This application claims priority from Chinese Application CN 202120911606.6, filed Apr. 29, 2021 in China, the disclosure of which is incorporated herein by reference in its entirety.
Apparatuses and methods consistent with exemplary embodiments relate to an intelligent built-in air pump for inflating and deflating an inflatable body.
An air pump is necessary for inflation of an inflatable body. An inflatable body may be inflated through an air valve on the inflatable body using a hand-held air pump or by using a built-in air pump installed on the inflatable body. With respect to a built-in air pump, a user may control inflation by turning a switch on or off. Compared with any of various hand-held air pumps, a typical built-in air pump is more convenient to use and has a faster inflation speed.
Ordinary built-in air pumps on the market generally have only inflation and deflation functions, but have no air-supplementing function. When an inflatable body is in an inflated state for a period of time, as its material stretches, an internal air pressure of the inflatable body will decrease, causing the inflatable body to become softer and less able to provide sufficient support. Some manufacturers have developed a built-in pump with an air-supplementing function, which may use the conventional structure of a motor driving an impeller to rotate so as to provide inflation or deflation.
A downside of an existing built-in air pump with an air-supplementing function is that it is difficult to accurately measure an internal air pressure of the inflatable body, and thus it is difficult to ensure that the internal air pressure of the inflatable body is sufficiently constant. Additionally, an air-supplementing pump may be very noisy during use, which results in a relatively poor experience for consumers.
Example embodiments may address at least the above problems and/or disadvantages and other disadvantages not described above. Also, example embodiments are not required to overcome the disadvantages described above, and may not overcome any of the problems described above.
According to an aspect of an example embodiment, an air pump comprises: an air pump housing comprising a first vent and a second vent; a first check valve disposed on the air pump housing and configured to open or close the first vent; a main air pump disposed in an accommodating chamber defined within the air pump housing, the main air pump configured to inflate and deflate an inflatable body via the first vent; an airway switching device being disposed in the accommodating chamber and connected to the main air pump, wherein the airway switching device is configured to: selectively switch among an inflating state, a deflating state, and a closed state, and to selectively control the first check valve to open or close the first vent; an air-supplementing pump disposed in the accommodating chamber and in fluid communication with the interior of the inflatable body to supplement air to the inflatable body; a mechanical air pressure sensor disposed in the accommodating chamber and configured to be in fluid communication with the inflatable body via a port in the air pump housing; and a control device disposed in the accommodating chamber and electrically connected to the main air pump, the airway switching device, the air-supplementing pump, and the air pressure sensor, the control device configured to: send a main air pump stop signal based on the air pressure sensor detecting a threshold pressure in inflatable body during operation of the main air pump; and send an air-supplementing pump operation signal based on the air pressure sensor detecting a pressure lower than the threshold pressure in the inflatable body when the main air pump is not in operation.
The air pump housing may further comprise a partition member disposed in the accommodating chamber, wherein the air pressure sensor is disposed in a closed chamber, within the accommodating chamber, the closed chamber defined by the partition member and the air pump housing.
The air pressure sensor may comprise: a sensor housing; a movable membrane, the movable membrane and the sensor housing defining a first pressure-measuring chamber in fluid communication with the port in the air pump housing and a second pressure-measuring chamber in fluid communication with an exterior of the inflatable body; a pushing member configured to move in conjunction with a movement of the movable membrane, the pushing member comprising a contact; and an air pressure signal switch electrically connected to the control device and comprising a contact point, and the contact point being in contact with the contact of the pushing member to thereby generate an air pressure signal.
The contact of the pushing member and the contact point of the air pressure signal switch may be aligned with each other in a moving direction of the pushing member.
The air pressure sensor may comprise at least one pin extending from the sensor housing configured to cooperate with an insertion hole in at least one of the air pump housing and the partition member.
The air pressure sensor may comprise a vent pipe extending from the sensor housing and fixed to the air pump housing at the port and thereby enabling fluid communication between the first pressure measuring chamber and the inflatable body.
The air-supplementing pump may comprise: a motor assembly comprising: a motor body, a base fixed to the motor body and a rotating member comprising an eccentric hole, an air-supplementing pump air inlet a convex shaft extending from the motor body and through the base and nested with the rotating member; a compression part comprising: a compression piece, a holding body comprising a first check valve, a compression member fixed to the holding body and comprising an airbag, a check blocking piece corresponding to the first check valve, and a buckle extending from the airbag and buckled to the compression piece, a linkage rod extending from the compression piece and inserted into the eccentric hole; and an air collecting part comprising an air-supplementing pump air outlet; wherein the air collecting part and the compression member together define an air collecting chamber and a diversion groove; wherein a flow channel is disposed on the air collecting part corresponding to the airbag, the flow channel enabling fluid communication between the air collecting chamber and the air-supplementing pump air outlet, the flow channel comprising a second check valve; and wherein the diversion groove enables fluid communication between the airbag and the first check valve.
The air pump may further comprise sound-absorbing cotton at least partially covering the air-supplementing pump.
In the inflating state, the airway switching device may provide fluid communication between an output of the main air pump and the first vent, and in the deflating state, the airway switching device may provide fluid communication between an input of the main air pump and the first vent.
According to an aspect of another example embodiment, an air pump comprises: a housing comprising a first vent and a second vent; a main air pump disposed in the housing and configured to pump fluid into and out of the first vent; an air-supplementing pump disposed in the housing and configured to pump fluid into a supplementing port in the housing; an air pressure sensor disposed in the housing and configured to sense a pressure via a pressure-measuring port in the housing; a controller disposed in the housing and electrically connected to the main air pump, the air-supplementing pump, and the air pressure sensor, wherein the controller is configured to: control the a main air pump to stop pumping based on the air pressure sensor detecting a threshold pressure during operation of the main air pump; and control the air-supplementing pump to start pumping based on the air pressure sensor detecting a pressure lower than the threshold pressure when the main air pump is not in operation.
The air pump may further comprise a partition member disposed in the housing, wherein the air pressure sensor is disposed in a closed chamber defined by the partition member and the housing.
The air pressure sensor may comprise: a sensor housing; a moveable membrane dividing an interior of the sensor housing into a first pressure chamber in communication with the pressure-measuring port and a second pressure chamber; a pushing member configured to move in conjunction with a movement of the moveable membrane; an air pressure signal switch electrically connected to the controller and configured to send an air pressure signal to the controller upon contact between a contact connected to the pushing member and a contact on the air pressure signal switch.
The air-supplementing pump may comprise: a motor assembly comprising: a motor body, a base fixed to the motor body and comprising an eccentric hole therethrough, a rotating member, an air inlet, and a shaft extending from the motor body, through the base and into the rotating member; a compression part comprising: a compression piece, a holding body comprising a first check valve, a compression member fixed to the holding body and comprising an airbag in fluid communication with the first check valve, a linkage rod extending from the compression piece and into the eccentric hole, and an air collecting part comprising an air-supplementing pump air outlet in fluid communication with an air collecting chamber defined by the air collecting part and the compression member.
The air pump may further comprise sound-absorbing cotton at least partially covering the air-supplementing pump.
The air pump may further comprise: an airway switching device disposed in the housing and connected to the main air pump, the airway switching device configured to selectively switch among an inflating state, a deflating state, and a closed state.
The airway switching device may be further configured to selectively control the first check valve to open or close a first vent in the housing.
In the inflating state, the airway switching device may provide fluid communication between an output of the main air pump and the first vent, and in the deflating state, the airway switching device may provide fluid communication between an input of the main air pump and the first vent.
The air pump may further comprise a first check valve disposed on the housing and configured to open or close the first vent; wherein in the closed state, the switching device is configured to control the first check valve to close the first vent.
The above and/or other aspects will become apparent and more readily appreciated from the following description of example embodiments, taken in conjunction with the accompanying drawings, in which:
Reference will now be made in detail to example embodiments which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the example embodiments may have different forms and may not be construed as being limited to the descriptions set forth herein.
It will be understood that the terms “include,” “including”, “comprise, and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It will be further understood that, although the terms “first,” “second,” “third,” etc., may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections may not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section.
As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.
Various terms are used to refer to particular system components. Different companies may refer to a component by different names—this document does not intend to distinguish between components that differ in name but not function.
Matters of these example embodiments that are obvious to those of ordinary skill in the technical field to which these exemplary embodiments pertain may not be described here in detail.
As shown in
The air pump housing comprises a housing base 1 and a panel 6, and the housing base 1 defines an accommodating chamber 11 and is provided with a housing opening 12, as well as a first vent 13 (see
The intelligent built-in air pump further comprises the control switch 91 and a hollow connecting pipe 92 (see
The main air pump 3 inflates or deflates the inflatable body through the first vent 13 and the second vent 61. The airway switching device 4 is connected to the main air pump 3 and selectively switches between any two of an inflating airway, a deflating airway, and a closed airway, and the airway switching device 4 further selectively controls the first check valve 2 to open or close the first vent 13. When the first check valve 2 opens the first vent 13, the first vent 13 is in fluid communication with the interior of the inflatable body, thereby allowing a gas to flow through the first vent 13, and further inflating or deflating the inflatable body (see
As shown in
Based on the above-described structure, when the inner tube 41 is rotated to move the second slider 418 of the inner tube 41 to a first low point A1 of the arc-shaped sliding groove 429 of the outer tube 42 (see
When the inner tube 41 is rotated to move the second slider 418 of the inner tube 41 to a second low point A2 of the arc-shaped sliding groove 429 of the outer tube 42 (see
In actual use, corresponding relationships between the third inner tube opening 414 and the fourth inner tube opening 415 on the inner tube 41 and the first outer tube air outlet 425, the second outer tube air outlet 426, the first outer tube air inlet 423, and the second outer tube air inlet 424 may be changed by rotating the inner tube 41, to enable of switching air flow channels. A main air pump switch 427 is arranged outside the arc-shaped piece 416 of the inner tube 41, and the inner tube 41 may be rotated to enable the arc-shaped piece 416 to be in contact with the main air pump switch 427 and connect or disconnect a power supply in linkage.
As shown in
As shown in
As shown in
Based on the above-described structure, the first vent 13 enables the valve disc 24 and the sealing ring 25 to seal the first vent 13 by means of an elastic force of the spring 22 without any other external force, and the first vent 13 is in a closed state. When the inner tube 41 of the airway switching device 4 moves downward, the partition piece 413 of the inner tube 41 is in contact with the valve rod 23 and applies a downward force on same, so that the first check valve 2 opens the first vent 13, and thus the interior and exterior of the inflatable body are in fluid communication. When the first check valve 2 closes the first vent 13, the interior and exterior of the inflatable body are not in fluid communication.
Based on the above-described structure, a linkage mechanism is formed among the control switch 91, the connecting pipe 92, the inner tube 41 of the airway switching device 4, the first check valve 2, and the main air pump switch 427. When the main air pump 3 is required to inflate the inflatable body, the control switch 91 is rotated from a closed position to an inflation position; the control switch 91 drives the connecting pipe 92 connected thereto, and the connecting pipe 92 drives the inner tube 41 of the airway switching device 4 to axially move and radially rotate; the arc-shaped piece 416 of the inner tube 41 triggers the main air pump switch 427 to switch on a power supply; the main air pump 3 starts to operate; the second slider 418 of the inner tube 41 transversely slides in the arc-shaped sliding groove 429 of the outer tube 42 to the first low point A1 (see
When the inflatable body is to be deflated, the control switch 91 is rotated from a closed position to a deflation position; the control switch 91 drives the connecting pipe 92 connected thereto and the connecting pipe 92 drives the inner tube 41 of the airway switching device 4 to rotate at the same time; the arc-shaped piece 416 of the inner tube 41 triggers the main air pump switch 427 to switch on a power supply; and the main air pump 3 starts to operate. When the second slider 418 moves to the second low point A2 of the arc-shaped sliding groove 429 of the outer tube 42 (see
When inflation or deflation of the inflatable body is stopped, the control switch 91 is rotated to a stop position; the control switch 91 drives the connecting pipe 92 connected thereto and the connecting pipe 92 drives the inner tube 41 of the airway switching device 4 to rotate at the same time; the arc-shaped piece 416 of the inner tube 41 triggers the main air pump switch 427 to switch off a power supply; the main air pump 3 stops operating; the second slider 418 of the inner tube 41 transversely slides in the arc-shaped sliding groove 429 of the outer tube 42 to a middle high point B (see
The air-supplementing pump 5 is fixed in the accommodating chamber 11 of the housing base 1 via a mounting member, and is in fluid communication with the interior of the inflatable body, so that air can be supplemented to the inflatable body after the main air pump 3 inflates the inflatable body. Optionally, the intelligent built-in air pump further comprises sound-absorbing cotton 59 (see
The motor assembly 51 comprises a motor body 511, a base 513, and a rotating member 514, wherein the base 513 is provided with the air-supplementing pump air inlet 516 in communication with the accommodating chamber 11. A convex shaft 512 extending out from the motor body 511 runs through the base 513 and is nested with the rotating member 514, and the rotating member 514 is provided with an eccentric hole 515.
The compression part 52 comprises a compression piece 521, a holding body 524, and a compression member 528, wherein a linkage rod 522 extending out from the compression piece 521 is inserted into the eccentric hole 515 of the rotating member 514 at a deviation angle. The compression member 528 is fixed to the holding body 524 and comprises an airbag 527, a check blocking piece 529, and a leakproof gasket 5210. A buckle 526 extending out from the airbag 527 runs through the holding body 524 and is buckled with a clamping groove 523 on the compression piece 521; and a first check valve 525 is arranged on the holding body 524 corresponding to the check blocking piece 529. In the example embodiment illustrated in
The air collecting part 53 and the compression member 528 define an air collecting chamber and a diversion groove 534, and the air collecting part 53 is provided with an air-supplementing pump air outlet 533. A flow channel 531 is arranged on the air collecting part 53 corresponding to the airbag 527. The flow channel 531 enables the air collecting chamber to be in fluid communication with the air-supplementing pump air outlet 533 and is provided with a second check valve 532 (such as a film gasket). The diversion groove 534 enables the airbag 527 to be in fluid communication with the first check valve 525.
After the motor is powered on, the rotating member 514 rotates rapidly, so that the linkage rod 522 inserted into the eccentric hole 515 runs therewith. The linkage rod 522 is eccentrically rotated to press the compression piece 521, and the compression piece 521 continuously presses the airbag 527 in a circumferential rotating motion manner, so as to output gas and send it to the air collecting part 53. When the gas is sent to the air collecting part 53 and the compression piece 521 presses the airbag 527, the first check valve 525 is tightly closed under the influence of an internal air pressure, and the second check valve 532 is pushed by the gas pushed out by the flow channel 531 to form a peripheral. When the airbag 527 is restored, the first check valve 525 is switched on and the gas is sucked into the airbag 527 from the air-supplementing pump air inlet 516 through the diversion groove 534, while the second check valve 532 is tightly closed under the influence of the internal air pressure. Because the compression piece 521 sequentially pushes the airbags 527 in a circumferential operation manner, actions of each airbag 527 and actions and paths of air flow operations are repeatedly performed in sequence with the aforementioned actions.
The gas inside the air collecting chamber is continuously pressed by the airbag 527, and the gas is uniformly ejected from a gas output hole 533 after being transmitted out through the flow channel 531. The second check valve 532 for preventing the gas from leaking back can effectively prevent the gas from flowing in a reverse direction from the flow channel 531. A leakproof gasket 5210 is arranged between the compression part 52 and the air collecting part 53, to keep an internal space at a certain air pressure value and to maintain an air output amount relatively stable.
It should be understood that the air-supplementing pump 5 is not limited to the type described above, and any other suitable air pump may be selected as the air-supplementing pump 5, as would be understood by one of skill in the art.
The intelligent built-in air pump may comprise a partition member arranged in the accommodating chamber 11, and the partition member and the housing base 1 may define a closed chamber separated from the rest of the accommodating chamber 11 to accommodate the air pressure sensor 7 therein. As shown in
The air pressure sensor 7 comprises a sensor housing and a movable membrane 73. The sensor housing is composed of a first housing 71 and a second housing 72. The movable membrane 73 may be at least partially located in the first housing 71 and the second housing 72. In some implementations of the air pressure sensor 7, when the first housing 71 and the second housing 72 are assembled together, a part of the movable membrane 73 (for example, the periphery of the movable membrane 73) is substantially located between the first housing 71 and the second housing 72 (see
The air pressure sensor 7 may comprise at least one pin extending out from the second housing 72, e.g., a first pin 721 and a second pin 722 extending out from the second housing 72 in opposite directions. The air pressure sensor 7 cooperates with a first insertion hole 822 formed in the circuit board mounting base 82 through a first clamping part 724 on the first pin 721 and cooperates with a second insertion hole 17 formed in the housing base 1 through a second clamping part 725 on the second pin 722 (see
The first pressure-measuring chamber 74 is located in an area substantially defined by the movable membrane 73 and the second housing 72. A second pressure-measuring chamber 75 is located in an area substantially defined by the movable membrane 73 and the first housing 71. The first pressure-measuring chamber 74 and the second pressure-measuring chamber 75 may be located on two substantially opposite sides of the movable membrane 73; the first pressure-measuring chamber 74 is in fluid communication with the interior of the inflatable body via the vent pipe 723 and the pressure-measuring port 14; and the second pressure-measuring chamber 75 is in fluid communication with the exterior of the inflatable body.
As shown in
The knob 76 can rotate relative to the first housing 71. When the knob 76 is rotated, the knob 76 can move longitudinally along a knob axis Z through the housing thread 711 and the knob thread 761 that match. The adjusting rod spring 77 may be sleeved around the adjusting rod 782, and because the knob 76 is moveable among different positions, the adjusting rod spring 77 can apply different degrees of force to the pushing member 78. The knob 76 is located at any of a number of different positions along the knob axis Z, so that the movable membrane 73 and the pushing member 78 may be subjected to different degrees of mechanical resistance.
The air pressure signal switch 79 electrically connected to the control device 8 is arranged on the first housing 71 and comprises a contact point 791. When the built-in air pump is in operation, the internal air pressure of the inflatable body makes the movable membrane 73 and the pushing member 78 move along the knob axis Z. If the pushing member 78 reaches a specific position along the knob axis Z, the contact 783 of the pushing member 78 is brought into contact with the contact point 791 of the air pressure signal switch 79 to activate the air pressure signal switch 79 to generate and send corresponding air pressure signals. Rotation of the knob 76 can change the internal air pressure of the inflatable body required for activating the air pressure signal switch 79. The contact 783 of the pushing member 78 may be aligned with the contact point 791 of the air pressure signal switch 79 in the moving direction of the pushing member 78, i.e., aligned in the longitudinal direction parallel to the knob axis Z, so that the pushing member 78 can accurately trigger the air pressure signal switch 79.
As shown in
When the control switch 91 on the panel 6 is rotated to control the main air pump 3 to inflate the inflatable body, the internal air pressure value of the inflatable body increases continuously, and the movable membrane 73 in the air pressure sensor 7 bulges toward the first housing 71 (i.e., the movable membrane 73 is in the unfolded position) until the contact 783 of the pushing member 78 abuts against the contact point 791 of the air pressure signal switch 79. This is an indication that the air pressure sensor 7 detects that the internal air pressure value of the inflatable body has reached a set threshold. Therefore, the air pressure sensor 7 sends a main air pump stop signal, and the control circuit board 81 automatically controls the main air pump 3 to stop running after receiving the main air pump stop signal. According to one or more example embodiments, after receiving the main air pump stop signal, the control circuit board 81 can turn on, e.g., an indicator light arranged on the panel 6 to prompt a user to turn off the control switch 91.
After the inflation of the inflatable body is completed, if the internal air pressure value of the inflatable body drops, the movable membrane 73 in the air pressure sensor 7 is reset toward the second housing 72 (i.e., the movable membrane 73 is in a relaxed position), and the contact 783 of the pushing member 78 is separated from the contact point 791 of the air pressure signal switch 79. This indicates that the air pressure sensor 7 detects that the internal air pressure value of the inflatable body is again lower than the set threshold. Therefore, the air pressure sensor 7 sends an air-supplementing pump operation signal, and the control circuit board 81 automatically controls the air-supplementing pump 5 to start operation after receiving the air-supplementing pump operation signal.
When the contact 783 of the pushing member 78 again abuts against the contact point 791 of the air pressure signal switch 79, this indicates that the air pressure sensor 7 detects that the internal air pressure value of the inflatable body has reached the set threshold again. Therefore, the air pressure sensor 7 sends an air-supplementing pump stop signal, and the control circuit board 81 automatically controls the air-supplementing pump 5 to stop running after receiving the air-supplementing pump stop signal. It can be understood that after the inflation of the inflatable body is completed, the air-supplementing pump 5 may be continuously switched between the operation state and the stop state as required, so that the internal air pressure of the inflatable body can be kept in a relatively constant range for a long time.
According to one or more example embodiments described herein, a built-in air pump may have a compact structure, a small volume, accurate air pressure control, no noise in an air-supplementing state, and a high air-supplementing efficiency.
It may be understood that the exemplary embodiments described herein may be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each exemplary embodiment may be considered as available for other similar features or aspects in other exemplary embodiments.
While exemplary embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
202120911606.6 | Apr 2021 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
9879682 | Beliveau et al. | Jan 2018 | B1 |
20060291964 | Wang | Dec 2006 | A1 |
20130136637 | Chang | May 2013 | A1 |
20130230410 | Tsai | Sep 2013 | A1 |
20150316068 | Tsai | Nov 2015 | A1 |
20160047365 | Douglas | Feb 2016 | A1 |
20170280884 | Liu | Oct 2017 | A1 |
20190271322 | Huang | Sep 2019 | A1 |
Entry |
---|
Extended European Search Report dated Dec. 6, 2022 (Dec. 6, 2022) issued on related European Patent Application 22170571.8 by the European Patent Office. |
Partial European Search Report dated Sep. 30, 2022 (Sep. 30, 2022) issued on related European patent application 22170571.8 by the European Patent Office. |
Number | Date | Country | |
---|---|---|---|
20220349415 A1 | Nov 2022 | US |