech 1574 inquires who is playing in a soccer game that may be, for example, shown on an interface on user device 102 (e.g., listed in interface 1150 of FIG. 11) or on display 112 (e.g., listed in interface 510 of FIG. 5 or playing as video 726 on display 112 of FIG. 7B). The user intent of transcribed user speech 1574 can be determined based on displayed media content. For example, the particular soccer game in question can be identified based on content shown on user device 102 or on display 112. The user intent of transcribed user speech 1574 can include obtaining an informational answer detailing the teams playing in the soccer game identified based on the displayed content. In response to determining that the user intent includes a request for an informational answer, the system can determine to display the response within interface 1254 in FIG. 15 (as opposed to on display 112). The response to the query can, in some examples, be determined based on metadata associated with the displayed content (e.g., based on a description of the soccer game in a television listing). As shown, assistant response 1576 can thus be displayed on touchscreen 246 of user device 102 in interface 1254, identifying teams Alpha and Zeta as playing in the game. Accordingly, in some examples, an informational response can be displayed within interface 1254 on user device 102 based on determining that a query includes an informational request.


The second query in interface 1254, however, includes a media request. In particular, transcribed user speech 1578 requests changing displayed media content to “the game.” The user intent of transcribed user speech 1578 can be determined based on displayed content (e.g., to identify which game the user desires), such as a game listed in interface 510 of FIG. 5, a game listed in interface 1150 of FIG. 11, a game referenced in previous queries (e.g., in transcribed user speech 1574), or the like. The user intent of transcribed user speech 1578 can thus include changing displayed content to a particular game—here, the soccer game with teams Alpha and Zeta. In one example, the game can be displayed on user device 102. In other examples, however, based on the query including a request to play media content, the game can be shown via television set-top box 104. In particular, in response to determining that the user intent includes a request to play media content, the system can determine to display the media content result via television set-top box 104 on display 112 (as opposed to within interface 1254 in FIG. 15). In some examples, a response or paraphrase confirming the virtual assistant's intended action can be shown in interface 1254 or on display 112 (e.g., “Changing to the soccer game.”).



FIG. 16 illustrates exemplary virtual assistant interactions with media results on a media display device and a mobile user device. In some examples, a virtual assistant can provide access to media on both user device 102 and television set-top box 104. Moreover, in some examples, the same virtual assistant interface used for media on user device 102 can be used to issue requests for media on television set-top box 104. As such, the virtual assistant system can determine whether to display media results on user device 102 or on display 112 via television set-top box 104.


In some examples, a determination can be made as to whether to display media on device 102 or on display 112 based on media result format, user preference, default settings, an express command in the request itself, or the like. For example, the format of a media result to a query can be used to determine on which device to display the media result by default (e.g., without specific instructions). A television program can be better suited for display on a television, a large format video can be better suited for display on a television, thumbnail photos can be better suited for display on a user device, small format web videos can be better suited for display on a user device, and various other media formats can be better suited for display on either a relatively large television screen or a relatively small user device display. Thus, in response to a determination that media content should be displayed on a particular display (e.g., based on media format), the media content can be displayed on that particular display by default.



FIG. 16 illustrates virtual assistant interface 1254 with examples of queries related to playing or displaying media content. Assistant greeting 1256 can prompt the user to make a request. In the first query, transcribed user speech 1680 includes a request to show a soccer game. As in the examples discussed above, the user intent of transcribed user speech 1680 can be determined based on displayed content (e.g., to identify which game the user desires), such as a game listed in interface 510 of FIG. 5, a game listed in interface 1150 of FIG. 11, a game referenced in previous queries, or the like. The user intent of transcribed user speech 1680 can thus include displaying a particular soccer game that may, for example, be aired on television. In response to determining that the user intent includes a request to display media that is formatted for television (e.g., a televised soccer game), the system can automatically determine to display the desired media on display 112 via television set-top box 104 (as opposed to on user device 102 itself). The virtual assistant system can then cause television set-top box 104 to tune to the soccer game and show it on display 112 (e.g., by executing the necessary tasks and/or sending the appropriate commands).


In the second query, however, transcribed user speech 1682 includes a request to show pictures of players of a team (e.g., pictures of “Team Alpha”). As in the examples discussed above, the user intent of transcribed user speech 1682 can be determined. The user intent of transcribed user speech 1682 can include performing a search (e.g., a web search) for pictures associated with “Team Alpha,” and displaying the resulting pictures. In response to determining that the user intent includes a request to display media that may be presented in thumbnail format, or media associated with a web search, or other non-specific media without a particular format, the system can automatically determine to display the desired media result on touchscreen 246 in interface 1254 of user device 102 (as opposed to displaying the resulting pictures on display 112 via television set-top box 104). For example, as shown, thumbnail photos 1684 can be displayed within interface 1254 on user device 102 in response to the user's query. The virtual assistant system can thus cause media of a certain format, or media that might be presented in a certain format (e.g., in a group of thumbnails), to be displayed on user device 102 by default.


It should be appreciated that, in some examples, the soccer game referenced in user speech 1680 can be shown on user device 102, and photos 1684 can be shown on display 112 via television set-top box 104. The default device for display, however, can be determined automatically based on media format, thereby simplifying media commands for the user. In other examples, the default device for displaying requested media content can be determined based on user preferences, default settings, the device used most recently to display content, voice recognition to identify a user and a device associated with that user, or the like. For example, a user can set a preference or a default configuration can be set to display certain types of content (e.g., videos, slideshows, television programs, etc.) on display 112 via television set-top box 104 and other types of content (e.g., thumbnails, photos, web videos, etc.) on touchscreen 246 of user device 102. Similarly, preferences or default configurations can be set to respond to certain queries by displaying content on one device or the other. In another example, all content can be displayed on user device 102 unless the user instructs otherwise.


In still other examples, a user query can include a command to display content on a particular display. For example, user speech 1472 of FIG. 14 includes a command to display a photo on the kitchen television. As a result, the system can cause display of the photo on a television display associated with the user's kitchen as opposed to displaying the photo on user device 102. In other examples, a user can dictate which display device to use in a variety of other ways (e.g., on TV, on the big screen, in the living room, in the bedroom, on my tablet, on my phone, etc.). The display device to use for displaying media content results of virtual assistant queries can thus be determined in a variety of different ways.



FIG. 17 illustrates exemplary media device control based on proximity. In some examples, users may have multiple televisions and television set-top boxes within the same household or on the same network. For example, a household may have a television and set-top box set in the living room, another set in the bedroom, and another set in the kitchen. In other examples, multiple set-top boxes can be connected to the same network, such as a common network in an apartment or office building. Although users can pair, connect, or otherwise authorize remote control 106 and user device 102 for a particular set-top box to avoid unauthorized access, in other examples, remote controls and/or user devices can be used to control more than one set-top box. A user can, for example, use a single user device 102 to control a set-top box in the bedroom, in the living room, and in the kitchen. A user can also, for example, use a single user device 102 to control their own set-top box in their own apartment, as well as control a neighbor's set-top box in a neighbor's apartment (e.g., sharing content from user device 102 with the neighbor, such as showing a slideshow on the neighbor's TV of photos stored on user device 102). Because the user can use a single user device 102 to control multiple different set-top boxes, the system can determine to which set-top box of multiple set-top boxes to send commands. Likewise, because a household can have multiple remote controls 106 that can operate multiple set-top boxes, the system can similarly determine to which set-top box of multiple set-top boxes to send commands.


In one example, proximity of devices can be used to determine to which of multiple set-top boxes to send commands (or on which display to show requested media content). A proximity can be determined between a user device 102 or remote control 106 and each of multiple set-top boxes. Issued commands can then be sent to the nearest set-top box (or requested media content can be displayed on the nearest display). Proximity can be determined (or at least approximated) in any of a variety of ways, such as time-of-flight measurements (e.g., using radio frequency), Bluetooth LE, electronic ping signals, proximity sensors, sound travel measurements, or the like. Measured or approximated distances can then be compared, and the device with the shortest distance can be issued the command (e.g., the nearest set-top box).



FIG. 17 illustrates multi-device system 1790 including first set-top box 1792 with first display 1786 and second set-top box 1794 with second display 1788. In one example, a user can issue a command from user device 102 to display media content (e.g., without necessarily specifying where or on which device). Distance 1795 to first set-top box 1792 and distance 1796 to second set-top box 1794 can then be determined (or approximated). As shown, distance 1796 can be greater than distance 1795. Based on proximity, the command from user device 102 can be issued to first set-top box 1792 as the nearest device and the likeliest to match the user's intent. In some examples, a single remote control 106 can also be used to control more than one set-top box. The desired device for control at a given time can be determined based on proximity. Distance 1797 to second set-top box 1794 and distance 1798 to first set-top box 1792 can be determined (or approximated). As shown, distance 1798 can be greater than distance 1797. Based on proximity, commands from remote control 106 can be issued to second set-top box 1794 as the nearest device and the likeliest to match the user's intent. Distance measurements can be refreshed regularly or with each command to accommodate, for example, a user moving to a different room and desiring to control a different device.


It should be understood that a user can specify a different device for a command, in some cases overriding proximity. For example, a list of available display devices can be displayed on user device 102 (e.g., listing first display 1786 and second display 1788 by setup name, designated room, or the like, or listing first set-top box 1792 and second set-top box 1794 by setup name, designated room, or the like). A user can select one of the devices from the list, and commands can then be sent to the selected device. Requests for media content issued at user device 102 can then be handled by displaying the desired media on the selected device. In other examples, users can speak the desired device as part of a spoken command (e.g., show the game on the kitchen television, change to the cartoon channel in the living room, etc.).


In still other examples, the default device for showing requested media content can be determined based on status information associated with a particular device. For example, it can be determined whether headphones (or a headset) are attached to user device 102. In response to determining that headphones are attached to user device 102 when a request to display media content is received, the requested content can be displayed on user device 102 by default (e.g., assuming the user is consuming content on user device 102 and not on a television). In response to determining that headphones are not attached to user device 102 when a request to display media content is received, the requested content can be displayed on either user device 102 or on a television according to any of the various determination methods discussed herein. Other device status information can similarly be used to determine whether requested media content should be displayed on user device 102 or a set-top box 104, such as ambient lighting around user device 102 or set-top box 104, proximity of other devices to user device 102 or set-top box 104, orientation of user device 102 (e.g., landscape orientation can be more likely to indicate desired viewing on user device 102), display status of set-top box 104 (e.g., in a sleep mode), time since the last interaction on a particular device, or any of a variety of other status indicators for user device 102 and/or set-top box 104.



FIG. 18 illustrates exemplary process 1800 for controlling television interactions using a virtual assistant and multiple user devices. At block 1802, speech input can be received from a user at a first device with a first display. For example, speech input can be received from a user at user device 102 or remote control 106 of system 100. The first display can include touchscreen 246 of user device 102 or a display associated with remote control 106 in some examples.


At block 1804, user intent can be determined from the speech input based on content displayed on the first display. For example, content such as television programs 1152 in interface 1150 of FIG. 11 or photos and videos in interface 1360 of FIG. 13 can be analyzed and used to determine user intent for speech input. In some examples, a user can refer to content shown on the first display in ambiguous ways, and the references can be disambiguated by analyzing the content shown on the first display to resolve the references (e.g., determining the user intent for “that” video, “that” album, “that” game, or the like), as discussed above with reference to FIG. 12 and FIG. 14.


Referring again to process 1800 of FIG. 18, at block 1806, media content can be determined based on the user intent. For example, a particular video, photo, photo album, television program, sporting event, music track, or the like can be identified based on the user intent. In the example of FIG. 11 and FIG. 12 discussed above, for instance, the particular soccer game shown on channel five can be identified based on the user intent referring to “that” soccer game shown in interface 1150 of FIG. 11. In the examples of FIG. 13 and FIG. 14 discussed above, the particular video 1362 titled “Graduation Video,” the particular photo album 1364 titled “Graduation Album,” or a particular photo 1366 can be identified based on the user intent determined from the speech input examples of FIG. 14.


Referring again to process 1800 of FIG. 18, at block 1808, the media content can be played on a second device associated with a second display. For example, the determined media content can be played via television set-top box 104 on display 112 with speakers 111. Playing the media content can include tuning to a particular television channel, playing a particular video, showing a slideshow of photos, displaying a particular photo, playing a particular audio track, or the like on television set-top box 104 or another device.


In some examples, a determination can be made as to whether responses to speech input directed to a virtual assistant should be displayed on a first display associated with a first device (e.g., user device 102) or a second display associated with a second device (e.g., television set-top box 104). For example, as discussed above with reference to FIG. 15 and FIG. 16, informational answers or media content suited for display on a smaller screen can be displayed on user device 102, while media responses or media content suited for display on a larger screen can be displayed on a display associated with set-top box 104. As discussed above with reference to FIG. 17, in some examples, the distance between user device 102 and multiple set-top boxes can be used to determine on which set-top box to play media content or to which set-top box to issue commands. Various other determinations can similarly be made to provide a convenient and user-friendly experience where multiple devices may be interacting.


In some examples, as content shown on user device 102 can be used to inform interpretations of speech input as discussed above, content shown on display 112 can likewise be used to inform interpretations of speech input. In particular, content shown on a display associated with television set-top box 104 can be used along with metadata associated with that content to determine user intent from speech input, disambiguate user queries, respond to content-related queries, or the like.



FIG. 19 illustrates exemplary speech input interface 484 (described above) with a virtual assistant query about video 480 shown in the background. In some examples, user queries can include questions about media content shown on display 112. For example, transcription 1916 includes a query requesting identification of actresses (“Who are those actresses?”). Content shown on display 112—along with metadata or other descriptive information about the content—can be used to determine user intent from speech input relating to that content as well as to determine responses to queries (responses including both informational responses as well as media responses providing media selections to the user). For example, video 480, a description of video 480, a character and actor list for video 480, rating information for video 480, genre information for video 480, and a variety of other descriptive information associated with video 480 can be used to disambiguate user requests and determine responses to user queries. Associated metadata can include, for example, identifying information for character 1910, character 1912, and character 1914 (e.g., character names along with the names of the actresses who play the characters). Metadata for any other content can similarly include a title, a description, a list of characters, a list of actors, a list of players, a genre, producer names, director names, or a display schedule associated with the content shown on the display or the viewing history of media content on the display (e.g., recently displayed media).


In one example, a user query directed to a virtual assistant can include an ambiguous reference to something shown on display 112. Transcription 1916, for example, includes a reference to “those” actresses (“Who are those actresses?”). The particular actresses the user is asking about can be unclear from the speech input alone. In some examples, however, the content shown on display 112 and associated metadata can be used to disambiguate user requests and determine user intent. In the illustrated example, the content shown on display 112 can be used to determine the user intent from the reference to “those” actresses. In one example, television set-top box 104 can identify playing content along with details associated with the content. In this instance, television set-top box 104 can identify the title of video 480 along with a variety of descriptive content. In other examples, a television show, sporting event, or other content can be shown that can be used in conjunction with associated metadata to determine user intent. In addition, in any of the various examples discussed herein, speech recognition results and intent determination can weight terms associated with displayed content higher than alternatives. For example, actor names for on-screen characters can be weighted higher while those actors appear on screen (or while a show is playing in which they appear), which can provide for accurate speech recognition and intent determination of likely user requests associated with displayed content.


In one example, a character and/or actor list associated with video 480 can be used to identify all or the most prominent actresses appearing in video 480, which might include actresses 1910, 1912, and 1914. The identified actresses can be returned as a possible result (including fewer or additional actresses if the metadata resolution is coarse). In another example, however, metadata associated with video 480 can include an identification of which actors and actresses appear on screen at a given time, and the actresses appearing at the time of the query can be determined from that metadata (e.g., specifically identifying actresses 1910, 1912, and 1914). In yet another example, a facial recognition application can be used to identify actresses 1910, 1912, and 1914 from the images shown on display 112. In still other examples, various other metadata associated with video 480 and various other recognition approaches can be used to identify the user's likely intent in referring to “those” actresses.


In some examples, the content shown on display 112 can change during submission of a query and determination of a response. As such, a viewing history of media content can be used to determine user intent and determine the response to a query. For example, should video 480 move to another view (e.g., with other characters) before a response to the query is generated, the result of the query can be determined based on the user's view at the time the query was spoken (e.g., the characters shown on screen at the time the user initiated the query). In some instances, a user might pause playing media to issue a query, and the content shown when paused can be used with associated metadata to determine user intent and a response to the query.


Given the determined user intent, a result of the query can be provided to the user. FIG. 20 illustrates exemplary assistant response interface 2018 including assistant response 2020, which can include the response determined from the query of transcription 1916 of FIG. 19. Assistant response 2020 can include, as shown, a listing of each actress's name and her associated character in video 480 (“Actress Jennifer Jones plays the character Blanche; actress Elizabeth Arnold plays the character Julia; and actress Whitney Davidson plays the character Melissa.”). The listed actresses and characters in response 2020 can correspond to characters 1910, 1912, and 1914 appearing on display 112. As noted above, in some examples, the content shown on display 112 can change during submission of a query and determination of a response. As such, response 2020 can include information about content or characters that may no longer appear on display 112.


As with other interfaces displayed on display 112, assistant response interface 2018 can occupy a minimal amount of screen real estate while providing sufficient space to convey the desired information. In some examples, as with other text displayed in interfaces on display 112, assistant response 2020 can be scrolled up into the position shown in FIG. 20 from the bottom of display 112, displayed for a certain amount of time (e.g., a delay based on the length of the response), and scrolled up out of view. In other examples, interface 2018 can be slid downward out of view after a delay.



FIG. 21 and FIG. 22 illustrate another example of determining user intent and responding to a query based on content shown on display 112. FIG. 21 illustrates exemplary speech input interface 484 with a virtual assistant query for media content associated with video 480. In some examples, user queries can include a request for media content associated with media shown on display 112. For example, a user can request other movies, television programs, sporting events, or the like associated with particular media based, for example, on a character, actor, genre, or the like. For example, transcription 2122 includes a query requesting other media associated with an actress in video 480, referenced by her character's name in video 480 (“What else is Blanche in?”). Content shown on display 112—along with metadata or other descriptive information about the content—can again be used to determine user intent from speech input relating to that content as well as to determine responses to queries (either informational or resulting in media selections).


In some examples, a user query directed to a virtual assistant can include an ambiguous reference using the name of a character, the name of an actor, the name of a program, the name of player, or the like. Without the context of the content shown on display 112 and its associated metadata, such references may be difficult to resolve accurately. Transcription 2122, for example, includes a reference to a character named “Blanche” from video 480. The particular actress or other individual the user is asking about can be unclear from the speech input alone. In some examples, however, the content shown on display 112 and associated metadata can be used to disambiguate user requests and determine user intent. In the illustrated example, the content shown on display 112 and associated metadata can be used to determine the user intent from the character name “Blanche.” In this instance, a character list associated with video 480 can be used to determine that “Blanche” likely refers to the character “Blanche” in video 480. In another example, detailed metadata and/or facial recognition can be used to determine that a character with the name “Blanche” appears on the screen (or appeared on the screen at the initiation of the user's query), making the actress associated with that character the likeliest intention of the user's query. For example, it can be determined that characters 1910, 1912, and 1914 appear on display 112 (or appeared on display 112 at the initiation of the user's query), and their associated character names can then be referenced to determine the user intent of the query referencing the character Blanche. An actor list can then be used to identify the actress who plays Blanche, and a search can be conducted to identify other media in which the identified actress appears.


Given the determined user intent (e.g., resolution of the character reference “Blanche”) and the determination of the result of the query (e.g., other media associated with the actress who plays “Blanche”), a response can be provided to the user. FIG. 22 illustrates exemplary assistant response interface 2224 including assistant text response 2226 and selectable video links 2228, which can be responsive to the query of transcription 2122 of FIG. 21. Assistant text response 2226 can include, as shown, a paraphrase of the user request introducing selectable video links 2228. Assistant text response 2226 can also include an indication of the disambiguation of the user's query—in particular, identifying actress Jennifer Jones as playing the character Blanche in video 480. Such a paraphrase can confirm to the user that the virtual assistant correctly interpreted the user's query and is providing the desired result.


Assistant response interface 2224 can also include selectable video links 2228. In some examples, various types of media content can be provided as results to a virtual assistant query, including movies (e.g., Movie A and Movie B of interface 2224). Media content displayed as a result of a query can include media that may be available to the user for consumption (for free, for purchase, or as part of a subscription). A user can select displayed media to view or consume the resulting content. For instance, a user can select one of selectable video links 2228 (e.g., using a remote control, voice command, or the like) to watch one of the other movies in which actress Jennifer Jones appears. In response to selection of one of selectable video links 2228, the video associated with the selection can be played, replacing video 480 on display 112. Thus, displayed media content and associated metadata can be used to determine user intent from speech input, and, in some examples, playable media can be provided as a result.


It should be understood that a user can reference actors, players, characters, locations, teams, sporting event details, movie subjects, or a variety of other information associated with displayed content in forming queries, and the virtual assistant system can similarly disambiguate such requests and determine user intent based on displayed content and associated metadata. Likewise, it should be understood that, in some examples, results can include media suggestions associated with the query, such as a movie, television show, or sporting event associated with a person who is the subject of a query (whether or not the user specifically requests such media content).


Moreover, in some examples, user queries can include requests for information associated with media content itself, such as queries about a character, an episode, a movie plot, a previous scene, or the like. As with the examples discussed above, displayed content and associated metadata can be used to determine user intent from such queries and determine a response. For instance, a user might request a description of a character (e.g., “What does Blanche do in this movie?”). The virtual assistant system can then identify from metadata associated with displayed content the requested information about the character, such as a character description or role (e.g., “Blanche is one of a group of lawyers and is known as a troublemaker in Hartford.”). Similarly, a user might request an episode synopsis (e.g., “What happened in the last episode?”), and the virtual assistant system can search for and provide a description of the episode.


In some examples, content displayed on display 112 can include menu content, and such menu content can similarly be used to determine user intent of speech input and responses to user queries. FIGS. 23A-23B illustrate exemplary pages of a program menu 830. FIG. 23A illustrates a first page of media options 832, and FIG. 23B illustrates a second page of media options 832 (which can include a consecutive next page in a listing of content that extends beyond a single page).


In one example, a user request to play content can include an ambiguous reference to something shown on display 112 in menu 830. For example, a user viewing menu 830 can request to watch “that” soccer game, “that” basketball game, the vacuum advertisement, the law show, or the like. The particular program desired can be unclear from the speech input alone. In some examples, however, the content shown on display 112 can be used to disambiguate user requests and determine user intent. In the illustrated example, the media options in menu 830 (along with metadata associated with the media options in some examples) can be used to determine the user intent from commands including ambiguous references. For example, “that” soccer game can be resolved to the soccer game on the sports channel. “That” basketball game can be resolved to the basketball game on the college sports channel. The vacuum advertisement can be resolved to the paid programming show (e.g., based on metadata associated with the show describing a vacuum). The law show can be resolved to the courtroom drama based on metadata associated with the show and/or synonym matching, fuzzy matching, or other matching techniques. The appearance of the various media options 832 in menu 830 on display 112 can thus be used to disambiguate user requests.


In some examples, displayed menus can be navigated with a cursor, joystick, arrows, buttons, gestures, or the like. In such instances, a focus can be shown for a selected item. For example, a selected item can be shown in bold, underlined, outlined with a border, in larger size than other menu items, with a shadow, with a reflection, with a glow, and/or with any other features to emphasize which menu item is selected and has focus. For example, selected media option 2330 in FIG. 23A can have focus as the currently selected media option, and is shown with large, underlined type and a border.


In some examples, a request to play content or select a menu item can include an ambiguous reference to a menu item that has focus. For example, a user viewing menu 830 of FIG. 23A can request to play “that” show (e.g., “Play that show.”). Similarly, a user could request various other commands associated with a menu item having focus, such as play, delete, hide, remind me to watch that, record that, or the like. The particular menu item or show that is desired can be unclear from the speech input alone. The content shown on display 112, however, can be used to disambiguate user requests and determine user intent. In particular, the fact that selected media option 2330 has focus in menu 830 can be used to identify the desired media subject of any of the commands referring to “that” show, commands without subjects (e.g., play, delete, hide, etc.), or any other ambiguous commands referring to the media content having focus. A menu item having focus can thus be used in determining user intent from speech input.


As with a viewing history of media content that can be used to disambiguate a user request (e.g., content displayed at the time a user initiated a request but since having passed), previously displayed menu or search result content can similarly be used to disambiguate later user requests after moving on, for example, to later menu or search result content. For example, FIG. 23B illustrates a second page of menu 830 with additional media options 832. A user can advance to the second page illustrated in FIG. 23B but refer back to content shown in the first page illustrated in FIG. 23A (e.g., media options 832 shown in FIG. 23A). For example, despite having moved on to the second page of menu 830, a user can request to watch “that” soccer game, “that” basketball game, or the law show—all of which are media options 832 recently displayed on a previous page of menu 830. Such references can be ambiguous, but the recently displayed menu content from the first page of menu 830 can be used to determine the user intent. In particular, the recently displayed media options 832 of FIG. 23A can be analyzed to identify the specific soccer game, basketball game, or courtroom drama referred to in the ambiguous example requests. In some examples, results can be biased based on how recently content was displayed (e.g., weighting the most recently viewed page of results over results viewed earlier). In this manner, the viewing history of what was recently shown on display 112 can be used to determine user intent. It should be understood that any recently displayed content can be used, such as previously displayed search results, previously displayed programs, previously displayed menus, or the like. This can allow users to refer back to something they saw earlier without having to find and navigate to the specific view in which they saw it.


In still other examples, various display cues shown in a menu or results list on display 112 can be used to disambiguate user requests and determine user intent. FIG. 24 illustrates an exemplary media menu divided into categories, one of which has focus (movies). FIG. 24 illustrates category interface 2440, which can include a carousel-style interface of categorized media options including TV options 2442, movie options 2444, and music options 2446. As shown, the music category is only partially displayed, and the carousel interface can be shifted to display additional content to the right (e.g., as indicated by the arrow) as though rotating the media in a carousel. In the illustrated example, the movies category has focus as indicated by the underlined title and border, although focus can be indicated in any of a variety of other ways (e.g., making the category larger to appear closer to the user than other categories, adding a glow, etc.).


In some examples, a request to play content or select a menu item can include an ambiguous reference to a menu item in a group of items (such as a category). For example, a user viewing category interface 2440 can request to play the soccer show (“Play the soccer show.”). The particular menu item or show that is desired can be unclear from the speech input alone. Moreover, the query can resolve to more than one show that is displayed on display 112. For example, the request for the soccer show might refer to either the soccer game listed in the TV programs category or the soccer movie listed in the movies category. The content shown on display 112—including display cues—can be used to disambiguate user requests and determine user intent. In particular, the fact that the movies category has focus in category interface 2440 can be used to identify the particular soccer show that is desired, which is likely the soccer movie given the focus on the movies category. A category of media (or any other grouping of media) having focus as shown on display 112 can thus be used in determining user intent from speech input. It should also be appreciated that users can make various other requests associated with categories, such as requesting display of certain categorical content (e.g., show me comedy movies, show me horror movies, etc.).


In other examples, a user can refer to menu or media items shown on display 112 in a variety of other ways, and user intent can similarly be determined based on displayed content. It should be appreciated that metadata associated with displayed content (e.g., TV program descriptions, movie descriptions, etc.), fuzzy matching techniques, synonym matching, and the like can further be used in conjunction with displayed content to determine user intent from speech input. User requests in a variety of forms—including natural language requests—can thus be accommodated and user intent can be determined according to the various examples discussed herein.


It should be understood that content displayed on display 112 can be used alone or in conjunction with content displayed on user device 102 or on a display associated with remote control 106 in determining user intent. Likewise, it should be understood that virtual assistant queries can be received at any of a variety of devices communicatively coupled to television set-top box 104, and content displayed on display 112 can be used to determine user intent regardless of which device receives the query. Results of queries can likewise be displayed on display 112 or on another display (e.g., on user device 102).


In addition, in any of the various examples discussed herein, the virtual assistant system can navigate menus and select menu options without requiring a user to specifically open menus and navigate to menu items. For example, a menu of options might appear after selecting media content or a menu button, such as selecting a movie option 2444 in FIG. 24. Menu options might include playing the media as well as alternatives to simply playing the media, such as setting a reminder to watch the media later, setting up a recording of the media, adding media to a favorites list, hiding media from further view, or the like. While a user is viewing content above a menu or content that has a sub-menu option, the user can issue virtual assistant commands that would otherwise require navigating to the menu or sub-menu to select. For example, a user viewing category interface 2440 of FIG. 24 can issue any menu command associated with a movie option 2444 without opening the associated menu manually. For instance, the user might request to add the soccer movie to a favorites list, record the nightly news, and set up a reminder to watch Movie B without ever navigating to the menus or sub-menus associated with those media options where such commands might be available. The virtual assistant system can thus navigate menus and sub-menus in order to execute commands on behalf of the user, whether or not those menu options appear on display 112. This can simplify user requests and reduce the number of clicks or selections a user must make to achieve desired menu functionality.



FIG. 25 illustrates exemplary process 2500 for controlling television interactions using media content shown on a display and a viewing history of media content. At block 2502, speech input can be received from a user, the speech input including a query associated with content shown on a television display. For example, the speech input can include a query about a character, actor, movie, television program, sporting event, player, or the like appearing on display 112 of system 100 (shown by television set-top box 104). Transcription 1916 of FIG. 19, for example, includes a query associated with actresses shown in video 480 on display 112. Similarly, transcription 2122 of FIG. 21 includes a query associated with a character in video 480 shown on display 112. The speech input can also include a query associated with menu or search content appearing on display 112, such as a query to select a particular menu item or get information about a particular search result. For example, displayed menu content can include media options 832 of menu 830 in FIG. 23A and FIG. 23B. Displayed menu content can likewise include TV options 2442, movie options 2444, and/or music options 2446 appearing in category interface 2440 of FIG. 24.


Referring again to process 2500 of FIG. 25, at block 2504, user intent of the query can be determined based on the content shown and a viewing history of media content. For example, user intent can be determined based on a displayed or recently displayed scene of a television program, sporting event, movie, or the like. User intent can also be determined based on displayed or recently displayed menu or search content. Displayed content can also be analyzed along with metadata associated with the content to determine user intent. For example, the content shown and described with reference to FIGS. 19, 21, 23A, 23B, and 24 can be used alone or in conjunction with metadata associated with the displayed content to determine user intent.


At block 2506, a result of the query can be displayed based on the determined user intent. For example, a result similar to assistant response 2020 in assistant response interface 2018 of FIG. 20 can be displayed on display 112. In another example, text and selectable media can be provided as a result, such as assistant text response 2226 and selectable video links 2228 in assistant response interface 2224 shown in FIG. 22. In yet another example, displaying the result of the query can include displaying or playing selected media content (e.g., playing a selected video on display 112 via television set-top box 104). User intent can thus be determined from speech input in a variety of ways using displayed content and associated metadata as context.


In some examples, virtual assistant query suggestions can be provided to a user to, for example, inform the user of available queries, suggest content that the user may enjoy, teach the user how to use the system, encourage the user to find additional media content for consumption, or the like. In some examples, query suggestions can include generic suggestions of possible commands (e.g., find comedies, show me the TV guide, search for action movies, turn on closed captioning, etc.). In other examples, query suggestions can include targeted suggestions related to displayed content (e.g., add this show to a watch list, share this show via social media, show me the soundtrack of this movie, show me the book that this guest is selling, show me the trailer for the movie that guest is plugging, etc.), user preferences (e.g., closed captioning use, etc.), user-owned content, content stored on a user's device, notifications, alerts, a viewing history of media content (e.g., recently displayed menu items, recently displayed scenes of a show, recent actor appearances, etc.), or the like. Suggestions can be displayed on any device, including on display 112 via television set-top box 104, on user device 102, or on a display associated with remote control 106. In addition, suggestions can be determined based on which devices are nearby and/or in communication with television set-top box 104 at a particular time (e.g., suggesting content from devices of the users in the room watching TV at a particular time). In other examples, suggestions can be determined based on a variety of other contextual information, including the time of day, crowd-sourced information (e.g., popular shows being watched at a given time), shows that are live (e.g., live sporting events), a viewing history of media content (e.g., the last several shows that were watched, a recently viewed set of search results, a recently viewed group of media options, etc.), or any of a variety of other contextual information.



FIG. 26 illustrates exemplary suggestions interface 2650 including content-based virtual assistant query suggestions 2652. In one example, query suggestions can be provided in an interface such as interface 2650 in response to input received from a user requesting suggestions. Input requesting query suggestions can be received, for example, from user device 102 or remote control 106. In some examples, the input can include a button press, a double click of a button, a menu selection, a voice command (e.g., show me some suggestions, what can you do for me, what are some options, etc.), or the like received at user device 102 or remote control 106. For instance, a user can double click a physical button on remote control 106 to request query suggestions, or can double click a physical or virtual button on user device 102 when viewing an interface associated with television set-top box 104 to request query suggestions.


Suggestions interface 2650 can be displayed over a moving image, such as video 480, or over any other background content (e.g., a menu, a still image, a paused video, etc.). As with other interfaces discussed herein, suggestions interface 2650 can be animated to slide up from the bottom of display 112, and can occupy a minimal amount of space while sufficiently conveying the desired information so as to limit interference with video 480 in the background. In other examples, a larger interface of suggestions can be provided when the background content is still (e.g., a paused video, a menu, an image, etc.).


In some examples, virtual assistant query suggestions can be determined based on displayed media content or a viewing history of media content (e.g., a movie, television show, sporting event, recently viewed show, recently viewed menu, recently viewed scene of a movie, recent scene of a playing television episode, etc.). For example, FIG. 26 illustrates content-based suggestions 2652, which can be determined based on displayed video 480 shown in the background with characters 1910, 1912, and 1914 appearing on display 112. Metadata associated with displayed content (e.g., descriptive details of the media content) can also be used to determine query suggestions. Metadata can include a variety of information associated with displayed content, including a show title, a character list, an actor list, an episode description, a team roster, a team ranking, a show synopsis, movie details, plot descriptions, director names, producer names, times of actor appearance, sports standings, sports scores, genre, season episode listing, related media content, or a variety of other associated information. For example, metadata associated with video 480 can include the character names of characters 1910, 1912, and 1914 along with the actresses who play those characters. Metadata can also include a description of the plot of video 480, a description of a previous or next episode (where video 480 is a television episode in a series), or the like.



FIG. 26 illustrates a variety of content-based suggestions 2652 that can be shown in suggestions interface 2650 based on video 480 and metadata associated with video 480. For example, character 1910 of video 480 can be named “Blanche,” and the character name can be used to formulate a query suggestion for information about the character Blanche or the actress who plays that character (e.g., “Who is the actress that plays Blanche?”). Character 1910 can be identified from metadata associated with video 480 (e.g., a character list, an actor list, times associated with actor appearances, etc.). In other examples, facial recognition can be used to identify actresses and/or characters appearing on display 112 at a given time. Various other query suggestions can be provided associated with a character in the media itself, such as queries relating to a character's role, profile, relationship to other characters, or the like.


In another example, an actor or actress appearing on display 112 can be identified (e.g., based on metadata and/or facial recognition), and query suggestions associated with that actor or actress can be provided. Such query suggestions can include role(s) played, acting awards, age, other media in which they appear, history, family members, relationships, or any of a variety of other details about an actor or actress. For example, character 1914 can be played by an actress named Whitney Davidson, and the actress's name Whitney Davidson can be used to formulate a query suggestion to identify other movies, television programs, or other media in which the actress Whitney Davidson appears (e.g., “What else is Whitney Davidson in?”).


In other examples, details about a show can be used to formulate query suggestions. An episode synopsis, plot summary, episode list, episode titles, series titles, or the like can be used to formulate query suggestions. For example, a suggestion can be provided to describe what happened in the last episode of a television program (e.g., “What happened in the last episode?”), to which the virtual assistant system can provide as a response an episode synopsis from the prior episode identified based on the episode currently shown on display 112 (and its associated metadata). In another example, a suggestion can be provided to set up a recording for the next episode, which can be accomplished by the system identifying the next episode based on the currently playing episode shown on display 112. In yet another example, a suggestion can be provided to get information about the current episode or show appearing on display 112, and the title of the show obtained from metadata can be used to formulate the query suggestion (e.g., “What is this episode of ‘Their Show’ about?” or “What is ‘Their Show’ about?”).


In another example, category, genre, rating, awards, descriptions, or the like associated with displayed content can be used to formulate query suggestions. For example, video 480 can correspond to a television program described as a comedy having female lead characters. A query suggestion can be formulated from this information to identify other shows with similar characteristics (e.g., “Find me other comedies with female leads.”). In other examples, suggestions can be determined based on user subscriptions, content available for playback (e.g., content on television set-top box 104, content on user device 102, content available for streaming, etc.), or the like. For example, potential query suggestions can be filtered based on whether informational or media results are available. Query suggestions that might not result in playable media content or informational answers can be excluded, and/or query suggestions with readily available informational answers or playable media content can be provided (or weighted more heavily in determining which suggestions to provide). Displayed content and associated metadata can thus be used in a variety of ways to determine query suggestions.



FIG. 27 illustrates exemplary selection interface 2754 for confirming selection of a suggested query. In some examples, users can select displayed query suggestions by speaking the queries, selecting them with a button, navigating to them with a cursor, or the like. In response to a selection, the selected suggestion can be briefly displayed in a confirming interface, such as selection interface 2754. In one example, selected suggestion 2756 can be animated to move from wherever it appeared in suggestions interface 2650 to the position shown in FIG. 27 next to command receipt confirmation 490 (e.g., as shown by the arrow), and other unselected suggestions can be hidden from the display.



FIGS. 28A-28B illustrate exemplary virtual assistant answer interface 2862 based on a selected query. In some examples, informational answers to a selected query can be displayed in an answer interface, such as answer interface 2862. In switching from either suggestions interface 2650 or selection interface 2754, transition interface 2858 can be shown as illustrated in FIG. 28A. In particular, previously displayed content within the interface can be scrolled upward out of the interface as the next content scrolls upward from the bottom of display 112. Selected suggestion 2756, for example, can be slid or scrolled upward until it disappears at the top edge of the virtual assistant interface, and assistant result 2860 can be slid or scrolled upward from the bottom of display 112 until it arrives at the position shown in FIG. 28B.


Answer interface 2862 can include informational answers and/or media results responsive to a selected query suggestion (or responsive to any other query). For example, in response to selected query suggestion 2756, assistant result 2860 can be determined and provided. In particular, in response to a request for a synopsis of a prior episode, the prior episode can be identified based on displayed content, and an associated description or synopsis can be identified and provided to the user. In the illustrated example, assistant result 2860 can describe a previous episode of the program corresponding to video 480 on display 112 (e.g., “In episode 203 of ‘Their Show,’ Blanche gets invited to a college psychology class as a guest speaker. Julia and Melissa show up unannounced and cause a stir.”). Informational answers and media results (e.g., selectable video links) can also be presented in any of the other ways discussed herein, or results can be presented in various other ways (e.g., speaking answers aloud, playing content immediately, showing an animation, displaying an image, etc.).


In another example, a notification or alert can be used to determine virtual assistant query suggestions. FIG. 29 illustrates a media content notification 2964 (although any notification can be taken into account in determining suggestions) and suggestions interface 2650 with both notification-based suggestions 2966 and content-based suggestions 2652 (which can include some of the same concepts as discussed above with reference to FIG. 26). In some examples, the content of a notification can be analyzed to identify relevant media related names, titles, subjects, actions, or the like. In the illustrated example, notification 2964 includes an alert notifying the user about alternative media content available for display—specifically that a sporting event is live, and the content of the game may be of interest to the user (e.g., “Team Zeta and Team Alpha are tied with five minutes remaining in the game.”). In some examples, notifications can be displayed momentarily at the top of display 112. Notifications can be slid down from the top of display 112 (as indicated by the arrow) into the position shown in FIG. 29, displayed for a certain amount of time, and slid back up to disappear again at the top of display 112.


Notifications or alerts can notify the user of a variety of information, such as available alternative media content (e.g., alternatives to what may be shown currently on display 112), available live television programs, newly downloaded media content, recently added subscription content, suggestions received from friends, receipt of media sent from another device, or the like. Notifications can also be personalized based on a household or an identified user watching media (e.g., identified based on user authentication using account selections, voice recognition, passwords, etc.). In one example, the system can interrupt a show and display a notification based on likely desired content, such as displaying notification 2964 for a user who—based on a user profile, favorite team(s), preferred sport(s), viewing history, and the like—can be likely to desire the content of the notification. For example, sporting event scores, game status, time remaining, and the like can be obtained from a sport data feed, news outlet, social media discussions, or the like, and can be used to identify possible alternative media content for notifying the user.


In other examples, popular media content (e.g., across many users) can be provided via alerts or notifications to suggest alternatives to currently viewed content (e.g., notifying a user that a popular show or a show in a genre the user likes just started or is otherwise available for viewing). In the illustrated example, the user might follow one or both of Team Zeta and Team Alpha (or might follow soccer or a particular sport, league, etc.). The system can determine that available live content matches the user's preferences (e.g., a game on another channel matches a user's preferences, the game has little time remaining, and the score is close). The system can then determine to alert the user via notification 2964 of the likely desired content. In some examples, a user can select notification 2964 (or a link within notification 2964) to switch to the suggested content (e.g., using a remote control button, cursor, spoken request, etc.).


Virtual assistant query suggestions can be determined based on notifications by analyzing notification content to identify relevant media related terms, names, titles, subjects, actions, or the like. The identified information can then be used to formulate appropriate virtual assistant query suggestions, such as notification-based suggestions 2966 based on notification 2964. For example, a notification about an exciting end of a live sporting event can be displayed. Should the user then request query suggestions, suggestions interface 2650 can be displayed, including query suggestions to view the sporting event, inquire about team statistics, or find content related to the notification (e.g., change to the Zeta/Alpha game, what are team Zeta's stats, what other soccer games are on, etc.). Based on the particular terms of interest identified in the notification, various other query suggestions can likewise be determined and provided to the user.


Virtual assistant query suggestions related to media content (e.g., for consumption via television set-top box 104) can also be determined from content on a user device, and suggestions can also be provided on a user device. In some examples, playable device content can be identified on user devices that are connected to or in communication with television set-top box 104. FIG. 30 illustrates user device 102 with exemplary picture and video content in interface 1360. A determination can be made as to what content is available for playback on a user device, or what content is likely to be desired for playback. For example, playable media 3068 can be identified based on an active application (e.g., a photos and videos application), or can be identified based on stored content whether displayed on interface 1360 or not (e.g., content can be identified from an active application in some examples or without being displayed at a given time in other examples). Playable media 3068 can include, for example, video 1362, photo album 1364, and photos 1366, each of which can include personal user content that can be transmitted to television set-top box 104 for display or playback. In other examples, any photo, video, music, game interface, application interface, or other media content stored or displayed on user device 102 can be identified and used for determining query suggestions.


With playable media 3068 identified, virtual assistant query suggestions can be determined and provided to the user. FIG. 31 illustrates exemplary TV assistant interface 3170 on user device 102 with virtual assistant query suggestions based on playable user device content and based on video content shown on a separate display (e.g., display 112 associated with television set-top box 104). TV assistant interface 3170 can include a virtual assistant interface specifically for interacting with media content and/or television set-top box 104. Users can request query suggestions on user device 102 by, for example, a double click of a physical button when viewing interface 3170. Other inputs can similarly be used to indicate a request for query suggestions. As shown, assistant greeting 3172 can introduce the provided query suggestions (e.g., “Here are some suggestions for controlling your TV experience.”).


Virtual assistant query suggestions provided on user device 102 can include suggestions based on a variety of source devices as well as general suggestions. For example, device-based suggestions 3174 can include query suggestions based on content stored on user device 102 (including content displayed on user device 102). Content-based suggestions 2652 can be based on content displayed on display 112 associated with television set-top box 104. General suggestions 3176 can include general suggestions that may not be associated with particular media content or a particular device with media content.


Device-based suggestions 3174 can be determined, for example, based on playable content identified on user device 102 (e.g., videos, music, photographs, game interfaces, application interfaces, etc.). In the illustrated example, device-based suggestions 3174 can be determined based on playable media 3068 shown in FIG. 30. For example, given that photo album 1364 was identified as playable media 3068, the details of photo album 1364 can be used to formulate a query. The system can identify the content as an album of multiple photos that can be shown in a slideshow, and can then use the title of the album (in some instances) to formulate a query suggestion to show a slideshow of the particular album of photos (e.g., “Show a slideshow of ‘Graduation Album’ from your photos.”). In some examples, the suggestion can include an indication of the source of the content (e.g., “from your photos,” “from Jennifer's phone,” “from Daniel's tablet,” etc.). The suggestion can also use other details to refer to particular content, such as a suggestion to view a photograph from a particular date (e.g., display your photo from June 21st). In another example, video 1362 can be identified as playable media 3068, and the title of the video (or other identifying information) can be used to formulate a query suggestion to play the video (e.g., “Show ‘Graduation Video’ from your videos.”).


In other examples, content available on other connected devices can be identified and used to formulate virtual assistant query suggestions. For example, content from each of two user devices 102 connected to a common television set-top box 104 can be identified and used in formulating virtual assistant query suggestions. In some examples, users can select which content to make visible to the system for sharing, and can hide other content from the system so as not to include it in query suggestions or otherwise make it available for playback.


Content-based suggestions 2652 shown in interface 3170 of FIG. 31 can be determined, for example, based on content displayed on display 112 associated with television set-top box 104. In some examples, content-based suggestions 2652 can be determined in the same manner as described above with reference to FIG. 26. In the illustrated example, content-based suggestions 2652 shown in FIG. 31 can be based on video 480 shown on display 112 (e.g., as in FIG. 26). In this manner, virtual assistant query suggestions can be derived based on content that is displayed or available on any number of connected devices. In addition to targeted suggestions, general suggestions 3176 can be predetermined and provided (e.g., show me the guide, what sports are on, what's on channel three, etc.).



FIG. 32 illustrates exemplary suggestions interface 2650 with connected device-based suggestions 3275 along with content-based suggestions 2652 shown on display 112 associated with television set-top box 104. In some examples, content-based suggestions 2652 can be determined in the same manner as described above with reference to FIG. 26. As noted above, virtual assistant query suggestions can be formulated based on content on any number of connected devices, and the suggestions can be provided on any number of connected devices. FIG. 32 illustrates connected device-based suggestions 3275 that can be derived from content on user device 102. For example, playable content can be identified on user device 102, such as photo and video content shown in interface 1360 as playable media 3068 in FIG. 30. The identified playable content on user device 102 can then be used to formulate suggestions that can be displayed on display 112 associated with television set-top box 104. In some examples, connected device-based suggestions 3275 can be determined in the same manner as device-based suggestions 3174 described above with reference to FIG. 31. In addition, as noted above, in some examples identifying source information can be included in a suggestion, such as “from Jake's phone” as shown in connected device-based suggestions 3275. Virtual assistant query suggestions provided on one device can thus be derived based on content from another device (e.g., displayed content, stored content, etc.). It should be appreciated that a connected device can include a remote storage device accessible to television set-top box 104 and/or user device 102 (e.g., accessing media content stored in the cloud to formulate suggestions).


It should be understood that any combination of virtual assistant query suggestions from various sources can be provided in response to a request for suggestions. For example, suggestions from various sources can be combined randomly, or can be presented based on popularity, user preference, selection history, or the like. Moreover, queries can be determined in a variety of other ways and presented based on a variety of other factors, such as a query history, a user preference, a query popularity, or the like. In addition, in some examples, query suggestions can be cycled automatically by replacing displayed suggestions with new alternative suggestions after a delay. It should further be understood that users can select displayed suggestions on any interface by, for example, tapping on a touchscreen, speaking the query, selecting a query with navigation keys, selecting a query with a button, selecting a query with a cursor, or the like, and an associated response can then be provided (e.g., an informational and/or media response).


In any of the various examples, virtual assistant query suggestions can also be filtered based on available content. For example, potential query suggestions that would result in unavailable media content (e.g., no cable subscription) or that may not have an associated informational answer can be disqualified as suggestions and held back from being displayed. On the other hand, potential query suggestions that would result in immediately playable media content to which the user has access can be weighted over other potential suggestions or otherwise biased for display. In this manner, the availability of media content for user viewing can also be used in determining virtual assistant query suggestions for display.


In addition, in any of the various examples, pre-loaded query answers can be provided instead of or in addition to suggestions (e.g., in suggestions interface 2650). Such pre-loaded query answers can be selected and provided based on personal use and/or current context. For example, a user watching a particular program can tap a button, double-click a button, long-press a button, or the like to receive suggestions. Instead of or in addition to query suggestions, context-based information can be provided automatically, such as identifying a playing song or soundtrack (e.g., “This song is Performance Piece”), identifying cast members of a currently playing episode (e.g., “Actress Janet Quinn plays Genevieve”), identifying similar media (e.g., “Show Q is similar to this”), or providing results of any of the other queries discussed herein.


Moreover, affordances can be provided in any of the various interfaces for users to rate media content to inform the virtual assistant of user preferences (e.g., a selectable rating scale). In other examples, users can speak rating information as a natural language command (e.g., “I love this,” “I hate this,” “I don't like this show,” etc.). In still other examples, in any of the various interfaces illustrated and described herein, a variety of other functional and informational elements can be provided. For example, interfaces can further include links to important functions and places, such as search links, purchase links, media links, and the like. In another example, interfaces can further include recommendations of what else to watch next based on currently playing content (e.g., selecting similar content). In yet another example, interfaces can further include recommendations of what else to watch next based on personalized taste and/or recent activity (e.g., selecting content based on user ratings, user-entered preferences, recently watched programs, etc.). In still other examples, interfaces can further include instructions for user interactions (e.g., “Press and hold to talk to the Virtual Assistant,” “Tap once to get suggestions,” etc.). In some examples, providing pre-loaded answers, suggestions, or the like can provide an enjoyable user experience while also making content readily available to a wide variety of users (e.g., to users of various skill levels irrespective of language or other control barriers).



FIG. 33 illustrates exemplary process 3300 for suggesting virtual assistant interactions for controlling media content (e.g., virtual assistant queries). At block 3302, media content can be displayed on a display. For example, as shown in FIG. 26, video 480 can be displayed on display 112 via television set-top box 104, or interface 1360 can be displayed on touchscreen 246 of user device 102 as shown in FIG. 30. At block 3304, an input can be received from a user. The input can include a request for virtual assistant query suggestions. The input can include a button press, a double click of a button, a menu selection, a spoken query for suggestions, or the like.


At block 3306, virtual assistant queries can be determined based on the media content and/or a viewing history of media content. For example, virtual assistant queries can be determined based on a displayed program, menu, application, list of media content, notification, or the like. In one example, content-based suggestions 2652 can be determined based on video 480 and associated metadata as described with reference to FIG. 26. In another example, notification-based suggestions 2966 can be determined based on notification 2964 as described with reference to FIG. 29. In yet another example, device-based suggestions 3174 can be determined based on playable media 3068 on user device 102 as described with reference to FIG. 30 and FIG. 31. In still other examples, connected device-based suggestions 3275 can be determined based on playable media 3068 on user device 102 as described with reference to FIG. 32.


Referring again to process 3300 of FIG. 33, at block 3308, the virtual assistant queries can be displayed on the display. For example, determined query suggestions can be displayed as shown in and described with reference to FIGS. 26, 27, 29, 31, and 32. As discussed above, query suggestions can be determined and displayed based on a variety of other information. Moreover, virtual assistant query suggestions provided on one display can be derived based on content from another device with another display. Targeted virtual assistant query suggestions can thus be provided to users, thereby assisting users to learn of potential queries as well as providing desirable content suggestions, among other benefits.


In addition, in any of the various examples discussed herein, various aspects can be personalized for a particular user. User data, including contacts, preferences, location, favorite media, and the like, can be used to interpret voice commands and facilitate user interaction with the various devices discussed herein. The various processes discussed herein can also be modified in various other ways according to user preferences, contacts, text, usage history, profile data, demographics, or the like. In addition, such preferences and settings can be updated over time based on user interactions (e.g., frequently uttered commands, frequently selected applications, etc.). Gathering and use of user data that is available from various sources can be used to improve the delivery to users of invitational content or any other content that may be of interest to them. The present disclosure contemplates that in some instances, this gathered data can include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, home addresses, or any other identifying information.


The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to deliver targeted content that is of greater interest to the user. Accordingly, use of such personal information data enables calculated control of the delivered content. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure.


The present disclosure further contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data as private and secure. For example, personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection should occur only after receiving the informed consent of the users. Additionally, such entities would take any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices.


Despite the foregoing, the present disclosure also contemplates examples in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of advertisement delivery services, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services. In another example, users can select not to provide location information for targeted content delivery services. In yet another example, users can select not to provide precise location information, but permit the transfer of location zone information.


Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed examples, the present disclosure also contemplates that the various examples can also be implemented without the need for accessing such personal information data. That is, the various examples of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, content can be selected and delivered to users by inferring preferences based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the content delivery services, or publicly available information.


In accordance with some examples, FIG. 34 shows a functional block diagram of an electronic device 3400 configured in accordance with the principles of various described examples to, for example, control television interactions using a virtual assistant and display associated information using different interfaces. The functional blocks of the device can be implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 34 can be combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.


As shown in FIG. 34, electronic device 3400 can include a display unit 3402 configured to display media, interfaces, and other content (e.g., display 112, touchscreen 246, or the like). Electronic device 3400 can further include input unit 3404 configured to receive information, such as speech input, tactile input, gesture input, and the like (e.g., a microphone, a receiver, a touchscreen, a button, or the like). Electronic device 3400 can further include processing unit 3406 coupled to display unit 3402 and input unit 3404. In some examples, processing unit 3406 can include a speech input receiving unit 3408, a media content determining unit 3410, a first user interface displaying unit 3412, a selection receiving unit 3414, and a second user interface displaying unit 3416.


Processing unit 3406 can be configured to receive speech input from a user (e.g., via input unit 3404). Processing unit 3406 can be further configured to determine (e.g., using media content determining unit 3410) media content based on the speech input. Processing unit 3406 can be further configured to display (e.g., on display unit 3402 using first user interface displaying unit 3412) a first user interface having a first size, wherein the first user interface comprises one or more selectable links to the media content. Processing unit 3406 can be further configured to receive (e.g., from input unit 3404 using selection receiving unit 3414) a selection of one of the one or more selectable links. Processing unit 3406 can be further configured to, in response to the selection, display (e.g., on display unit 3402 using second user interface displaying unit 3416) a second user interface having a second size larger than the first size, wherein the second user interface comprises the media content associated with the selection.


In some examples, the first user interface (e.g., of first user interface displaying unit 3412) expands into the second user interface (e.g., of second user interface displaying unit 3416) in response to the selection (e.g., of selection receiving unit 3414). In other examples, the first user interface is overlaid on playing media content. In one example, the second user interface is overlaid on playing media content. In another example, the speech input (e.g., of speech input receiving unit 3408 from input unit 3404) comprises a query, and the media content (e.g., of media content determining unit 3410) comprises a result of the query. In still another example, the first user interface comprises a link to results of the query beyond the one or more selectable links to the media content. In other examples, the query comprises a query about weather, and the first user interface comprises a link to media content associated with the query about the weather. In another example, the query comprises a location, and the link to the media content associated with the query about the weather comprises a link to a portion of media content associated with weather at the location.


In some examples, in response to the selection, processing unit 3406 can be configured to play the media content associated with the selection. In one example, the media content comprises a movie. In another example, the media content comprises a television show. In another example, the media content comprises a sporting event. In some examples, the second user interface (e.g., of second user interface displaying unit 3416) comprises a description of the media content associated with the selection. In other examples, the first user interface comprises a link to purchase media content.


Processing unit 3406 can be further configured to receive additional speech input from the user (e.g., via input unit 3404), wherein the additional speech input comprises a query associated with displayed content. Processing unit 3406 can be further configured to determine a response to the query associated with the displayed content based on metadata associated with the displayed content. Processing unit 3406 can be further configured to, in response to receiving the additional speech input, display (e.g., on display unit 3402) a third user interface, wherein the third user interface comprises the determined response to the query associated with the displayed content.


Processing unit 3406 can be further configured to receive an indication to initiate receipt of speech input (e.g., via input unit 3404). Processing unit 3406 can be further configured to, in response to receiving the indication, display a readiness confirmation (e.g., on display unit 3402). Processing unit 3406 can be further configured to, in response to receiving the speech input, display a listening confirmation. Processing unit 3406 can be further configured to detect the end of the speech input, and, in response to detecting the end of the speech input, display a processing confirmation. In some examples, processing unit 3406 can be further configured to display a transcription of the speech input.


In some examples, electronic device 3400 comprises a television. In other examples, electronic device 3400 comprises a television set-top box. In other examples, electronic device 3400 comprises a remote control. In still other examples, electronic device 3400 comprises a mobile telephone.


In one example, the one or more selectable links in the first user interface (e.g., of first user interface displaying unit 3412) comprise moving images associated with the media content. In some examples, the moving images associated with the media content comprise live feeds of the media content. In other examples, the one or more selectable links in the first user interface comprise still images associated with the media content.


In some examples, processing unit 3406 can be further configured to determine whether currently displayed content comprises a moving image or a control menu; in response to a determination that currently displayed content comprises a moving image, select a small size as the first size for the first user interface (e.g., of first user interface displaying unit 3412); and, in response to a determination that currently displayed content comprises a control menu, select a large size, larger than the small size, as the first size for the first user interface (e.g., of first user interface displaying unit 3412). In other examples, processing unit 3406 can be further configured to determine alternative media content for display based on one or more of a user preference, a show popularity, and a status of a live sporting event, and to display a notification comprising the determined alternative media content.


In accordance with some examples, FIG. 35 shows a functional block diagram of an electronic device 3500 configured in accordance with the principles of various described examples to, for example, control television interactions using a virtual assistant and multiple user devices. The functional blocks of the device can be implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 35 can be combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.


As shown in FIG. 35, electronic device 3500 can include a display unit 3502 configured to display media, interfaces, and other content (e.g., display 112, touchscreen 246, or the like). Electronic device 3500 can further include input unit 3504 configured to receive information, such as speech input, tactile input, gesture input, and the like (e.g., a microphone, a receiver, a touchscreen, a button, or the like). Electronic device 3500 can further include processing unit 3506 coupled to display unit 3502 and input unit 3504. In some examples, processing unit 3506 can include a speech input receiving unit 3508, a user intent determining unit 3510, a media content determining unit 3512, and a media content playing unit 3514.


Processing unit 3506 can be configured to receive (e.g., from input unit 3504 using speech input receiving unit 3508) speech input from a user at a first device (e.g., device 3500) having a first display (e.g., display unit 3502 in some examples). Processing unit 3506 can be further configured to determine (e.g., using user intent determining unit 3510) a user intent of the speech input based on content displayed on the first display. Processing unit 3506 can be further configured to determine (e.g., using media content determining unit 3512) media content based on the user intent. Processing unit 3506 can be further configured to play (e.g., using media content playing unit 3514) the media content on a second device associated with a second display (e.g., display unit 3502 in some examples).


In one example, the first device comprises a remote control. In another example, the first device comprises a mobile telephone. In another example, the first device comprises a tablet computer. In some examples, the second device comprises a television set-top box. In other examples, the second display comprises a television.


In some examples, the content displayed on the first display comprises an application interface. In one example, the speech input (e.g., of speech input receiving unit 3508 from input unit 3504) comprises a request to display media associated with the application interface. In one example, the media content comprises the media associated with the application interface. In another example, the application interface comprises a photo album, and the media comprises one or more photos in the photo album. In yet another example, the application interface comprises a list of one or more videos, and the media comprises one of the one or more videos. In still other examples, the application interface comprises a television program listing, and the media comprises a television program in the television program listing.


In some examples, processing unit 3506 can be further configured to determine whether the first device is authorized; wherein the media content is played on the second device in response to a determination that the first device is authorized. Processing unit 3506 can be further configured to identify the user based on the speech input, and determine (e.g., using user intent determining unit 3510) the user intent of the speech input based on data associated with the identified user. Processing unit 3506 can be further configured to determine whether the user is authorized based on the speech input; wherein the media content is played on the second device in response to a determination that the user is an authorized user. In one example, determining whether the user is authorized comprises analyzing the speech input using voice recognition.


In other examples, processing unit 3506 can be further configured to, in response to determining that the user intent comprises a request for information, display information associated with the media content on the first display of the first device. Processing unit 3506 can be further configured to, in response to determining that the user intent comprises a request to play the media content, play the media content on the second device.


In some examples, the speech input comprises a request to play content on the second device, and the media content is played on the second device in response to the request to play content on the second device. Processing unit 3506 can be further configured to determine whether the determined media content should be displayed on the first display or the second display based on a media format, a user preference, or a default setting. In some examples, the media content is displayed on the second display in response to a determination that the determined media content should be displayed on the second display. In other examples, the media content is displayed on the first display in response to a determination that the determined media content should be displayed on the first display.


In other examples, processing unit 3506 can be further configured to determine a proximity of each of two or more devices, including the second device and a third device. In some examples, the media content is played on the second device associated with the second display based on the proximity of the second device relative to the proximity of the third device. In some examples, determining the proximity of each of the two or more devices comprises determining the proximity based on Bluetooth LE.


In some examples, processing unit 3506 can be further configured to display a list of display devices, including the second device associated with the second display, and receive a selection of the second device in the list of display devices. In one example, the media content is displayed on the second display in response to receiving the selection of the second device. Processing unit 3506 can be further configured to determine whether headphones are attached to the first device. Processing unit 3506 can be further configured to, in response to a determination that headphones are attached to the first device, display the media content on the first display. Processing unit 3506 can be further configured to, in response to a determination that headphones are not attached to the first device, display the media content on the second display. In other examples, processing unit 3506 can be further configured to determine alternative media content for display based on one or more of a user preference, a show popularity, and a status of a live sporting event, and to display a notification comprising the determined alternative media content.


In accordance with some examples, FIG. 36 shows a functional block diagram of an electronic device 3600 configured in accordance with the principles of various described examples to, for example, control television interactions using media content shown on a display and a viewing history of media content. The functional blocks of the device can be implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 36 can be combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.


As shown in FIG. 36, electronic device 3600 can include a display unit 3602 configured to display media, interfaces, and other content (e.g., display 112, touchscreen 246, or the like). Electronic device 3600 can further include input unit 3604 configured to receive information, such as speech input, tactile input, gesture input, and the like (e.g., a microphone, a receiver, a touchscreen, a button, or the like). Electronic device 3600 can further include processing unit 3606 coupled to display unit 3602 and input unit 3604. In some examples, processing unit 3606 can include a speech input receiving unit 3608, a user intent determining unit 3610, and a query result displaying unit 3612.


Processing unit 3606 can be configured to receive (e.g., from input unit 3604 using speech input receiving unit 3608) speech input from a user, wherein the speech input comprises a query associated with content shown on a television display (e.g., display unit 3602 in some examples). Processing unit 3606 can be further configured to determine (e.g., using user intent determining unit 3610) a user intent of the query based on one or more of the content shown on the television display and a viewing history of media content. Processing unit 3606 can be further configured to display (e.g., using query result displaying unit 3612) a result of the query based on the determined user intent.


In one example, the speech input is received at a remote control. In another example, the speech input is received at a mobile telephone. In some examples, the result of the query is displayed on the television display. In another example, the content shown on the television display comprises a movie. In yet another example, the content shown on the television display comprises a television show. In still another example, the content shown on the television display comprises a sporting event.


In some examples, the query comprises a request for information about a person associated with the content shown on the television display, and the result (e.g., of query result displaying unit 3612) of the query comprises information about the person. In one example, the result of the query comprises media content associated with the person. In another example, the media content comprises one or more of a movie, a television show, or a sporting event associated with the person. In some examples, the query comprises a request for information about a character in the content shown on the television display, and the result of the query comprises information about the character or information about the actor who plays the character. In one example, the result of the query comprises media content associated with the actor who plays the character. In another example, the media content comprises one or more of a movie, a television show, or a sporting event associated with the actor who plays the character.


In some examples, processing unit 3606 can be further configured to determine the result of the query based on metadata associated with the content shown on the television display or the viewing history of media content. In one example, the metadata comprises one or more of a title, a description, a list of characters, a list of actors, a list of players, a genre, or a display schedule associated with the content shown on the television display or the viewing history of media content. In another example, the content shown on the television display comprises a list of media content, and the query comprises a request to display one of the items in the list. In yet another example, the content shown on the television display further comprises an item in the list of media content having focus, and determining (e.g., using user intent determining unit 3610) the user intent of the query comprises identifying the item having focus. In some examples, processing unit 3606 can be further configured to determine (e.g., using user intent determining unit 3610) the user intent of the query based on menu or search content recently displayed on the television display. In one example, the content shown on the television display comprises a page of listed media, and the recently displayed menu or search content comprises a previous page of listed media. In another example, the content shown on the television display comprises one or more categories of media, and one of the one or more categories of media has focus. In one example, processing unit 3606 can be further configured to determine (e.g., using user intent determining unit 3610) the user intent of the query based on the one of the one or more categories of media having focus. In another example, the categories of media comprise movies, television programs, and music. In other examples, processing unit 3606 can be further configured to determine alternative media content for display based on one or more of a user preference, a show popularity, and a status of a live sporting event, and to display a notification comprising the determined alternative media content.


In accordance with some examples, FIG. 37 shows a functional block diagram of an electronic device 3700 configured in accordance with the principles of various described examples to, for example, suggest virtual assistant interactions for controlling media content. The functional blocks of the device can be implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 37 can be combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.


As shown in FIG. 37, electronic device 3700 can include a display unit 3702 configured to display media, interfaces, and other content (e.g., display 112, touchscreen 246, or the like). Electronic device 3700 can further include input unit 3704 configured to receive information, such as speech input, tactile input, gesture input, and the like (e.g., a microphone, a receiver, a touchscreen, a button, or the like). Electronic device 3700 can further include processing unit 3706 coupled to display unit 3702 and input unit 3704. In some examples, processing unit 3706 can include a media content displaying unit 3708, an input receiving unit 3710, a query determining unit 3712, and a query displaying unit 3714.


Processing unit 3706 can be configured to display (e.g., using media content displaying unit 3708) media content on a display (e.g., display unit 3702). Processing unit 3706 can be further configured to receive (e.g., from input unit 3704 using input receiving unit 3710) an input from a user. Processing unit 3706 can be further configured to determine (e.g., using query determining unit 3712) one or more virtual assistant queries based on one or more of the media content and a viewing history of media content. Processing unit 3706 can be further configured to display (e.g., using query displaying unit 3714) the one or more virtual assistant queries on the display.


In one example, the input is received from the user on a remote control. In another example, the input is received from the user on a mobile telephone. In some examples, the one or more virtual assistant queries are overlaid on a moving image. In another example, the input comprises a double click of a button. In one example, the media content comprises a movie. In another example, the media content comprises a television show. In yet another example, the media content comprises a sporting event.


In some examples, the one or more virtual assistant queries comprise a query about a person appearing in the media content. In other examples, the one or more virtual assistant queries comprise a query about a character appearing in the media content. In another example, the one or more virtual assistant queries comprise a query for media content associated with a person appearing in the media content. In some examples, the media content or the viewing history of media content comprise an episode of a television show, and the one or more virtual assistant queries comprise a query about another episode of the television show. In another example, the media content or the viewing history of media content comprise an episode of a television show, and the one or more virtual assistant queries comprise a request to set a reminder to watch or record a subsequent episode of the media content. In still another example, the one or more virtual assistant queries comprise a query for descriptive details of the media content. In one example, the descriptive details comprise one or more of a show title, a character list, an actor list, an episode description, a team roster, a team ranking, or a show synopsis.


In some examples, processing unit 3706 can be further configured to receive a selection of one of the one or more virtual assistant queries. Processing unit 3706 can be further configured to display a result of the selected one of the one or more virtual assistant queries. In one example, determining the one or more virtual assistant queries comprises determining the one or more virtual assistant queries based on one or more of a query history, a user preference, or a query popularity. In another example, determining the one or more virtual assistant queries comprises determining the one or more virtual assistant queries based on media content available to the user for viewing. In yet another example, determining the one or more virtual assistant queries comprises determining the one or more virtual assistant queries based on a received notification. In still another example, determining the one or more virtual assistant queries comprises determining the one or more virtual assistant queries based on an active application. In other examples, processing unit 3706 can be further configured to determine alternative media content for display based on one or more of a user preference, a show popularity, and a status of a live sporting event, and to display a notification comprising the determined alternative media content.


Although examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art (e.g., modifying any of the systems or processes discussed herein according to the concepts described in relation to any other system or process discussed herein). Such changes and modifications are to be understood as being included within the scope of the various examples as defined by the appended claims.

Claims
  • 1. An electronic device, comprising: one or more processors;a memory; andone or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for:receiving a speech input from a user;determining a user intent of the speech input based on previously displayed search result content in response to a previous speech input;determining media content based on the user intent;determining a size corresponding to the determined media content;determining a second device based on the determined size; andcausing the media content to be displayed on a display associated with the second device.
  • 2. The electronic device of claim 1, wherein causing the media content to be displayed on the display associated with the second device comprises: determining, from a plurality of devices, the second device based on at least one criterion.
  • 3. The electronic device of claim 2, wherein determining, from a plurality of devices, the second device based on at least one criterion comprises: determining a distance between the electronic device and each device of the plurality of devices; anddetermining the second device based on the determined distances.
  • 4. The electronic device of claim 1, the one or more programs including instructions for: identifying the user based on the speech input; anddetermining the user intent of the speech input based on data associated with the identified user.
  • 5. The electronic device of claim 4, wherein determining whether the user is an authorized user comprises analyzing the speech input using voice recognition.
  • 6. The electronic device of claim 1, the one or more programs including instructions for: in response to determining that the user intent comprises a request for information, providing information at the device in accordance with the user intent; andin response to determining that the user intent comprises a request to play the media content, playing the media content on the second device.
  • 7. The electronic device of claim 1, wherein the speech input comprises a request to play content on the second device, and wherein the media content is played on the second device in response to the request to play content on the second device.
  • 8. The electronic device of claim 7, wherein the speech input comprising a request to play content on the second device includes a reference to a location.
  • 9. The electronic device of claim 7, wherein the speech input comprising a request to play content on the second device includes a reference to a device type.
  • 10. The electronic device of claim 1, the one or more programs including instructions for: determining whether the determined media content should be displayed on a second display or on the display associated with the second device based on a media format, a user preference, or a default setting;wherein the media content is displayed on the display associated with the second device in response to a determination that the determined media content should be displayed on the display associated with the second device; andwherein the media content is displayed on the second display in response to a determination that the determined media content should be displayed on the second display.
  • 11. The electronic device of claim 1, the one or more programs including instructions for: determining a proximity of each of two or more devices, including the second device and a third device, wherein the media content is played on the display associated with the second device based on the proximity of the second device relative to the proximity of the third device.
  • 12. The electronic device of claim 11, wherein the proximity of each of two or more devices is determined based on frequency.
  • 13. The electronic device of claim 12, wherein the frequency is determined based on at least one time of flight measurement.
  • 14. The electronic device of claim 11, wherein the proximity of each of two or more devices is determined based on at least one sound travel measurement.
  • 15. The electronic device of claim 1, wherein causing the media content to be displayed on the display associated with the second device comprises: obtaining a user preference associated with the user; andidentifying the second device based on the user preference.
  • 16. The electronic device of claim 15, wherein the user preference indicates a preference to display a first content type on a first respective device and a second content type on a second respective device.
  • 17. The electronic device of claim 15, wherein the user preference indicates a preference to display a first content type on a first respective device in accordance with a determination that the speech input includes a first respective query.
  • 18. A computer-implemented method, comprising: at an electronic device with one or more processors and memory: receiving a speech input from a user;determining a user intent of the speech input based on previously displayed search result content in response to a previous speech input;determining media content based on the user intent;determining a size corresponding to the determined media content;determining a second device based on the determined size; andcausing the media content to be displayed on a display associated with the second device.
  • 19. The method of claim 18, wherein causing the media content to be displayed on the display associated with the second device comprises: determining, from a plurality of devices, the second device based on at least one criterion.
  • 20. The method of claim 19, wherein determining, from a plurality of devices, the second device based on at least one criterion comprises: determining a distance between the electronic device and each device of the plurality of devices; anddetermining the second device based on the determined distances.
  • 21. The method of claim 18, comprising: identifying the user based on the speech input; anddetermining the user intent of the speech input based on data associated with the identified user.
  • 22. The method of claim 21, wherein determining whether the user is an authorized user comprises analyzing the speech input using voice recognition.
  • 23. The method of claim 18, comprising: in response to determining that the user intent comprises a request for information, provide information at the device in accordance with the user intent; andin response to determining that the user intent comprises a request to play the media content, play the media content on the second device.
  • 24. The method of claim 18, wherein the speech input comprises a request to play content on the second device, and wherein the media content is played on the second device in response to the request to play content on the second device.
  • 25. The method of claim 24, wherein the speech input comprising a request to play content on the second device includes a reference to a location.
  • 26. The method of claim 24, wherein the speech input comprising a request to play content on the second device includes a reference to a device type.
  • 27. The method of claim 18, the one or more programs including instructions for: determining whether the determined media content should be displayed on a second display or on the display associated with the second device based on a media format, a user preference, or a default setting;wherein the media content is displayed on the display associated with the second device in response to a determination that the determined media content should be displayed on the display associated with the second device; andwherein the media content is displayed on the second display in response to a determination that the determined media content should be displayed on the second display.
  • 28. The method of claim 18, comprising: determining a proximity of each of two or more devices, including the second device and a third device, wherein the media content is played on the display associated with the second device based on the proximity of the second device relative to the proximity of the third device.
  • 29. The method of claim 28, wherein the proximity of each of two or more devices is determined based on frequency.
  • 30. The method of claim 29, wherein the frequency is determined based on at least one time of flight measurement.
  • 31. The method of claim 28, wherein the proximity of each of two or more devices is determined based on at least one sound travel measurement.
  • 32. The method of claim 18, wherein causing the media content to be displayed on the display associated with the second device comprises: obtaining a user preference associated with the user; andidentifying the second device based on the user preference.
  • 33. The method of claim 32, wherein the user preference indicates a preference to display a first content type on a first respective device and a second content type on a second respective device.
  • 34. The method of claim 32, wherein the user preference indicates a preference to display a first content type on a first respective device in accordance with a determination that the speech input includes a first respective query.
  • 35. A non-transitory computer-readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of a first electronic device, cause the first electronic device to: receive a speech input from a user;determine a user intent of the speech input based on previously displayed search result content in response to a previous speech input;determine media content based on the user intent; anddetermine a size corresponding to the determined media content;determine a second device based on the determined size; andcause the media content to be displayed on a display associated with the second device.
  • 36. The computer readable medium of claim 35, wherein causing the media content to be displayed on the display associated with the second device comprises: determining, from a plurality of devices, the second device based on at least one criterion.
  • 37. The computer readable medium of claim 36, wherein determining, from a plurality of devices, the second device based on at least one criterion comprises: determining a distance between the electronic device and each device of the plurality of devices; anddetermining the second device based on the determined distances.
  • 38. The computer readable medium of claim 35, comprising: identifying the user based on the speech input; anddetermining the user intent of the speech input based on data associated with the identified user.
  • 39. The computer readable medium of claim 38, wherein determining whether the user is an authorized user comprises analyzing the speech input using voice recognition.
  • 40. The computer readable medium of claim 35, comprising: in response to determining that the user intent comprises a request for information, provide information at the device in accordance with the user intent; andin response to determining that the user intent comprises a request to play the media content, play the media content on the second device.
  • 41. The computer readable medium of claim 35, wherein the speech input comprises a request to play content on the second device, and wherein the media content is played on the second device in response to the request to play content on the second device.
  • 42. The computer readable medium of claim 41, wherein the speech input comprising a request to play content on the second device includes a reference to a location.
  • 43. The computer readable medium of claim 41, wherein the speech input comprising a request to play content on the second device includes a reference to a device type.
  • 44. The computer readable medium of claim 35, the one or more programs including instructions for: determining whether the determined media content should be displayed on a second display or on the display associated with the second device based on a media format, a user preference, or a default setting;wherein the media content is displayed on the display associated with the second device in response to a determination that the determined media content should be displayed on the display associated with the second device; andwherein the media content is displayed on the second display in response to a determination that the determined media content should be displayed on the second display.
  • 45. The computer readable medium of claim 35, comprising: determining a proximity of each of two or more devices, including the second device and a third device, wherein the media content is played on the display associated with the second device based on the proximity of the second device relative to the proximity of the third device.
  • 46. The computer readable medium of claim 45, wherein the proximity of each of two or more devices is determined based on frequency.
  • 47. The computer readable medium of claim 46, wherein the frequency is determined based on at least one time of flight measurement.
  • 48. The computer readable medium of claim 45, wherein the proximity of each of two or more devices is determined based on at least one sound travel measurement.
  • 49. The computer readable medium of claim 35, wherein causing the media content to be displayed on the display associated with the second device comprises: obtaining a user preference associated with the user; andidentifying the second device based on the user preference.
  • 50. The computer readable medium of claim 49, wherein the user preference indicates a preference to display a first content type on a first respective device and a second content type on a second respective device.
  • 51. The computer readable medium of claim 49, wherein the user preference indicates a preference to display a first content type on a first respective device in accordance with a determination that the speech input includes a first respective query.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/495,861, filed Apr. 24, 2017, which is continuation of U.S. patent application Ser. No. 15/085,465, filed Mar. 30, 2016, now U.S. Pat. No. 9,668,024, issued May 30, 2017, which is a continuation of U.S. patent application Ser. No. 14/498,503, filed Sep. 26, 2014, now U.S. Pat. No. 9,338,493, issued May 10, 2016, which claims priority from U.S. Provisional Ser. No. 62/019,312, filed on Jun. 30, 2014, which are hereby each incorporated by reference in their entirety for all purposes. This application also relates to the following provisional application: U.S. Patent Application Ser. No. 62/019,292, “Real-time Digital Assistant Knowledge Updates,” filed Jun. 30, 2014, which is hereby incorporated by reference in its entirety.

US Referenced Citations (2811)
Number Name Date Kind
7603684 Ellis Oct 2009 B1
7796980 McKinney et al. Sep 2010 B1
7865817 Ryan et al. Jan 2011 B2
7869998 Fabbrizio et al. Jan 2011 B1
7869999 Amato et al. Jan 2011 B2
7870118 Jiang et al. Jan 2011 B2
7870133 Krishnamoorthy et al. Jan 2011 B2
7873149 Schultz et al. Jan 2011 B2
7873519 Bennett Jan 2011 B2
7873523 Potter et al. Jan 2011 B2
7873654 Bernard Jan 2011 B2
7877705 Chambers et al. Jan 2011 B2
7880730 Robinson et al. Feb 2011 B2
7881283 Cormier et al. Feb 2011 B2
7881936 Longe et al. Feb 2011 B2
7885390 Chaudhuri et al. Feb 2011 B2
7885844 Cohen et al. Feb 2011 B1
7886233 Rainisto et al. Feb 2011 B2
7889101 Yokota Feb 2011 B2
7889184 Blumenberg et al. Feb 2011 B2
7889185 Blumenberg et al. Feb 2011 B2
7890329 Wu et al. Feb 2011 B2
7890330 Ozkaragoz et al. Feb 2011 B2
7890652 Bull et al. Feb 2011 B2
7895039 Braho et al. Feb 2011 B2
7895531 Radtke et al. Feb 2011 B2
7899666 Varone Mar 2011 B2
7904297 Mirkovic et al. Mar 2011 B2
7908287 Katragadda Mar 2011 B1
7912289 Kansal et al. Mar 2011 B2
7912699 Saraclar et al. Mar 2011 B1
7912702 Bennett Mar 2011 B2
7912720 Hakkani-Tur et al. Mar 2011 B1
7912828 Bonnet et al. Mar 2011 B2
7913185 Benson et al. Mar 2011 B1
7916979 Simmons Mar 2011 B2
7917364 Yacoub Mar 2011 B2
7917367 Di Cristo et al. Mar 2011 B2
7917497 Harrison et al. Mar 2011 B2
7920678 Cooper et al. Apr 2011 B2
7920682 Byrne et al. Apr 2011 B2
7920857 Lau et al. Apr 2011 B2
7925525 Chin Apr 2011 B2
7925610 Elbaz et al. Apr 2011 B2
7929805 Wang et al. Apr 2011 B2
7930168 Weng et al. Apr 2011 B2
7930183 Odell et al. Apr 2011 B2
7930197 Ozzie et al. Apr 2011 B2
7933399 Knott et al. Apr 2011 B2
7936339 Marggraff et al. May 2011 B2
7936861 Knott et al. May 2011 B2
7936863 John et al. May 2011 B2
7937075 Zellner May 2011 B2
7941009 Li et al. May 2011 B2
7945294 Zhang et al. May 2011 B2
7945470 Cohen et al. May 2011 B1
7949529 Weider et al. May 2011 B2
7949534 Davis et al. May 2011 B2
7949752 White et al. May 2011 B2
7953679 Chidlovskii et al. May 2011 B2
7957975 Burns et al. Jun 2011 B2
7958136 Curtis et al. Jun 2011 B1
7962179 Huang Jun 2011 B2
7974835 Balchandran et al. Jul 2011 B2
7974844 Sumita Jul 2011 B2
7974972 Cao Jul 2011 B2
7975216 Woolf et al. Jul 2011 B2
7983478 Liu et al. Jul 2011 B2
7983915 Knight et al. Jul 2011 B2
7983917 Kennewick et al. Jul 2011 B2
7983919 Conkie Jul 2011 B2
7983997 Allen et al. Jul 2011 B2
7984062 Dunning et al. Jul 2011 B2
7986431 Emori et al. Jul 2011 B2
7987151 Schott et al. Jul 2011 B2
7987176 Latzina et al. Jul 2011 B2
7987244 Lewis et al. Jul 2011 B1
7991614 Washio et al. Aug 2011 B2
7992085 Wang-Aryattanwanich et al. Aug 2011 B2
7996228 Miller et al. Aug 2011 B2
7996589 Schultz et al. Aug 2011 B2
7996769 Fux et al. Aug 2011 B2
7996792 Anzures et al. Aug 2011 B2
7999669 Singh et al. Aug 2011 B2
8000453 Cooper et al. Aug 2011 B2
8001125 Magdalin et al. Aug 2011 B1
8005664 Hanumanthappa Aug 2011 B2
8005679 Jordan et al. Aug 2011 B2
8006180 Tunning et al. Aug 2011 B2
8010367 Muschett et al. Aug 2011 B2
8010614 Musat et al. Aug 2011 B1
8014308 Gates, III et al. Sep 2011 B2
8015006 Kennewick et al. Sep 2011 B2
8015011 Nagano et al. Sep 2011 B2
8015144 Zheng et al. Sep 2011 B2
8018431 Zehr et al. Sep 2011 B1
8019271 Izdepski Sep 2011 B1
8019604 Ma Sep 2011 B2
8020104 Robarts et al. Sep 2011 B2
8024195 Mozer et al. Sep 2011 B2
8024415 Horvitz et al. Sep 2011 B2
8027836 Baker et al. Sep 2011 B2
8031943 Chen et al. Oct 2011 B2
8032383 Bhardwaj et al. Oct 2011 B1
8032409 Mikurak Oct 2011 B1
8036901 Mozer Oct 2011 B2
8037034 Plachta et al. Oct 2011 B2
8041557 Liu Oct 2011 B2
8041570 Mirkovic et al. Oct 2011 B2
8041611 Kleinrock et al. Oct 2011 B2
8042053 Darwish et al. Oct 2011 B2
8046231 Hirota et al. Oct 2011 B2
8046363 Cha et al. Oct 2011 B2
8046374 Bromwich Oct 2011 B1
8050500 Batty et al. Nov 2011 B1
8050919 Das Nov 2011 B2
8054180 Scofield et al. Nov 2011 B1
8055296 Persson et al. Nov 2011 B1
8055502 Clark et al. Nov 2011 B2
8055708 Chitsaz et al. Nov 2011 B2
8056070 Goller et al. Nov 2011 B2
8060824 Brownrigg, Jr. et al. Nov 2011 B2
8064753 Freeman Nov 2011 B2
8065143 Yanagihara Nov 2011 B2
8065155 Gazdzinski Nov 2011 B1
8065156 Gazdzinski Nov 2011 B2
8068604 Leeds et al. Nov 2011 B2
8069046 Kennewick et al. Nov 2011 B2
8069422 Sheshagiri et al. Nov 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8073695 Hendricks et al. Dec 2011 B1
8077153 Benko et al. Dec 2011 B2
8078473 Gazdzinski Dec 2011 B1
8078978 Perry et al. Dec 2011 B2
8082153 Coffman et al. Dec 2011 B2
8082498 Salamon et al. Dec 2011 B2
8090571 Elshishiny et al. Jan 2012 B2
8095364 Longe et al. Jan 2012 B2
8099289 Mozer et al. Jan 2012 B2
8099395 Pabla et al. Jan 2012 B2
8099418 Inoue et al. Jan 2012 B2
8103510 Sato Jan 2012 B2
8103947 Lunt et al. Jan 2012 B2
8107401 John et al. Jan 2012 B2
8112275 Kennewick et al. Feb 2012 B2
8112280 Lu Feb 2012 B2
8117026 Lee et al. Feb 2012 B2
8117037 Gazdzinski Feb 2012 B2
8117542 Radtke et al. Feb 2012 B2
8121413 Hwang et al. Feb 2012 B2
8121837 Agapi et al. Feb 2012 B2
8122094 Kotab Feb 2012 B1
8122353 Bouta Feb 2012 B2
8130929 Wilkes et al. Mar 2012 B2
8131557 Davis et al. Mar 2012 B2
8135115 Hogg, Jr. et al. Mar 2012 B1
8138912 Singh et al. Mar 2012 B2
8140330 Cevik et al. Mar 2012 B2
8140335 Kennewick et al. Mar 2012 B2
8140368 Eggenberger et al. Mar 2012 B2
8140567 Padovitz et al. Mar 2012 B2
8145489 Freeman et al. Mar 2012 B2
8150694 Kennewick et al. Apr 2012 B2
8150700 Shin et al. Apr 2012 B2
8155956 Cho et al. Apr 2012 B2
8156005 Vieri Apr 2012 B2
8160877 Nucci et al. Apr 2012 B1
8160883 Lecoeuche Apr 2012 B2
8165321 Paquier et al. Apr 2012 B2
8165886 Gagnon et al. Apr 2012 B1
8166019 Lee et al. Apr 2012 B1
8166032 Sommer et al. Apr 2012 B2
8170790 Lee et al. May 2012 B2
8170966 Musat et al. May 2012 B1
8171137 Parks et al. May 2012 B1
8175872 Kristjansson et al. May 2012 B2
8175876 Bou-ghazale et al. May 2012 B2
8179370 Yamasani et al. May 2012 B1
8188856 Singh et al. May 2012 B2
8190359 Bourne May 2012 B2
8190596 Nambiar et al. May 2012 B2
8194827 Jaiswal et al. Jun 2012 B2
8195460 Degani et al. Jun 2012 B2
8195467 Mozer et al. Jun 2012 B2
8195468 Weider et al. Jun 2012 B2
8200489 Baggenstoss Jun 2012 B1
8200495 Braho et al. Jun 2012 B2
8201109 Van Os et al. Jun 2012 B2
8204238 Mozer Jun 2012 B2
8205788 Gazdzinski et al. Jun 2012 B1
8209183 Patel et al. Jun 2012 B1
8213911 Williams et al. Jul 2012 B2
8219115 Nelissen Jul 2012 B1
8219406 Yu et al. Jul 2012 B2
8219407 Roy et al. Jul 2012 B1
8219555 Mianji Jul 2012 B1
8219608 alSafadi et al. Jul 2012 B2
8224649 Chaudhari et al. Jul 2012 B2
8224757 Bohle Jul 2012 B2
8228299 Maloney et al. Jul 2012 B1
8233919 Haag et al. Jul 2012 B2
8234111 Lloyd et al. Jul 2012 B2
8239206 LeBeau et al. Aug 2012 B1
8239207 Seligman et al. Aug 2012 B2
8244545 Paek et al. Aug 2012 B2
8244712 Serlet et al. Aug 2012 B2
8250071 Killalea et al. Aug 2012 B1
8254829 Kindred et al. Aug 2012 B1
8255216 White Aug 2012 B2
8255217 Stent et al. Aug 2012 B2
8260117 Xu et al. Sep 2012 B1
8260247 Lazaridis et al. Sep 2012 B2
8260617 Dhanakshirur et al. Sep 2012 B2
8260619 Bansal et al. Sep 2012 B1
8270933 Riemer et al. Sep 2012 B2
8271287 Kermani Sep 2012 B1
8275621 Alewine et al. Sep 2012 B2
8275736 Guo et al. Sep 2012 B2
8279171 Hirai et al. Oct 2012 B2
8280438 Barbera Oct 2012 B2
8285546 Reich Oct 2012 B2
8285551 Gazdzinski Oct 2012 B2
8285553 Gazdzinski Oct 2012 B2
8285737 Lynn et al. Oct 2012 B1
8290777 Nguyen et al. Oct 2012 B1
8290778 Gazdzinski Oct 2012 B2
8290781 Gazdzinski Oct 2012 B2
8296124 Holsztynska et al. Oct 2012 B1
8296145 Clark et al. Oct 2012 B2
8296146 Gazdzinski Oct 2012 B2
8296153 Gazdzinski Oct 2012 B2
8296380 Kelly et al. Oct 2012 B1
8296383 Lindahl Oct 2012 B2
8300776 Davies et al. Oct 2012 B2
8300801 Sweeney et al. Oct 2012 B2
8301456 Gazdzinski Oct 2012 B2
8311189 Champlin et al. Nov 2012 B2
8311834 Gazdzinski Nov 2012 B1
8311835 Lecoeuche Nov 2012 B2
8311838 Lindahl et al. Nov 2012 B2
8312017 Martin et al. Nov 2012 B2
8321786 Lunati Nov 2012 B2
8326627 Kennewick et al. Dec 2012 B2
8332205 Krishnan et al. Dec 2012 B2
8332218 Cross, Jr. et al. Dec 2012 B2
8332224 Di Cristo et al. Dec 2012 B2
8332748 Karam Dec 2012 B1
8335689 Wittenstein et al. Dec 2012 B2
8340975 Rosenberger Dec 2012 B1
8345665 Vieri et al. Jan 2013 B2
8346563 Hjelm et al. Jan 2013 B1
8346757 Lamping et al. Jan 2013 B1
8352183 Thota et al. Jan 2013 B2
8352268 Naik et al. Jan 2013 B2
8352272 Rogers et al. Jan 2013 B2
8355919 Silverman et al. Jan 2013 B2
8359234 Vieri Jan 2013 B2
8370145 Endo et al. Feb 2013 B2
8370158 Gazdzinski Feb 2013 B2
8371503 Gazdzinski Feb 2013 B2
8374871 Ehsani et al. Feb 2013 B2
8375320 Kotler et al. Feb 2013 B2
8380504 Peden et al. Feb 2013 B1
8380507 Herman et al. Feb 2013 B2
8381107 Rottler et al. Feb 2013 B2
8381135 Hotelling et al. Feb 2013 B2
8386485 Kerschberg et al. Feb 2013 B2
8386926 Matsuoka et al. Feb 2013 B1
8391844 Novick et al. Mar 2013 B2
8396714 Rogers et al. Mar 2013 B2
8396715 Odell et al. Mar 2013 B2
8401163 Kirchhoff et al. Mar 2013 B1
8406745 Upadhyay et al. Mar 2013 B1
8407239 Dean et al. Mar 2013 B2
8423288 Stahl et al. Apr 2013 B2
8428758 Naik et al. Apr 2013 B2
8433572 Caskey et al. Apr 2013 B2
8433778 Shreesha et al. Apr 2013 B1
8434133 Kulkarni et al. Apr 2013 B2
8442821 Vanhoucke May 2013 B1
8447612 Gazdzinski May 2013 B2
8452597 Bringert et al. May 2013 B2
8452602 Bringert et al. May 2013 B1
8453058 Coccaro et al. May 2013 B1
8457959 Kaiser Jun 2013 B2
8458115 Cai et al. Jun 2013 B2
8458278 Christie et al. Jun 2013 B2
8463592 Lu et al. Jun 2013 B2
8464150 Davidson et al. Jun 2013 B2
8473289 Jitkoff et al. Jun 2013 B2
8477323 Low et al. Jul 2013 B2
8478816 Parks et al. Jul 2013 B2
8479122 Hotelling et al. Jul 2013 B2
8484027 Murphy Jul 2013 B1
8489599 Bellotti Jul 2013 B2
8498857 Kopparapu et al. Jul 2013 B2
8514197 Shahraray et al. Aug 2013 B2
8515736 Duta Aug 2013 B1
8515750 Lei et al. Aug 2013 B1
8521513 Millett et al. Aug 2013 B2
8521526 Lloyd Aug 2013 B1
8521531 Kim Aug 2013 B1
8527276 Senior et al. Sep 2013 B1
8533266 Koulomzin et al. Sep 2013 B2
8537033 Gueziec Sep 2013 B2
8539342 Lewis Sep 2013 B1
8543375 Hong Sep 2013 B2
8543397 Nguyen Sep 2013 B1
8543398 Strope et al. Sep 2013 B1
8560229 Park et al. Oct 2013 B1
8560366 Mikurak Oct 2013 B2
8571528 Channakeshava Oct 2013 B1
8571851 Tickner et al. Oct 2013 B1
8577683 Dewitt Nov 2013 B2
8583416 Huang et al. Nov 2013 B2
8583511 Hendrickson Nov 2013 B2
8583638 Donelli Nov 2013 B2
8589156 Burke et al. Nov 2013 B2
8589161 Kennewick et al. Nov 2013 B2
8589374 Chaudhari Nov 2013 B2
8589869 Wolfram Nov 2013 B2
8589911 Sharkey et al. Nov 2013 B1
8595004 Koshinaka Nov 2013 B2
8595642 Lagassey Nov 2013 B1
8600743 Lindahl et al. Dec 2013 B2
8600746 Lei et al. Dec 2013 B1
8600930 Sata et al. Dec 2013 B2
8606090 Eyer Dec 2013 B2
8606568 Tickner et al. Dec 2013 B1
8606576 Barr et al. Dec 2013 B1
8606577 Stewart et al. Dec 2013 B1
8615221 Cosenza et al. Dec 2013 B1
8620659 Di Cristo et al. Dec 2013 B2
8620662 Bellegarda Dec 2013 B2
8626681 Jurca et al. Jan 2014 B1
8630841 Van Caldwell et al. Jan 2014 B2
8635073 Chang Jan 2014 B2
8638363 King et al. Jan 2014 B2
8639516 Lindahl et al. Jan 2014 B2
8645128 Agiomyrgiannakis Feb 2014 B1
8645137 Bellegarda et al. Feb 2014 B2
8645138 Weinstein et al. Feb 2014 B1
8654936 Eslambolchi et al. Feb 2014 B1
8655646 Lee et al. Feb 2014 B2
8655901 Li et al. Feb 2014 B1
8660843 Falcon et al. Feb 2014 B2
8660849 Gruber et al. Feb 2014 B2
8660924 Hoch et al. Feb 2014 B2
8660970 Fiedorowicz Feb 2014 B1
8661112 Creamer et al. Feb 2014 B2
8661340 Goldsmith et al. Feb 2014 B2
8670979 Gruber et al. Mar 2014 B2
8675084 Bolton et al. Mar 2014 B2
8676904 Lindahl Mar 2014 B2
8677377 Cheyer et al. Mar 2014 B2
8681950 Vlack et al. Mar 2014 B2
8682667 Haughay Mar 2014 B2
8687777 Lavian et al. Apr 2014 B1
8688446 Yanagihara Apr 2014 B2
8688453 Joshi et al. Apr 2014 B1
8689135 Portele et al. Apr 2014 B2
8694322 Snitkovskiy et al. Apr 2014 B2
8695074 Saraf et al. Apr 2014 B2
8696364 Cohen Apr 2014 B2
8706472 Ramerth et al. Apr 2014 B2
8706474 Blume et al. Apr 2014 B2
8706503 Cheyer et al. Apr 2014 B2
8707195 Fleizach et al. Apr 2014 B2
8712778 Thenthiruperai Apr 2014 B1
8713119 Lindahl et al. Apr 2014 B2
8713418 King et al. Apr 2014 B2
8719006 Bellegarda May 2014 B2
8719014 Wagner May 2014 B2
8719039 Sharifi May 2014 B1
8731610 Appaji May 2014 B2
8731912 Tickner et al. May 2014 B1
8731942 Cheyer et al. May 2014 B2
8739208 Davis et al. May 2014 B2
8744852 Seymour et al. Jun 2014 B1
8751971 Fleizach et al. Jun 2014 B2
8760537 Johnson et al. Jun 2014 B2
8762145 Ouchi et al. Jun 2014 B2
8762156 Chen Jun 2014 B2
8762469 Lindahl Jun 2014 B2
8768693 Somekh et al. Jul 2014 B2
8768702 Mason et al. Jul 2014 B2
8775154 Clinchant et al. Jul 2014 B2
8775177 Heigold et al. Jul 2014 B1
8775931 Fux et al. Jul 2014 B2
8781456 Prociw Jul 2014 B2
8781841 Wang Jul 2014 B1
8793301 Wegenkittl et al. Jul 2014 B2
8798255 Lubowich et al. Aug 2014 B2
8798995 Edara Aug 2014 B1
8799000 Guzzoni et al. Aug 2014 B2
8805690 Lebeau et al. Aug 2014 B1
8812299 Su Aug 2014 B1
8812302 Xiao et al. Aug 2014 B2
8812321 Gilbert et al. Aug 2014 B2
8823507 Touloumtzis Sep 2014 B1
8831947 Wasserblat et al. Sep 2014 B2
8831949 Smith et al. Sep 2014 B1
8838457 Cerra et al. Sep 2014 B2
8855915 Furuhata et al. Oct 2014 B2
8861925 Ohme Oct 2014 B1
8862252 Rottier et al. Oct 2014 B2
8868111 Kahn et al. Oct 2014 B1
8868409 Mengibar et al. Oct 2014 B1
8868469 Xu Oct 2014 B2
8868529 Lerenc Oct 2014 B2
8880405 Cerra et al. Nov 2014 B2
8886534 Nakano et al. Nov 2014 B2
8886540 Cerra et al. Nov 2014 B2
8886541 Friedlander Nov 2014 B2
8892446 Cheyer et al. Nov 2014 B2
8893023 Perry et al. Nov 2014 B2
8897822 Martin Nov 2014 B2
8898064 Thomas et al. Nov 2014 B1
8898568 Bull et al. Nov 2014 B2
8903716 Chen et al. Dec 2014 B2
8909693 Frissora et al. Dec 2014 B2
8918321 Czahor Dec 2014 B2
8922485 Lloyd Dec 2014 B1
8930176 Li et al. Jan 2015 B2
8930191 Gruber et al. Jan 2015 B2
8938394 Faaborg et al. Jan 2015 B1
8938450 Spivack et al. Jan 2015 B2
8938688 Bradford et al. Jan 2015 B2
8942986 Cheyer et al. Jan 2015 B2
8943423 Merrill et al. Jan 2015 B2
8964947 Noolu et al. Feb 2015 B1
8972240 Brockett et al. Mar 2015 B2
8972432 Shaw et al. Mar 2015 B2
8972878 Mohler et al. Mar 2015 B2
8976063 Hawkins et al. Mar 2015 B1
8976108 Hawkins et al. Mar 2015 B2
8977255 Freeman et al. Mar 2015 B2
8983383 Haskin Mar 2015 B1
8989713 Doulton Mar 2015 B2
8990235 King et al. Mar 2015 B2
8994660 Neels et al. Mar 2015 B2
8995972 Cronin Mar 2015 B1
8996350 Dub et al. Mar 2015 B1
8996376 Fleizach et al. Mar 2015 B2
8996381 Mozer et al. Mar 2015 B2
8996639 Faaborg et al. Mar 2015 B1
9002714 Kim et al. Apr 2015 B2
9009046 Stewart Apr 2015 B1
9015036 Karov Zangvil et al. Apr 2015 B2
9020804 Barbaiani et al. Apr 2015 B2
9026425 Nikoulina et al. May 2015 B2
9026426 Wu et al. May 2015 B2
9031834 Coorman et al. May 2015 B2
9031970 Das et al. May 2015 B1
9037967 Al-jefri et al. May 2015 B1
9043208 Koch et al. May 2015 B2
9043211 Haiut et al. May 2015 B2
9046932 Medlock et al. Jun 2015 B2
9049255 Macfarlane et al. Jun 2015 B2
9049295 Cooper et al. Jun 2015 B1
9053706 Jitkoff et al. Jun 2015 B2
9058105 Drory et al. Jun 2015 B2
9058332 Darby et al. Jun 2015 B1
9058811 Wang et al. Jun 2015 B2
9063979 Chiu et al. Jun 2015 B2
9064495 Torok et al. Jun 2015 B1
9065660 Ellis et al. Jun 2015 B2
9070247 Kuhn et al. Jun 2015 B2
9070366 Mathias et al. Jun 2015 B1
9071701 Donaldson et al. Jun 2015 B2
9075435 Noble et al. Jul 2015 B1
9076448 Bennett et al. Jul 2015 B2
9076450 Sadek et al. Jul 2015 B1
9081411 Kains et al. Jul 2015 B2
9081482 Zhai et al. Jul 2015 B1
9082402 Yadgar et al. Jul 2015 B2
9083581 Addepalli et al. Jul 2015 B1
9094636 Sanders et al. Jul 2015 B1
9098467 Blanksteen et al. Aug 2015 B1
9101279 Ritchey et al. Aug 2015 B2
9112984 Sejnoha et al. Aug 2015 B2
9117447 Gruber et al. Aug 2015 B2
9123338 Sanders et al. Sep 2015 B1
9143907 Caldwell et al. Sep 2015 B1
9159319 Hoffmeister Oct 2015 B1
9164983 Liu et al. Oct 2015 B2
9171541 Kennewick et al. Oct 2015 B2
9171546 Pike Oct 2015 B1
9183845 Gopalakrishnan et al. Nov 2015 B1
9190062 Haughay Nov 2015 B2
9208153 Zaveri et al. Dec 2015 B1
9213754 Zhan et al. Dec 2015 B1
9218122 Thoma et al. Dec 2015 B2
9218809 Bellegard et al. Dec 2015 B2
9218819 Stekkelpa et al. Dec 2015 B1
9223537 Brown et al. Dec 2015 B2
9236047 Rasmussen Jan 2016 B2
9241073 Rensburg et al. Jan 2016 B1
9251713 Giovanniello et al. Feb 2016 B1
9255812 Maeoka et al. Feb 2016 B2
9258604 Bilobrov et al. Feb 2016 B1
9262412 Yang et al. Feb 2016 B2
9262612 Cheyer Feb 2016 B2
9263058 Huang et al. Feb 2016 B2
9280535 Varma et al. Mar 2016 B2
9282211 Osawa Mar 2016 B2
9286910 Li Mar 2016 B1
9292487 Weber Mar 2016 B1
9292489 Sak et al. Mar 2016 B1
9292492 Sarikaya et al. Mar 2016 B2
9299344 Braho et al. Mar 2016 B2
9300718 Khanna Mar 2016 B2
9301256 Mohan et al. Mar 2016 B2
9305543 Fleizach et al. Apr 2016 B2
9305548 Kennewick et al. Apr 2016 B2
9311308 Sankarasubramaniam et al. Apr 2016 B2
9311912 Swietlinski et al. Apr 2016 B1
9313317 LeBeau et al. Apr 2016 B1
9318108 Gruber et al. Apr 2016 B2
9325809 Barros et al. Apr 2016 B1
9325842 Siddiqi et al. Apr 2016 B1
9330659 Ju et al. May 2016 B2
9330668 Nanavati et al. May 2016 B2
9330720 Lee May 2016 B2
9335983 Breiner et al. May 2016 B2
9338493 Van Os et al. May 2016 B2
9349368 Lebeau et al. May 2016 B1
9355472 Kocienda et al. May 2016 B2
9361084 Costa Jun 2016 B1
9367541 Servan et al. Jun 2016 B1
9368114 Larson et al. Jun 2016 B2
9377871 Waddell et al. Jun 2016 B2
9378456 White et al. Jun 2016 B2
9378740 Rosen et al. Jun 2016 B1
9380155 Reding et al. Jun 2016 B1
9383827 Faaborg et al. Jul 2016 B1
9384185 Medlock et al. Jul 2016 B2
9390726 Smus et al. Jul 2016 B1
9396722 Chung et al. Jul 2016 B2
9401147 Jitkoff et al. Jul 2016 B2
9406224 Sanders et al. Aug 2016 B1
9406299 Gollan et al. Aug 2016 B2
9408182 Hurley et al. Aug 2016 B1
9412392 Lindahl Aug 2016 B2
9418650 Bharadwaj et al. Aug 2016 B2
9423266 Clark et al. Aug 2016 B2
9424246 Spencer et al. Aug 2016 B2
9424840 Hart et al. Aug 2016 B1
9431021 Scalise et al. Aug 2016 B1
9432499 Hajdu et al. Aug 2016 B2
9436918 Pantel et al. Sep 2016 B2
9437186 Liu et al. Sep 2016 B1
9437189 Epstein et al. Sep 2016 B2
9442687 Park et al. Sep 2016 B2
9443527 Watanabe et al. Sep 2016 B1
9454599 Golden et al. Sep 2016 B2
9454957 Mathias et al. Sep 2016 B1
9465798 Lin Oct 2016 B2
9465833 Aravamudan et al. Oct 2016 B2
9465864 Hu et al. Oct 2016 B2
9466027 Byrne et al. Oct 2016 B2
9466294 Tunstall-pedoe et al. Oct 2016 B1
9471566 Zhang et al. Oct 2016 B1
9472196 Wang et al. Oct 2016 B1
9483388 Sankaranarasimhan et al. Nov 2016 B2
9483461 Fleizach et al. Nov 2016 B2
9484021 Mairesse et al. Nov 2016 B1
9495129 Fleizach et al. Nov 2016 B2
9501741 Cheyer et al. Nov 2016 B2
9502025 Kennewick et al. Nov 2016 B2
9508028 Bannister et al. Nov 2016 B2
9510044 Pereira et al. Nov 2016 B1
9514470 Topatan et al. Dec 2016 B2
9516014 Zafiroglu et al. Dec 2016 B2
9519453 Perkuhn et al. Dec 2016 B2
9524355 Forbes et al. Dec 2016 B2
9531862 Vadodaria Dec 2016 B1
9535906 Lee et al. Jan 2017 B2
9536527 Carlson Jan 2017 B1
9547647 Badaskar Jan 2017 B2
9548050 Gruber et al. Jan 2017 B2
9548979 Johnson et al. Jan 2017 B1
9569549 Jenkins et al. Feb 2017 B1
9575964 Yadgar et al. Feb 2017 B2
9578173 Sanghavi et al. Feb 2017 B2
9607612 Deleeuw Mar 2017 B2
9619200 Chakladar et al. Apr 2017 B2
9620113 Kennewick et al. Apr 2017 B2
9620126 Chiba Apr 2017 B2
9626955 Fleizach et al. Apr 2017 B2
9633004 Giuli et al. Apr 2017 B2
9633191 Fleizach et al. Apr 2017 B2
9633660 Haughay Apr 2017 B2
9652453 Mathur et al. May 2017 B2
9658746 Cohn et al. May 2017 B2
9659002 Medlock et al. May 2017 B2
9659298 Lynch et al. May 2017 B2
9665567 Li et al. May 2017 B2
9665662 Gautam et al. May 2017 B1
9668121 Naik et al. May 2017 B2
9672725 Dotan-Cohen et al. Jun 2017 B2
9691378 Meyers et al. Jun 2017 B1
9697822 Naik et al. Jul 2017 B1
9697827 Lilly et al. Jul 2017 B1
9698999 Mutagi Jul 2017 B2
9720907 Bangalore et al. Aug 2017 B2
9721566 Newendorp et al. Aug 2017 B2
9721570 Beal et al. Aug 2017 B1
9723130 Rand Aug 2017 B2
9734817 Putrycz Aug 2017 B1
9734839 Adams Aug 2017 B1
9741343 Miles et al. Aug 2017 B1
9747083 Roman et al. Aug 2017 B1
9747093 Latino et al. Aug 2017 B2
9755605 Li et al. Sep 2017 B1
9760566 Heck et al. Sep 2017 B2
9767710 Lee et al. Sep 2017 B2
9786271 Combs et al. Oct 2017 B1
9792907 Bocklet et al. Oct 2017 B2
9812128 Mixter et al. Nov 2017 B2
9813882 Masterman Nov 2017 B1
9818400 Paulik et al. Nov 2017 B2
9823811 Brown et al. Nov 2017 B2
9823828 Zambetti et al. Nov 2017 B2
9830044 Brown et al. Nov 2017 B2
9830449 Wagner Nov 2017 B1
9842584 Hart et al. Dec 2017 B1
9846685 Li Dec 2017 B2
9858925 Gruber et al. Jan 2018 B2
9858927 Williams et al. Jan 2018 B2
9886953 Lemay et al. Feb 2018 B2
9887949 Shepherd et al. Feb 2018 B2
9916839 Scalise et al. Mar 2018 B1
9922642 Pitschel et al. Mar 2018 B2
9934777 Joseph et al. Apr 2018 B1
9934785 Hulaud Apr 2018 B1
9946862 Yun et al. Apr 2018 B2
9948728 Linn et al. Apr 2018 B2
9959129 Kannan et al. May 2018 B2
9966065 Gruber et al. May 2018 B2
9966068 Cash et al. May 2018 B2
9967381 Kashimba et al. May 2018 B1
9971495 Shetty et al. May 2018 B2
9984686 Mutagi et al. May 2018 B1
9986419 Naik et al. May 2018 B2
9990129 Yang et al. Jun 2018 B2
9990176 Gray Jun 2018 B1
9998552 Ledet Jun 2018 B1
10001817 Zambetti et al. Jun 2018 B2
10013416 Bhardwaj Jul 2018 B1
10013654 Levy et al. Jul 2018 B1
10013979 Roma et al. Jul 2018 B1
10019436 Huang Jul 2018 B2
10032451 Mamkina et al. Jul 2018 B1
10032455 Newman et al. Jul 2018 B2
10037758 Jing et al. Jul 2018 B2
10043516 Saddler et al. Aug 2018 B2
10049161 Kaneko Aug 2018 B2
10049663 Orr et al. Aug 2018 B2
10049668 Huang et al. Aug 2018 B2
10055681 Brown et al. Aug 2018 B2
10074360 Kim Sep 2018 B2
10074371 Wang et al. Sep 2018 B1
10083213 Podgorny et al. Sep 2018 B1
10083690 Giuli et al. Sep 2018 B2
10088972 Brown et al. Oct 2018 B2
10089072 Piersol et al. Oct 2018 B2
10096319 Jin et al. Oct 2018 B1
10101887 Bernstein et al. Oct 2018 B2
10102359 Cheyer Oct 2018 B2
10127901 Zhao et al. Nov 2018 B2
10127908 Deller et al. Nov 2018 B1
10134425 Johnson, Jr. Nov 2018 B1
10169329 Futrell et al. Jan 2019 B2
10170123 Orr et al. Jan 2019 B2
10170135 Pearce et al. Jan 2019 B1
10175879 Missig et al. Jan 2019 B2
10176167 Evermann Jan 2019 B2
10176802 Ladhak et al. Jan 2019 B1
10185542 Carson et al. Jan 2019 B2
10186254 Williams et al. Jan 2019 B2
10186266 Devaraj et al. Jan 2019 B1
10191627 Ciepiinski et al. Jan 2019 B2
10191646 Zambetti et al. Jan 2019 B2
10191718 Rhee et al. Jan 2019 B2
10192546 Piersol et al. Jan 2019 B1
10192552 Raitio et al. Jan 2019 B2
10192557 Lee et al. Jan 2019 B2
10199051 Binder et al. Feb 2019 B2
10200824 Gross et al. Feb 2019 B2
10216351 Yang Feb 2019 B2
10216832 Bangalore et al. Feb 2019 B2
10223066 Martel et al. Mar 2019 B2
10225711 Parks et al. Mar 2019 B2
10229356 Liu et al. Mar 2019 B1
10237711 Linn et al. Mar 2019 B2
10248308 Karunamuni et al. Apr 2019 B2
10255922 Sharifi et al. Apr 2019 B1
10269345 Castillo Sanchez et al. Apr 2019 B2
10296160 Shah et al. May 2019 B2
10297253 Walker, II et al. May 2019 B2
10303772 Hosn et al. May 2019 B2
10304463 Mixter et al. May 2019 B2
10311482 Baldwin Jun 2019 B2
10311871 Newendorp et al. Jun 2019 B2
10325598 Basye et al. Jun 2019 B2
10332513 D'souza et al. Jun 2019 B1
10332518 Garg et al. Jun 2019 B2
10346753 Soon-Shiong et al. Jul 2019 B2
10353975 Oh et al. Jul 2019 B2
10354677 Mohamed et al. Jul 2019 B2
10356243 Sanghavi et al. Jul 2019 B2
10366692 Adams et al. Jul 2019 B1
10372814 Gliozzo et al. Aug 2019 B2
10389876 Engelke et al. Aug 2019 B2
10402066 Kawana Sep 2019 B2
10403283 Schramm et al. Sep 2019 B1
10409454 Kagan et al. Sep 2019 B2
10410637 Paulik et al. Sep 2019 B2
10417037 Gruber et al. Sep 2019 B2
10417554 Scheffler Sep 2019 B2
10446142 Lim et al. Oct 2019 B2
10469665 Bell et al. Nov 2019 B1
10474961 Brigham et al. Nov 2019 B2
10496705 Irani et al. Dec 2019 B1
10497365 Gruber et al. Dec 2019 B2
10504518 Irani et al. Dec 2019 B1
10521946 Roche et al. Dec 2019 B1
10528386 Yu Jan 2020 B2
10568032 Freeman et al. Feb 2020 B2
10630795 Aoki et al. Apr 2020 B2
10659851 Lister et al. May 2020 B2
10755032 Douglas et al. Aug 2020 B2
10757499 Vautrin et al. Aug 2020 B1
10811013 Secker-walker et al. Oct 2020 B1
20040226042 Ellis Nov 2004 A1
20050049862 Choi et al. Mar 2005 A1
20060075429 Istvan et al. Apr 2006 A1
20080015864 Ross et al. Jan 2008 A1
20080271078 Gossweiler et al. Oct 2008 A1
20090112592 Candelore Apr 2009 A1
20090234655 Kwon Sep 2009 A1
20100082567 Rosenblatt et al. Apr 2010 A1
20110002487 Panther et al. Jan 2011 A1
20110004475 Bellegarda Jan 2011 A1
20110006876 Moberg et al. Jan 2011 A1
20110009107 Guba et al. Jan 2011 A1
20110010178 Lee et al. Jan 2011 A1
20110010644 Merrill et al. Jan 2011 A1
20110015928 Odell et al. Jan 2011 A1
20110016150 Engstrom et al. Jan 2011 A1
20110016421 Krupka et al. Jan 2011 A1
20110018695 Bells et al. Jan 2011 A1
20110021211 Ohki Jan 2011 A1
20110021213 Carr Jan 2011 A1
20110022292 Shen et al. Jan 2011 A1
20110022388 Wu et al. Jan 2011 A1
20110022393 Wäller et al. Jan 2011 A1
20110022394 Wide Jan 2011 A1
20110022472 Zon Jan 2011 A1
20110022952 Wu et al. Jan 2011 A1
20110028083 Soitis Feb 2011 A1
20110029616 Wang et al. Feb 2011 A1
20110029637 Morse Feb 2011 A1
20110030067 Wilson Feb 2011 A1
20110033064 Johnson et al. Feb 2011 A1
20110034183 Haag et al. Feb 2011 A1
20110035144 Okamoto et al. Feb 2011 A1
20110035434 Lockwood Feb 2011 A1
20110038489 Visser et al. Feb 2011 A1
20110039584 Merrett Feb 2011 A1
20110040707 Theisen et al. Feb 2011 A1
20110045841 Kuhlke et al. Feb 2011 A1
20110047072 Ciurea Feb 2011 A1
20110047149 Vaananen Feb 2011 A1
20110047161 Myaeng et al. Feb 2011 A1
20110047246 Frissora et al. Feb 2011 A1
20110047266 Yu et al. Feb 2011 A1
20110047605 Sontag et al. Feb 2011 A1
20110050591 Kim et al. Mar 2011 A1
20110050592 Kim et al. Mar 2011 A1
20110054647 Chipchase Mar 2011 A1
20110054894 Phillips et al. Mar 2011 A1
20110054901 Qin et al. Mar 2011 A1
20110055244 Donelli Mar 2011 A1
20110055256 Phillips et al. Mar 2011 A1
20110060584 Ferrucci et al. Mar 2011 A1
20110060587 Phillips et al. Mar 2011 A1
20110060589 Weinberg Mar 2011 A1
20110060807 Martin et al. Mar 2011 A1
20110060812 Middleton Mar 2011 A1
20110064378 Gharaat et al. Mar 2011 A1
20110064387 Mendeloff et al. Mar 2011 A1
20110065456 Brennan et al. Mar 2011 A1
20110066366 Ellanti et al. Mar 2011 A1
20110066436 Bezar Mar 2011 A1
20110066468 Huang et al. Mar 2011 A1
20110066602 Studer et al. Mar 2011 A1
20110066634 Phillips et al. Mar 2011 A1
20110072033 White et al. Mar 2011 A1
20110072114 Hoffert et al. Mar 2011 A1
20110072492 Mohler et al. Mar 2011 A1
20110075818 Vance et al. Mar 2011 A1
20110076994 Kim et al. Mar 2011 A1
20110077943 Miki et al. Mar 2011 A1
20110080260 Wang et al. Apr 2011 A1
20110081889 Gao et al. Apr 2011 A1
20110082688 Kim et al. Apr 2011 A1
20110083079 Farrell et al. Apr 2011 A1
20110086631 Park et al. Apr 2011 A1
20110087491 Wittenstein et al. Apr 2011 A1
20110087685 Lin et al. Apr 2011 A1
20110090078 Kim et al. Apr 2011 A1
20110092187 Miller Apr 2011 A1
20110093261 Angott Apr 2011 A1
20110093265 Stent et al. Apr 2011 A1
20110093271 Bernard Apr 2011 A1
20110093272 Isobe et al. Apr 2011 A1
20110099000 Rai et al. Apr 2011 A1
20110099157 LeBeau et al. Apr 2011 A1
20110102161 Heubel et al. May 2011 A1
20110103682 Chidlovskii et al. May 2011 A1
20110105097 Tadayon et al. May 2011 A1
20110106534 Lebeau et al. May 2011 A1
20110106536 Klappert May 2011 A1
20110106736 Aharonson et al. May 2011 A1
20110106878 Cho et al. May 2011 A1
20110106892 Nelson et al. May 2011 A1
20110110502 Daye et al. May 2011 A1
20110111724 Baptiste May 2011 A1
20110112825 Beilegarda May 2011 A1
20110112827 Kennewick et al. May 2011 A1
20110112837 Kurki-Suonio et al. May 2011 A1
20110112838 Adibi May 2011 A1
20110112921 Kennewick et al. May 2011 A1
20110116480 Li et al. May 2011 A1
20110116610 Shaw et al. May 2011 A1
20110119049 Ylonen May 2011 A1
20110119051 Li et al. May 2011 A1
20110119623 Kim May 2011 A1
20110119713 Chang et al. May 2011 A1
20110119715 Chang et al. May 2011 A1
20110123004 Chang et al. May 2011 A1
20110125498 Pickering et al. May 2011 A1
20110125540 Jang et al. May 2011 A1
20110125701 Nair et al. May 2011 A1
20110130958 Stahl et al. Jun 2011 A1
20110131036 DiCristo et al. Jun 2011 A1
20110131038 Oyaizu et al. Jun 2011 A1
20110131045 Cristo et al. Jun 2011 A1
20110137636 Srihari et al. Jun 2011 A1
20110137664 Kho et al. Jun 2011 A1
20110138064 Reriger Jun 2011 A1
20110141141 Kankainen Jun 2011 A1
20110143718 Engelhart, Sr. Jun 2011 A1
20110143726 de Silva Jun 2011 A1
20110143811 Rodriguez Jun 2011 A1
20110144857 Wingrove et al. Jun 2011 A1
20110144901 Wang Jun 2011 A1
20110144973 Bocchieri et al. Jun 2011 A1
20110144999 Jang et al. Jun 2011 A1
20110145718 Ketola et al. Jun 2011 A1
20110151415 Darling et al. Jun 2011 A1
20110151830 Blanda, Jr. et al. Jun 2011 A1
20110153209 Geelen Jun 2011 A1
20110153322 Kwak et al. Jun 2011 A1
20110153324 Ballinger et al. Jun 2011 A1
20110153325 Ballinger et al. Jun 2011 A1
20110153329 Moorer Jun 2011 A1
20110153330 Yazdani et al. Jun 2011 A1
20110153373 Dantzig et al. Jun 2011 A1
20110154193 Creutz et al. Jun 2011 A1
20110157029 Tseng Jun 2011 A1
20110161072 Terao et al. Jun 2011 A1
20110161076 Davis et al. Jun 2011 A1
20110161079 Gruhn et al. Jun 2011 A1
20110161309 Lung et al. Jun 2011 A1
20110161852 Vainio et al. Jun 2011 A1
20110166851 LeBeau et al. Jul 2011 A1
20110166855 Vermeulen et al. Jul 2011 A1
20110166862 Eshed et al. Jul 2011 A1
20110167350 Hoellwarth Jul 2011 A1
20110173003 Levanon et al. Jul 2011 A1
20110173537 Hemphill Jul 2011 A1
20110175810 Markovic et al. Jul 2011 A1
20110178804 Inoue et al. Jul 2011 A1
20110179002 Dumitru et al. Jul 2011 A1
20110179372 Moore et al. Jul 2011 A1
20110183627 Ueda et al. Jul 2011 A1
20110183650 McKee Jul 2011 A1
20110184721 Subramanian et al. Jul 2011 A1
20110184730 LeBeau et al. Jul 2011 A1
20110184736 Slotznick Jul 2011 A1
20110184737 Nakano et al. Jul 2011 A1
20110184768 Norton et al. Jul 2011 A1
20110184789 Kirsch Jul 2011 A1
20110185288 Gupta et al. Jul 2011 A1
20110191108 Friedlander Aug 2011 A1
20110191271 Baker et al. Aug 2011 A1
20110191344 Jin et al. Aug 2011 A1
20110195758 Damale et al. Aug 2011 A1
20110196670 Dang et al. Aug 2011 A1
20110197128 Assadollahi Aug 2011 A1
20110199312 Okuta Aug 2011 A1
20110201385 Higginbotham Aug 2011 A1
20110201387 Paek et al. Aug 2011 A1
20110202526 Lee et al. Aug 2011 A1
20110202594 Ricci Aug 2011 A1
20110202874 Ramer et al. Aug 2011 A1
20110205149 Tom Aug 2011 A1
20110208511 Sikstrom et al. Aug 2011 A1
20110208524 Haughay Aug 2011 A1
20110209088 Hinckley et al. Aug 2011 A1
20110212717 Rhoads et al. Sep 2011 A1
20110216093 Griffin Sep 2011 A1
20110218806 Alewine et al. Sep 2011 A1
20110218855 Cao et al. Sep 2011 A1
20110219018 Bailey et al. Sep 2011 A1
20110223893 Lau et al. Sep 2011 A1
20110224972 Millett et al. Sep 2011 A1
20110228913 Cochinwala et al. Sep 2011 A1
20110231182 Weider et al. Sep 2011 A1
20110231184 Kerr Sep 2011 A1
20110231188 Kennewick et al. Sep 2011 A1
20110231189 Anastasiadis et al. Sep 2011 A1
20110231218 Tovar Sep 2011 A1
20110231432 Sata et al. Sep 2011 A1
20110231474 Locker et al. Sep 2011 A1
20110238191 Kristjansson et al. Sep 2011 A1
20110238407 Kent Sep 2011 A1
20110238408 Larcheveque et al. Sep 2011 A1
20110238676 Liu et al. Sep 2011 A1
20110239111 Grover Sep 2011 A1
20110242007 Gray et al. Oct 2011 A1
20110244888 Ohki Oct 2011 A1
20110246471 Rakib Oct 2011 A1
20110249144 Chang Oct 2011 A1
20110250570 Mack Oct 2011 A1
20110252108 Morris et al. Oct 2011 A1
20110257966 Rychlik Oct 2011 A1
20110258188 Abdalmageed et al. Oct 2011 A1
20110260829 Lee Oct 2011 A1
20110260861 Singh et al. Oct 2011 A1
20110264530 Santangelo et al. Oct 2011 A1
20110264643 Cao Oct 2011 A1
20110264999 Bells et al. Oct 2011 A1
20110270604 Qi et al. Nov 2011 A1
20110274303 Filson et al. Nov 2011 A1
20110276595 Kirkland et al. Nov 2011 A1
20110276598 Kozempel Nov 2011 A1
20110276944 Bergman et al. Nov 2011 A1
20110279368 Klein et al. Nov 2011 A1
20110280143 Li et al. Nov 2011 A1
20110282663 Talwar et al. Nov 2011 A1
20110282888 Koperski et al. Nov 2011 A1
20110282903 Zhang Nov 2011 A1
20110282906 Wong Nov 2011 A1
20110283189 McCarty Nov 2011 A1
20110283190 Poltorak Nov 2011 A1
20110288852 Dymetman et al. Nov 2011 A1
20110288855 Roy Nov 2011 A1
20110288861 Kurzwei et al. Nov 2011 A1
20110288863 Rasmussen Nov 2011 A1
20110288866 Rasmussen Nov 2011 A1
20110288917 Wanek et al. Nov 2011 A1
20110289530 Dureau et al. Nov 2011 A1
20110298585 Barry Dec 2011 A1
20110301943 Patch Dec 2011 A1
20110302162 Xiao et al. Dec 2011 A1
20110302645 Headley Dec 2011 A1
20110306426 Novak et al. Dec 2011 A1
20110307241 Waibel et al. Dec 2011 A1
20110307254 Hunt et al. Dec 2011 A1
20110307491 Fisk et al. Dec 2011 A1
20110307810 Hilerio et al. Dec 2011 A1
20110313775 Laligand et al. Dec 2011 A1
20110313803 Friend et al. Dec 2011 A1
20110314003 Ju et al. Dec 2011 A1
20110314032 Bennett et al. Dec 2011 A1
20110314404 Kotler et al. Dec 2011 A1
20110314539 Horton Dec 2011 A1
20110320187 Motik et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120005602 Anttila et al. Jan 2012 A1
20120008754 Mukherjee et al. Jan 2012 A1
20120010886 Razavilar Jan 2012 A1
20120011138 Dunning et al. Jan 2012 A1
20120013609 Reponen et al. Jan 2012 A1
20120015629 Olsen et al. Jan 2012 A1
20120016658 Wu et al. Jan 2012 A1
20120016678 Gruber et al. Jan 2012 A1
20120019400 Patel et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120020503 Endo et al. Jan 2012 A1
20120022787 LeBeau et al. Jan 2012 A1
20120022857 Baldwin et al. Jan 2012 A1
20120022860 Lloyd et al. Jan 2012 A1
20120022868 LeBeau et al. Jan 2012 A1
20120022869 Lloyd et al. Jan 2012 A1
20120022870 Kristjansson et al. Jan 2012 A1
20120022872 Gruber et al. Jan 2012 A1
20120022874 Lloyd et al. Jan 2012 A1
20120022876 LeBeau et al. Jan 2012 A1
20120022967 Bachman et al. Jan 2012 A1
20120023088 Cheng et al. Jan 2012 A1
20120023095 Wadycki et al. Jan 2012 A1
20120023462 Rosing et al. Jan 2012 A1
20120026395 Jin et al. Feb 2012 A1
20120029661 Jones et al. Feb 2012 A1
20120029910 Medlock et al. Feb 2012 A1
20120034904 LeBeau et al. Feb 2012 A1
20120035907 Lebeau et al. Feb 2012 A1
20120035908 Lebeau et al. Feb 2012 A1
20120035924 Jitkoff et al. Feb 2012 A1
20120035925 Friend et al. Feb 2012 A1
20120035926 Ambler Feb 2012 A1
20120035931 LeBeau et al. Feb 2012 A1
20120035932 Jitkoff et al. Feb 2012 A1
20120035935 Park et al. Feb 2012 A1
20120036556 LeBeau et al. Feb 2012 A1
20120039539 Boiman et al. Feb 2012 A1
20120039578 Issa et al. Feb 2012 A1
20120041752 Wang et al. Feb 2012 A1
20120041756 Hanazawa et al. Feb 2012 A1
20120041759 Barker et al. Feb 2012 A1
20120042014 Desai et al. Feb 2012 A1
20120042343 Laligand et al. Feb 2012 A1
20120052945 Miyamoto et al. Mar 2012 A1
20120053815 Montanari et al. Mar 2012 A1
20120053829 Agarwal et al. Mar 2012 A1
20120053945 Gupta et al. Mar 2012 A1
20120055253 Sinha Mar 2012 A1
20120056815 Mehra Mar 2012 A1
20120059655 Cartales Mar 2012 A1
20120059813 Sejnoha et al. Mar 2012 A1
20120060052 White et al. Mar 2012 A1
20120062473 Xiao et al. Mar 2012 A1
20120064975 Gault et al. Mar 2012 A1
20120066212 Jennings Mar 2012 A1
20120066581 Spalink Mar 2012 A1
20120075054 Ge et al. Mar 2012 A1
20120075184 Madhvanath Mar 2012 A1
20120077479 Sabotta et al. Mar 2012 A1
20120078611 Soltani et al. Mar 2012 A1
20120078624 Yook et al. Mar 2012 A1
20120078627 Wagner Mar 2012 A1
20120078635 Rothkopf et al. Mar 2012 A1
20120078747 Chakrabarti et al. Mar 2012 A1
20120082317 Pance et al. Apr 2012 A1
20120083286 Kim et al. Apr 2012 A1
20120084086 Gilbert et al. Apr 2012 A1
20120084087 Yang et al. Apr 2012 A1
20120084089 Lloyd et al. Apr 2012 A1
20120084634 Wong et al. Apr 2012 A1
20120088219 Briscoe et al. Apr 2012 A1
20120089331 Schmidt et al. Apr 2012 A1
20120089659 Halevi et al. Apr 2012 A1
20120094645 Jeffrey Apr 2012 A1
20120101823 Weng et al. Apr 2012 A1
20120105257 Murillo et al. May 2012 A1
20120108166 Hymel May 2012 A1
20120108221 Thomas et al. May 2012 A1
20120109632 Sugiura et al. May 2012 A1
20120109753 Kennewick et al. May 2012 A1
20120109997 Sparks et al. May 2012 A1
20120110456 Larco et al. May 2012 A1
20120114108 Katis et al. May 2012 A1
20120116770 Chen et al. May 2012 A1
20120117499 Mori et al. May 2012 A1
20120117590 Agnihotri et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120124177 Sparks May 2012 A1
20120124178 Sparks May 2012 A1
20120128322 Shaffer et al. May 2012 A1
20120130709 Bocchieri et al. May 2012 A1
20120130995 Risvik et al. May 2012 A1
20120135714 King, II May 2012 A1
20120136529 Curtis et al. May 2012 A1
20120136572 Norton May 2012 A1
20120136649 Freising et al. May 2012 A1
20120136855 Ni et al. May 2012 A1
20120136985 Popescu et al. May 2012 A1
20120137367 Dupont et al. May 2012 A1
20120149342 Cohen et al. Jun 2012 A1
20120149394 Singh et al. Jun 2012 A1
20120150532 Mirowski et al. Jun 2012 A1
20120150544 McLoughlin et al. Jun 2012 A1
20120150580 Norton Jun 2012 A1
20120158293 Burnham Jun 2012 A1
20120158399 Tremblay et al. Jun 2012 A1
20120158422 Burnham et al. Jun 2012 A1
20120159380 Kocienda et al. Jun 2012 A1
20120163710 Skaff et al. Jun 2012 A1
20120166177 Beld et al. Jun 2012 A1
20120166196 Ju et al. Jun 2012 A1
20120166429 Moore et al. Jun 2012 A1
20120166942 Ramerth et al. Jun 2012 A1
20120166959 Hilerio et al. Jun 2012 A1
20120166998 Cotterill et al. Jun 2012 A1
20120173222 Wang et al. Jul 2012 A1
20120173244 Kwak et al. Jul 2012 A1
20120173464 Tur et al. Jul 2012 A1
20120174121 Treat et al. Jul 2012 A1
20120176255 Choi et al. Jul 2012 A1
20120179457 Newman et al. Jul 2012 A1
20120179467 Williams et al. Jul 2012 A1
20120179471 Newman et al. Jul 2012 A1
20120185237 Gajic et al. Jul 2012 A1
20120185480 Ni et al. Jul 2012 A1
20120185781 Guzman et al. Jul 2012 A1
20120191461 Lin et al. Jul 2012 A1
20120192096 Bowman et al. Jul 2012 A1
20120197743 Grigg et al. Aug 2012 A1
20120197995 Caruso Aug 2012 A1
20120197998 Kessel et al. Aug 2012 A1
20120201362 Crossan et al. Aug 2012 A1
20120203767 Williams et al. Aug 2012 A1
20120209454 Miller et al. Aug 2012 A1
20120209654 Romagnino et al. Aug 2012 A1
20120209853 Desai et al. Aug 2012 A1
20120209874 Wong et al. Aug 2012 A1
20120210266 Jiang et al. Aug 2012 A1
20120210378 Mccoy et al. Aug 2012 A1
20120214141 Raya et al. Aug 2012 A1
20120214517 Singh et al. Aug 2012 A1
20120215640 Ramer et al. Aug 2012 A1
20120215762 Hall et al. Aug 2012 A1
20120221339 Wang et al. Aug 2012 A1
20120221552 Reponen et al. Aug 2012 A1
20120223889 Medlock et al. Sep 2012 A1
20120223936 Aughey et al. Sep 2012 A1
20120232885 Barbosa et al. Sep 2012 A1
20120232886 Capuozzo et al. Sep 2012 A1
20120232906 Lindahl Sep 2012 A1
20120233207 Mohajer Sep 2012 A1
20120233266 Hassan et al. Sep 2012 A1
20120233280 Ebara Sep 2012 A1
20120239403 Cano et al. Sep 2012 A1
20120239661 Giblin Sep 2012 A1
20120239761 Linner et al. Sep 2012 A1
20120242482 Elumalai et al. Sep 2012 A1
20120245719 Story, Jr. et al. Sep 2012 A1
20120245939 Braho et al. Sep 2012 A1
20120245941 Cheyer Sep 2012 A1
20120245944 Gruber et al. Sep 2012 A1
20120246064 Balkow Sep 2012 A1
20120250858 Iqbal et al. Oct 2012 A1
20120252367 Gaglio et al. Oct 2012 A1
20120252540 Kirigaya Oct 2012 A1
20120253785 Hamid et al. Oct 2012 A1
20120253791 Heck et al. Oct 2012 A1
20120254143 Varma et al. Oct 2012 A1
20120254152 Park et al. Oct 2012 A1
20120254290 Naaman Oct 2012 A1
20120259615 Morin et al. Oct 2012 A1
20120262296 Bezar Oct 2012 A1
20120265482 Grokop et al. Oct 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120265535 Bryant-Rich et al. Oct 2012 A1
20120265787 Hsu et al. Oct 2012 A1
20120265806 Blanchflower et al. Oct 2012 A1
20120271625 Bernard Oct 2012 A1
20120271634 Lenke Oct 2012 A1
20120271635 Ljolje Oct 2012 A1
20120271640 Basir Oct 2012 A1
20120271676 Aravamudan et al. Oct 2012 A1
20120275377 Lehane et al. Nov 2012 A1
20120278744 Kozitsyn et al. Nov 2012 A1
20120278812 Wang Nov 2012 A1
20120284015 Drewes Nov 2012 A1
20120284027 Mallett et al. Nov 2012 A1
20120290291 Shelley et al. Nov 2012 A1
20120290300 Lee et al. Nov 2012 A1
20120290657 Parks et al. Nov 2012 A1
20120290680 Hwang Nov 2012 A1
20120295708 Hernandez-Abrego et al. Nov 2012 A1
20120296638 Patwa Nov 2012 A1
20120296649 Bansal et al. Nov 2012 A1
20120296654 Hendrickson et al. Nov 2012 A1
20120296891 Rangan Nov 2012 A1
20120297341 Glazer et al. Nov 2012 A1
20120297348 Santoro Nov 2012 A1
20120303369 Brush et al. Nov 2012 A1
20120303371 Labsky et al. Nov 2012 A1
20120304124 Chen et al. Nov 2012 A1
20120304239 Shahraray et al. Nov 2012 A1
20120309363 Gruber et al. Dec 2012 A1
20120310642 Cao et al. Dec 2012 A1
20120310649 Cannistraro et al. Dec 2012 A1
20120310652 O'Sullivan Dec 2012 A1
20120310922 Johnson et al. Dec 2012 A1
20120311478 Van Os et al. Dec 2012 A1
20120311583 Gruber et al. Dec 2012 A1
20120311584 Gruber et al. Dec 2012 A1
20120311585 Gruber et al. Dec 2012 A1
20120316774 Yariv et al. Dec 2012 A1
20120316862 Sultan et al. Dec 2012 A1
20120316875 Nyquist et al. Dec 2012 A1
20120316878 Singleton et al. Dec 2012 A1
20120316955 Panguluri et al. Dec 2012 A1
20120317194 Tian Dec 2012 A1
20120317498 Logan et al. Dec 2012 A1
20120321112 Schubert et al. Dec 2012 A1
20120323560 Cortes et al. Dec 2012 A1
20120324391 Tocci Dec 2012 A1
20120327009 Fleizach Dec 2012 A1
20120329529 van der Raadt Dec 2012 A1
20120330660 Jaiswal Dec 2012 A1
20120330661 Lindahl Dec 2012 A1
20120330990 Chen et al. Dec 2012 A1
20130002716 Walker et al. Jan 2013 A1
20130005405 Prociw Jan 2013 A1
20130006633 Grokop et al. Jan 2013 A1
20130006637 Kanevsky et al. Jan 2013 A1
20130006638 Lindahl Jan 2013 A1
20130007240 Qiu et al. Jan 2013 A1
20130007648 Gamon et al. Jan 2013 A1
20130009858 Lacey Jan 2013 A1
20130010575 He et al. Jan 2013 A1
20130013313 Shechtman et al. Jan 2013 A1
20130013319 Grant et al. Jan 2013 A1
20130014026 Beringer et al. Jan 2013 A1
20130014143 Bhatia et al. Jan 2013 A1
20130018659 Chi Jan 2013 A1
20130018863 Regan et al. Jan 2013 A1
20130024277 Tuchman et al. Jan 2013 A1
20130024576 Dishneau et al. Jan 2013 A1
20130027875 Zhu et al. Jan 2013 A1
20130028404 Omalley et al. Jan 2013 A1
20130030787 Cancedda et al. Jan 2013 A1
20130030789 Dalce Jan 2013 A1
20130030804 Zavaliagkos et al. Jan 2013 A1
20130030815 Madhvanath et al. Jan 2013 A1
20130030904 Aidasani et al. Jan 2013 A1
20130030913 Zhu et al. Jan 2013 A1
20130030955 David Jan 2013 A1
20130031162 Willis et al. Jan 2013 A1
20130031476 Coin et al. Jan 2013 A1
20130033643 Kim et al. Feb 2013 A1
20130035086 Chardon et al. Feb 2013 A1
20130035942 Kim et al. Feb 2013 A1
20130035961 Yegnanarayanan Feb 2013 A1
20130036200 Roberts Feb 2013 A1
20130041647 Ramerth et al. Feb 2013 A1
20130041654 Walker et al. Feb 2013 A1
20130041661 Lee et al. Feb 2013 A1
20130041665 Jang et al. Feb 2013 A1
20130041667 Longe et al. Feb 2013 A1
20130041968 Cohen et al. Feb 2013 A1
20130046544 Kay et al. Feb 2013 A1
20130047178 Moon et al. Feb 2013 A1
20130050089 Neels et al. Feb 2013 A1
20130054550 Bolohan Feb 2013 A1
20130054609 Rajput et al. Feb 2013 A1
20130054613 Bishop Feb 2013 A1
20130054631 Govani et al. Feb 2013 A1
20130054675 Jenkins et al. Feb 2013 A1
20130054706 Graham et al. Feb 2013 A1
20130055099 Yao et al. Feb 2013 A1
20130055147 Vasudev et al. Feb 2013 A1
20130060571 Soemo et al. Mar 2013 A1
20130061139 Mahkovec et al. Mar 2013 A1
20130063611 Papakipos et al. Mar 2013 A1
20130066832 Sheehan et al. Mar 2013 A1
20130067307 Tian et al. Mar 2013 A1
20130067312 Rose Mar 2013 A1
20130067421 Osman et al. Mar 2013 A1
20130069769 Pennington et al. Mar 2013 A1
20130073286 Bastea-Forte et al. Mar 2013 A1
20130073293 Jang et al. Mar 2013 A1
20130073346 Chun et al. Mar 2013 A1
20130073580 Mehanna et al. Mar 2013 A1
20130073676 Cockcroft Mar 2013 A1
20130078930 Chen et al. Mar 2013 A1
20130080152 Brun et al. Mar 2013 A1
20130080162 Chang et al. Mar 2013 A1
20130080167 Mozer Mar 2013 A1
20130080177 Chen Mar 2013 A1
20130080178 Kang et al. Mar 2013 A1
20130080251 Dempski Mar 2013 A1
20130082967 Hillis et al. Apr 2013 A1
20130085755 Bringert et al. Apr 2013 A1
20130085761 Bringert et al. Apr 2013 A1
20130086609 Levy et al. Apr 2013 A1
20130090921 Liu et al. Apr 2013 A1
20130091090 Spivack et al. Apr 2013 A1
20130095805 LeBeau et al. Apr 2013 A1
20130096909 Brun et al. Apr 2013 A1
20130096911 Beaufort et al. Apr 2013 A1
20130096917 Edgar et al. Apr 2013 A1
20130097566 Berglund Apr 2013 A1
20130097682 Zeljkovic et al. Apr 2013 A1
20130100017 Papakipos et al. Apr 2013 A1
20130100268 Mihailidis et al. Apr 2013 A1
20130103391 Millmore et al. Apr 2013 A1
20130103405 Namba et al. Apr 2013 A1
20130106742 Lee et al. May 2013 A1
20130107053 Ozaki May 2013 A1
20130110505 Gruber et al. May 2013 A1
20130110515 Guzzoni et al. May 2013 A1
20130110518 Gruber et al. May 2013 A1
20130110519 Cheyer et al. May 2013 A1
20130110520 Cheyer et al. May 2013 A1
20130110943 Menon et al. May 2013 A1
20130111330 Staikos et al. May 2013 A1
20130111348 Gruber et al. May 2013 A1
20130111365 Chen et al. May 2013 A1
20130111487 Cheyer et al. May 2013 A1
20130111581 Griffin et al. May 2013 A1
20130115927 Gruber et al. May 2013 A1
20130117022 Chen et al. May 2013 A1
20130124189 Baldwin et al. May 2013 A1
20130124672 Pan May 2013 A1
20130125168 Agnihotri et al. May 2013 A1
20130132081 Ryu et al. May 2013 A1
20130132084 Stonehocker et al. May 2013 A1
20130132089 Fanty et al. May 2013 A1
20130132871 Zeng et al. May 2013 A1
20130138440 Strope et al. May 2013 A1
20130141551 Kim Jun 2013 A1
20130142317 Reynolds Jun 2013 A1
20130142345 Waldmann Jun 2013 A1
20130144594 Bangalore et al. Jun 2013 A1
20130144616 Bangalore Jun 2013 A1
20130151258 Chandrasekar et al. Jun 2013 A1
20130151339 Kim et al. Jun 2013 A1
20130152092 Yadgar Jun 2013 A1
20130154811 Ferren et al. Jun 2013 A1
20130155948 Pinheiro et al. Jun 2013 A1
20130156198 Kim et al. Jun 2013 A1
20130157629 Lee et al. Jun 2013 A1
20130158977 Senior Jun 2013 A1
20130159847 Banke et al. Jun 2013 A1
20130159861 Rottler et al. Jun 2013 A1
20130165232 Nelson et al. Jun 2013 A1
20130166278 James et al. Jun 2013 A1
20130166303 Chang et al. Jun 2013 A1
20130166332 Hammad Jun 2013 A1
20130166442 Nakajima et al. Jun 2013 A1
20130167242 Paliwal Jun 2013 A1
20130170738 Capuozzo et al. Jul 2013 A1
20130172022 Seymour et al. Jul 2013 A1
20130173258 Liu et al. Jul 2013 A1
20130173268 Weng et al. Jul 2013 A1
20130173513 Chu et al. Jul 2013 A1
20130174034 Brown et al. Jul 2013 A1
20130176147 Anderson et al. Jul 2013 A1
20130176244 Yamamoto et al. Jul 2013 A1
20130176592 Sasaki Jul 2013 A1
20130179168 Bae et al. Jul 2013 A1
20130179172 Nakamura et al. Jul 2013 A1
20130179440 Gordon Jul 2013 A1
20130183942 Novick et al. Jul 2013 A1
20130183944 Mozer et al. Jul 2013 A1
20130185059 Riccardi Jul 2013 A1
20130185066 Tzirkel-hancock et al. Jul 2013 A1
20130185074 Gruber et al. Jul 2013 A1
20130185081 Cheyer et al. Jul 2013 A1
20130185336 Singh et al. Jul 2013 A1
20130187850 Schulz et al. Jul 2013 A1
20130187857 Griffin et al. Jul 2013 A1
20130190021 Vieri et al. Jul 2013 A1
20130191117 Atti et al. Jul 2013 A1
20130191408 Volkert Jul 2013 A1
20130197911 Wei et al. Aug 2013 A1
20130197914 Yelvington et al. Aug 2013 A1
20130198159 Hendry Aug 2013 A1
20130198841 Poulson Aug 2013 A1
20130204813 Master et al. Aug 2013 A1
20130204897 McDougall Aug 2013 A1
20130204967 Seo et al. Aug 2013 A1
20130207898 Sullivan et al. Aug 2013 A1
20130210410 Xu Aug 2013 A1
20130210492 You et al. Aug 2013 A1
20130218553 Fujii et al. Aug 2013 A1
20130218560 Hsiao et al. Aug 2013 A1
20130218574 Falcon et al. Aug 2013 A1
20130218899 Raghavan et al. Aug 2013 A1
20130219333 Palwe et al. Aug 2013 A1
20130222249 Pasquero et al. Aug 2013 A1
20130225128 Gomar Aug 2013 A1
20130226935 Bai et al. Aug 2013 A1
20130231917 Naik Sep 2013 A1
20130234947 Kristensson et al. Sep 2013 A1
20130235987 Arroniz-Escobar Sep 2013 A1
20130238326 Kim et al. Sep 2013 A1
20130238647 Thompson Sep 2013 A1
20130238729 Holzman et al. Sep 2013 A1
20130244615 Miller Sep 2013 A1
20130246048 Nagase et al. Sep 2013 A1
20130246050 Yu et al. Sep 2013 A1
20130246329 Pasquero et al. Sep 2013 A1
20130253911 Petri et al. Sep 2013 A1
20130253912 Medlock et al. Sep 2013 A1
20130262168 Makanawala et al. Oct 2013 A1
20130268263 Park et al. Oct 2013 A1
20130268956 Recco Oct 2013 A1
20130275117 Winer Oct 2013 A1
20130275138 Gruber et al. Oct 2013 A1
20130275164 Gruber et al. Oct 2013 A1
20130275199 Proctor, Jr. et al. Oct 2013 A1
20130275625 Taivalsaari et al. Oct 2013 A1
20130275875 Gruber et al. Oct 2013 A1
20130275899 Schubert et al. Oct 2013 A1
20130279724 Stafford et al. Oct 2013 A1
20130282709 Zhu et al. Oct 2013 A1
20130283168 Brown et al. Oct 2013 A1
20130283199 Selig et al. Oct 2013 A1
20130283283 Wang et al. Oct 2013 A1
20130285913 Griffin et al. Oct 2013 A1
20130289991 Eshwar et al. Oct 2013 A1
20130289993 Rao Oct 2013 A1
20130289994 Newman et al. Oct 2013 A1
20130291015 Pan Oct 2013 A1
20130297078 Kolavennu Nov 2013 A1
20130297198 Velde et al. Nov 2013 A1
20130297317 Lee et al. Nov 2013 A1
20130297319 Kim Nov 2013 A1
20130297348 Cardoza et al. Nov 2013 A1
20130300645 Fedorov Nov 2013 A1
20130300648 Kim et al. Nov 2013 A1
20130303106 Martin Nov 2013 A1
20130304479 Teller et al. Nov 2013 A1
20130304758 Gruber et al. Nov 2013 A1
20130304815 Puente et al. Nov 2013 A1
20130305119 Kern et al. Nov 2013 A1
20130307855 Lamb et al. Nov 2013 A1
20130307997 O'Keefe et al. Nov 2013 A1
20130308922 Sano et al. Nov 2013 A1
20130311179 Wagner Nov 2013 A1
20130311184 Badavne et al. Nov 2013 A1
20130311487 Moore et al. Nov 2013 A1
20130311997 Gruber et al. Nov 2013 A1
20130315038 Ferren et al. Nov 2013 A1
20130316679 Miller et al. Nov 2013 A1
20130316746 Miller et al. Nov 2013 A1
20130317921 Havas Nov 2013 A1
20130318478 Ogura Nov 2013 A1
20130321267 Bhatti et al. Dec 2013 A1
20130322634 Bennett et al. Dec 2013 A1
20130322665 Bennett et al. Dec 2013 A1
20130325340 Forstall et al. Dec 2013 A1
20130325436 Wang et al. Dec 2013 A1
20130325443 Begeja et al. Dec 2013 A1
20130325447 Levien et al. Dec 2013 A1
20130325448 Levien et al. Dec 2013 A1
20130325480 Lee et al. Dec 2013 A1
20130325481 Van Os et al. Dec 2013 A1
20130325484 Chakladar et al. Dec 2013 A1
20130325967 Parks et al. Dec 2013 A1
20130325970 Roberts et al. Dec 2013 A1
20130325979 Mansfield et al. Dec 2013 A1
20130328809 Smith Dec 2013 A1
20130329023 Suplee, III et al. Dec 2013 A1
20130331127 Sabatelli et al. Dec 2013 A1
20130332159 Federighi et al. Dec 2013 A1
20130332162 Keen Dec 2013 A1
20130332164 Nalk Dec 2013 A1
20130332168 Kim et al. Dec 2013 A1
20130332172 Prakash et al. Dec 2013 A1
20130332400 González Dec 2013 A1
20130332538 Clark et al. Dec 2013 A1
20130339256 Shroff Dec 2013 A1
20130339454 Walker et al. Dec 2013 A1
20130339991 Ricci Dec 2013 A1
20130342672 Gray et al. Dec 2013 A1
20130343584 Bennett et al. Dec 2013 A1
20130343721 Abecassis Dec 2013 A1
20130346065 Davidson et al. Dec 2013 A1
20130346068 Solem et al. Dec 2013 A1
20130346347 Patterson et al. Dec 2013 A1
20130347018 Limp Dec 2013 A1
20130347029 Tang et al. Dec 2013 A1
20130347102 Shi Dec 2013 A1
20130347117 Parks et al. Dec 2013 A1
20140001255 Anthoine Jan 2014 A1
20140002338 Raffa et al. Jan 2014 A1
20140006012 Zhou et al. Jan 2014 A1
20140006025 Krishnan et al. Jan 2014 A1
20140006027 Kim et al. Jan 2014 A1
20140006030 Fleizach et al. Jan 2014 A1
20140006153 Thangam et al. Jan 2014 A1
20140006483 Garmark et al. Jan 2014 A1
20140006496 Dearman et al. Jan 2014 A1
20140006562 Handa et al. Jan 2014 A1
20140006947 Garmark et al. Jan 2014 A1
20140006955 Greenzeiger et al. Jan 2014 A1
20140008163 Mikonaho et al. Jan 2014 A1
20140012574 Pasupalak et al. Jan 2014 A1
20140012580 Ganong, III et al. Jan 2014 A1
20140012586 Rubin et al. Jan 2014 A1
20140012587 Park Jan 2014 A1
20140019116 Lundberg et al. Jan 2014 A1
20140019133 Bao et al. Jan 2014 A1
20140019460 Sambrani et al. Jan 2014 A1
20140028029 Jochman Jan 2014 A1
20140028477 Michalske Jan 2014 A1
20140028735 Williams et al. Jan 2014 A1
20140032453 Eustice et al. Jan 2014 A1
20140033071 Gruber et al. Jan 2014 A1
20140035823 Khoe et al. Feb 2014 A1
20140037075 Bouzid et al. Feb 2014 A1
20140039888 Taubman et al. Feb 2014 A1
20140039893 Weiner et al. Feb 2014 A1
20140039894 Shostak Feb 2014 A1
20140040274 Aravamudan et al. Feb 2014 A1
20140040748 Lemay et al. Feb 2014 A1
20140040754 Donelli Feb 2014 A1
20140040801 Patel et al. Feb 2014 A1
20140040918 Li Feb 2014 A1
20140040961 Green et al. Feb 2014 A1
20140046934 Zhou et al. Feb 2014 A1
20140047001 Phillips et al. Feb 2014 A1
20140052451 Cheong et al. Feb 2014 A1
20140052680 Nitz et al. Feb 2014 A1
20140052791 Chakra et al. Feb 2014 A1
20140053082 Park Feb 2014 A1
20140053101 Buehler et al. Feb 2014 A1
20140053210 Cheong et al. Feb 2014 A1
20140057610 Olincy et al. Feb 2014 A1
20140059030 Hakkani-Tur et al. Feb 2014 A1
20140067361 Nikoulina et al. Mar 2014 A1
20140067371 Liensberger Mar 2014 A1
20140067402 Kim Mar 2014 A1
20140067738 Kingsbury Mar 2014 A1
20140068751 Last Mar 2014 A1
20140074454 Brown et al. Mar 2014 A1
20140074466 Sharifi et al. Mar 2014 A1
20140074470 Jansche et al. Mar 2014 A1
20140074472 Lin et al. Mar 2014 A1
20140074483 Van Os Mar 2014 A1
20140074589 Nielsen et al. Mar 2014 A1
20140074815 Plimton Mar 2014 A1
20140075453 Bellessort et al. Mar 2014 A1
20140078065 Akkok Mar 2014 A1
20140079195 Srivastava et al. Mar 2014 A1
20140080410 Jung et al. Mar 2014 A1
20140080428 Rhoads et al. Mar 2014 A1
20140081619 Solntseva et al. Mar 2014 A1
20140081633 Badaskar Mar 2014 A1
20140081635 Yanagihara Mar 2014 A1
20140081829 Milne Mar 2014 A1
20140081941 Bai et al. Mar 2014 A1
20140082500 Wilensky et al. Mar 2014 A1
20140082501 Bae et al. Mar 2014 A1
20140082545 Zhai et al. Mar 2014 A1
20140082715 Grajek et al. Mar 2014 A1
20140086458 Rogers Mar 2014 A1
20140087711 Geyer et al. Mar 2014 A1
20140088952 Fife et al. Mar 2014 A1
20140088961 Woodward et al. Mar 2014 A1
20140088964 Bellegarda Mar 2014 A1
20140088970 Kang Mar 2014 A1
20140095171 Lynch et al. Apr 2014 A1
20140095172 Cabaco et al. Apr 2014 A1
20140095173 Lynch et al. Apr 2014 A1
20140095601 Abuelsaad et al. Apr 2014 A1
20140095965 Li Apr 2014 A1
20140096209 Saraf et al. Apr 2014 A1
20140098247 Rao et al. Apr 2014 A1
20140100847 Ishii et al. Apr 2014 A1
20140101127 Simhon et al. Apr 2014 A1
20140104175 Ouyang et al. Apr 2014 A1
20140108017 Mason et al. Apr 2014 A1
20140108391 Volkert Apr 2014 A1
20140112556 Kalinli-akbacak Apr 2014 A1
20140114554 Lagassey Apr 2014 A1
20140115062 Liu et al. Apr 2014 A1
20140115114 Garmark et al. Apr 2014 A1
20140118155 Bowers et al. May 2014 A1
20140118624 Jang et al. May 2014 A1
20140122059 Patel et al. May 2014 A1
20140122085 Piety et al. May 2014 A1
20140122086 Kapur et al. May 2014 A1
20140122136 Jayanthi May 2014 A1
20140122153 Truitt May 2014 A1
20140123022 Lee et al. May 2014 A1
20140129226 Lee et al. May 2014 A1
20140132935 Kim et al. May 2014 A1
20140134983 Jung et al. May 2014 A1
20140135036 Bonanni et al. May 2014 A1
20140136013 Wolverton et al. May 2014 A1
20140136187 Wolverton et al. May 2014 A1
20140136195 Abdossalami et al. May 2014 A1
20140136212 Kwon et al. May 2014 A1
20140136946 Matas May 2014 A1
20140136987 Rodriguez May 2014 A1
20140142922 Liang et al. May 2014 A1
20140142923 Jones et al. May 2014 A1
20140142935 Lindahl et al. May 2014 A1
20140142953 Kim et al. May 2014 A1
20140143550 Ganong, III et al. May 2014 A1
20140143721 Suzuki et al. May 2014 A1
20140143784 Mistry et al. May 2014 A1
20140146200 Scott et al. May 2014 A1
20140149118 Lee et al. May 2014 A1
20140152577 Yuen et al. Jun 2014 A1
20140153709 Byrd et al. Jun 2014 A1
20140155031 Lee et al. Jun 2014 A1
20140156262 Yuen et al. Jun 2014 A1
20140156279 Okamoto et al. Jun 2014 A1
20140157319 Kimura et al. Jun 2014 A1
20140157422 Livshits et al. Jun 2014 A1
20140163951 Nikoulina et al. Jun 2014 A1
20140163953 Parikh Jun 2014 A1
20140163954 Joshi et al. Jun 2014 A1
20140163962 Castelli et al. Jun 2014 A1
20140163976 Park et al. Jun 2014 A1
20140163977 Hoffmeister et al. Jun 2014 A1
20140163981 Cook et al. Jun 2014 A1
20140163995 Burns et al. Jun 2014 A1
20140164305 Lynch et al. Jun 2014 A1
20140164312 Lynch et al. Jun 2014 A1
20140164476 Thomson Jun 2014 A1
20140164508 Lynch et al. Jun 2014 A1
20140164532 Lynch et al. Jun 2014 A1
20140164533 Lynch et al. Jun 2014 A1
20140164953 Lynch et al. Jun 2014 A1
20140169795 Clough Jun 2014 A1
20140171064 Das Jun 2014 A1
20140172878 Clark et al. Jun 2014 A1
20140173460 Kim Jun 2014 A1
20140176814 Ahn Jun 2014 A1
20140179295 Luebbers et al. Jun 2014 A1
20140180499 Cooper et al. Jun 2014 A1
20140180689 Kim Jun 2014 A1
20140180697 Torok et al. Jun 2014 A1
20140181865 Koganei Jun 2014 A1
20140188460 Ouyang et al. Jul 2014 A1
20140188477 Zhang Jul 2014 A1
20140188478 Zhang Jul 2014 A1
20140188485 Kim et al. Jul 2014 A1
20140188835 Zhang et al. Jul 2014 A1
20140195226 Yun et al. Jul 2014 A1
20140195230 Han et al. Jul 2014 A1
20140195233 Bapat et al. Jul 2014 A1
20140195244 Cha et al. Jul 2014 A1
20140195251 Zeinstra et al. Jul 2014 A1
20140195252 Gruber et al. Jul 2014 A1
20140198048 Unruh et al. Jul 2014 A1
20140203939 Harrington et al. Jul 2014 A1
20140205076 Kumar et al. Jul 2014 A1
20140207439 Venkatapathy et al. Jul 2014 A1
20140207446 Klein et al. Jul 2014 A1
20140207447 Jiang et al. Jul 2014 A1
20140207466 Smadi Jul 2014 A1
20140207468 Bartnik Jul 2014 A1
20140207582 Flinn et al. Jul 2014 A1
20140211944 Hayward et al. Jul 2014 A1
20140214429 Pantel Jul 2014 A1
20140214537 Yoo et al. Jul 2014 A1
20140215367 Kim et al. Jul 2014 A1
20140215513 Ramer et al. Jul 2014 A1
20140218372 Missig et al. Aug 2014 A1
20140222435 Li et al. Aug 2014 A1
20140222436 Binder et al. Aug 2014 A1
20140222678 Sheets et al. Aug 2014 A1
20140222967 Harrang et al. Aug 2014 A1
20140223377 Shaw et al. Aug 2014 A1
20140223481 Fundament Aug 2014 A1
20140226503 Cooper et al. Aug 2014 A1
20140229158 Zweig et al. Aug 2014 A1
20140229184 Shires Aug 2014 A1
20140230055 Boehl Aug 2014 A1
20140232570 Skinder et al. Aug 2014 A1
20140232656 Pasquero et al. Aug 2014 A1
20140236595 Gray Aug 2014 A1
20140236986 Guzman Aug 2014 A1
20140237042 Ahmed et al. Aug 2014 A1
20140237366 Poulos et al. Aug 2014 A1
20140244248 Arisoy et al. Aug 2014 A1
20140244249 Mohamed et al. Aug 2014 A1
20140244254 Ju et al. Aug 2014 A1
20140244257 Colibro et al. Aug 2014 A1
20140244258 Song et al. Aug 2014 A1
20140244263 Pontual et al. Aug 2014 A1
20140244266 Brown et al. Aug 2014 A1
20140244268 Abdelsamie et al. Aug 2014 A1
20140244270 Han et al. Aug 2014 A1
20140244271 Lindahl Aug 2014 A1
20140244712 Walters et al. Aug 2014 A1
20140245140 Brown et al. Aug 2014 A1
20140247383 Dave et al. Sep 2014 A1
20140247926 Gainsboro et al. Sep 2014 A1
20140249812 Bou-Ghazale et al. Sep 2014 A1
20140249816 Pickering et al. Sep 2014 A1
20140249817 Hart et al. Sep 2014 A1
20140249820 Hsu et al. Sep 2014 A1
20140249821 Kennewick et al. Sep 2014 A1
20140250046 Winn et al. Sep 2014 A1
20140257809 Goel et al. Sep 2014 A1
20140257815 Zhao et al. Sep 2014 A1
20140257902 Moore et al. Sep 2014 A1
20140258324 Mauro et al. Sep 2014 A1
20140258357 Singh et al. Sep 2014 A1
20140258857 Dykstra-Erickson et al. Sep 2014 A1
20140258905 Lee et al. Sep 2014 A1
20140267022 Kim Sep 2014 A1
20140267599 Drouin et al. Sep 2014 A1
20140267933 Young Sep 2014 A1
20140272821 Pitschel et al. Sep 2014 A1
20140273979 Van Os et al. Sep 2014 A1
20140274005 Luna et al. Sep 2014 A1
20140274203 Ganong, III et al. Sep 2014 A1
20140274211 Sejnoha et al. Sep 2014 A1
20140278051 Mcgavran et al. Sep 2014 A1
20140278343 Tran Sep 2014 A1
20140278349 Grieves et al. Sep 2014 A1
20140278379 Coccaro et al. Sep 2014 A1
20140278390 Kingsbury et al. Sep 2014 A1
20140278391 Braho et al. Sep 2014 A1
20140278394 Bastyr et al. Sep 2014 A1
20140278406 Tsumura et al. Sep 2014 A1
20140278413 Pitschel et al. Sep 2014 A1
20140278426 Jost et al. Sep 2014 A1
20140278429 Ganong, III Sep 2014 A1
20140278435 Ganong, III et al. Sep 2014 A1
20140278436 Khanna et al. Sep 2014 A1
20140278438 Hart et al. Sep 2014 A1
20140278443 Gunn et al. Sep 2014 A1
20140278444 Larson et al. Sep 2014 A1
20140278513 Prakash et al. Sep 2014 A1
20140279622 Lamoureux et al. Sep 2014 A1
20140279739 Elkington et al. Sep 2014 A1
20140279787 Cheng et al. Sep 2014 A1
20140280072 Coleman Sep 2014 A1
20140280107 Heymans et al. Sep 2014 A1
20140280138 Li et al. Sep 2014 A1
20140280292 Skinder Sep 2014 A1
20140280353 Delaney et al. Sep 2014 A1
20140280450 Luna Sep 2014 A1
20140281944 Winer Sep 2014 A1
20140281983 Xian et al. Sep 2014 A1
20140281997 Fleizach et al. Sep 2014 A1
20140282003 Gruber et al. Sep 2014 A1
20140282007 Fleizach Sep 2014 A1
20140282045 Ayanam et al. Sep 2014 A1
20140282178 Borzello et al. Sep 2014 A1
20140282201 Pasquero et al. Sep 2014 A1
20140282203 Pasquero et al. Sep 2014 A1
20140282559 Verduzco et al. Sep 2014 A1
20140282586 Shear et al. Sep 2014 A1
20140282743 Howard et al. Sep 2014 A1
20140288990 Moore et al. Sep 2014 A1
20140289508 Wang Sep 2014 A1
20140297267 Spencer et al. Oct 2014 A1
20140297281 Togawa et al. Oct 2014 A1
20140297284 Gruber et al. Oct 2014 A1
20140297288 Yu et al. Oct 2014 A1
20140298395 Yang et al. Oct 2014 A1
20140304086 Dasdan et al. Oct 2014 A1
20140304605 Ohmura et al. Oct 2014 A1
20140309990 Gandrabur et al. Oct 2014 A1
20140309996 Zhang Oct 2014 A1
20140310001 Kalns et al. Oct 2014 A1
20140310002 Nitz et al. Oct 2014 A1
20140310348 Keskitalo et al. Oct 2014 A1
20140310365 Sample et al. Oct 2014 A1
20140310595 Acharya et al. Oct 2014 A1
20140313007 Harding Oct 2014 A1
20140315492 Woods Oct 2014 A1
20140316585 Boesveld et al. Oct 2014 A1
20140317030 Shen et al. Oct 2014 A1
20140317502 Brown et al. Oct 2014 A1
20140324429 Weilhammer et al. Oct 2014 A1
20140324884 Lindahl et al. Oct 2014 A1
20140330569 Kolavennu et al. Nov 2014 A1
20140330951 Sukoff et al. Nov 2014 A1
20140335823 Heredia et al. Nov 2014 A1
20140337037 Chi Nov 2014 A1
20140337048 Brown et al. Nov 2014 A1
20140337266 Wolverton et al. Nov 2014 A1
20140337370 Aravamudan et al. Nov 2014 A1
20140337371 Li Nov 2014 A1
20140337438 Govande et al. Nov 2014 A1
20140337621 Nakhimov Nov 2014 A1
20140337751 Lim et al. Nov 2014 A1
20140337814 Kalns et al. Nov 2014 A1
20140342762 Hajdu et al. Nov 2014 A1
20140343834 Demerchant et al. Nov 2014 A1
20140343943 Al-telmissani Nov 2014 A1
20140343946 Torok et al. Nov 2014 A1
20140344205 Luna et al. Nov 2014 A1
20140344627 Schaub et al. Nov 2014 A1
20140344687 Durham et al. Nov 2014 A1
20140347181 Luna et al. Nov 2014 A1
20140350847 Ichinokawa Nov 2014 A1
20140350924 Zurek et al. Nov 2014 A1
20140350933 Bak et al. Nov 2014 A1
20140351741 Medlock et al. Nov 2014 A1
20140351760 Skory et al. Nov 2014 A1
20140358519 Mirkin et al. Dec 2014 A1
20140358523 Sheth et al. Dec 2014 A1
20140358549 O'connor et al. Dec 2014 A1
20140359637 Yan Dec 2014 A1
20140359709 Nassar et al. Dec 2014 A1
20140361973 Raux et al. Dec 2014 A1
20140363074 Dolfing et al. Dec 2014 A1
20140364149 Marti et al. Dec 2014 A1
20140365209 Evermann Dec 2014 A1
20140365214 Bayley Dec 2014 A1
20140365216 Gruber et al. Dec 2014 A1
20140365226 Sinha Dec 2014 A1
20140365227 Cash et al. Dec 2014 A1
20140365407 Brown et al. Dec 2014 A1
20140365505 Clark et al. Dec 2014 A1
20140365880 Bellegarda Dec 2014 A1
20140365885 Carson et al. Dec 2014 A1
20140365895 Magahern et al. Dec 2014 A1
20140365922 Yang Dec 2014 A1
20140365945 Karunamuni et al. Dec 2014 A1
20140370817 Luna Dec 2014 A1
20140370841 Roberts et al. Dec 2014 A1
20140372112 Xue et al. Dec 2014 A1
20140372356 Bilal et al. Dec 2014 A1
20140372468 Collins et al. Dec 2014 A1
20140372931 Zhai et al. Dec 2014 A1
20140379334 Fry Dec 2014 A1
20140379341 Seo et al. Dec 2014 A1
20140379798 Bunner et al. Dec 2014 A1
20140380285 Gabel et al. Dec 2014 A1
20150003797 Schmidt Jan 2015 A1
20150004958 Wang et al. Jan 2015 A1
20150006148 Goldszmit et al. Jan 2015 A1
20150006157 Silva et al. Jan 2015 A1
20150006167 Kato et al. Jan 2015 A1
20150006176 Pogue et al. Jan 2015 A1
20150006178 Peng et al. Jan 2015 A1
20150006184 Marti et al. Jan 2015 A1
20150006199 Snider et al. Jan 2015 A1
20150012271 Peng et al. Jan 2015 A1
20150019219 Tzirkel-Hancock et al. Jan 2015 A1
20150019221 Lee et al. Jan 2015 A1
20150019944 Kalgi Jan 2015 A1
20150019974 Doi et al. Jan 2015 A1
20150025405 Vairavan et al. Jan 2015 A1
20150025890 Jagatheesan et al. Jan 2015 A1
20150026620 Kwon et al. Jan 2015 A1
20150027178 Scalisi Jan 2015 A1
20150031416 Labowicz et al. Jan 2015 A1
20150032443 Karov et al. Jan 2015 A1
20150033219 Breiner et al. Jan 2015 A1
20150033275 Natani et al. Jan 2015 A1
20150034855 Shen Feb 2015 A1
20150038161 Jakobson et al. Feb 2015 A1
20150039292 Suleman et al. Feb 2015 A1
20150039295 Soschen Feb 2015 A1
20150039299 Weinstein et al. Feb 2015 A1
20150039305 Huang Feb 2015 A1
20150039606 Salaka et al. Feb 2015 A1
20150040012 Faaborg et al. Feb 2015 A1
20150045003 Vora et al. Feb 2015 A1
20150045007 Cash Feb 2015 A1
20150045068 Softer et al. Feb 2015 A1
20150046434 Lim et al. Feb 2015 A1
20150046537 Rakib Feb 2015 A1
20150046828 Desai et al. Feb 2015 A1
20150050633 Christmas et al. Feb 2015 A1
20150050923 Tu et al. Feb 2015 A1
20150051754 Kwon et al. Feb 2015 A1
20150053779 Adamek et al. Feb 2015 A1
20150053781 Nelson et al. Feb 2015 A1
20150055879 Yang Feb 2015 A1
20150058013 Pakhomov et al. Feb 2015 A1
20150058018 Georges et al. Feb 2015 A1
20150058720 Smadja et al. Feb 2015 A1
20150058785 Ookawara Feb 2015 A1
20150065149 Russeii et al. Mar 2015 A1
20150065200 Namgung et al. Mar 2015 A1
20150066494 Salvador et al. Mar 2015 A1
20150066496 Deoras et al. Mar 2015 A1
20150066506 Romano et al. Mar 2015 A1
20150066516 Nishikawa et al. Mar 2015 A1
20150066817 Slayton et al. Mar 2015 A1
20150067485 Kim et al. Mar 2015 A1
20150067822 Randail Mar 2015 A1
20150071121 Patil et al. Mar 2015 A1
20150073788 Sak et al. Mar 2015 A1
20150073804 Senior et al. Mar 2015 A1
20150074524 Nicholson et al. Mar 2015 A1
20150074615 Han et al. Mar 2015 A1
20150081295 Yun et al. Mar 2015 A1
20150082229 Ouyang et al. Mar 2015 A1
20150086174 Abecassis et al. Mar 2015 A1
20150088511 Bharadwaj et al. Mar 2015 A1
20150088514 Typrin Mar 2015 A1
20150088518 Kim et al. Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150088523 Schuster Mar 2015 A1
20150088998 Isensee et al. Mar 2015 A1
20150092520 Robison et al. Apr 2015 A1
20150094834 Vega et al. Apr 2015 A1
20150095031 Conkie et al. Apr 2015 A1
20150095268 Greenzeiger et al. Apr 2015 A1
20150095278 Flinn et al. Apr 2015 A1
20150100144 Lee et al. Apr 2015 A1
20150100313 Sharma Apr 2015 A1
20150100316 Williams et al. Apr 2015 A1
20150100537 Grieves et al. Apr 2015 A1
20150100983 Pan Apr 2015 A1
20150106093 Weeks et al. Apr 2015 A1
20150106737 Montoy-Wilson et al. Apr 2015 A1
20150113407 Hoffert et al. Apr 2015 A1
20150113435 Phillips Apr 2015 A1
20150120296 Stern et al. Apr 2015 A1
20150120641 Soon-shiong et al. Apr 2015 A1
20150120723 Deshmukh et al. Apr 2015 A1
20150121216 Brown et al. Apr 2015 A1
20150123898 Kim et al. May 2015 A1
20150127337 Heigold et al. May 2015 A1
20150127348 Follis May 2015 A1
20150127350 Agiomyrgiannakis May 2015 A1
20150133049 Lee et al. May 2015 A1
20150133109 Freeman et al. May 2015 A1
20150134318 Cuthbert et al. May 2015 A1
20150134322 Cuthbert et al. May 2015 A1
20150134334 Sachidanandam et al. May 2015 A1
20150135085 Shoham et al. May 2015 A1
20150135123 Carr et al. May 2015 A1
20150140934 Abdurrahman et al. May 2015 A1
20150141150 Zha May 2015 A1
20150142420 Sarikaya et al. May 2015 A1
20150142438 Dai et al. May 2015 A1
20150142447 Kennewick et al. May 2015 A1
20150142851 Gupta et al. May 2015 A1
20150143419 Bhagwat et al. May 2015 A1
20150148013 Baldwin et al. May 2015 A1
20150149177 Kains et al. May 2015 A1
20150149182 Kains et al. May 2015 A1
20150149354 Mccoy May 2015 A1
20150149469 Xu et al. May 2015 A1
20150149899 Bernstein et al. May 2015 A1
20150149964 Bernstein et al. May 2015 A1
20150154001 Knox et al. Jun 2015 A1
20150154185 Waibel Jun 2015 A1
20150154976 Mutagi Jun 2015 A1
20150160855 Bi Jun 2015 A1
20150161291 Gur et al. Jun 2015 A1
20150161370 North et al. Jun 2015 A1
20150161521 Shah et al. Jun 2015 A1
20150161989 Hsu et al. Jun 2015 A1
20150162001 Kar et al. Jun 2015 A1
20150162006 Kummer Jun 2015 A1
20150163558 Wheatley Jun 2015 A1
20150169081 Neels et al. Jun 2015 A1
20150169284 Quast et al. Jun 2015 A1
20150169336 Harper et al. Jun 2015 A1
20150169696 Krishnappa et al. Jun 2015 A1
20150170073 Baker Jun 2015 A1
20150170664 Doherty et al. Jun 2015 A1
20150172262 Ortiz, Jr. et al. Jun 2015 A1
20150172463 Quast et al. Jun 2015 A1
20150178388 Winnemoeller et al. Jun 2015 A1
20150178785 Salonen Jun 2015 A1
20150179176 Ryu et al. Jun 2015 A1
20150181285 Zhang et al. Jun 2015 A1
20150185964 Stout Jul 2015 A1
20150185996 Brown et al. Jul 2015 A1
20150186012 Coleman et al. Jul 2015 A1
20150186110 Kannan Jul 2015 A1
20150186154 Brown et al. Jul 2015 A1
20150186155 Brown et al. Jul 2015 A1
20150186156 Brown et al. Jul 2015 A1
20150186351 Hicks et al. Jul 2015 A1
20150186538 Yan et al. Jul 2015 A1
20150186783 Byrne et al. Jul 2015 A1
20150187355 Parkinson et al. Jul 2015 A1
20150187369 Dadu et al. Jul 2015 A1
20150189362 Lee et al. Jul 2015 A1
20150193379 Mehta Jul 2015 A1
20150193391 Khvostichenko et al. Jul 2015 A1
20150193392 Greenblatt et al. Jul 2015 A1
20150194152 Katuri et al. Jul 2015 A1
20150194165 Faaborg et al. Jul 2015 A1
20150195379 Zhang et al. Jul 2015 A1
20150195606 McDevitt Jul 2015 A1
20150199077 Zuger et al. Jul 2015 A1
20150199960 Huo et al. Jul 2015 A1
20150199965 Leak et al. Jul 2015 A1
20150199967 Reddy et al. Jul 2015 A1
20150201064 Bells et al. Jul 2015 A1
20150201077 Konig et al. Jul 2015 A1
20150205425 Kuscher et al. Jul 2015 A1
20150205568 Matsuoka Jul 2015 A1
20150205858 Xie et al. Jul 2015 A1
20150206529 Kwon et al. Jul 2015 A1
20150208226 Kuusilinna et al. Jul 2015 A1
20150212791 Kumar et al. Jul 2015 A1
20150213140 Volkert Jul 2015 A1
20150213796 Waltermann et al. Jul 2015 A1
20150215258 Nowakowski et al. Jul 2015 A1
20150215350 Slayton et al. Jul 2015 A1
20150220264 Lewis et al. Aug 2015 A1
20150220507 Mohajer et al. Aug 2015 A1
20150220715 Kim et al. Aug 2015 A1
20150220972 Subramanya et al. Aug 2015 A1
20150221304 Stewart Aug 2015 A1
20150221307 Shah et al. Aug 2015 A1
20150222586 Ebersman et al. Aug 2015 A1
20150227505 Morimoto Aug 2015 A1
20150227633 Shapira Aug 2015 A1
20150228274 Leppanen et al. Aug 2015 A1
20150228275 Watanabe et al. Aug 2015 A1
20150228281 Raniere Aug 2015 A1
20150228283 Ehsani et al. Aug 2015 A1
20150228292 Goldstein et al. Aug 2015 A1
20150230095 Smith et al. Aug 2015 A1
20150234636 Barnes, Jr. Aug 2015 A1
20150234800 Patrick et al. Aug 2015 A1
20150237301 Shi et al. Aug 2015 A1
20150242091 Lu et al. Aug 2015 A1
20150242385 Bao et al. Aug 2015 A1
20150243278 Kibre et al. Aug 2015 A1
20150243279 Morse et al. Aug 2015 A1
20150243283 Halash et al. Aug 2015 A1
20150244665 Choi et al. Aug 2015 A1
20150245154 Dadu et al. Aug 2015 A1
20150248651 Akutagawa et al. Sep 2015 A1
20150248886 Sarikaya et al. Sep 2015 A1
20150253146 Annapureddy et al. Sep 2015 A1
20150253885 Kagan et al. Sep 2015 A1
20150254057 Klein et al. Sep 2015 A1
20150254058 Klein et al. Sep 2015 A1
20150254333 Fife et al. Sep 2015 A1
20150255071 Chiba Sep 2015 A1
20150256873 Klein et al. Sep 2015 A1
20150261298 Li Sep 2015 A1
20150261496 Faaborg et al. Sep 2015 A1
20150261850 Mittal Sep 2015 A1
20150269139 McAteer et al. Sep 2015 A1
20150269617 Mikurak Sep 2015 A1
20150269677 Milne Sep 2015 A1
20150269943 VanBlon et al. Sep 2015 A1
20150277574 Jain et al. Oct 2015 A1
20150278348 Paruchuri et al. Oct 2015 A1
20150278370 Stratvert et al. Oct 2015 A1
20150278737 Chen Huebscher et al. Oct 2015 A1
20150279358 Kingsbury et al. Oct 2015 A1
20150279360 Mengibar et al. Oct 2015 A1
20150279366 Krestnikov et al. Oct 2015 A1
20150281380 Wang et al. Oct 2015 A1
20150281401 Le et al. Oct 2015 A1
20150286627 Chang et al. Oct 2015 A1
20150286716 Snibbe et al. Oct 2015 A1
20150286937 Hildebrand Oct 2015 A1
20150287401 Lee et al. Oct 2015 A1
20150287409 Jang Oct 2015 A1
20150287411 Kojima et al. Oct 2015 A1
20150288629 Choi et al. Oct 2015 A1
20150294086 Kare et al. Oct 2015 A1
20150294377 Chow Oct 2015 A1
20150294516 Chiang Oct 2015 A1
20150294670 Roblek et al. Oct 2015 A1
20150295915 Xiu Oct 2015 A1
20150301796 Visser et al. Oct 2015 A1
20150302855 Kim et al. Oct 2015 A1
20150302856 Kim et al. Oct 2015 A1
20150302857 Yamada Oct 2015 A1
20150302870 Burke et al. Oct 2015 A1
20150309997 Lee et al. Oct 2015 A1
20150310114 Ryger et al. Oct 2015 A1
20150310858 Li et al. Oct 2015 A1
20150310862 Dauphin et al. Oct 2015 A1
20150310879 Buchanan et al. Oct 2015 A1
20150310888 Chen Oct 2015 A1
20150312182 Langholz Oct 2015 A1
20150312409 Czarnecki et al. Oct 2015 A1
20150314454 Breazeal et al. Nov 2015 A1
20150317069 Clements et al. Nov 2015 A1
20150317310 Eiche et al. Nov 2015 A1
20150319411 Kasmir et al. Nov 2015 A1
20150324041 Varley et al. Nov 2015 A1
20150324334 Lee et al. Nov 2015 A1
20150331664 Osawa et al. Nov 2015 A1
20150331711 Huang et al. Nov 2015 A1
20150332667 Mason Nov 2015 A1
20150334346 Cheatham, III et al. Nov 2015 A1
20150339049 Kasemset et al. Nov 2015 A1
20150339391 Kang et al. Nov 2015 A1
20150340033 Di Fabbrizio et al. Nov 2015 A1
20150340040 Mun et al. Nov 2015 A1
20150340042 Sejnoha et al. Nov 2015 A1
20150341717 Song et al. Nov 2015 A1
20150346845 Di Censo et al. Dec 2015 A1
20150347086 Liedholm et al. Dec 2015 A1
20150347381 Beilegarda Dec 2015 A1
20150347382 Dolfing et al. Dec 2015 A1
20150347383 Willmore et al. Dec 2015 A1
20150347385 Flor et al. Dec 2015 A1
20150347393 Futrell et al. Dec 2015 A1
20150347552 Habouzit et al. Dec 2015 A1
20150347733 Tsou et al. Dec 2015 A1
20150347985 Gross et al. Dec 2015 A1
20150348533 Saddler et al. Dec 2015 A1
20150348547 Paulik et al. Dec 2015 A1
20150348548 Piernot et al. Dec 2015 A1
20150348549 Giuli et al. Dec 2015 A1
20150348551 Gruber et al. Dec 2015 A1
20150348554 Orr et al. Dec 2015 A1
20150348555 Sugita Dec 2015 A1
20150348565 Rhoten et al. Dec 2015 A1
20150349934 Pollack et al. Dec 2015 A1
20150350031 Burks et al. Dec 2015 A1
20150350342 Thorpe et al. Dec 2015 A1
20150350594 Mate et al. Dec 2015 A1
20150352999 Bando et al. Dec 2015 A1
20150355879 Beckhardt et al. Dec 2015 A1
20150356410 Faith et al. Dec 2015 A1
20150363587 Ahn et al. Dec 2015 A1
20150364128 Zhao et al. Dec 2015 A1
20150364140 Thörn Dec 2015 A1
20150370531 Faaborg Dec 2015 A1
20150370780 Wang et al. Dec 2015 A1
20150370787 Akbacak et al. Dec 2015 A1
20150370884 Hurley et al. Dec 2015 A1
20150371215 Zhou et al. Dec 2015 A1
20150371529 Dolecki Dec 2015 A1
20150371639 Foerster et al. Dec 2015 A1
20150371663 Gustafson et al. Dec 2015 A1
20150371665 Naik et al. Dec 2015 A1
20150373183 Woolsey et al. Dec 2015 A1
20150379118 Wickenkamp et al. Dec 2015 A1
20150379414 Yeh et al. Dec 2015 A1
20150379993 Subhojit et al. Dec 2015 A1
20150381923 Wickenkamp et al. Dec 2015 A1
20150382047 Van Os et al. Dec 2015 A1
20150382079 Lister et al. Dec 2015 A1
20150382147 Clark et al. Dec 2015 A1
20160004690 Bangalore et al. Jan 2016 A1
20160005320 deCharms et al. Jan 2016 A1
20160012038 Edwards et al. Jan 2016 A1
20160014476 Caliendo, Jr. et al. Jan 2016 A1
20160018872 Tu et al. Jan 2016 A1
20160018900 Tu et al. Jan 2016 A1
20160018959 Yamashita et al. Jan 2016 A1
20160019886 Hong Jan 2016 A1
20160021414 Padi et al. Jan 2016 A1
20160026258 Ou et al. Jan 2016 A1
20160027431 Kurzweil et al. Jan 2016 A1
20160028666 Li Jan 2016 A1
20160029316 Mohan et al. Jan 2016 A1
20160034042 Joo Feb 2016 A1
20160034811 Paulik et al. Feb 2016 A1
20160036953 Lee et al. Feb 2016 A1
20160041809 Clayton et al. Feb 2016 A1
20160042735 Vibbert et al. Feb 2016 A1
20160042748 Jain et al. Feb 2016 A1
20160043905 Fiedler Feb 2016 A1
20160048666 Dey et al. Feb 2016 A1
20160050254 Rao et al. Feb 2016 A1
20160055422 Li Feb 2016 A1
20160062605 Agarwal et al. Mar 2016 A1
20160063094 Udupa et al. Mar 2016 A1
20160063998 Krishnamoorthy et al. Mar 2016 A1
20160070581 Soon-Shiong Mar 2016 A1
20160071516 Lee et al. Mar 2016 A1
20160071517 Beaver et al. Mar 2016 A1
20160071521 Haughay Mar 2016 A1
20160072940 Cronin Mar 2016 A1
20160077794 Kim et al. Mar 2016 A1
20160078860 Paulik et al. Mar 2016 A1
20160080165 Ehsani et al. Mar 2016 A1
20160080475 Singh et al. Mar 2016 A1
20160085295 Shimy et al. Mar 2016 A1
20160085827 Chadha et al. Mar 2016 A1
20160086116 Rao et al. Mar 2016 A1
20160086599 Kurata et al. Mar 2016 A1
20160088335 Zucchetta Mar 2016 A1
20160091967 Prokofieva et al. Mar 2016 A1
20160092434 Beilegarda Mar 2016 A1
20160092447 Pathurudeen et al. Mar 2016 A1
20160092766 Sainath et al. Mar 2016 A1
20160093291 Kim Mar 2016 A1
20160093298 Naik et al. Mar 2016 A1
20160093301 Beilegarda et al. Mar 2016 A1
20160093304 Kim et al. Mar 2016 A1
20160094700 Lee et al. Mar 2016 A1
20160094889 Venkataraman et al. Mar 2016 A1
20160094979 Naik et al. Mar 2016 A1
20160098991 Luo et al. Apr 2016 A1
20160098992 Renard et al. Apr 2016 A1
20160099892 Paiakovich et al. Apr 2016 A1
20160099984 Karagiannis et al. Apr 2016 A1
20160104480 Sharifi Apr 2016 A1
20160104486 Penilla et al. Apr 2016 A1
20160111091 Bakish Apr 2016 A1
20160112746 Zhang et al. Apr 2016 A1
20160117386 Ajmera et al. Apr 2016 A1
20160118048 Heide Apr 2016 A1
20160119338 Cheyer Apr 2016 A1
20160125048 Hamada May 2016 A1
20160125071 Gabbai May 2016 A1
20160132046 Beoughter et al. May 2016 A1
20160132484 Nauze et al. May 2016 A1
20160132488 Clark et al. May 2016 A1
20160133254 Vogel et al. May 2016 A1
20160139662 Dabhade May 2016 A1
20160140951 Agiomyrgiannakis et al. May 2016 A1
20160140962 Sharifi May 2016 A1
20160147725 Patten et al. May 2016 A1
20160148610 Kennewick, Jr. et al. May 2016 A1
20160150020 Farmer et al. May 2016 A1
20160154624 Son et al. Jun 2016 A1
20160154880 Hoarty Jun 2016 A1
20160155442 Kannan et al. Jun 2016 A1
20160155443 Khan et al. Jun 2016 A1
20160156574 Hum et al. Jun 2016 A1
20160162456 Munro et al. Jun 2016 A1
20160163311 Crook et al. Jun 2016 A1
20160163312 Naik et al. Jun 2016 A1
20160170966 Kolo Jun 2016 A1
20160173578 Sharma et al. Jun 2016 A1
20160173617 Allinson Jun 2016 A1
20160173960 Snibbe et al. Jun 2016 A1
20160179462 Bjorkengren Jun 2016 A1
20160179464 Reddy et al. Jun 2016 A1
20160179787 Deleeuw Jun 2016 A1
20160180840 Siddiq et al. Jun 2016 A1
20160180844 Vanblon et al. Jun 2016 A1
20160182410 Janakiraman et al. Jun 2016 A1
20160182709 Kim et al. Jun 2016 A1
20160188181 Smith Jun 2016 A1
20160188738 Gruber et al. Jun 2016 A1
20160189717 Kannan et al. Jun 2016 A1
20160196110 Yehoshua et al. Jul 2016 A1
20160198319 Huang et al. Jul 2016 A1
20160203002 Kannan et al. Jul 2016 A1
20160210551 Lee et al. Jul 2016 A1
20160210981 Lee Jul 2016 A1
20160212488 Os et al. Jul 2016 A1
20160217784 Gelfenbeyn et al. Jul 2016 A1
20160224540 Stewart et al. Aug 2016 A1
20160224774 Pender Aug 2016 A1
20160225372 Cheung et al. Aug 2016 A1
20160227107 Beaumont Aug 2016 A1
20160232500 Wang et al. Aug 2016 A1
20160239645 Heo et al. Aug 2016 A1
20160240187 Fleizach et al. Aug 2016 A1
20160240189 Lee et al. Aug 2016 A1
20160240192 Raghuvir Aug 2016 A1
20160247061 Trask et al. Aug 2016 A1
20160249319 Dotan-Cohen et al. Aug 2016 A1
20160253312 Rhodes Sep 2016 A1
20160253528 Gao et al. Sep 2016 A1
20160259623 Sumner et al. Sep 2016 A1
20160259656 Sumner et al. Sep 2016 A1
20160259779 Labský et al. Sep 2016 A1
20160260431 Newendorp et al. Sep 2016 A1
20160260433 Sumner et al. Sep 2016 A1
20160260434 Gelfenbeyn et al. Sep 2016 A1
20160260436 Lemay et al. Sep 2016 A1
20160266871 Schmid et al. Sep 2016 A1
20160267904 Biadsy et al. Sep 2016 A1
20160274938 Strinati et al. Sep 2016 A1
20160275941 Bellegarda et al. Sep 2016 A1
20160275947 Li et al. Sep 2016 A1
20160282824 Smallwood et al. Sep 2016 A1
20160282956 Ouyang et al. Sep 2016 A1
20160283185 Mclaren et al. Sep 2016 A1
20160284005 Daniel et al. Sep 2016 A1
20160284199 Dotan-Cohen et al. Sep 2016 A1
20160285808 Franklin et al. Sep 2016 A1
20160286045 Shaltiel et al. Sep 2016 A1
20160293157 Chen et al. Oct 2016 A1
20160293168 Chen Oct 2016 A1
20160294755 Prabhu Oct 2016 A1
20160299685 Zhai et al. Oct 2016 A1
20160299882 Hegerty et al. Oct 2016 A1
20160299883 Zhu et al. Oct 2016 A1
20160299977 Hreha Oct 2016 A1
20160300571 Foerster et al. Oct 2016 A1
20160301639 Liu et al. Oct 2016 A1
20160307566 Beilegarda Oct 2016 A1
20160308799 Schubert et al. Oct 2016 A1
20160313906 Kilchenko et al. Oct 2016 A1
20160314788 Jitkoff et al. Oct 2016 A1
20160314789 Marcheret et al. Oct 2016 A1
20160314792 Alvarez et al. Oct 2016 A1
20160315996 Ha et al. Oct 2016 A1
20160317924 Tanaka et al. Nov 2016 A1
20160321239 Iso-Sipilä et al. Nov 2016 A1
20160321261 Spasojevic et al. Nov 2016 A1
20160321358 Kanani et al. Nov 2016 A1
20160322043 Beilegarda Nov 2016 A1
20160322044 Jung et al. Nov 2016 A1
20160322045 Hatfield et al. Nov 2016 A1
20160322048 Amano et al. Nov 2016 A1
20160322050 Wang et al. Nov 2016 A1
20160328147 Zhang et al. Nov 2016 A1
20160328205 Agrawal et al. Nov 2016 A1
20160328893 Cordova et al. Nov 2016 A1
20160329060 Ito et al. Nov 2016 A1
20160334973 Reckhow et al. Nov 2016 A1
20160335532 Sanghavi et al. Nov 2016 A1
20160336007 Hanazawa et al. Nov 2016 A1
20160336010 Lindahl Nov 2016 A1
20160336011 Koll et al. Nov 2016 A1
20160336024 Choi et al. Nov 2016 A1
20160337299 Lane et al. Nov 2016 A1
20160337301 Rollins et al. Nov 2016 A1
20160342317 Lim et al. Nov 2016 A1
20160342685 Basu et al. Nov 2016 A1
20160342781 Jeon Nov 2016 A1
20160350650 Leeman-Munk et al. Dec 2016 A1
20160351190 Piernot et al. Dec 2016 A1
20160352567 Robbins et al. Dec 2016 A1
20160357304 Hatori et al. Dec 2016 A1
20160357728 Bellegarda et al. Dec 2016 A1
20160357790 Elkington et al. Dec 2016 A1
20160357861 Carlhian et al. Dec 2016 A1
20160357870 Hentschel et al. Dec 2016 A1
20160358598 Williams et al. Dec 2016 A1
20160358600 Nallasamy et al. Dec 2016 A1
20160358619 Ramprashad et al. Dec 2016 A1
20160359771 Sridhar Dec 2016 A1
20160360039 Sanghavi et al. Dec 2016 A1
20160360336 Gross et al. Dec 2016 A1
20160360382 Gross et al. Dec 2016 A1
20160364378 Futrell et al. Dec 2016 A1
20160365101 Foy et al. Dec 2016 A1
20160371250 Rhodes Dec 2016 A1
20160372112 Miller et al. Dec 2016 A1
20160372119 Sak et al. Dec 2016 A1
20160378747 Orr et al. Dec 2016 A1
20160379091 Lin et al. Dec 2016 A1
20160379626 Deisher et al. Dec 2016 A1
20160379632 Hoffmeister et al. Dec 2016 A1
20160379633 Lehman et al. Dec 2016 A1
20160379639 Weinstein et al. Dec 2016 A1
20160379641 Liu et al. Dec 2016 A1
20170003931 Dvortsov et al. Jan 2017 A1
20170004824 Yoo et al. Jan 2017 A1
20170005818 Gould Jan 2017 A1
20170011091 Chehreghani Jan 2017 A1
20170011303 Annapureddy et al. Jan 2017 A1
20170011742 Jing et al. Jan 2017 A1
20170013124 Havelka et al. Jan 2017 A1
20170013331 Watanabe et al. Jan 2017 A1
20170018271 Khan et al. Jan 2017 A1
20170019987 Dragone et al. Jan 2017 A1
20170023963 Davis et al. Jan 2017 A1
20170025124 Mixter et al. Jan 2017 A1
20170026318 Daniel et al. Jan 2017 A1
20170026509 Rand Jan 2017 A1
20170031576 Saoji et al. Feb 2017 A1
20170032783 Lord et al. Feb 2017 A1
20170032787 Dayal Feb 2017 A1
20170032791 Elson et al. Feb 2017 A1
20170039283 Bennett et al. Feb 2017 A1
20170039475 Cheyer et al. Feb 2017 A1
20170040002 Basson et al. Feb 2017 A1
20170047063 Ohmura et al. Feb 2017 A1
20170053652 Choi et al. Feb 2017 A1
20170055895 Jardins et al. Mar 2017 A1
20170060853 Lee et al. Mar 2017 A1
20170061423 Bryant et al. Mar 2017 A1
20170068423 Napolitano et al. Mar 2017 A1
20170068513 Stasior et al. Mar 2017 A1
20170068550 Zeitlin Mar 2017 A1
20170068670 Orr et al. Mar 2017 A1
20170069308 Aleksic et al. Mar 2017 A1
20170075653 Dawidowsky et al. Mar 2017 A1
20170076720 Gopalan et al. Mar 2017 A1
20170076721 Bargetzi et al. Mar 2017 A1
20170078490 Kaminsky et al. Mar 2017 A1
20170083179 Gruber et al. Mar 2017 A1
20170083285 Meyers et al. Mar 2017 A1
20170083504 Huang Mar 2017 A1
20170084277 Sharifi Mar 2017 A1
20170085547 De Aguiar et al. Mar 2017 A1
20170090569 Levesque Mar 2017 A1
20170091168 Beilegarda et al. Mar 2017 A1
20170091169 Beilegarda et al. Mar 2017 A1
20170091612 Gruber et al. Mar 2017 A1
20170092259 Jeon Mar 2017 A1
20170092270 Newendorp et al. Mar 2017 A1
20170092278 Evermann et al. Mar 2017 A1
20170093356 Cudak et al. Mar 2017 A1
20170102837 Toumpelis Apr 2017 A1
20170102915 Kuscher et al. Apr 2017 A1
20170103749 Zhao et al. Apr 2017 A1
20170105190 Logan et al. Apr 2017 A1
20170110117 Chakladar et al. Apr 2017 A1
20170116177 Walia Apr 2017 A1
20170116982 Gelfenbeyn et al. Apr 2017 A1
20170116989 Yadgar et al. Apr 2017 A1
20170124190 Wang et al. May 2017 A1
20170125016 Wang May 2017 A1
20170127124 Wilson et al. May 2017 A9
20170131778 Iyer May 2017 A1
20170132019 Karashchuk et al. May 2017 A1
20170132199 Vescovi et al. May 2017 A1
20170133007 Drewes May 2017 A1
20170140041 Dotan-Cohen et al. May 2017 A1
20170140644 Hwang et al. May 2017 A1
20170140760 Sachdev May 2017 A1
20170147841 Stagg et al. May 2017 A1
20170148044 Fukuda et al. May 2017 A1
20170154033 Lee Jun 2017 A1
20170154055 Dimson et al. Jun 2017 A1
20170155940 Jin et al. Jun 2017 A1
20170161018 Lemay et al. Jun 2017 A1
20170161268 Badaskar Jun 2017 A1
20170161293 Ionescu et al. Jun 2017 A1
20170161393 Oh et al. Jun 2017 A1
20170162191 Grost et al. Jun 2017 A1
20170162203 Huang et al. Jun 2017 A1
20170169818 Vanblon et al. Jun 2017 A1
20170169819 Mese et al. Jun 2017 A1
20170177547 Ciereszko et al. Jun 2017 A1
20170178619 Naik et al. Jun 2017 A1
20170178620 Fleizach et al. Jun 2017 A1
20170178626 Gruber et al. Jun 2017 A1
20170180499 Gelfenbeyn et al. Jun 2017 A1
20170185375 Martel et al. Jun 2017 A1
20170185581 Bojja et al. Jun 2017 A1
20170186429 Giuli et al. Jun 2017 A1
20170187711 Joo et al. Jun 2017 A1
20170193083 Bhatt et al. Jul 2017 A1
20170195493 Sudarsan et al. Jul 2017 A1
20170195636 Child et al. Jul 2017 A1
20170199870 Zheng et al. Jul 2017 A1
20170199874 Patel et al. Jul 2017 A1
20170200066 Wang et al. Jul 2017 A1
20170201609 Salmenkaita et al. Jul 2017 A1
20170201613 Engelke et al. Jul 2017 A1
20170206899 Bryant et al. Jul 2017 A1
20170215052 Koum et al. Jul 2017 A1
20170221486 Kurata et al. Aug 2017 A1
20170223189 Meredith et al. Aug 2017 A1
20170227935 Su et al. Aug 2017 A1
20170228367 Pasupalak et al. Aug 2017 A1
20170228382 Haviv et al. Aug 2017 A1
20170230429 Garmark et al. Aug 2017 A1
20170230497 Kim et al. Aug 2017 A1
20170230709 Van Os et al. Aug 2017 A1
20170235361 Rigazio et al. Aug 2017 A1
20170235618 Lin et al. Aug 2017 A1
20170235721 Almosallam et al. Aug 2017 A1
20170236512 Williams et al. Aug 2017 A1
20170236514 Nelson Aug 2017 A1
20170238039 Sabattini Aug 2017 A1
20170242653 Lang et al. Aug 2017 A1
20170242657 Jarvis et al. Aug 2017 A1
20170243468 Dotan-Cohen et al. Aug 2017 A1
20170243576 Millington et al. Aug 2017 A1
20170243586 Civelli et al. Aug 2017 A1
20170256256 Wang et al. Sep 2017 A1
20170263247 Kang et al. Sep 2017 A1
20170263248 Gruber et al. Sep 2017 A1
20170263249 Akbacak et al. Sep 2017 A1
20170264451 Yu et al. Sep 2017 A1
20170264711 Natarajan et al. Sep 2017 A1
20170270912 Levit et al. Sep 2017 A1
20170278514 Mathias et al. Sep 2017 A1
20170285915 Napolitano et al. Oct 2017 A1
20170286397 Gonzalez Oct 2017 A1
20170287472 Ogawa et al. Oct 2017 A1
20170289305 Liensberger et al. Oct 2017 A1
20170295446 Shivappa Oct 2017 A1
20170308609 Berkhin et al. Oct 2017 A1
20170311005 Lin Oct 2017 A1
20170316775 Le et al. Nov 2017 A1
20170316782 Haughay Nov 2017 A1
20170319123 Voss et al. Nov 2017 A1
20170323637 Naik Nov 2017 A1
20170329466 Krenkler Nov 2017 A1
20170329490 Esinovskaya et al. Nov 2017 A1
20170329572 Shah et al. Nov 2017 A1
20170329630 Jann et al. Nov 2017 A1
20170330567 Van Wissen et al. Nov 2017 A1
20170337035 Choudhary et al. Nov 2017 A1
20170337478 Sarikaya et al. Nov 2017 A1
20170345411 Raitio et al. Nov 2017 A1
20170345420 Barnett, Jr. Nov 2017 A1
20170345429 Hardee et al. Nov 2017 A1
20170346949 Sanghavi et al. Nov 2017 A1
20170351487 Avilés-Casco et al. Dec 2017 A1
20170352346 Paulik et al. Dec 2017 A1
20170352350 Booker et al. Dec 2017 A1
20170357478 Piersol et al. Dec 2017 A1
20170357632 Pagallo et al. Dec 2017 A1
20170357633 Wang et al. Dec 2017 A1
20170357637 Nell et al. Dec 2017 A1
20170357640 Bellegarda et al. Dec 2017 A1
20170357716 Bellegarda et al. Dec 2017 A1
20170358300 Laurens et al. Dec 2017 A1
20170358301 Raitio et al. Dec 2017 A1
20170358302 Orr et al. Dec 2017 A1
20170358303 Walker, II et al. Dec 2017 A1
20170358304 Castillo et al. Dec 2017 A1
20170358305 Kudurshian et al. Dec 2017 A1
20170358317 James Dec 2017 A1
20170365251 Park et al. Dec 2017 A1
20170371509 Jung et al. Dec 2017 A1
20170371885 Aggarwal et al. Dec 2017 A1
20170374093 Dhar et al. Dec 2017 A1
20170374176 Agrawal et al. Dec 2017 A1
20180005112 Iso-Sipila et al. Jan 2018 A1
20180007060 Leblang et al. Jan 2018 A1
20180007096 Levin et al. Jan 2018 A1
20180007538 Naik et al. Jan 2018 A1
20180012596 Piernot et al. Jan 2018 A1
20180018248 Bhargava et al. Jan 2018 A1
20180024985 Asano Jan 2018 A1
20180033431 Newendorp et al. Feb 2018 A1
20180033436 Zhou Feb 2018 A1
20180047201 Filev et al. Feb 2018 A1
20180047406 Park Feb 2018 A1
20180052909 Sharifi et al. Feb 2018 A1
20180054505 Hart et al. Feb 2018 A1
20180060032 Boesen Mar 2018 A1
20180060301 Li et al. Mar 2018 A1
20180060312 Won Mar 2018 A1
20180061400 Carbune et al. Mar 2018 A1
20180061401 Sarikaya et al. Mar 2018 A1
20180062691 Barnett, Jr. Mar 2018 A1
20180063308 Crystal et al. Mar 2018 A1
20180063324 Van Meter, II Mar 2018 A1
20180063624 Boesen Mar 2018 A1
20180067904 Li Mar 2018 A1
20180067914 Chen et al. Mar 2018 A1
20180067918 Beilegarda et al. Mar 2018 A1
20180069743 Bakken et al. Mar 2018 A1
20180075847 Lee et al. Mar 2018 A1
20180088969 Vanblon et al. Mar 2018 A1
20180089166 Meyer et al. Mar 2018 A1
20180089588 Ravi et al. Mar 2018 A1
20180090143 Saddler et al. Mar 2018 A1
20180091847 Wu et al. Mar 2018 A1
20180096683 James et al. Apr 2018 A1
20180096690 Mixter et al. Apr 2018 A1
20180102914 Kawachi et al. Apr 2018 A1
20180107917 Hewavitharana et al. Apr 2018 A1
20180107945 Gao et al. Apr 2018 A1
20180108346 Paulik et al. Apr 2018 A1
20180113673 Sheynblat Apr 2018 A1
20180121432 Parson et al. May 2018 A1
20180122376 Kojima May 2018 A1
20180122378 Mixter et al. May 2018 A1
20180129967 Herreshoff May 2018 A1
20180130470 Lemay et al. May 2018 A1
20180130471 Trufinescu et al. May 2018 A1
20180137856 Gilbert May 2018 A1
20180137857 Zhou et al. May 2018 A1
20180137865 Ling May 2018 A1
20180143967 Anbazhagan et al. May 2018 A1
20180144615 Kinney et al. May 2018 A1
20180144746 Mishra et al. May 2018 A1
20180144748 Leong May 2018 A1
20180146089 Rauenbuehler et al. May 2018 A1
20180150744 Orr et al. May 2018 A1
20180157372 Kurabayashi Jun 2018 A1
20180157992 Susskind et al. Jun 2018 A1
20180158548 Taheri et al. Jun 2018 A1
20180166076 Higuchi et al. Jun 2018 A1
20180167884 Dawid et al. Jun 2018 A1
20180173403 Carbune et al. Jun 2018 A1
20180173542 Chan et al. Jun 2018 A1
20180174406 Arashi et al. Jun 2018 A1
20180174576 Soltau et al. Jun 2018 A1
20180174597 Lee et al. Jun 2018 A1
20180182376 Gysel et al. Jun 2018 A1
20180188840 Tamura et al. Jul 2018 A1
20180190273 Karimli et al. Jul 2018 A1
20180190279 Anderson et al. Jul 2018 A1
20180191670 Suyama Jul 2018 A1
20180196683 Radebaugh et al. Jul 2018 A1
20180210874 Fuxman et al. Jul 2018 A1
20180213448 Segal et al. Jul 2018 A1
20180218735 Hunt et al. Aug 2018 A1
20180225274 Tommy et al. Aug 2018 A1
20180232203 Gelfenbeyn et al. Aug 2018 A1
20180233140 Koishida et al. Aug 2018 A1
20180247065 Rhee et al. Aug 2018 A1
20180253209 Jaygarl et al. Sep 2018 A1
20180253652 Palzer et al. Sep 2018 A1
20180260680 Finkelstein et al. Sep 2018 A1
20180268106 Velaga Sep 2018 A1
20180270343 Rout et al. Sep 2018 A1
20180275839 Kocienda et al. Sep 2018 A1
20180276197 Nell et al. Sep 2018 A1
20180277113 Hartung et al. Sep 2018 A1
20180278740 Choi et al. Sep 2018 A1
20180285056 Cutler et al. Oct 2018 A1
20180293984 Lindahl Oct 2018 A1
20180293988 Huang et al. Oct 2018 A1
20180308477 Nagasaka Oct 2018 A1
20180308480 Jang et al. Oct 2018 A1
20180308485 Kudurshian et al. Oct 2018 A1
20180308486 Saddler et al. Oct 2018 A1
20180314552 Kim et al. Nov 2018 A1
20180315416 Berthelsen et al. Nov 2018 A1
20180322112 Bellegarda et al. Nov 2018 A1
20180322881 Min et al. Nov 2018 A1
20180329677 Gruber et al. Nov 2018 A1
20180329957 Frazzingaro et al. Nov 2018 A1
20180329982 Patel et al. Nov 2018 A1
20180329998 Thomson et al. Nov 2018 A1
20180330714 Paulik et al. Nov 2018 A1
20180330721 Thomson et al. Nov 2018 A1
20180330722 Newendorp et al. Nov 2018 A1
20180330723 Acero et al. Nov 2018 A1
20180330729 Golipour et al. Nov 2018 A1
20180330730 Garg et al. Nov 2018 A1
20180330731 Zeitlin et al. Nov 2018 A1
20180330733 Orr et al. Nov 2018 A1
20180330737 Paulik et al. Nov 2018 A1
20180332118 Phipps et al. Nov 2018 A1
20180336184 Bellegarda et al. Nov 2018 A1
20180336197 Skilling et al. Nov 2018 A1
20180336275 Graham et al. Nov 2018 A1
20180336439 Kliger et al. Nov 2018 A1
20180336449 Adan et al. Nov 2018 A1
20180336892 Kim et al. Nov 2018 A1
20180336894 Graham et al. Nov 2018 A1
20180336904 Piercy et al. Nov 2018 A1
20180336905 Kim et al. Nov 2018 A1
20180336920 Bastian et al. Nov 2018 A1
20180341643 Alders et al. Nov 2018 A1
20180343557 Naik et al. Nov 2018 A1
20180349084 Nagasaka et al. Dec 2018 A1
20180349346 Hatori et al. Dec 2018 A1
20180349349 Beilegarda et al. Dec 2018 A1
20180349447 Maccartney et al. Dec 2018 A1
20180349472 Kohlschuetter et al. Dec 2018 A1
20180350345 Naik Dec 2018 A1
20180350353 Gruber et al. Dec 2018 A1
20180357073 Johnson et al. Dec 2018 A1
20180357308 Cheyer Dec 2018 A1
20180358015 Cash et al. Dec 2018 A1
20180358019 Mont-Reynaud Dec 2018 A1
20180365653 Cleaver et al. Dec 2018 A1
20180366105 Kim Dec 2018 A1
20180373487 Gruber et al. Dec 2018 A1
20180374484 Huang et al. Dec 2018 A1
20190012141 Piersol et al. Jan 2019 A1
20190012449 Cheyer Jan 2019 A1
20190013018 Rekstad Jan 2019 A1
20190013025 Alcorn et al. Jan 2019 A1
20190014450 Gruber et al. Jan 2019 A1
20190019077 Griffin et al. Jan 2019 A1
20190027152 Huang et al. Jan 2019 A1
20190034040 Shah et al. Jan 2019 A1
20190034826 Ahmad et al. Jan 2019 A1
20190035405 Haughay Jan 2019 A1
20190042059 Baer Feb 2019 A1
20190042627 Osotio et al. Feb 2019 A1
20190043507 Huang et al. Feb 2019 A1
20190045040 Lee et al. Feb 2019 A1
20190051309 Kim et al. Feb 2019 A1
20190057697 Giuli et al. Feb 2019 A1
20190065144 Sumner Feb 2019 A1
20190065993 Srinivasan et al. Feb 2019 A1
20190066674 Jaygarl et al. Feb 2019 A1
20190068810 Okamoto et al. Feb 2019 A1
20190073998 Leblang et al. Mar 2019 A1
20190074009 Kim et al. Mar 2019 A1
20190074015 Orr et al. Mar 2019 A1
20190074016 Orr et al. Mar 2019 A1
20190079476 Funes Mar 2019 A1
20190080685 Johnson, Jr. Mar 2019 A1
20190080698 Miller Mar 2019 A1
20190087412 Seyed Ibrahim et al. Mar 2019 A1
20190087455 He et al. Mar 2019 A1
20190095050 Gruber et al. Mar 2019 A1
20190095171 Carson et al. Mar 2019 A1
20190102378 Piernot et al. Apr 2019 A1
20190102381 Futrell et al. Apr 2019 A1
20190103103 Ni et al. Apr 2019 A1
20190103112 Walker Apr 2019 A1
20190116264 Sanghavi et al. Apr 2019 A1
20190122666 Raitio et al. Apr 2019 A1
20190122692 Binder et al. Apr 2019 A1
20190124019 Leon et al. Apr 2019 A1
20190129615 Sundar et al. May 2019 A1
20190132694 Hanes et al. May 2019 A1
20190139541 Andersen et al. May 2019 A1
20190141494 Gross et al. May 2019 A1
20190147880 Booker et al. May 2019 A1
20190149972 Parks et al. May 2019 A1
20190156830 Devaraj et al. May 2019 A1
20190158994 Gross et al. May 2019 A1
20190164546 Piernot et al. May 2019 A1
20190172467 Kim et al. Jun 2019 A1
20190179607 Thangarathnam et al. Jun 2019 A1
20190179890 Evermann Jun 2019 A1
20190180770 Kothari et al. Jun 2019 A1
20190182176 Niewczas Jun 2019 A1
20190187787 White et al. Jun 2019 A1
20190188326 Daianu et al. Jun 2019 A1
20190188328 Oyenan et al. Jun 2019 A1
20190189118 Piernot et al. Jun 2019 A1
20190189125 Van Os et al. Jun 2019 A1
20190197053 Graham et al. Jun 2019 A1
20190213999 Grupen et al. Jul 2019 A1
20190214024 Gruber et al. Jul 2019 A1
20190220245 Martel et al. Jul 2019 A1
20190220246 Orr et al. Jul 2019 A1
20190220247 Lemay et al. Jul 2019 A1
20190236130 Li et al. Aug 2019 A1
20190236459 Cheyer et al. Aug 2019 A1
20190244618 Newendorp et al. Aug 2019 A1
20190251339 Hawker Aug 2019 A1
20190251960 Maker et al. Aug 2019 A1
20190259386 Kudurshian et al. Aug 2019 A1
20190272825 O'Malley et al. Sep 2019 A1
20190272831 Kajarekar Sep 2019 A1
20190273963 Jobanputra et al. Sep 2019 A1
20190278841 Pusateri et al. Sep 2019 A1
20190287522 Lambourne et al. Sep 2019 A1
20190295544 Garcia et al. Sep 2019 A1
20190303442 Peitz et al. Oct 2019 A1
20190310765 Napolitano et al. Oct 2019 A1
20190318739 Garg et al. Oct 2019 A1
20190339784 Lemay et al. Nov 2019 A1
20190341027 Vescovi et al. Nov 2019 A1
20190341056 Paulik et al. Nov 2019 A1
20190347063 Liu et al. Nov 2019 A1
20190348022 Park et al. Nov 2019 A1
20190354548 Orr et al. Nov 2019 A1
20190355346 Beilegarda Nov 2019 A1
20190361729 Gruber et al. Nov 2019 A1
20190369748 Hindi et al. Dec 2019 A1
20190369842 Dolbakian et al. Dec 2019 A1
20190370292 Irani et al. Dec 2019 A1
20190370323 Davidson et al. Dec 2019 A1
20190371315 Newendorp et al. Dec 2019 A1
20190371316 Weinstein et al. Dec 2019 A1
20190371317 Irani et al. Dec 2019 A1
20190371331 Schramm et al. Dec 2019 A1
20190372902 Piersol Dec 2019 A1
20190373102 Weinstein et al. Dec 2019 A1
20200019609 Yu et al. Jan 2020 A1
20200042334 Radebaugh et al. Feb 2020 A1
20200043482 Gruber et al. Feb 2020 A1
20200043489 Bradley et al. Feb 2020 A1
20200044485 Smith et al. Feb 2020 A1
20200053218 Gray Feb 2020 A1
20200058299 Lee et al. Feb 2020 A1
20200075018 Chen Mar 2020 A1
20200091958 Curtis et al. Mar 2020 A1
20200092625 Raffle Mar 2020 A1
20200098362 Piernot et al. Mar 2020 A1
20200098368 Lemay Mar 2020 A1
20200104357 Bellegarda et al. Apr 2020 A1
20200104362 Yang et al. Apr 2020 A1
20200104369 Bellegarda Apr 2020 A1
20200104668 Sanghavi et al. Apr 2020 A1
20200105260 Piernot et al. Apr 2020 A1
20200118568 Kudurshian et al. Apr 2020 A1
20200125820 Kim et al. Apr 2020 A1
20200127988 Bradley et al. Apr 2020 A1
20200135209 Delfarah et al. Apr 2020 A1
20200137230 Spohrer Apr 2020 A1
20200143812 Walker, II et al. May 2020 A1
20200159579 Shear et al. May 2020 A1
20200160179 Chien et al. May 2020 A1
20200169637 Sanghavi et al. May 2020 A1
20200175566 Bender et al. Jun 2020 A1
20200184964 Myers et al. Jun 2020 A1
20200193997 Piernot et al. Jun 2020 A1
20200221155 Hansen et al. Jul 2020 A1
20200227034 Summa et al. Jul 2020 A1
20200227044 Lindahl Jul 2020 A1
20200249985 Zeitlin Aug 2020 A1
20200252508 Gray Aug 2020 A1
20200267222 Phipps et al. Aug 2020 A1
20200272485 Karashchuk et al. Aug 2020 A1
20200279556 Gruber et al. Sep 2020 A1
20200279576 Binder et al. Sep 2020 A1
20200279627 Nida et al. Sep 2020 A1
20200285327 Hindi et al. Sep 2020 A1
20200286472 Newendorp et al. Sep 2020 A1
20200286493 Orr et al. Sep 2020 A1
20200302356 Gruber et al. Sep 2020 A1
20200302919 Greborio et al. Sep 2020 A1
20200302925 Shah et al. Sep 2020 A1
20200302932 Schramm et al. Sep 2020 A1
20200304955 Gross et al. Sep 2020 A1
20200304972 Gross et al. Sep 2020 A1
20200305084 Freeman et al. Sep 2020 A1
20200312317 Kothari et al. Oct 2020 A1
20200314191 Madhavan et al. Oct 2020 A1
20200319850 Stasior et al. Oct 2020 A1
20200327895 Gruber et al. Oct 2020 A1
20200356243 Meyer et al. Nov 2020 A1
20200357391 Ghoshal et al. Nov 2020 A1
20200357406 York et al. Nov 2020 A1
20200357409 Sun et al. Nov 2020 A1
20200364411 Evermann Nov 2020 A1
20200365155 Milden Nov 2020 A1
20200372904 Vescovi et al. Nov 2020 A1
20200374243 Jina et al. Nov 2020 A1
20200379610 Ford et al. Dec 2020 A1
20200379640 Beilegarda et al. Dec 2020 A1
20200379726 Blatz et al. Dec 2020 A1
20200379727 Blatz et al. Dec 2020 A1
20200379728 Gada et al. Dec 2020 A1
20200380389 Eldeeb et al. Dec 2020 A1
20200380956 Rossi et al. Dec 2020 A1
20200380963 Chappidi et al. Dec 2020 A1
20200380966 Acero et al. Dec 2020 A1
20200380973 Novitchenko et al. Dec 2020 A1
20200380980 Shum et al. Dec 2020 A1
20200380985 Gada et al. Dec 2020 A1
20200382616 Vaishampayan et al. Dec 2020 A1
20200382635 Vora et al. Dec 2020 A1
20210006943 Gross et al. Jan 2021 A1
20210011557 Lemay et al. Jan 2021 A1
20210012776 Peterson et al. Jan 2021 A1
Foreign Referenced Citations (549)
Number Date Country
2014100581 Sep 2014 AU
2015203483 Jul 2015 AU
2015101171 Oct 2015 AU
2018100187 Mar 2018 AU
2017222436 Oct 2018 AU
2792412 Jul 2011 CA
2666438 Jun 2013 CA
1585479 Feb 2005 CN
101939740 Jan 2011 CN
101951553 Jan 2011 CN
101958958 Jan 2011 CN
101971250 Feb 2011 CN
101992779 Mar 2011 CN
102056026 May 2011 CN
102122506 Jul 2011 CN
102124515 Jul 2011 CN
102137085 Jul 2011 CN
102137193 Jul 2011 CN
102160043 Aug 2011 CN
102201235 Sep 2011 CN
102214187 Oct 2011 CN
102237088 Nov 2011 CN
102246136 Nov 2011 CN
202035047 Nov 2011 CN
102282609 Dec 2011 CN
202092650 Dec 2011 CN
102340590 Feb 2012 CN
102346557 Feb 2012 CN
102368256 Mar 2012 CN
102402985 Apr 2012 CN
102405463 Apr 2012 CN
102498457 Jun 2012 CN
102510426 Jun 2012 CN
102629246 Aug 2012 CN
102651217 Aug 2012 CN
102681896 Sep 2012 CN
102682769 Sep 2012 CN
102682771 Sep 2012 CN
102685295 Sep 2012 CN
102693725 Sep 2012 CN
102694909 Sep 2012 CN
202453859 Sep 2012 CN
102722478 Oct 2012 CN
102737104 Oct 2012 CN
102750087 Oct 2012 CN
102792320 Nov 2012 CN
102801853 Nov 2012 CN
102820033 Dec 2012 CN
102844738 Dec 2012 CN
102866828 Jan 2013 CN
102870065 Jan 2013 CN
102882752 Jan 2013 CN
102917004 Feb 2013 CN
102917271 Feb 2013 CN
102918493 Feb 2013 CN
102955652 Mar 2013 CN
103035240 Apr 2013 CN
103035251 Apr 2013 CN
103038728 Apr 2013 CN
103093334 May 2013 CN
103135916 Jun 2013 CN
103198831 Jul 2013 CN
103209369 Jul 2013 CN
103226949 Jul 2013 CN
103236260 Aug 2013 CN
103246638 Aug 2013 CN
103268315 Aug 2013 CN
103280218 Sep 2013 CN
103292437 Sep 2013 CN
103327063 Sep 2013 CN
103365279 Oct 2013 CN
103366741 Oct 2013 CN
103390016 Nov 2013 CN
103412789 Nov 2013 CN
103426428 Dec 2013 CN
103455234 Dec 2013 CN
103456306 Dec 2013 CN
103533143 Jan 2014 CN
103533154 Jan 2014 CN
103543902 Jan 2014 CN
103562863 Feb 2014 CN
103608859 Feb 2014 CN
103645876 Mar 2014 CN
103716454 Apr 2014 CN
103727948 Apr 2014 CN
103744761 Apr 2014 CN
103760984 Apr 2014 CN
103765385 Apr 2014 CN
103792985 May 2014 CN
103794212 May 2014 CN
103795850 May 2014 CN
103841268 Jun 2014 CN
103902373 Jul 2014 CN
103930945 Jul 2014 CN
103959751 Jul 2014 CN
203721183 Jul 2014 CN
103971680 Aug 2014 CN
104007832 Aug 2014 CN
104038621 Sep 2014 CN
104090652 Oct 2014 CN
104113471 Oct 2014 CN
104125322 Oct 2014 CN
104144377 Nov 2014 CN
104169837 Nov 2014 CN
104180815 Dec 2014 CN
104243699 Dec 2014 CN
104281259 Jan 2015 CN
104284257 Jan 2015 CN
104335207 Feb 2015 CN
104335234 Feb 2015 CN
104374399 Feb 2015 CN
104423625 Mar 2015 CN
104427104 Mar 2015 CN
104463552 Mar 2015 CN
104487929 Apr 2015 CN
104516522 Apr 2015 CN
104573472 Apr 2015 CN
104575501 Apr 2015 CN
104584010 Apr 2015 CN
104604274 May 2015 CN
104679472 Jun 2015 CN
104769584 Jul 2015 CN
104854583 Aug 2015 CN
104867492 Aug 2015 CN
104869342 Aug 2015 CN
104951077 Sep 2015 CN
104967748 Oct 2015 CN
104969289 Oct 2015 CN
104978963 Oct 2015 CN
105025051 Nov 2015 CN
105027197 Nov 2015 CN
105093526 Nov 2015 CN
105100356 Nov 2015 CN
105190607 Dec 2015 CN
105247511 Jan 2016 CN
105264524 Jan 2016 CN
105278681 Jan 2016 CN
105320251 Feb 2016 CN
105320726 Feb 2016 CN
105379234 Mar 2016 CN
105430186 Mar 2016 CN
105471705 Apr 2016 CN
105472587 Apr 2016 CN
105556592 May 2016 CN
105808200 Jul 2016 CN
105830048 Aug 2016 CN
105869641 Aug 2016 CN
106030699 Oct 2016 CN
106062734 Oct 2016 CN
106415412 Feb 2017 CN
106462383 Feb 2017 CN
106463114 Feb 2017 CN
106465074 Feb 2017 CN
106534469 Mar 2017 CN
106776581 May 2017 CN
107450800 Dec 2017 CN
107480161 Dec 2017 CN
107491468 Dec 2017 CN
107545262 Jan 2018 CN
107608998 Jan 2018 CN
107615378 Jan 2018 CN
107871500 Apr 2018 CN
107919123 Apr 2018 CN
107924313 Apr 2018 CN
107978313 May 2018 CN
108647681 Oct 2018 CN
109447234 Mar 2019 CN
109657629 Apr 2019 CN
110135411 Aug 2019 CN
110531860 Dec 2019 CN
110598671 Dec 2019 CN
110647274 Jan 2020 CN
110825469 Feb 2020 CN
202016008226 May 2017 DE
1094406 Apr 2001 EP
2309491 Apr 2011 EP
2329348 Jun 2011 EP
2339576 Jun 2011 EP
2355093 Aug 2011 EP
2393056 Dec 2011 EP
2400373 Dec 2011 EP
2431842 Mar 2012 EP
2523109 Nov 2012 EP
2523188 Nov 2012 EP
2551784 Jan 2013 EP
2555536 Feb 2013 EP
2575128 Apr 2013 EP
2632129 Aug 2013 EP
2639792 Sep 2013 EP
2669889 Dec 2013 EP
2672229 Dec 2013 EP
2672231 Dec 2013 EP
2675147 Dec 2013 EP
2680257 Jan 2014 EP
2683147 Jan 2014 EP
2683175 Jan 2014 EP
2672231 Apr 2014 EP
2717259 Apr 2014 EP
2725577 Apr 2014 EP
2733598 May 2014 EP
2733896 May 2014 EP
2743846 Jun 2014 EP
2760015 Jul 2014 EP
2781883 Sep 2014 EP
2787683 Oct 2014 EP
2801890 Nov 2014 EP
2801972 Nov 2014 EP
2801974 Nov 2014 EP
2824564 Jan 2015 EP
2849177 Mar 2015 EP
2879402 Jun 2015 EP
2881939 Jun 2015 EP
2891049 Jul 2015 EP
2930715 Oct 2015 EP
2938022 Oct 2015 EP
2940556 Nov 2015 EP
2947859 Nov 2015 EP
2950307 Dec 2015 EP
2957986 Dec 2015 EP
2985984 Feb 2016 EP
2891049 Mar 2016 EP
3032532 Jun 2016 EP
3035329 Jun 2016 EP
3038333 Jun 2016 EP
3115905 Jan 2017 EP
3125097 Feb 2017 EP
3224708 Oct 2017 EP
3246916 Nov 2017 EP
3300074 Mar 2018 EP
2983065 Aug 2018 EP
3392876 Oct 2018 EP
3401773 Nov 2018 EP
3506151 Jul 2019 EP
2001-325052 Nov 2001 JP
2002-41276 Feb 2002 JP
2007-34960 Feb 2007 JP
2007-235912 Sep 2007 JP
2011-33874 Feb 2011 JP
2011-41026 Feb 2011 JP
2011-45005 Mar 2011 JP
2011-59659 Mar 2011 JP
2011-81541 Apr 2011 JP
2011-525045 Sep 2011 JP
2011-237621 Nov 2011 JP
2011-238022 Nov 2011 JP
2011-250027 Dec 2011 JP
2012-14394 Jan 2012 JP
2012-502377 Jan 2012 JP
2012-22478 Feb 2012 JP
2012-33997 Feb 2012 JP
2012-37619 Feb 2012 JP
2012-63536 Mar 2012 JP
2012-508530 Apr 2012 JP
2012-89020 May 2012 JP
2012-116442 Jun 2012 JP
2012-142744 Jul 2012 JP
2012-147063 Aug 2012 JP
2012-150804 Aug 2012 JP
2012-518847 Aug 2012 JP
2012-211932 Nov 2012 JP
2013-37688 Feb 2013 JP
2013-46171 Mar 2013 JP
2013-511214 Mar 2013 JP
2013-65284 Apr 2013 JP
2013-73240 Apr 2013 JP
2013-513315 Apr 2013 JP
2013-80476 May 2013 JP
2013-517566 May 2013 JP
2013-134430 Jul 2013 JP
2013-134729 Jul 2013 JP
2013-140520 Jul 2013 JP
2013-527947 Jul 2013 JP
2013-528012 Jul 2013 JP
2013-148419 Aug 2013 JP
2013-156349 Aug 2013 JP
2013-200423 Oct 2013 JP
2013-205999 Oct 2013 JP
2013-238936 Nov 2013 JP
2013-258600 Dec 2013 JP
2014-2586 Jan 2014 JP
2014-10688 Jan 2014 JP
20145-2445 Jan 2014 JP
2014-26629 Feb 2014 JP
2014-45449 Mar 2014 JP
2014-507903 Mar 2014 JP
2014-60600 Apr 2014 JP
2014-72586 Apr 2014 JP
2014-77969 May 2014 JP
2014-89711 May 2014 JP
2014-109889 Jun 2014 JP
2014-124332 Jul 2014 JP
2014-126600 Jul 2014 JP
2014-140121 Jul 2014 JP
2014-518409 Jul 2014 JP
2014-142566 Aug 2014 JP
2014-145842 Aug 2014 JP
2014-146940 Aug 2014 JP
2014-150323 Aug 2014 JP
2014-519648 Aug 2014 JP
2014-191272 Oct 2014 JP
2014-219614 Nov 2014 JP
2014-222514 Nov 2014 JP
2015-4928 Jan 2015 JP
2015-8001 Jan 2015 JP
2015-12301 Jan 2015 JP
2015-18365 Jan 2015 JP
2015-501022 Jan 2015 JP
2015-504619 Feb 2015 JP
2015-41845 Mar 2015 JP
2015-52500 Mar 2015 JP
2015-60423 Mar 2015 JP
2015-81971 Apr 2015 JP
2015-83938 Apr 2015 JP
2015-94848 May 2015 JP
2015-514254 May 2015 JP
2015-519675 Jul 2015 JP
2015-524974 Aug 2015 JP
2015-526776 Sep 2015 JP
2015-527683 Sep 2015 JP
2015-528140 Sep 2015 JP
2015-528918 Oct 2015 JP
2015-531909 Nov 2015 JP
2016-504651 Feb 2016 JP
2016-508007 Mar 2016 JP
2016-71247 May 2016 JP
2016-119615 Jun 2016 JP
2016-151928 Aug 2016 JP
2016-524193 Aug 2016 JP
2016-536648 Nov 2016 JP
2017-19331 Jan 2017 JP
2017-516153 Jun 2017 JP
2017-537361 Dec 2017 JP
6291147 Feb 2018 JP
2018-525950 Sep 2018 JP
10-2011-0005937 Jan 2011 KR
10-2011-0013625 Feb 2011 KR
10-2011-0043644 Apr 2011 KR
10-1032792 May 2011 KR
10-2011-0068490 Jun 2011 KR
10-2011-0072847 Jun 2011 KR
10-2011-0086492 Jul 2011 KR
10-2011-0100620 Sep 2011 KR
10-2011-0113414 Oct 2011 KR
10-2011-0115134 Oct 2011 KR
10-2012-0020164 Mar 2012 KR
10-2012-0031722 Apr 2012 KR
10-2012-0066523 Jun 2012 KR
10-2012-0082371 Jul 2012 KR
10-2012-0084472 Jul 2012 KR
10-1178310 Aug 2012 KR
10-2012-0120316 Nov 2012 KR
10-2012-0137424 Dec 2012 KR
10-2012-0137435 Dec 2012 KR
10-2012-0137440 Dec 2012 KR
10-2012-0138826 Dec 2012 KR
10-2012-0139827 Dec 2012 KR
10-1193668 Dec 2012 KR
10-2013-0035983 Apr 2013 KR
10-2013-0090947 Aug 2013 KR
10-2013-0108563 Oct 2013 KR
10-1334342 Nov 2013 KR
10-2013-0131252 Dec 2013 KR
10-2013-0133629 Dec 2013 KR
10-2014-0024271 Feb 2014 KR
10-2014-0031283 Mar 2014 KR
10-2014-0033574 Mar 2014 KR
10-2014-0042994 Apr 2014 KR
10-2014-0055204 May 2014 KR
10-2014-0068752 Jun 2014 KR
10-2014-0088449 Jul 2014 KR
10-2014-0106715 Sep 2014 KR
10-2014-0147557 Dec 2014 KR
10-2015-0013631 Feb 2015 KR
10-1506510 Mar 2015 KR
10-2015-0038375 Apr 2015 KR
10-2015-0039380 Apr 2015 KR
10-2015-0041974 Apr 2015 KR
10-2015-0043512 Apr 2015 KR
10-2015-0095624 Aug 2015 KR
10-1555742 Sep 2015 KR
10-2015-0113127 Oct 2015 KR
10-2015-0138109 Dec 2015 KR
10-2016-0004351 Jan 2016 KR
10-2016-0010523 Jan 2016 KR
10-2016-0040279 Apr 2016 KR
10-2016-0055839 May 2016 KR
10-2016-0065503 Jun 2016 KR
10-2016-0101198 Aug 2016 KR
10-2016-0105847 Sep 2016 KR
10-2016-0121585 Oct 2016 KR
10-2016-0140694 Dec 2016 KR
10-2017-0036805 Apr 2017 KR
10-2017-0107058 Sep 2017 KR
10-2018-0032632 Mar 2018 KR
10-2018-0034637 Apr 2018 KR
10-1959328 Mar 2019 KR
201110108 Mar 2011 TW
201142823 Dec 2011 TW
201227715 Jul 2012 TW
201245989 Nov 2012 TW
201312548 Mar 2013 TW
2008142472 Nov 2008 WO
2010054373 May 2010 WO
2011028842 Mar 2011 WO
2011057346 May 2011 WO
2011060106 May 2011 WO
2011082521 Jul 2011 WO
2011088053 Jul 2011 WO
2011093025 Aug 2011 WO
2011100142 Aug 2011 WO
2011116309 Sep 2011 WO
2011123122 Oct 2011 WO
2011133543 Oct 2011 WO
2011133573 Oct 2011 WO
2011097309 Dec 2011 WO
2011150730 Dec 2011 WO
2011163350 Dec 2011 WO
2011088053 Jan 2012 WO
2012008434 Jan 2012 WO
2012019020 Feb 2012 WO
2012019637 Feb 2012 WO
2012063260 May 2012 WO
2012092562 Jul 2012 WO
2012112331 Aug 2012 WO
2012129231 Sep 2012 WO
2012063260 Oct 2012 WO
2012135157 Oct 2012 WO
2012154317 Nov 2012 WO
2012154748 Nov 2012 WO
2012155079 Nov 2012 WO
2012167168 Dec 2012 WO
2012173902 Dec 2012 WO
2013009578 Jan 2013 WO
2013022135 Feb 2013 WO
2013022223 Feb 2013 WO
2013048880 Apr 2013 WO
2013049358 Apr 2013 WO
2013057153 Apr 2013 WO
2013118988 Aug 2013 WO
2013122310 Aug 2013 WO
2013133533 Sep 2013 WO
2013137660 Sep 2013 WO
2013163113 Oct 2013 WO
2013163857 Nov 2013 WO
2013169842 Nov 2013 WO
2013173504 Nov 2013 WO
2013173511 Nov 2013 WO
2013176847 Nov 2013 WO
2013184953 Dec 2013 WO
2013184990 Dec 2013 WO
2014003138 Jan 2014 WO
2014004544 Jan 2014 WO
2014021967 Feb 2014 WO
2014022148 Feb 2014 WO
2014028735 Feb 2014 WO
2014028797 Feb 2014 WO
2014031505 Feb 2014 WO
2014032461 Mar 2014 WO
2014047047 Mar 2014 WO
2014066352 May 2014 WO
2014070872 May 2014 WO
2014078965 May 2014 WO
2014093339 Jun 2014 WO
2014096506 Jun 2014 WO
2014124332 Aug 2014 WO
2014137074 Sep 2014 WO
2014138604 Sep 2014 WO
2014143959 Sep 2014 WO
2014144395 Sep 2014 WO
2014144579 Sep 2014 WO
2014144949 Sep 2014 WO
2014151153 Sep 2014 WO
2014124332 Oct 2014 WO
2014159578 Oct 2014 WO
2014159581 Oct 2014 WO
2014162570 Oct 2014 WO
2014169269 Oct 2014 WO
2014173189 Oct 2014 WO
2013173504 Dec 2014 WO
2014197336 Dec 2014 WO
2014197635 Dec 2014 WO
2014197730 Dec 2014 WO
2014200728 Dec 2014 WO
2014204659 Dec 2014 WO
2014210392 Dec 2014 WO
2015018440 Feb 2015 WO
2015020942 Feb 2015 WO
2015029379 Mar 2015 WO
2015030796 Mar 2015 WO
2015041882 Mar 2015 WO
2015041892 Mar 2015 WO
2015047932 Apr 2015 WO
2015053485 Apr 2015 WO
2015084659 Jun 2015 WO
2015092943 Jun 2015 WO
2015094169 Jun 2015 WO
2015094369 Jun 2015 WO
2015098306 Jul 2015 WO
2015099939 Jul 2015 WO
2015116151 Aug 2015 WO
2015151133 Oct 2015 WO
2015153310 Oct 2015 WO
2015157013 Oct 2015 WO
2015183401 Dec 2015 WO
2015183699 Dec 2015 WO
2015184186 Dec 2015 WO
2015184387 Dec 2015 WO
2015200207 Dec 2015 WO
2016027933 Feb 2016 WO
2016028946 Feb 2016 WO
2016033257 Mar 2016 WO
2016039992 Mar 2016 WO
2016052164 Apr 2016 WO
2016054230 Apr 2016 WO
2016057268 Apr 2016 WO
2016075081 May 2016 WO
2016085775 Jun 2016 WO
2016085776 Jun 2016 WO
2016100139 Jun 2016 WO
2016111881 Jul 2016 WO
2016144840 Sep 2016 WO
2016144982 Sep 2016 WO
2016144983 Sep 2016 WO
2016175354 Nov 2016 WO
2016187149 Nov 2016 WO
2016190950 Dec 2016 WO
2016209444 Dec 2016 WO
2016209924 Dec 2016 WO
2017044160 Mar 2017 WO
2017044257 Mar 2017 WO
2017044260 Mar 2017 WO
2017044629 Mar 2017 WO
2017053311 Mar 2017 WO
2017058293 Apr 2017 WO
2017059388 Apr 2017 WO
2017071420 May 2017 WO
2017142116 Aug 2017 WO
2017160487 Sep 2017 WO
2017213682 Dec 2017 WO
2017218194 Dec 2017 WO
2018009397 Jan 2018 WO
2018213401 Nov 2018 WO
2018213415 Nov 2018 WO
2019067930 Apr 2019 WO
2019078576 Apr 2019 WO
2019079017 Apr 2019 WO
2019147429 Aug 2019 WO
2019236217 Dec 2019 WO
2020010530 Jan 2020 WO
Non-Patent Literature Citations (212)
Entry
AAAAPLAY, “Sony Media Remote for iOS and Android”, Online available at: <https://www.youtube.com/watch?v=W8QoeQhlGok>, Feb. 4, 2012, 3 pages.
Android Authority, “How to use Tasker: A Beginner's Guide”, Online available at: —<https://youtube.com/watch?v=rDpdS_YWzFc>, May 1, 2013, 1 page.
Asakura et al., “What LG thinks; How the TV should be in the Living Room”, HiVi, vol. 31, No. 7, Stereo Sound Publishing, Inc., Jun. 17, 2013, pp. 68-71 (Official Copy Only). {See communication under 37 CFR § 1.98(a) (3)}.
Ashingtondctech & Gaming, “SwipeStatusBar—Reveal the Status Bar in a Fullscreen App”, Online Available at: <https://www.youtube.com/watch?v=wA_tT9lAreQ>, Jul. 1, 2013, 3 pages.
“Ask Alexa—Things That Are Smart Wiki”, Online available at: —<http://thingsthataresmart.wiki/index.php?title=Ask_Alexa&oldid=4283>, Jun. 8, 2016, pp. 1-31.
Automate Your Life, “How to Setup Google Home Routines—A Google Home Routines Walkthrough”, Online Available at: <https://www.youtube.com/watch?v=pXokZHP9kZg>, Aug. 12, 2018, 1 page.
Bell, Jason, “Machine Learning Hands-On for Developers and Technical Professionals”, Wiley, 2014, 82 pages.
Bellegarda, Jeromer, “Chapter 1: Spoken Language Understanding for Natural Interaction: The Siri Experience”, Natural Interaction with Robots, Knowbots and Smartphones, 2014, pp. 3-14.
Bellegarda, Jeromer, “Spoken Language Understanding for Natural Interaction: The Siri Experience”, Slideshow retrieved from : <https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.iwsds2012/files/Bellegarda.pdf>, International Workshop on Spoken Dialog Systems (IWSDS), May 2012, pp. 1-43.
Beointegration.com, “BeoLink Gateway—Programming Example”, Online Available at: <https:/ /www.youtube.com/watch?v=TXDaJFm5UH4>, Mar. 4, 2015, 3 pages.
Burgess, Brian, “Amazon Echo Tip: Enable the Wake Up Sound”, Online available at:—<https://www.groovypost.com/howto/amazon-echo-tip-enable-wake-up-sound/>, Jun. 30, 2015, 4 pages.
Cambria et al., “Jumping NLP curves: A Review of Natural Language Processing Research.”, IEEE Computational Intelligence magazine, 2014, vol. 9, May 2014, pp. 48-57.
Chang et al., “Monaural Multi-Talker Speech Recognition with Attention Mechanism and Gated Convolutional Networks”, Interspeech 2018, Sep. 2-6, 2018, pp. 1586-1590.
Chen et al., “A Convolutional Neural Network with Dynamic Correlation Pooling”, 13th International Conference on Computational Intelligence and Security, IEEE, 2017, pp. 496-499.
Chen, Yi, “Multimedia Siri Finds and Plays Whatever You Ask For”, PSFK Report, Feb. 9, 2012, pp. 1-9.
Conneau et al., “Supervised Learning of Universal Sentence Representations from Natural Language Inference Data”, Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, Sep. 7-11, 2017, pp. 670-680.
Coulouris et al., “Distributed Systems: Concepts and Design (Fifth Edition)”, Addison-Wesley, 2012, 391 pages.
Czech Lucas, “A System for Recognizing Natural Spelling of English Words”, Diploma Thesis, Karlsruhe Institute of Technology, May 7, 2014, 107 pages.
Delcroix et al., “Context Adaptive Deep Neural Networks For Fast Acoustic Model Adaptation”, ICASSP, 2015, pp. 4535-4539.
Delcroix et al., “Context Adaptive Neural Network for Rapid Adaptation of Deep CNN Based Acoustic Models”, Interspeech 2016, Sep. 8-12, 2016, pp. 1573-1577.
Derrick, Amanda, “How to Set Up Google Home for Multiple Users”, Lifewire, Online available at: —<https://www.lifewire.com/set-up-google-home-multiple-users-4685691>, Jun. 8, 2020, 9 pages.
Dihelson, “How Can I Use Voice or Phrases as Triggers to Macrodroid?”, Macrodroid Forums, Online Available at: —<https://www.tapatalk.com/groups/macrodroid/how-can-i-use-voice-or-phrases-as-triggers-to-macr-t4845.html>, May 9, 2018, 5 pages.
“Directv™ Voice”, Now Part of the DIRECTTV Mobile App for Phones, Sep. 18, 2013, 5 pages.
Earthling1984, “Samsung Galaxy Smart Stay Feature Explained”, Online available at:—<https://www.youtube.com/watch?v=RpjBNtSjupl>, May 29, 2013, 1 page.
Eder et al., “At the Lower End of Language—Exploring the Vulgar and Obscene Side of German”, Proceedings of the Third Workshop on Abusive Language Online, Florence, Italy, Aug. 1, 2019, pp. 119-128.
Edim, et al., “A Multi-Agent Based Virtual Personal Assistant for E-Health Service”, Journal of Information Engineering and Applications, vol. 3, No. 11, 2013, 9 pages.
Filipowicz, Luke, “How to use the QuickType keyboard in iOS 8”, Online available at: —<https://www.imore.com/comment/568232>, Oct. 11, 2014, pp. 1-17.
Gadget Hacks, “Tasker Too Complicated? Give MacroDroid a Try [How-To]”, Online available at: <https://www.youtube.com/watch?v=8YL9cWCykKc>, May 27, 2016, 1 page.
“Galaxy S7: How to Adjust Screen Timeout & Lock Screen Timeout”, Online available at :—<https://www.youtube.com/watch?v=n6e1WKUS2ww>, Jun. 9, 2016, 1 page.
Gasic et al., “Effective Handling of Dialogue State in the Hidden Information State POMDP-based Dialogue Manager”, ACM Transactions on Speech and Language Processing, May 2011, pp. 1-25.
Ghauth et al., “Text Censoring System for Filtering Malicious Content Using Approximate String Matching and Bayesian Filtering”, Proc. 4th INNS Symposia Series on Computational Intelligence in Information Systems, Bandar Seri Begawan, Brunei, 2015, pp. 149-158.
Google Developers, “Voice search in your app”, Online available at:—<https://www.youtube.com/watch?v=PS1FbB5qWEI>, Nov. 12, 2014, 1 page.
Gupta et al., “l-vector-based Speaker Adaptation of Deep Neural Networks For French Broadcast Audio Transcription”, ICASSP, 2014, 2014, pp. 6334-6338.
Gupta, Naresh, “Inside Bluetooth Low Energy”, Artech House, 2013, 274 pages.
Hershey et al., “Deep Clustering: Discriminative Embeddings for Segmentation and Separation”, Proc. ICASSP, Mar. 2016, 6 pages.
“Hey Google: How to Create a Shopping List with Your Google Assistant”, Online available at:—<https://www.youtube.com/watch?v=w9NCsElax1Y>, May 25, 2018, 1 page.
“How To Enable Google Assistant on Galaxy S7 and Other Android Phones (No Root)”, Online available at:—<https://www.youtube.com/watch?v=HeklQbWyksE>, Mar. 20, 2017, 1 page.
“How to Use Ok Google Assistant Even Phone is Locked”, Online available at:—<https://www.youtube.com/watch?v=9B_gP4j_SP8>, Mar. 12, 2018, 1 page.
Hutsko et al., “iPhone All-in-One For Dummies”, 3rd Edition, 2013, 98 pages.
Ikeda, Masaru, “beGLOBAL SEOUL 2015 Startup Battle: Talkey”, YouTube Publisher, Online Available at: —<https://www.youtube.com/watch?v=4Wkp7sAAldg>, May 14, 2015, 1 page.
Inews and Tech,“How To Use The QuickType Keyboard In IOS 8”, Online available at:—<http://www.inewsandtech.com/how-to-use-the-quicktype-keyboard-in-ios-8/>, Sep. 17, 2014, 6 pages.
Internet Services and Social Net, “How to Search for Similar Websites”, Online available at: —<https://www.youtube.com/watch?v=nLf2uirpt5s>, see from 0:17 to 1:06, Jul. 4, 2013, 1 page.
“iPhone 6 Smart Guide Full Version for SoftBank”, Gijutsu-Hyohron Co., Ltd., vol. 1, Dec. 1, 2014, 4 pages (Official Copy Only). {See communication under 37 CFR § 1.98(a) (3)}.
Isik et al., “Single-Channel Multi-Speaker Separation using Deep Clustering”, Interspeech 2016, Sep. 8-12, 2016, pp. 545-549.
Jonsson et al., “Proximity-based Reminders Using Bluetooth”, 2014 IEEE International Conference on Pervasive Computing and Communications Demonstrations, 2014, pp. 151-153.
Karn, Ujjwal, “An Intuitive Explanation of Convolutional Neural Networks”, The Data Science Blog, Aug. 11, 2016, 23 pages.
Kastrenakes, Jacob, “Siri's creators will unveil their new Al bot on Monday”, The Verge, Online available at: —<https://web.archive.org/web/20160505090418/https://www.theverge.com/2016/5/4/11593564/viv-labs-unveiling-monday-new-ai-from-siri-creators>, May 4, 2016, 3 pages.
King et al., “Robust Speech Recognition Via Anchor Word Representations”, Interspeech 2017, Aug. 20-24, 2017, pp. 2471-2475.
Lee, Sungjin, “Structured Discriminative Model For Dialog State Tracking”, Proceedings of the SIGDIAL 2013 Conference, Aug. 22-24, 2013, pp. 442-451.
“Link Your Voice to Your Devices with Voice Match, Google Assistant Help”, Online available at: —<https://support.google.com/assistant/answer/9071681?co=GENIE.Platform%3DAndroid&hl=en>, Retrieved on Jul. 1, 2020, 2 pages.
Liou et al., “Autoencoder for Words”, Neurocomputing, vol. 139, Sep. 2014, pp. 84-96.
Liu et al., “Accurate Endpointing with Expected Pause Duration”, Sep. 6-10, 2015, pp. 2912-2916.
Loukides et al., “What Is the Internet of Things?”, O'Reilly Media, Inc., Online Available at: <https://www.oreilly.com/library/view/what-is-the/9781491975633/>, 2015, 31 pages.
Luo et al., “Speaker-Independent Speech Separation With Deep Attractor Network”, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26, No. 4, Apr. 2018, pp. 787-796.
Marketing Land,“Amazon Echo: Play music”, Online Available at: —<https://www.youtube.com/watch?v=A7V5NPbsXi4>, Apr. 27, 2015, 3 pages.
Mhatre et al., “Donna Interactive Chat-bot acting as a Personal Assistant”, International Journal of Computer Applications (0975-8887), vol. 140, No. 10, Apr. 2016, 6 pages.
Mikolov et al., “Linguistic Regularities in Continuous Space Word Representations”, Proceedings of NAACL-HLT, Jun. 9-14, 2013, pp. 746-751.
Modern Techies, “Braina-Artificial Personal Assistant for PC(like Cortana,Siri)!!!!”, Online available at: <https://www.youtube.com/watch?v=_Coo2P8ilqQ>, Feb. 24, 2017, 3 pages.
Nakamura et al., “Study of Information Clouding Methods to Prevent Spoilers of Sports Match”, Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI' 12), ISBN: 978-1-4503-1287-5, May 2012, pp. 661-664.
Nakamura et al., “Study of Methods to Diminish Spoilers of Sports Match: Potential of a Novel Concept “Information Clouding””, vol. 54, No. 4, ISSN: 1882-7764. Online available at: <https://ipsj.ixsq.nii.ac.jp/ej/index.php?active_action=repository_view_main_item_detail&page_id=13&block_id=8&item_id=91589&item_no=1>, Apr. 2013, pp. 1402-1412 (Official Copy Only). {See communication under 37 CFR § 1.98(a) (3)}.
Nakazawa et al., “Detection and Labeling of Significant Scenes from TV program based on Twitter Analysis”, Proceedings of the 3rd Forum on Data Engineering and Information Management (deim 2011 proceedings), IEICE Data Engineering Technical Group, Feb. 28, 2011, 11 pages (Official Copy Only). {See communication under 37 CFR § 1.98(a) (3)}.
Notice of Allowance received for Japanese Patent Application No. 2018-136037, dated Dec. 4, 2020, 4 pages (1 page of English Translation and 3 pages of Official Copy).
Nozawa et al., “iPhone 4S Perfect Manual”, vol. 1, First Edition, Nov. 11, 2011, 4 pages (Official Copy Only). {See communication under 37 CFR § 1.98(a) (3)}.
Pak, Gamerz, “Braina: Artificially Intelligent Assistant Software for Windows PC in (urdu / hindhi)”, Online available at: <https://www.youtube.com/watch?v=JH_rMjw8lqc>, Jul. 24, 2018, 3 pages.
PC Mag, “How to Voice Train Your Google Home Smart Speaker”, Online available at: <https://in.pcmag.com/google-home/126520/how-to-voice-train-your-google-home-smart-speaker>, Oct. 25, 2018, 12 pages.
Pennington et al., “GloVe: Global Vectors for Word Representation”, Proceedings of the Conference on Empirical Methods Natural Language Processing (EMNLP), Doha, Qatar, Oct. 25-29, 2014, pp. 1532-1543.
Perlow, Jason, “Alexa Loop Mode with Playlist for Sleep Noise”, Online Available at: <https://www.youtube.com/watch7v=nSkSuXziJSg>, Apr. 11, 2016, 3 pages.
pocketables.com,“AutoRemote example profile”, Online available at: https://www.youtube.com/watch?v=kC_zhUnNZj8, Jun. 25, 2013, 1 page.
Qian et al., “Single-channel Multi-talker Speech Recognition With Permutation Invariant Training”, Speech Communication, Issue 104, 2018, pp. 1-11.
“Quick Type Keyboard on iOS 8 Makes Typing Easier”, Online available at: —<https://www.youtube.com/watch?v=0CldLR4fhVU>, Jun. 3, 2014, 3 pages.
Rasch, Katharina, “Smart Assistants for Smart Homes”, Doctoral Thesis in Electronic and Computer Systems, 2013, 150 pages.
Ritchie, Rene, “QuickType keyboard in iOS 8: Explained”, Online Available at: —<https://www.imore.com/quicktype-keyboards-ios-8-explained>, Jun. 21, 2014, pp. 1-19.
Rowland et al., “Designing Connected Products: UX for the Consumer Internet of Things”, O'Reilly, May 2015, 452 pages.
Samsung Support, “Create a Quick Command in Bixby to Launch Custom Settings by at Your Command”, Online Available at: —<https://www.facebook.com/samsungsupport/videos/10154746303151213>, Nov. 13, 2017, 1 page.
Santos et al., “Fighting Offensive Language on Social Media with Unsupervised Text Style Transfer”, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (vol. 2: Short Papers), May 20, 2018, 6 pages.
Seehafer Brent, “Activate Google Assistant on Galaxy S7 with Screen off”, Online available at:—<https://productforums.google.eom/forum/#!topic/websearch/lp3qlGBHLVl>, Mar. 8, 2017, 4 pages.
Selfridge et al., “Interact: Tightly-coupling Multimodal Dialog with an Interactive Virtual Assistant”, International Conference on Multimodal Interaction, ACM, Nov. 9, 2015, pp. 381-382.
Senior et al., “Improving DNN Speaker Independence With I-Vector Inputs”, ICASSP, 2014, pp. 225-229.
Seroter et al., “SOA Patterns with BizTalk Server 2013 and Microsoft Azure”, Packt Publishing, Jun. 2015, 454 pages.
Settle et al., “End-to-End Multi-Speaker Speech Recognition”, Proc. ICASSP, Apr. 2018, 6 pages.
Shen et al., “Style Transfer from Non-Parallel Text by Cross-Alignment”, 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017, 12 pages.
Simonite, Tom, “Confronting Siri: Microsoft Launches Digital Assistant Cortana”, 2014, 2 pages (Official Copy). {See communication under 37 CFR § 1.98(a) (3)}.
Siou, Serge, “How To Control Apple TV 3rd Generation Using Remote app”, Online available at: <https://www.youtube.com/watch?v=PhyKftZ0S9M>, May 12, 2014, 3 pages.
Smith, Jake, “Amazon Alexa Calling: How to Set it up and Use it on Your Echo”, iGeneration, May 30, 2017, 5 pages.
Sundermeyer et al., “From Feedforward to Recurrent LSTM Neural Networks for Language Modeling.”, IEEE Transactions to Audio, Speech, and Language Processing, vol. 23, No. 3, Mar. 2015, pp. 517-529.
Sundermeyer et al., “LSTM Neural Networks for Language Modeling”, INTERSPEECH 2012, Sep. 9-13, 2012, pp. 194-197.
Tan et al., “Knowledge Transfer In Permutation Invariant Training For Single-channel Multi-talker Speech Recognition”, ICASSP 2018, 2018, pp. 5714-5718.
Vaswani et al., “Attention Is All You Need”, 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017, pp. 1-11.
Villemure et al., “The Dragon Drive Innovation Showcase: Advancing the State-of-the-art in Automotive Assistants”, 2018, 7 pages.
Vodafone Deutschland, “Samsung Galaxy S3 Tastatur Spracheingabe”, Online available at —<https://www.youtube.com/watch?v=6kOd6Gr8uFE>, Aug. 22, 2012, 1 page.
Wang et al., “End-to-end Anchored Speech Recognition”, Proc. ICASSP2019, May 12-17, 2019, 5 pages.
Weng et al., “Deep Neural Networks for Single-Channel Multi-Talker Speech Recognition”, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, No. 10, Oct. 2015, pp. 1670-1679.
Wikipedia, “Home Automation”, Online Available at: —<https://en.wikipedia.org/w/index.php?title=Home_automation&oldid=686569068>, Oct. 19, 2015, 9 pages.
Wikipedia, “Siri”, Online Available at: —<https://en.wikipedia.org/w/index.php?title=Siri&oldid=689697795>, Nov. 8, 2015, 13 Pages.
Wikipedia, “Virtual Assistant”, Wikipedia, Online Available at: —<https://en.wikipedia.org/w/index.php?title=Virtual_assistant&oldid=679330666>, Sep. 3, 2015, 4 pages.
X.AI, “How it Works”, Online available at: —<https://web.archive.org/web/20160531201426/https://x.ai/how-it-works/>, May 31, 2016, 6 pages.
Xu et al., “Policy Optimization of Dialogue Management in Spoken Dialogue System For Out-of-Domain Utterances”, 2016 International Conference on Asian Language Processing (IALP), IEEE, Nov. 21, 2016, pp. 10-13.
Yan et al., “A Scalable Approach to Using DNN-derived Features in GMM-HMM Based Acoustic Modeling for LVCSR”, 14th Annual Conference of the International Speech Communication Association, InterSpeech 2013, Aug. 2013, pp. 104-108.
Yang Astor, “Control Android TV via Mobile Phone APP RKRemoteControl”, Online Available at : <https://www.youtube.com/watch?v=zpmUeOX_xro>, Mar. 31, 2015, 4 pages.
Yates Michaelc., “How Can I Exit Google Assistant After I'm Finished with it”, Online available at: —<https://productforums.google.com/forum/#!msg/phone-by-google/faECnR2RJwA/gKNtOkQgAQAJ>, Jan. 11, 2016, 2 pages.
Yeh Jui-Feng, “Speech Act Identification Using Semantic Dependency Graphs With Probabilistic Context-free Grammars”, ACM Transactions on Asian and Low-Resource Language Information Processing, vol. 15, No. 1, Dec. 2015, pp. 5.1-5.28.
Yousef, Zulfikara., “Braina (A.I) Artificial Intelligence Virtual Personal Assistant”, Online available at: —<https://www.youtube.com/watch?v=2h6xpB8bPSA>, Feb. 7, 2017, 3 pages.
Yu et al., “Permutation Invariant Training of Deep Models For Speaker-Independent Multi-talker Speech Separation”, Proc. ICASSP, 2017, 5 pages.
Yu et al., “Recognizing Multi-talker Speech with Permutation Invariant Training”, Interspeech 2017, Aug. 20-24, 2017, pp. 2456-2460.
Zmolikova et al., “Speaker-Aware Neural Network Based Beamformer For Speaker Extraction In Speech Mixtures”, Interspeech 2017, Aug. 20-24, 2017, pp. 2655-2659.
Board Opinion received for Chinese Patent Application No. 201580029053.9, dated Apr. 8, 2021, 9 pages (2 pages of English Translation and 7 pages of Official Copy).
Adium, “AboutAdium—Adium X—Trac”, Online available at: —<http://web.archive.org/web/20070819113247/http://trac.adiumx.com/wiki/AboutAdium>, retrieved on Nov. 25, 2011, 2 pages.
“Alexa, Turn Up the Heat!, Smartthings Samsung [online]”, Online available at: —<https://web.archive.org/web/20160329142041/https://blog.smartthings.com/news/smartthingsupdates/alexa-turn-up-the-heat/>, Mar. 3, 2016, 3 pages.
Alfred App, “Alfred”, Online available at: —<http://www.alfredapp.com/>, retrieved on Feb. 8, 2012, 5 pages.
Anania Peter, “Amazon Echo with Home Automation (Smartthings)”, Online available at: —<https://www.youtube.com/watch?v=LMW6aXmsWNE>, Dec. 20, 2015, 1 page.
Api.Ai, “Android App Review—Speaktoit Assistant”, Online available at: —<https://www.youtube.com/watch?v=myE498nyfGw>, Mar. 30, 2011, 3 pages.
Apple, “VoiceOver for Os X”, Online available at: —<http://www.apple.com/accessibility/voiceover/>, May 19, 2014, pp. 1-3.
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/495,861, dated Aug. 25, 2020, 5 pages.
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/495,861, dated Feb. 10, 2020, 3 pages.
Berry et al., “PTIME: Personalized Assistance for Calendaring”, ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Jul. 2011, pp. 1-22.
Bertolucci, Jeff, “Google Adds Voice Search to Chrome Browser”, PC World, Jun. 14, 2011, 5 pages.
Butcher, Mike, “EVI Arrives in Town to go Toe-to-Toe with Siri”, TechCrunch, Jan. 23, 2012, pp. 1-2.
Caraballo et al., “Language Identification Based on a Discriminative Text Categorization Technique”, Iberspeech 2012—VII Jornadas En Tecnologia Del Habla and III Iberian Sltech Workshop, Nov. 21, 2012, pp. 1-10.
Castleos, “Whole House Voice Control Demonstration”, Online available at: —<https://www.youtube.com/watch?v=9SRCoxrZ_W4>, Jun. 2, 2012, 1 pages.
Chen et al., “Progressive Joint Modeling in Unsupervised Single-Channel Overlapped Speech Recognition”, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26, No. 1, Jan. 2018, pp. 184-196.
Cheyer, Adam, “Adam Cheyer—About”, Online available at: —<http://www.adam.cheyer.com/about.html>, retrieved on Sep. 17, 2012, pp. 1-2.
Choi et al., “Acoustic and Visual Signal based Context Awareness System for Mobile Application”, IEEE Transactions on Consumer Electronics, vol. 57, No. 2, May 2011, pp. 738-746.
Colt, Sam, “Here's One Way Apple's Smartwatch Could Be Better Than Anything Else”, Business Insider, Aug. 21, 2014, pp. 1-4.
Decision to Refuse received for European Patent Application No. 15717712.2, dated Jan. 4, 2019, 11 pages.
Deedeevuu, “Amazon Echo Alarm Feature”, Online available at: —<https://www.youtube.com/watch?v=fdjU8eRLk7c>, Feb. 16, 2015, 1 page.
Evi, “Meet Evi: The One Mobile Application that Provides Solutions for your Everyday Problems”, Feb. 2012, 3 pages.
Extended European Search Report received for European Patent Application No. 19160560.9, dated May 17, 2019, 8 pages.
Final Office Action received for U.S. Appl. No. 15/495,861, dated Nov. 18, 2019, 16 pages.
Findlater et al., “Beyond QWERTY: Augmenting Touch-Screen Keyboards with Multi-Touch Gestures for Non-Alphanumeric Input”, CHI '12, May 5-10, 2012, 4 pages.
Gannes, Liz, “Alfred App Gives Personalized Restaurant Recommendations”, AllThingsD, Jul. 18, 2011, pp. 1-3.
Guay, Matthew, “Location-Driven Productivity with Task Ave”, Online available at: —<http://iphone.appstorm.net/reviews/productivity/location-driven-productivity-with-task-ave/>, Feb. 19, 2011, 7 pages.
Guim, Mark, “How to Set a Person-Based Reminder with Cortana”, Online available at: —<http://www.wpcentral.com/how-to-person-based-reminder-cortana>, Apr. 26, 2014, 15 pages.
Hardawar, Devindra, “Driving App Waze Builds its own Siri for Hands-Free Voice Control”, Online available at: —<http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/>, retrieved on Feb. 9, 2012, 4 pages.
Hashimoto, Yoshiyuki, “Simple Guide for iPhone Siri, which can be Operated with your Voice”, Shuwa System Co., Ltd., vol. 1, Jul. 5, 2012, pp. 8, 130, 131.
“Headset Button Controller v7.3 APK Full APP Download for Andriod, Blackberry, iPhone”, Online available at: —<http://fullappdownload.com/headset-button-controller-v7-3-apk/>, Jan. 27, 2014, 11 pages.
“Hear Voice from Google Translate”, Online available at: —<https://www.youtube.com/watch?v=18AvMhFqD28>, Jan. 28, 2011, 1 page.
id3.org, “id3v2.4.0-Frames”, Online available at: —<http://id3.org/id3v2.4.0-frames?action=print>, retrieved on Jan. 22, 2015, pp. 1-41.
“Interactive Voice”, Online available at: —<http://www.helloivee.com/company/>, retrieved on Feb. 10, 2014, 2 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/023089, dated Jan. 12, 2017, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/023089, dated Aug. 20, 2015, 16 pages.
Invitation to Pay Additional Fees and Partial Search Report received for PCT Patent Application No. PCT/US2015/023089, dated Jun. 17, 2015, 7 pages.
Jawaid et al., “Machine Translation with Significant Word Reordering and Rich Target-Side Morphology”, WDS'11 Proceedings of Contributed Papers, Part I, 2011, pp. 161-166.
Jouvet et al., “Evaluating Grapheme-to-phoneme Converters in Automatic Speech Recognition Context”, IEEE, 2012, pp. 4821-4824.
Kazmucha Allyson, “How to Send Map Locations Using iMessage”, iMore.com, Online available at: —<http://www.imore.com/how-use-imessage-share-your-location-your-iphone>, Aug. 2, 2012, 6 pages.
Kickstarter, “Ivee Sleek: Wi-Fi Vo ice-Activated Assistant”, Online available at: —<https://www.kickstarter.com/projects/ivee/ivee-sleek-wi-fi-voice-activated-assistant>, retrieved on Feb. 10, 2014, pp. 1-13.
Lewis Cameron, “Task Ave for iPhone Review”, Mac Life, Online available at: —<http://www.maclife.com/article/reviews/task_ave_iphone_review>, Mar. 3, 2011, 5 pages.
“Meet Ivee, Your Wi-Fi Voice Activated Assistant”, Availale Online at: —<http://www.helloivee.com/>, retrieved on Feb. 10, 2014, 8 pages.
Miller Chance, “Google Keyboard Updated with New Personalized Suggestions Feature”, Online available at: —<http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/>, Mar. 19, 2014, 4 pages.
“Mobile Speech Solutions, Mobile Accessibility”, SVOX AG Product Information Sheet, Online available at: —<http://www.svox.com/site/bra840604/con782768/mob965831936.aSQ?osLang=1>, Sep. 27, 2012, 1 page.
Morrison Jonathan, “iPhone 5 Siri Demo”, Online Available at: —<https://www.youtube.com/watch?v=_wHWwG5lhWc>, Sep. 21, 2012, 3 pages.
My Cool Aids, “What's New”, Online available at: —<http://www.mycoolaids.com/>, 2012, 1 page.
Myers, Brad A., “Shortcutter for Palm”, Online Available at: —<http://www.cs.cmu.edu/˜pebbles/v5/shortcutter/palm/index.html>, retrieved on Jun. 18, 2014, 10 pages.
“Natural Language Interface Using Constrained Intermediate Dictionary of Results”, List of Publications Manually reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
NDTV, “Sony Smartwatch 2 Launched in India for Rs. 14,990”, available at <http://gadgets.ndtv.com/others/news/sony-smartwatch-2-launched-in-india-for-rs-14990-420319>, Sep. 18, 2013, 4 pages.
Non-Final Office Action received for U.S. Appl. No. 15/085,465, dated Jul. 28, 2016, 5 pages.
Non-Final Office Action received for U.S. Appl. No. 15/495,861, dated Apr. 30, 2020, 15 pages.
Non-Final Office Action received for U.S. Appl. No. 15/495,861, dated Jun. 14, 2018, 11 pages.
Non-Final Office Action received for U.S. Appl. No. 15/495,861, dated Mar. 1, 2019, 26 pages.
Notice of Acceptance received for Australian Patent Application No. 2015284755, dated Oct. 19, 2017, 3 pages.
Notice of Acceptance received for Australian Patent Application No. 2018200679, dated Jan. 29, 2020, 3 pages.
Notice of Allowance received for Taiwan Patent Application No. 104113312, dated Jan. 18, 2017, 3 pages.
Notice of Allowance received for U.S. Appl. No. 14/498,503, dated Dec. 18, 2015, 8 pages.
Notice of Allowance received for U.S. Appl. No. 14/498,503, dated Feb. 26, 2016, 8 pages.
Notice of Allowance received for U.S. Appl. No. 15/085,465, dated Feb. 14, 2017, 9 pages.
Notice of Allowance received for U.S. Appl. No. 15/495,861, dated Sep. 18, 2020, 8 pages.
Office Action received for Australian Patent Application No. 2015284755, dated Oct. 21, 2016, 2 pages.
Office Action received for Australian Patent Application No. 2018200679, dated Jan. 29, 2019, 3 pages.
Office Action received for Australian Patent Application No. 2018200679, dated Nov. 14, 2019, 3 pages.
Office Action received for Chinese Patent Application No. 201580029053.9, dated Aug. 22, 2019, 18 pages.
Office Action received for Chinese Patent Application No. 201580029053.9, dated Dec. 2, 2019, 14 pages.
Office Action received for Chinese Patent Application No. 201580029053.9, dated Jan. 29, 2019, 16 pages.
Office Action received for European Patent Application No. 15717712.2, dated Sep. 11, 2017, 10 pages.
Office Action received for European Patent Application No. 19160560.9, dated Jun. 9, 2020, 6 pages.
Office Action received for Japanese Patent Application No. 2016-568608, dated Jun. 20, 2017, 7 pages.
Office Action received for Japanese Patent Application No. 2016-568608, dated Mar. 19, 2018, 6 pages.
Office Action received for Japanese Patent Application No. 2018-136037, dated Jul. 29, 2019, 5 pages.
Office Action received for Japanese Patent Application No. 2018-136037, dated Mar. 30, 2020, 6 pages.
Office Action received for Taiwan Patent Application No. 104113312, dated Jan. 25, 2016, 10 pages.
OSXDAILY, “Get a List of Siri Commands Directly from Siri”, Online available at: —<http://osxdaily.com/2013/02/05/list-siri-commands/>, Feb. 5, 2013, 15 pages.
Pathak et al., “Privacy-preserving Speech Processing: Cryptographic and String-matching Frameworks Show Promise”, In: IEEE signal processing magazine, Online available at: —<http://www.merl.com/publications/docs/TR2013-063.pdf>, Feb. 13, 2013, 16 pages.
Patra et al., “A Kernel-Based Approach for Biomedical Named Entity Recognition”, Scientific World Journal, vol. 2013, 2013, pp. 1-7.
Rios Mafe, “New Bar Search for Facebook”, YouTube, available at: —<https://www.youtube.com/watch?v=vwgN1WbvCas>, Jul. 19, 2013, 2 pages.
Routines, “SmartThings Support”, Online available at: —<https://web.archive.org/web/20151207165701/https://support.smartthings.com/hc/en-us/articles/205380034-Routines>, 2015, 3 pages.
Sarawagi Sunita, “CRF Package Page”, Online available at: —<http://crf.sourceforge.net/>, retrieved on Apr. 6, 2011, 2 pages.
Simonite, Tom, “One Easy Way to Make Siri Smarter”, Technology Review, Oct. 18, 2011, 2 pages.
“Skilled at Playing my iPhone 5”, Beijing Hope Electronic Press, Jan. 2013, 6 pages.
“SmartThings +Amazon Echo”, Smartthings Samsung [online], Online available at: —<https://web.archive.org/web/20160509231428/https://blog.smartthings.com/featured/alexa-turn-on-my-smartthings/>, Aug. 21, 2015, 3 pages.
SRI, “SRI Speech: Products: Software Development Kits: EduSpeak”, Online available at: —<http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak>shtml, retrieved on Jun. 20, 2013, pp. 1-2.
Sullivan Danny, “How Google Instant's Autocomplete Suggestions Work”, Online available at: —<http://searchengineland.com/how-google-instant-autocomplete-suggestions-work-62592>, Apr. 6, 2011, 12 pages.
Summon to Attend Oral Proceedings received for European Patent Application No. 15717712.2, dated Apr. 16, 2018, 2 pages.
Summon to Attend Oral Proceedings received for European Patent Application No. 15717712.2, dated Mar. 19, 2018, 9 pages.
Sundaram et al., “Latent Perceptual Mapping with Data-Driven Variable-Length Acoustic Units for Template-Based Speech Recognition”, ICASSP 2012, Mar. 2012, pp. 4125-4128.
Tofel et al., “SpeakToit: A Personal Assistant for Older iPhones, iPads”, Apple News, Tips and Reviews, Feb. 9, 2012, 7 pages.
Tucker Joshua, “Too Lazy to Grab Your TV Remote? Use Siri Instead”, Engadget, Nov. 30, 2011, pp. 1-8.
Wikipedia, “Acoustic Model”, Online available at: —<http://en.wikipedia.org/wiki/AcousticModel>, retrieved on Sep. 14, 2011, pp. 1-2.
Wikipedia, “Language Model”, Online available at: —<http://en.wikipedia.org/wiki/Language_model>, retrieved on Sep. 14, 2011, 4 pages.
Wikipedia, “Speech Recognition”, Online available at: —<http://en.wikipedia.org/wiki/Speech_recognition>, retrieved on Sep. 14, 2011, 12 pages.
Xiang et al., “Correcting Phoneme Recognition Errors in Learning Word Pronunciation through Speech Interaction”, Speech Communication, vol. 55, No. 1, Jan. 1, 2013, pp. 190-203.
Ye et al., “iPhone 4S Native Secret”, Jun. 30, 2012, 1 page.
Zainab, “Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]”, Online available at: —<http://www.addictivetips.com/internet-tips/google-input-tools-shows-multiple-language-onscreen-keyboards-chrome/>, Jan. 3, 2012, 3 pages.
Zangerle et al., “Recommending #—Tags in Twitter”, proceedings of the Workshop on Semantic Adaptive Socail Web, 2011, pp. 1-12.
Zhan et al., “Play with Android Phones”, Feb. 29, 2012, 1 page.
Zhong et al., “JustSpeak: Enabling Universal Voice Control on Android”, W4A'14, Proceedings of the 11th Web for All Conference, No. 36, Apr. 7-9, 2014, 8 pages.
Office Action received for European Patent Application No. 19160560.9, dated Jul. 16, 2021, 5 pages.
Office Action received for Australian Patent Application No. 2020203023, dated Apr. 22, 2021, 3 pages.
Office Action received for Japanese Patent Application No. 2020-215571, dated Apr. 23, 2021, 4 pages (2 pages of English Translation and 2 pages of Official Copy).
Office Action received for Japanese Patent Application No. 2020-215571, dated Oct. 15, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy).
Board Decision received for Chinese Patent Application No. 201580029053.9, dated Aug. 19, 2021, 15 pages (1 page of English Translation and 14 pages of Official Copy).
Office Action received for Australian Patent Application No. 2020203023, dated Sep. 16, 2021, 5 pages.
Notice of Allowance received for Japanese Patent Application No. 2020-215571, dated Mar. 18, 2022, 4 pages (1 page of English Translation and 3 pages of Official Copy).
Office Action received for Australian Patent Application No. 2020203023, dated Mar. 22, 2022 4 pages.
Notice of Acceptance received for Australian Patent Application No. 2020203023, dated Apr. 8, 2022, 3 pages.
Related Publications (1)
Number Date Country
20210105528 A1 Apr 2021 US
Provisional Applications (1)
Number Date Country
62019312 Jun 2014 US
Continuations (3)
Number Date Country
Parent 15495861 Apr 2017 US
Child 17125876 US
Parent 15085465 Mar 2016 US
Child 15495861 US
Parent 14498503 Sep 2014 US
Child 15085465 US