Intelligent communications network tap port aggregator and methods thereof

Information

  • Patent Grant
  • 8654932
  • Patent Number
    8,654,932
  • Date Filed
    Monday, July 19, 2010
    13 years ago
  • Date Issued
    Tuesday, February 18, 2014
    10 years ago
Abstract
A network tap port aggregator for use in monitoring a network is provided. The network tap port aggregator includes a first device interface terminal for receiving a first network feed. The network tap port aggregator also includes a second device interface terminal for receiving a second network feed. The network tap port aggregator further includes a circuitry coupled with the first device interface terminal and with the second device interface terminal, the circuitry configured to monitor the first network feed and the second network feed and to aggregate the first network feed and the second network feed into an aggregated network feed. The network tap port aggregator yet also includes a first monitor interface terminal coupled to the circuitry for providing the aggregated network feed to a first network monitor that is external to the network tap port aggregator.
Description
FIELD

The present invention relates to an intelligent communications network tap.


BACKGROUND

Communication networks are important for providing data and voice communication. Monitoring networks is important to ensure reliable operation, fault detection, timely mitigation of potentially malicious activities, and more. Network taps are generally known in the art for connecting to networks and providing a port to monitor the communication traffic on the network.


Conventional network taps may be configured to provide network traffic to an independent monitor such as a network analyzer, an intrusion detection system or intrusion prevention system, and so forth. However, conventional network taps do not provide real-time display on the tap that may be used by systems administrators and network technicians to quickly and easily understand network traffic loads and patterns. The lack of real-time display may, in some examples, hinder ready detection of network problems. For example, damaging spikes may strike and pass before useful detection and analysis can occur.


Further, network communication management devices may be, in some conventional systems may be accomplished locally, or through dedicated connections. In locally concentrated networks, dedicated management tools may be effective. However, as is often the case, networks may be physically remote or spread across a wide geographic area. When remote networks are being managed, web-based and SNMP enabled management tools may provide more effective and immediate network management by providing a general access protocol that is readily available. Still further, even where local access is required, new and innovative methods of accessing, for example, a bank of network monitors by a wireless connection may be desirable.


Still further, conventional systems utilize a single network interface card (NIC) for accessing a network. Where full-duplex monitoring is required, at second NIC or a dual channel NIC may be utilized to tap into each side of a tapped full-duplex connection. However, additional NICs may further complicate configurability and flexibility. Further, costs associated with redundant equipment may be undesirable.


Consequently, there is need for an improved intelligent communications network tap that provides real-time network traffic information.





DESCRIPTION OF THE DRAWINGS

The foregoing and other features, aspects, and advantages will become more apparent from the following detailed description when read in conjunction with the following drawings, wherein:



FIG. 1 depicts an intelligent network tap according to an embodiment of the invention;



FIG. 2 is a flowchart illustrating steps for performing a method of aggregating network traffic according to an embodiment of the invention;



FIG. 3 is a flowchart illustrating steps for performing a method of determining a network threshold according to an embodiment of the invention;



FIG. 4 is a flowchart illustrating steps for performing a method of determining excess network traffic according to an embodiment of the invention; and



FIG. 5 is an illustrative block diagram of implementations of embodiments in accordance with the present invention.





DESCRIPTION

The present invention provides an improved intelligent communications network tap that provides real-time network traffic information.


The invention is described with reference to specific architectures and protocols. Those skilled in the art will recognize that the description is for illustration and to provide the best mode of practicing the invention. The description is not meant to be limiting. For example, reference is made to Ethernet Protocol but other protocols can be used in the invention. Wire and optical transport technologies can be used in the invention including Gigabit and 10 Mega bits per second (Mbps) or 100 Mbps, often denoted as 10/100. Likewise, reference is made to packets and cells, while other forms of data and addresses can be used in the invention.


A. Architecture and Operation



FIG. 1 depicts an intelligent network tap port aggregator 100 according to an embodiment of the invention. An intelligent network tap port aggregator for use in monitoring one or more network feeds comprises, in some embodiments, a first device interface terminal 110 configured to receive a first network feed from device 102 and a second device interface terminal 112 configured to receive a second network feed from device 104. In one embodiment, the connection terminals are standard RJ45 jacks that permit devices 102 and 104 to be coupled to the terminals with standard CAT5 cable. However, in an optical embodiment, the terminals would be optical terminals. As may be appreciated, devices 102 and 104 may include, without limitation, any number of network devices for example: routers, firewalls, switches, or any other type of network device well-known in the art without departing from the present invention.


Device interface terminals 110 and 112 may be coupled with tap structure 122. In some embodiments, tap structure 122 may be configured to aggregate network feeds from devices 102 and 104. In conventional systems, a full-duplex monitoring system having a network tap requires two NICs (or a dual channel NIC)—one interface for each side of a tapped full-duplex connection. Tap structure 122, as described herein, aggregates network feeds. Aggregated streams are then regenerated and sent to monitor interface terminals 114 and 116. Each monitor interface terminal may then be coupled with a network monitor device 106/108. Thus, tap structure 122 may be configured to communicate full-duplex network traffic between devices 102 and 104. Tap structures may also provide other services in embodiments of the present invention such as, for example, heartbeat, matrix switch, regenerator switch, ling aggregator, and 10/100 gigatap. Furthermore, any number of network monitor devices may be utilized without departing from the present invention such as, for example, network analyzers, intrusion detection systems, intrusion prevention systems, remote monitors, and probes.


In order to facilitate and enhance network traffic management, a memory buffer 124 may be coupled with the tap structure and configured to temporarily store data. Memory buffers may be useful in a scenario where a network data burst temporarily exceeds the tap structure's ability to support the network traffic. In one aspect, the memory buffer includes portions dedicated to each of the devices, e.g., 32 MB per side. In some embodiments, such a memory buffer is a first-in-first-out (FIFO) memory that may be configured to automatically clears itself when the traffic volume drops back to the receiving capacity of a network interface card (NIC). In some embodiments, the size of the memory buffer is approximately 256 MB.


A display structure 118 may also be coupled to the tap structure 122 in some embodiments. In one example, display structure 118 is an LCD display of 2×20 characters. Aspects of the invention include graphical display modes and other displays, e.g., bars and graphs that can provide additional technical and diagnostic information. Display 118 may show, for example, network parameters corresponding to a network feed such as: instantaneous percent utilization of network capacity, average percent utilization of network capacity, highest peak percent utilization of network capacity, and time of highest peak percent utilization of network capacity network traffic in terms of percent bandwidth utilization. Additional examples of network parameters may include: traffic types, particular origin and/or destination addresses, fault conditions, etc. Network parameters may be updated periodically and displayed for a network technician to read at any time. In some embodiments display parameters can be cycled, for example, by displaying a parameter for a pre-determined period of time and then cycling through selected parameters continuously. In one aspect, a button may be provided to allow a user to select a network parameter for display. In another aspect, the selection and management of the display parameters is performed by a management device.


Intelligent network tap port aggregator 100 may be managed from a number of device structures. In order to provide managing capabilities, a network controller 126 may be coupled with tap structure 122. Network controller 126 may be configured to provide communication between tap structure 122 and a variety of managing devices via several managing device interfaces (i.e. 128, 130, and 132). For example, net interface 128 may be configured to send and receive data over a web based device 134 thus enabling a browser based web manager. Further, net interface 128 may be configured to send and receive data over an SNMP enabled device 134. Each of these devices may provide local as well as remote control of intelligent network tap port aggregator 100. Communication protocols for providing web based control and SNMP control are generally well-known in the art and may be utilized without limitation without departing from the present invention.


In one aspect of the invention, device 134 is an administrative terminal (e.g. computer terminal) with a user interface for a network technician to manage intelligent network tap port aggregator 100. An administrative terminal connected to the intelligent network tap port aggregator may perform a number of functions including: (a) setting and modifying tap parameters based on user requirements; (b) setting and modifying tap display and LED parameters based on customer requirements; (c) recording network statistics based on customer requirements; and (d) alerting network technicians in the event of an alarm condition with a notification message (e.g. by on-screen information, e-mail, page, or other communication technique). Additional settings and monitoring are anticipated.


In another embodiment, command line interface 130 may be configured to send and receive data over a serial enabled device 136. Command line instructions may provide for local configuration and management of intelligent network tap port aggregator 100. Still further, in another embodiment, wireless interface 132 may be configured to send and receive data over a wireless enabled device 138. In one embodiment, wireless communication may be configured using an IEEE 802.11b protocol. As may be appreciated, any suitable wireless protocol may be utilized without departing from the present invention. Wireless management, as described herein, allows a technician to wirelessly access an intelligent network tap port aggregator within a suitable proximity such that security may be preserved.


In some embodiments, an LED array 120 may also be coupled with tap structure 122. As may be appreciated, an LED array may comprise one or more light emitting diodes (LED) illuminated in response to network conditions. LED arrays may include any number of colored elements. For example, a green LED may be utilized to indicate that a particular network parameter is within allowable limits or below a pre-selected threshold. A yellow LED may be utilized to indicate that a particular network parameter is borderline or at a pre-selected threshold. Further, a red LED may be utilized to indicate that a particular network parameter is above allowable limits or above a pre-selected threshold (e.g. an alarm condition). In one embodiment, the network parameter may correspond to network capacity. Other network parameters along with corresponding thresholds may be selected as well using managing devices as described above without departing from the present invention.


In one embodiment, intelligent network tap port aggregator 100 further includes a redundant power supply (not shown) for increased reliability. For example, if one power source fails, another redundant power supply is automatically switched to ensure uptime. LED array 120 may be configured to indicate which power supply is active so that a fault can be quickly identified and repaired without lowing power to the tap and without loss of data to the monitor.


B. Methodology



FIG. 2 is a flowchart illustrating steps for performing a method of aggregating network traffic 200 according to an embodiment of the invention. At a first step 202, network packets are received. As noted above, network packets (i.e. network traffic) may be received through a number of device interface terminals. In one embodiment device interface terminals may be configured to receive network packets over a twisted pair. In another embodiment, device interface terminals may be configured to receive network packets over an optical connection. As may be appreciated, any number of configurations well-known in the art may be utilized without departing from the present invention.


At a next step 204, the method sends network packets to memory. Memory buffer is useful in a scenario where a network data burst temporarily exceeds the tap structure's ability to support the network traffic. In one aspect, the memory buffer includes portions dedicated to each of the devices, e.g., 32 MB per side. In some embodiments, such a memory buffer is a first-in-first-out (FIFO) memory that may be configured to automatically clears itself when the traffic volume drops back to the receiving capacity of a network interface card (NIC). In some embodiments, the size of the memory buffer is approximately 256 MB. As noted above, in some embodiments, more than one network feed may be utilized. As such, memory may be segmented and configured such that each segment may be dedicated to a particular network feed thus receiving packets only from that network feed.


At a next step 206, network packets may be analyzed. As may be appreciated, analysis may include generating network parameters corresponding to a network feed such as: instantaneous percent utilization of network capacity, average percent utilization of network capacity, highest peak percent utilization of network capacity, and time of highest peak percent utilization of network capacity network traffic in terms of percent bandwidth utilization. Additional examples of network parameters may include: traffic types, particular origin and/or destination addresses, fault conditions, etc. Network parameters may be updated periodically and displayed for a network technician to read at any time. In some embodiments, selected network parameters may be displayed locally.


At a next step 210 the method determines whether the memory buffer has been exceeded by a packet. That is, whether a received packet will cause a memory overflow condition. If the method determines that the memory buffer is exceeded, then the packed may be dropped at a step 212. Thereafter, the method, at a step 214, sends a message notification such as an alarm. In some embodiments, the method may illuminate an LED array in response to an alarm condition. The method then logs the event at a step 216 and continues to a step 202 to receive network packets.


If, at a step 210, the method determines that the memory buffer has not been exceeded, the method continues to a step 218 to aggregate network traffic. As noted above, more than one network feed may be utilized. Aggregation combines two network feeds into a single aggregated stream. Aggregation is generally well-known in the art and may be utilized without limitation without departing from the present invention.


After network traffic is aggregated, the method then sends the aggregated traffic to a number of monitor interface terminals. Monitor interface terminals may be accessed by independent monitor devices that may be utilized to determine the status of the network. Any number of independent monitors may be utilized without departing from the present invention such as, for example, network analyzers, intrusion detection systems, intrusion prevention systems, remote monitors, and probes. After aggregated traffic is sent to a number of monitors, the method returns to a step 202 to receive network packets.



FIG. 3 is a flowchart illustrating steps for performing a method of determining a network threshold 300 according to an embodiment of the invention. In some embodiments, parallel processes may be utilized. For example, a selected threshold for warning may be utilized to alert a network administrator to potential network issues. Thus, at a first step 302, network traffic is received. As noted above, network traffic may be received through a number of device interface terminals. In one embodiment, device interface terminals may be configured to receive network packets over a twisted pair. In another embodiment, device interface terminals may be configured to receive network packets over an optical connection. As may be appreciated, any number of configurations well-known in the art may be utilized without departing from the present invention.


At a next step 304, the method determines whether a pre-selected threshold has been exceeded. As may be appreciated, network capacity may be subject to hardware limitations, software limitations, or both. In one embodiment, a network threshold may be a configurable parameter. In other embodiments, network thresholds may be configurable remotely. As may be appreciated, exceeding network capacity may result in an unacceptable increase in errors due to, for example, dropped or lost packets. As such, thresholds may represent a percentage of usage, an absolute number of packets sent, or any other measure of network traffic flow without departing from the present invention. If the method determines, at a step 304, that a pre-selected threshold has been exceeded, the method continues to a step 306 to send a message notification such as an alarm. In some embodiments, the method may illuminate an LED array in response to an alarm condition. The method then logs the event at a step 308 and continues to a step 302 to receive network traffic.



FIG. 4 is a flowchart illustrating steps for performing a method of determining excess network traffic 400 according to an embodiment of the invention. In some embodiments, parallel processes may be utilized. For example, an excess capacity warning may be utilized to alert a network administrator to potential network issues. Thus, at a first step 402, network traffic is received. As noted above, network traffic may be received through a number of device interface terminals. In one embodiment device interface terminals may be configured to receive network packets over a twisted pair. In another embodiment, device interface terminals may be configured to receive network packets over an optical connection. As may be appreciated, any number of configurations well-known in the art may be utilized without departing from the present invention.


At a next step, 404, the method determines whether network capacity has been exceeded. As may be appreciated, network capacity may be subject to hardware limitations, software limitations, or both. In one embodiment, network capacity may be a configurable parameter. In other embodiments, network capacity may be configurable remotely. As may be appreciated, exceeding network capacity may result in an unacceptable increase in errors due to, for example, dropped or lost packets. If the method determines at a step 404 that network capacity is exceeded, the method continues to drop traffic at a step 406 whereupon a notification message such as an alarm may be sent at a step 408. In some embodiments, the method may illuminate an LED array in response to an alarm condition. The method then logs the event at a step 410 and continues to a step 402 to receive network traffic.


C. Implementation



FIG. 5 is an illustrative block diagram of implementations of embodiments in accordance with the present invention. As may be appreciated, embodiments of the present invention may find utility in a variety of contexts. For example, a first embodiment 512 may be utilized in coordination with a local network 510. As may be appreciated, any number of CPUs may be utilized in network 510. First embodiment 512 may be utilized to aggregate network feeds and monitor network activity of network 510. Local management of first embodiment 512 may be accomplished using devices as described above. Remote management of first embodiment 512 may be accomplished using management device 550. Management devices are described in further detail above. While management device 550 is illustrated as being connected through a variety of segments including interne 520, internet 522, router 530, firewall 532, switch 534, second embodiment 536, firewall 542, and switch 544, these segments are for illustrative purposes only and should not be construed as limiting in any way.


Second embodiment 536 may further include monitoring devices 538 and 540. As noted above, any number of network monitor devices may be utilized without departing from the present invention such as, for example, network analyzers, intrusion detection systems, intrusion prevention systems, remote monitors, and probes. Those skilled in the art will appreciate the utility of flexible networking arrangement for managing network segments. As may be seen second embodiment 536 may monitor network traffic for a variety of network elements including local network 548 and local servers 546.


As may be appreciated, advantages of embodiments of the present invention may include, for example:


1. Provide critical data without complex setup. Embodiments described may be connected with each half-duplex link that is to be aggregated;


2. Display real-time network parameters as described above;


3. Monitor all aggregated network fees including physical layers;


4. Manage embodiments remotely through web based services, SNMP applications, and TMS applications; and


5. Provide readily visible status indicators through use of an LED array.


D. Conclusion


Variations in the disclosed embodiments are anticipated. For example, this invention and related technology is applicable to a wide range of products. These other products may or may not have memory, may have more than three ports, or maybe less than three ports, etc.


Advantages of the invention include the ability to provide full-duplex monitor access to a network in order that the network can be monitored and also that the tap can display network parameters to the network technicians.


Having disclosed exemplary embodiments and the best mode, modifications and variations may be made to the disclosed embodiments while remaining within the subject and spirit of the invention as defined by the following claims.

Claims
  • 1. A network tap port aggregator for use in monitoring a network, said network tap port aggregator comprising: a first device interface terminal for receiving a first network feed;a second device interface terminal for receiving a second network feed;a tap structure coupled with said first device interface terminal and with said second device interface terminal, said tap structure configured to monitor said first network feed and said second network feed and to aggregate said first network feed and said second network feed into an aggregated network feed; anda first monitor interface terminal coupled to said tap structure for providing said aggregated network feed to a first network monitor that is external to said network tap port aggregator.
  • 2. The network tap port aggregator of claim 1 further comprising a display coupled to said tap structure and configured to display at least one selected first network parameter corresponding to said first network feed and at least one selected second network parameter corresponding, to said second network feed.
  • 3. The network tap port aggregator of claim 2 further comprising a network controller coupled with said tap structure for providing communication between said tap structure and a plurality of managing devices external to said network tap port aggregator.
  • 4. The network tap port aggregator of claim 3 further comprising a managing device interface coupled with said network controller for providing at least one of Internet access to said network controller, SNMP access to said network controller, Command Line Interface (CLI) access to said network controller, and wifeless access to said network controller.
  • 5. The network tap port aggregator of claim 2 wherein said at least one selected first network parameter and said at least one selected second network parameter are selected from a group comprising at least one of instantaneous percent utilization of network capacity, average percent utilization of network capacity, highest peak percent utilization of network capacity, and time of highest peak percent utilization of network capacity.
  • 6. The network tap port aggregator of claim 1 farther comprising a memory buffer coupled with said tap structure and configured to store data, wherein said memory buffer is configured to store burst network data.
  • 7. The network tap port aggregator of claim 1 further comprising a second monitor interface terminal coupled to said tap structure for providing said aggregated network feed to a second network monitor that is external to said network tap port aggregator.
  • 8. The network tap port aggregator of claim 7 wherein said tap structure is configured to communicate full-duplex network traffic between a first device coupled to said first monitor interface terminal and a second device coupled to said second monitor interface terminal.
  • 9. The network tap port aggregator of claim 7 Wherein said first network monitor and said second network monitor are selected from a groups of systems, wherein said group of systems including at least one of network analyzers, intrusion detection systems, intrusion prevention systems, remote monitors, and probes.
  • 10. The network tap port aggregator of claim 1 further comprising an LED array that is coupled to said tap structure configured to illuminate in response to at least one pre-selected threshold percent utilization of first network capacity of said first network feed and to at least one pre-selected threshold percent utilization of second network capacity of said second network feed.
  • 11. A network tap port aggregator for use in monitoring a network, said network tap port aggregator comprising: a first device interface terminal for receiving a first network feed;a second device interface terminal for receiving a second network feed;a tap structure coupled with said first device interface terminal and with said second device interface terminal, said tap structure configured to monitor said first network feed and said second network feed and to aggregate said first network feed and said second network feed into an aggregated network feed; anda display coupled to said tap structure and configured to display at least one selected first network parameter corresponding to said first network feed and at least one selected second network parameter corresponding to said second network feed.
  • 12. The network tap port aggregator of claim 11 further comprising a first monitor interface terminal coupled to said tap structure for providing said aggregated network feed to a first network monitor that is external to said network tap port aggregator; and a second monitor interface terminal coupled to said tap structure for providing said aggregated network feed to a second network monitor that is external to said network tap port aggregator.
  • 13. The network tap port aggregator of claim 12 further comprising a network controller coupled with said tap structure for providing communication between said tap structure and a plurality of managing devices external to said network tap port aggregator.
  • 14. The network tap port aggregator of claim 12 further comprising a managing device interface coupled with said network controller for providing at least one of Internet access to said network controller, SNMP access to said network controller, Command Line Interface (CLI) access to said network controller, and wifeless access to said network controller.
  • 15. The method of claim 11 further comprising: illuminating an LED array that is coupled to said tap structure in response to said at least one selected first network parameter and to said at least one selected second network parameter.
  • 16. The method of claim 11 further comprising: temporarily storing said first network feed in a memory buffer that is con fled to said tap structure; andtemporarily storing said second network feed in said memory buffer, wherein said memory buffer is a FIFO buffer.
  • 17. A method of monitoring network traffic utilizing a network tap port aggregator, said method comprising: receiving a first network feed through a first network interface coupled with a tap structure in said network tap port aggregator;receiving a second network feed through a second network interface coupled with said tap structure in said network tap port aggregator;monitoring said first network feeds and second network feeds to provide at least one selected first network parameter corresponding to said first network feed and at least one selected second network parameter corresponding to said second network feed;aggregating said first network feed and said second network feed into an aggregated network feed; andpassing said aggregated network feed to a set of monitor interface terminals that is external to said network tap port aggregator.
  • 18. The method of claim 17 further comprising accessing said tap structure through at least one managing device interface coupled with a network controller, said network controller is coupled with said tap structure.
  • 19. The method of claim 17 further comprising displaying said at least one selected first network parameter and said at least one selected second network parameter on a remote display, said remote display connected with a network controller that is coupled to said tap structure through at least one managing device interface.
  • 20. The method of claim 19 further comprising using said remote display to further display configurable parameters selected from a group comprising of at least one of IP address, net mask, network capacity, network utilization threshold, network peak rate reset, network statistics reset, and current date and time.
PRIORITY CLAIM

This application is a continuation application and claims priority under 35 U.S.C. §120 to a commonly assigned application entitled “Intelligent Communications Network Tap Port Aggregator,” by Matityahu et al., application Ser. No. 11/370,487, filed on Mar. 7, 2006, which issued as U.S. Pat. No. 7,760,859 B2 on Jul. 20 2010, which claims priority to U.S. Provisional Patent Application No. 60/659,512 filed Mar. 7, 2005, and to U.S. Provisional Patent Application No. 60/709,371 filed on Aug. 17, 2005, which are all incorporated by reference herein.

US Referenced Citations (111)
Number Name Date Kind
4802161 Byars et al. Jan 1989 A
5173794 Cheung et al. Dec 1992 A
5648965 Thadani et al. Jul 1997 A
5710846 Wayman et al. Jan 1998 A
5715247 Nara et al. Feb 1998 A
5781318 Tremblay Jul 1998 A
5825775 Chin et al. Oct 1998 A
5887158 Sample et al. Mar 1999 A
5983308 Kerstein Nov 1999 A
6041037 Nishio et al. Mar 2000 A
6047321 Raab et al. Apr 2000 A
6108310 Wilkinson et al. Aug 2000 A
6167025 Hsing et al. Dec 2000 A
6272136 Lin et al. Aug 2001 B1
6366557 Hunter Apr 2002 B1
6424627 Sørhaug et al. Jul 2002 B1
6449247 Manzardo et al. Sep 2002 B1
6650803 Ramaswami et al. Nov 2003 B1
6658565 Gupta et al. Dec 2003 B1
6687009 Hui et al. Feb 2004 B2
6687847 Aguilera et al. Feb 2004 B1
6714976 Wilson et al. Mar 2004 B1
6798740 Senevirathne et al. Sep 2004 B1
6801940 Moran et al. Oct 2004 B1
6823383 MacBride Nov 2004 B2
6836540 Falcone et al. Dec 2004 B2
6841985 Fetzer Jan 2005 B1
6882654 Nelson Apr 2005 B1
6898630 Ueno et al. May 2005 B2
6914892 Cooper et al. Jul 2005 B1
6925052 Reynolds et al. Aug 2005 B1
6944437 Yang et al. Sep 2005 B2
6975209 Gromov Dec 2005 B2
7027437 Merchant et al. Apr 2006 B1
7171504 Ishii Jan 2007 B2
7277957 Rowley et al. Oct 2007 B2
7308705 Gordy et al. Dec 2007 B2
7321565 Todd et al. Jan 2008 B2
7324553 Varier et al. Jan 2008 B1
7415013 Lo Aug 2008 B1
7477611 Huff Jan 2009 B2
7486624 Shaw et al. Feb 2009 B2
7486625 Matityahu et al. Feb 2009 B2
7505416 Gordy et al. Mar 2009 B2
7573896 Wang et al. Aug 2009 B2
7616587 Lo et al. Nov 2009 B1
7760859 Matityahu et al. Jul 2010 B2
7788365 Foster et al. Aug 2010 B1
7953839 Sim et al. May 2011 B2
20010040870 Ohmori et al. Nov 2001 A1
20020003592 Hett et al. Jan 2002 A1
20020023184 Paul Feb 2002 A1
20020026374 Moneymaker et al. Feb 2002 A1
20020032880 Poletto et al. Mar 2002 A1
20020061027 Abiru et al. May 2002 A1
20020073199 Levine et al. Jun 2002 A1
20020087710 Aiken et al. Jul 2002 A1
20020110148 Hickman et al. Aug 2002 A1
20020176355 Mimms et al. Nov 2002 A1
20020180592 Gromov Dec 2002 A1
20030112760 Puppa et al. Jun 2003 A1
20030142666 Bonney et al. Jul 2003 A1
20030145039 Bonney et al. Jul 2003 A1
20030147385 Montalvo et al. Aug 2003 A1
20030184386 Varner et al. Oct 2003 A1
20030215236 Manifold Nov 2003 A1
20040023651 Gollnick et al. Feb 2004 A1
20040062556 Kubo et al. Apr 2004 A1
20040096227 Bulow May 2004 A1
20040109411 Martin Jun 2004 A1
20040120259 Jones et al. Jun 2004 A1
20040128380 Chen et al. Jul 2004 A1
20040190547 Gordy et al. Sep 2004 A1
20040202164 Hooper et al. Oct 2004 A1
20040215832 Gordy et al. Oct 2004 A1
20040236866 Dugatkin et al. Nov 2004 A1
20040264494 Kim Dec 2004 A1
20050005031 Gordy et al. Jan 2005 A1
20050060535 Bartas Mar 2005 A1
20050071711 Shaw Mar 2005 A1
20050108444 Flauaus et al. May 2005 A1
20050122910 Parupudi et al. Jun 2005 A1
20050129033 Gordy et al. Jun 2005 A1
20050132051 Hill et al. Jun 2005 A1
20050213512 Konuma et al. Sep 2005 A1
20050231367 Bellantoni Oct 2005 A1
20050257262 Matityahu et al. Nov 2005 A1
20050271065 Gallatin et al. Dec 2005 A1
20060083268 Holaday et al. Apr 2006 A1
20060083511 Edmunds et al. Apr 2006 A1
20060153092 Matityahu et al. Jul 2006 A1
20060200711 Schondelmayer et al. Sep 2006 A1
20060215566 Walsh Sep 2006 A1
20060233115 Matityahu et al. Oct 2006 A1
20060282529 Nordin Dec 2006 A1
20070002754 Matityahu et al. Jan 2007 A1
20070002755 Matityahu et al. Jan 2007 A1
20070002769 Matityahu et al. Jan 2007 A1
20070064917 Matityahu et al. Mar 2007 A1
20070081549 Cicchetti et al. Apr 2007 A1
20070081553 Cicchetti et al. Apr 2007 A1
20070171908 Tillman et al. Jul 2007 A1
20070171966 Light et al. Jul 2007 A1
20080014879 Light et al. Jan 2008 A1
20080049627 Nordin Feb 2008 A1
20080214108 Beigne et al. Sep 2008 A1
20090040932 Matityahu et al. Feb 2009 A1
20090041051 Matityahu et al. Feb 2009 A1
20090168659 Matityahu et al. Jul 2009 A1
20090279541 Wong et al. Nov 2009 A1
20100146113 Matityahu et al. Jun 2010 A1
Foreign Referenced Citations (5)
Number Date Country
2001-197066 Jul 2001 JP
2006148686 Jun 2006 JP
10-2004-0058415 Jul 2004 KR
WO-0219642 Mar 2002 WO
WO-2004012163 Feb 2004 WO
Non-Patent Literature Citations (65)
Entry
“International Search Report”, Issue in PCT Application No. PCT/US2006/25436; Mailing Date.: Mar. 4, 2008.
“Written Opinion”, Issue in PCT Application No. PCT/US2006/25436; Mailing Date.: Mar. 4, 2008.
“International Preliminary Report on Patentability”, Issued in PCT Application No. PCT/US2006/25436; Mailing Date: May 22, 2008.
“International Search Report”, Application No. PCT/US2006/25437, Mailing Date: Dec. 6, 2006.
“Written Opinion”, Application No. PCT/US2006/25437, Mailing Date: Dec. 6, 2006.
“International Preliminary Report on Patentability”, Issued in PCT Application No. PCT/US2006/025437; Mailing Date: Jan. 17, 2008.
“International Search Report”, Issued in PCT Application No. PCT/US2008/072484; Mailing Date: Feb. 13, 2009.
“Written Opinion”, Issued in PCT Application No. PCT/US2008/072484; Mailing Date: Feb. 13, 2009.
“International Search Report”, Issued in PCT Application No. PCT/US2008/072493; Mailing Date: Feb. 13, 2009.
“Written Opinion”, Issued in PCT Application No. PCT/US2008/072493; Mailing Date: Feb. 13, 2009.
“International Search Report”, Issued in PCT Application No. PCT/US2008/080598; Mailing Date: May 26, 2009.
“Written Opinion”, Issued in PCT Application No. PCT/US2008/080598; Mailing Date: May 26, 2009.
“Non Final Office Action”, U.S. Appl. No. 12/705,195, Mailing Date: Dec. 27, 2010.
“International Preliminary Report on Patentability”, Application No. PCT/US06/25436, Mailing Date: May 22, 2008.
“International Preliminary Report on Patentability”, Issued in PCT Application No. PCT/US2008/072484; Mailing Date: Feb. 18, 2010.
“International Preliminary Report on Patentability”, Issued in PCT Application No. PCT/US2008/072493; Mailing Date: Feb. 18, 2010.
“European Search Report”, Issued in EP Patent Application No. EP 08 17 1759, Mailing Date: Jul. 31, 2009.
U.S. Appl. No. 11/965,668, filed Dec. 27, 2007.
U.S. Appl. No. 11/925,626, filed Oct. 26, 2007.
U.S. Appl. No. 11/835,233, filed Aug. 7, 2007.
U.S. Appl. No. 11/835,228, filed Aug. 7, 2007.
“Non Final Office Action”, U.S. Appl. No. 11/174,033, Mailing Date: May 29, 2008.
“Final Office Action”, U.S. Appl. No. 11/174,033, Mailing Date: Dec. 10, 2008.
“Non Final Office Action”, U.S. Appl. No. 11/223,477, Mailing Date: Jun. 12, 2008.
“Non Final Office Action”, U.S. Appl. No. 11/174,238, Mailing Date: Oct. 1, 2008.
“Non Final Office Action”, U.S. Appl. No. 11/370,487, Mailing Date: Mar. 25, 2009.
“Non Final Office Action”, U.S. Appl. No. 11/835,233, Mailing Date: Jun. 9, 2009.
“Non Final Office Action”, U.S. Appl. No. 11/370,487, Mailing Date: Jun. 11, 2009.
“Non Final Office Action”, U.S. Appl. No. 11/174,033, Mailing Date: Sep. 15, 2009.
“Final Office Action”, U.S. Appl. No. 11/174,033, Mailing Date: Jun. 24, 2010.
“Non Final Office Action”, U.S. Appl. No. 11/174,032, Mailing Date: Apr. 23, 2008.
U.S. Appl. No. 11/370,487, filed Mar. 7, 2006.
“Final Office Action”, U.S. Appl. No. 11/835,233, Mailing Date: Oct. 30, 2009.
“Non Final Office Action”, U.S. Appl. No. 11/835,233, Mailing Date: Jun. 25, 2010.
“Notice of Allowance and Fee(s) Due”, U.S. Appl. No. 11/965,668, Mailing Date: Oct. 8, 2009.
“Non Final Office Action”, U.S. Appl. No. 10/834,448, Mailing Date. Feb. 7, 2009.
“Non Final Office Action”, U.S. Appl. No. 10/834,448, Mailing Date: Mar. 4, 2009.
“Final Office Action”, U.S. Appl. No. 10/834,448, Mailing Date: Dec. 9, 2009.
“Non Final Office Action”, U.S. Appl. No. 10/834,448, Mailing Date: Feb. 18, 2010.
“Application as Filed”, U.S. Appl. No. 12/705,195, filed Feb. 12, 2010.
“Non Final Office Action”, U.S. Appl. No. 11/835,228, Mailing Date: Sep. 9, 2010.
“Network Status Display”, Belkin International, Inc., 2007, 2 pages total.
HP, et al., “Reduced Gigabit Media Independent Interface (RGMII)”, Nov. 30, 2005, http://web.archive.org/web/20051113015000/http://www.hp.com/rnd/pdfs/RGMIIv2—0—final —hp. Pdf.
Wikipedia, “Field-programmable Gate Array”, Jan. 21, 2005, http://web.archive.org/web/20050121193052/http://en.wi kiped ia.org/wiki/Field-programmable—gate—array.
Xilinx, “LogiCore OPB Ethernet Lite Media Access Controller”, v1.01b, Mar. 3, 2006.
“Non Final Office Action”, U.S. Appl. No. 11/174,033, Mailing Date: Apr. 28, 2011.
“Fast Ethernet Fiber-to-Fiber Converters”, Canary Communications, Inc. 7 pages total, 2004.
“Sequence reducer/ Sequence Mirror Operator's Guide”, Peribit Networks, Inc. 13 pages total. 2001-2005.
“PeriScope Central Management System (CMS) 5.0 Administrator's Guide”, Peribit Networks, Inc. 13 pages total. 2003-2004.
“VSS Coppertap Literature”, VSS Monitoring Inc. 2 pages. 2003-2004.
“VSS Easy Install Guide”, VSS Monitoring Inc. 8 pages total. 2003-2005.
“VSS Linksafe”, VSS Monitoring Inc., 1 page. 2003-2005.
Anonymous, “100Base-TX/100BBase-FX Media Converters E-100BTX-FX-04 User's Guide”, Transitions Networks, Inc. Coypright 1998-2000, 4 pages.
“Replacement Statement and Explanation under 37CFR 1.915 In Support of Request for Inter Partes Reexamination of US Patent 7,486,625”, Sonnenschein Nath & Rosenthal LLP, Jan. 22, 2010, 251 pages.
“Request for Inter Partes Reexamination of US Patent 7,486,625”, Sonnenschein Nath & Rosenthal LLP, Dec. 18, 2009, 69 pages.
Gigamon Systems LLC, “GigaVUE—Product Brief”, Gigamon Systems LLC, http://web.archive.org/web/20070815021951/www.gigamon.com/pdf/GigamonSystems-OnePageProductBrief.pdf, Aug. 15, 2007, 1 page.
“Inter Partes Reexamination Office Action”, U.S. Appl. No. 95/001,318, Patent in Re-examination: 7,486,625, Mailing Date: Apr. 23, 2010.
“International Search Report”, PCT Application No. PCT/US2011/026158, Mailing Date: Nov. 30, 2011.
“Written Opinion” PCT Application No. PCT/US2011/026158, Mailing Date: Nov. 30, 2011.
“Non Final Office Action” U.S. Appl. No. 12/174,404, Mailing Date: Apr. 2, 2012.
“Final Office Action”, U.S. Appl. No. 11/174,033, Mailing Date: Mar. 27, 2012.
“Final Office Action”, U.S. Appl. No. 11/174,033, Mailing Date: Jan. 11, 2012.
“Examination Report”, EP Patent Application No. EP 08 17 1759, Mailing Date: Jun. 8, 2012.
“Non Final Office Action”, U.S. Appl. No. 13/036,842, Mailing Date: Oct. 17, 2012.
“Non Final Office Action”, U.S. Appl. No. 13/230,760, Mailing Date: Oct. 4, 2012.
Related Publications (1)
Number Date Country
20100278052 A1 Nov 2010 US
Provisional Applications (2)
Number Date Country
60659512 Mar 2005 US
60709371 Aug 2005 US
Continuations (1)
Number Date Country
Parent 11370487 Mar 2006 US
Child 12839373 US