Embodiments of the disclosure relate to the field of cyber security. More specifically, one embodiment of the disclosure relates to a system, apparatus and method for detecting malware.
Over the last decade, malicious software (malware) has become a pervasive problem for Internet users. Often malware exploits vulnerabilities in networked resources. For instance, over the past few years, more and more vulnerabilities are being discovered in software that is loaded onto network devices, such as vulnerabilities within operating systems for example. While some vulnerabilities continue to be addressed through software patches, prior to the release of such software patches, network devices will continue to be targeted for attack by exploits that use malicious computer code. The malware may attempt to acquire sensitive information or adversely influence or attack normal operations of a network device or the entire enterprise network.
Currently, in malware detection systems, one or more virtual machines may be used to process objects, which may include, for example, content from network traffic and/or files retrieved from a storage location, in order to activate, observe, and thereby detect malicious software. However, this processing may require user interaction, for example, in the form of an input initiated by an input device such as a graphical user interface (GUI), mouse, keyboard, keypad or the like. Based on an inability to provide the necessary user input, current malware detection systems may fail to activate the malicious content within the objects. One reason is that sophisticated malware often has a self-defense mechanism, which attempts to detect whether it is running in a virtual environment of a malware detection system rather than the intended environment of a client device under user control. One type of self-defense mechanism involves the malware monitoring whether user input expected by an application is supplied at the appropriate time. If it is not, the malware may simply hibernate (not activate), and thus not present itself for detection by the malware detection system.
Some conventional malware detection systems apply generic, static patterns of simulated input device controls in a virtual run-time environment in the absence of actual human interaction. However, malware creators have been able to identify these patterns. As a result, they have been able to equip their malware to identify such static simulated device controls, and upon detection, cause the malware to refrain from activating the malicious code in order to remain undetected. As a consequence, some conventional malware detection systems may experience unacceptable levels of false negatives or be forced to deploy a multitude of pattern detection schemes that will increase the rate of false positives.
Embodiments of the disclosure are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
Various embodiments of the disclosure are directed to a system and method for determining whether or not an object is associated with a malicious attack through, at least, a dynamic analysis of the object within a virtual run-time environment. Herein, the virtual run-time environment features one or more virtual machine instances (VMs), which are provisioned with a guest image associated with a prescribed software profile. The guest image may include a software application in addition to an operating system (OS) along with monitors, namely software components that are configured to observe and capture run-time behavior of an object under analysis during processing within the virtual machine. With this VM configuration, in order to effectively detect a malicious object, the object needs to be “launched” and subsequently “detonated” within the virtual run-time. Herein, the term “launch” (and other tenses) represents performance of one or more events that starts activation of an object under analysis while the phrase “detonate” (and other tenses) represents performance of one or more events that trigger a malicious attack by the activated object. Additionally, the contents of related application, U.S. patent application Ser. No. 13/801,532 filed on Mar. 13, 2013 is incorporated by reference herein.
In some cases, however, objects are detonated only in response to some sort of user interaction (e.g., one or more user inputs responsive to an event actuated by the object or user-initiated inputs during normal use of the object, etc.). According to one embodiment of the disclosure, user interaction (UI) control logic may be deployed as part of the virtual run-time environment in order to provide simulated user interaction needed to detonate certain types of malicious objects within a VM. Embodiments of the invention provide simulated user interaction tailored to the type of object (and, in some embodiments, other features related to the object) being processed in the virtual run-time environment. The UI control logic comprises a plurality of components, including (1) a profile selector and (2) a UI framework, as described herein.
Herein, the UI control logic may feature multiple implementations. For instance, the UI control logic may be provisioned as components of a VM. As an alternative embodiment, the UI framework may be provisioned as a component of the VM, but the profile selector may be deployed as part of a virtual machine monitor (VMM), which may be deployed, according to one embodiment of the disclosure, as part of a “hosted hypervisor” (e.g., software that runs on top of a host operating system) or as an intermediary operation layer between the hardware and the VMs. When deployed as part of the VMM, the profile selector may be adapted to provision the UI framework component within the VM and perhaps multiple UI framework components within multiple VMs.
According to one embodiment of the disclosure, the profile selector selects an action profile from a plurality of action profiles that may be hosted in the VM or outside the VM within the virtual run-time environment. This selection may be based, at least in part, on metadata associated with an object under analysis. Herein, the metadata defines, at least in part, the context for determining the action profile that governs the simulated user interaction. The metadata further determines the software appropriate to launch the object in the run-time environment. Of course, the selection of the action profile also may be based on a type of network device deploying (hosting) the VM (e.g., security appliance that analyzes network traffic, files within a file storage system, etc.) or other information from the static analysis of the object. According to this action profile selection scheme, the dynamic analysis of the object is “context aware”.
Herein, the metadata may include data that identifies the type of object under analysis. Of course, it is contemplated that, besides object type, other metadata may be used by the profile selector for selecting the particular action profile. Examples of other metadata that may be used by the profile selector to select a particular action profile for controlling the simulation of user interactions with the object launched in the VM may include, but are not limited or restricted to information related to the following: (i) whether the object is encrypted and/or its type of encryption scheme, (ii) whether the object is an embedded object, (iii) the type of application needed for processing the object, and/or (iv) transmission protocol used in delivery of network content including the object.
Each “action profile” is a collection of instructions and/or commands that performs UI functionality in accordance with a set of rules prescribed for that action profile. As a result, each action profile is configured for use in dynamically controlling UI actions associated with a certain type of object in contrast to the use of patterns per se. For instance, the action profile associated with a Microsoft® Excel® spreadsheet may conduct different UI actions (e.g., select tabs, add text to certain cells, scroll down a certain number of cell rows, etc.) than a PDF document (e.g., scroll pages of the document, etc.) and such actions may be conducted at different times depending on the behavior of the object under analysis.
As described herein, the UI framework comprises (i) the actuation logic, (ii) active UI simulation logic; (iii) passive UI simulation logic; and (iv) device control simulation logic. According to one embodiment of the disclosure, the actuation logic is a software component that is implemented as part of a software profile that provisions the VM and is responsible for launching the object under analysis. The particular implementation of the actuation logic may vary depending on the object type. Upon the actuation logic launching the object, the active UI simulation logic, the passive UI simulation logic and the device control simulation logic are instantiated with or are instantiated to access content within the selected action profile. Operating in accordance with the selected action profile, the simulation logic within the UI framework conducts particular actions (e.g., expected user interface interactions and/or methods of activation) during particular operating states at which such actions are expected if the object was running on a targeted endpoint. These particular actions may be conducted in accordance with a predetermined sequence (order) and/or at (or within) predetermined periods of time. Furthermore, two or more of these particular actions may be conducted concurrently (at least partially overlapping at the same time) or such actions may be performed sequentially.
Operating as part of the UI framework, the active UI simulation logic detects input requests (e.g., password request, opening of a dialog box that requires dismissal prior to continuing, opening of a text box that requires text entry, etc.), which require human interaction that directly responds to the input request. This type of simulated human interaction is referred to herein as “active” simulated human interaction. In response, the active UI simulation logic operates in accordance with the selected action profile to determine whether to provide a response and the type of response, where appropriate.
The passive UI simulation logic operates in accordance with the selected action profile and, in certain cases, provides simulated human interaction in response to a prescribed level of inactivity by the object and/or a prescribed period of time after the suspect object has launched has elapsed. The passive UI simulation logic is in communication with timing circuitry (e.g., real time clock, counter, etc.), where the monitored time plays a factor in determining when to conduct prescribed simulated human interactions that are triggered by a period of inactivity by the object and/or an elapsed time from when the suspect object was launched.
Responsive to detecting a prescribed period of inactivity for example, the passive UI simulation logic simulates user-initiated interactions on the object such as moving to a particular page in a Microsoft® Office Word document (object), switching to a particular tab in a Microsoft® Office Excel document (object), or switching to a different PowerPoint™ slide in accordance with the object-specific action profile. As an example, assuming the object is a Microsoft® Office Excel document, experiential knowledge of typical placement of exploit/malicious code (e.g., through machine learning techniques) in a Microsoft® Office Excel document may result in instructions by the selected action profile for the passive UI simulation logic to simulate human interaction by switching to the second sheet of the Microsoft® Office Excel document at a predetermined time after the actuation logic launches the object.
The device control simulation logic operates in accordance with the selected action profile and provides simulated device controls that are agnostic to object type, which may occur in response to yet another level of prescribed inactivity. For example, the device control simulation logic may receive instructions from the selected action profile to simulate certain device control interactions, such as simulate particular keystrokes and/or particular mouse movements, in an attempt to trigger a malicious attack by the object.
Embodiments of the disclosure may be employed by or take the form of a network device, including a cyber-security appliance that features a malware detection system (MDS). The MDS includes a static analysis engine and a dynamic analysis engine, or, in another embodiment, only a dynamic analysis engine. In some embodiments, the MDS may be implemented as a server or client device or other system (any of which may be referred to as an “endpoint”) connectable to a network. The dynamic analysis engine may include a virtual run-time environment that automatically analyzes, without user assistance, objects from the received network traffic and simulates human interaction to detonate and detect malicious objects during virtual processing. The results of the analysis may be reported to network administrators or other personnel for further analysis and action.
In the following description, certain terminology is used to describe features of the invention. For example, in certain situations, the terms “logic”, “component”, and “engine” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or component or engine) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a microprocessor, one or more processors and/or processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, semiconductor memory, or combinatorial logic.
Logic (or component or engine) may be software in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code may be stored in persistent storage.
The term “object” generally refers to a collection of data, whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables it to be classified for purposes of analysis. During analysis, for example, the object may exhibit a set of expected characteristics and, during processing, a set of expected behaviors. The object may also exhibit a set of unexpected characteristics and a set of unexpected behaviors that may evidence the presence of malware and potentially allow the object to be classified as part of a malicious attack.
Examples of objects may include one or more flows or a self-contained element within a flow itself. A “flow” generally refers to related packets that are received, transmitted, or exchanged within a communication session. For convenience, a packet is broadly referred to as a series of bits or bytes having a prescribed format, which may, according to one embodiment, include packets, frames, or cells. Further, an “object” may also refer to collective payloads of a number of related packets, e.g., a single webpage received over a network. Moreover, an object may be a file or document retrieved from a storage location over a transmission medium.
As a self-contained element, the object may be an executable (e.g., an application, program, segment of code, dynamically link library “DLL”, etc.) or a non-executable. Examples of non-executables may include a document (e.g., a Portable Document Format “PDF” document, Microsoft® Office® document, Microsoft® Excel® spreadsheet, etc.), an electronic mail (email), downloaded web page, or the like.
The term “transmission medium” may be construed as a physical or logical communication path between two or more network devices (e.g., any devices with data processing and network connectivity such as, for example, a security appliance, a server, a mainframe, a computer such as a desktop or laptop, netbook, tablet, firewall, smart phone, router, switch, bridge, etc.) or between components within a network device. For instance, as a physical communication path, wired and/or wireless interconnects in the form of electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), may be used.
The term “network device” should be construed as any electronic device with the capability of connecting to a network. Such a network may be a public network such as the Internet or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks. Examples of a network device may include, but are not limited or restricted to, a laptop, a mobile phone, a tablet, a computer, a security appliance, or the like.
The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. Also, the terms “compare” or “comparison” generally mean determining if a match (e.g., a certain level of correlation) is achieved between two items where one of the items may include a particular signature pattern.
The term “action profile” should be interpreted as a plurality of instructions and/or commands that provision logic to conduct, in accordance with a set of rules prescribed for that particular action profile, different types of simulated user interactions. The simulated user interactions may include “active” simulated human interactions; “passive” simulated human interactions and simulated device control interactions.
An active simulated human interaction includes simulated actions that may be performed by a user in response to an event initiated by a suspect object under analysis. In some situations, the simulated action may be required before any further activities are conducted by the object. Examples of an active simulated human interaction include closing a window or dialog box; selecting a particular radio button; and/or entering characters into a text box).
A passive simulated human interaction includes simulated actions that are normally performed by a user during activation of the object, but such actions are not responsive to a particular behavior by the object. Examples of passive simulated human interaction include scrolling pages of a document (e.g., PDF or Word® document), browser, or other type of displayed image; selecting certain tabs of an Excel® spreadsheet; and/or accessing certain menu options.
A simulated device control interaction includes simulated input from an input device for an endpoint. Examples of a simulated device control interaction include keystrokes, mouse movement or clicks, and/or detected activation of certain area or areas of a touch screen.
Lastly, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
The invention may be utilized for detection, verification and/or prioritization of malware, which may include malicious content, in particular, through providing object-type specific simulated human interaction to an object activated in a virtual run-time environment. As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.
Referring to
As shown in
In general, the interface 136 may operate as a data capturing device that is configured to receive at least a portion of network traffic propagating to/from one or more endpoints 132 and provide information associated with the received portion of the network traffic to the first MDS 1101. This information may include an object, namely multiple packets collectively forming an executable or a non-executable (e.g., a document embedded within an email message or a web page). Alternatively, although not shown, the interface 136 may be configured to receive files or other objects that are not provided over a network. For instance, as an example, the interface 136 may be a data capturing device that automatically (or on command) accesses data stored in a storage system or another type of interface, such as a port, for receiving objects manually provided via a suitable dedicated communication link or from storage media such as portable flash drives.
In general terms, the interface 136 may be configured to capture data typically directed to the endpoint 132, where the captured data includes at least one object 147 for analysis and its corresponding metadata 148. The metadata 148 may be used, at least in part, to determine protocols, application types and other information that may be subsequently used by logic, such as a scheduler 150 for example, to configure one or more VMs 1701-170M (M≥1) with selected software profiles. For instance, the metadata 148 may be used to determine which software images (e.g., application(s)), if any, in addition to operating systems to be fetched a storage device 151 for configuring operability of the VMs 1701-170M in order to process the subject object 147 at a desired time, for a desired period of time, and/or in a desired order. Additionally, as one feature of the invention, the metadata 148 associated with the suspect object 147 may be used by the profile selector 184, implemented in the VM(s) itself (e.g. VM 1701) or in the virtual machine monitor (VMM) 172 as described below, to select which action profile(s) 188 for controlling simulated user interaction with the suspect object 147 in efforts to detonate the suspect object 147 within one or more of the VM 1701-170M.
In some embodiments, although not shown, interface 136 may be contained within the first MDS 1101. In other embodiments, the interface 136 can be integrated into an intermediary device in the communication path (e.g., a firewall, router, switch or other networked electronic device) or can be a standalone component, such as an appropriate commercially available network tap as shown.
As further shown in
Referring still to
Referring still to
The metadata extraction logic 154 is responsible for extracting and/or generating metadata 148 contained as part of and/or associated with the suspect object 147. The extraction and/or generation of the metadata 148 may occur after the object 147 is determined by the static analysis logic 152 to feature anomalous or suspicious characteristics. Of course, alternatively, the metadata extraction logic 154 may extract and/or generate the metadata 148 prior to or concurrently with the operations conducted by static analysis logic 152.
The metadata 148 may be identified as being associated with the suspect object 147, and is stored accordingly. Examples of metadata 148 may include, but are not restricted or limited to, information that identifies the type of object 147. For example, a particular document (e.g., Microsoft® Excel spreadsheet) is an example of an object type, which may be in the form of a non-executable. This metadata 148 may be subsequently used by the profile selector 184 to select at least one particular action profile for controlling simulated user interaction conducted during analysis of the object 147 within one or more VMs 1701-170M of the virtual run-time environment 164, as described below.
In addition to, or in lieu of the metadata associated with the source of the object 147, it is contemplated that other metadata may be captured by metadata extraction logic 154. For instance, other metadata which may be used by the profile selector 184 for selecting the particular action profile. This metadata may include, but is not limited or restricted to the following: (i) data identifying whether the object is encrypted and/or its type of encryption scheme, (ii) data identifying whether the object is an embedded object, (iii) data identifying the type of application needed for processing the object, and/or (iv) data identifying the transmission protocol used in delivery of network content including the object. These and potentially other features related to the object are stored for later use.
From the extracted metadata, the object-type determination logic 156 may determine object type. For instance, the object-type determination logic 156 may analyze content within the object 147, which may identify the object type. For instance, as an illustrative example, the object-type determination logic 156 may identify a predetermined number of bytes at the beginning of the object 147 (sometimes referred to as the “magic numbers” for the object) and compare the values associated with these bytes with stored values within the magic number database 158. Upon a successful comparison, the object-type determination logic 156 has identified the object type.
For instance, as an illustrative embodiment, the first few bytes of the object 147 may, in certain cases, be used to determine the object-type or at least infer the object type based on the communication protocol in use. As an example, the object-type determination logic 156 may determine that the object 147 starts with the hexadecimal string value “4D5A” which, upon comparison with entries within the magic number database 158, identifies that the object 147 is an executable. Similar, the object-type determination logic 156 may determine that the object 147 starts with a hexadecimal string value of “25 50 44 46” and, upon comparing this value with stored data within the magic number database 158, determines that the object 147 is a PDF document.
As discussed above, the static analysis engine 145 may route the suspect object 147 along with the metadata 148 (inclusive of any object type information generated by the object-type determination logic 156) to the virtual run-time environment 164 within the dynamic analysis engine 160. The results of the static analysis may be used to establish an order of processing of objects in the virtual run-time environment 164 based on the level of “suspiciousness” of the objects (e.g., as established by a relative suspiciousness score). The static analysis engine 145 may also filter benign objects from further analysis. In one embodiment, if the object 147 does not appear suspicious and/or malicious based on a static analysis, the static analysis engine 145 may simply denote that the object 147 is non-malicious and may refrain from subjecting the object 147 to further analysis. However, upon determining that the object 147 includes characteristics that are suspicious, extracting the metadata 148 associated with the suspect object 147 and determining the object type, the static analysis engine 145 may pass this suspect object 147 along with the metadata 148 to the dynamic analysis engine 160 for more in-depth analysis in a VM-based operating environment. All or portions of the static analysis engine 145 may be integrated into the interface 136 or into other devices, such as a firewall or another network device, such as a network device located at the periphery of a network to be protected so as to capture and examine objects contained in ingress content.
The dynamic analysis engine 160 may include processing logic 162, a virtual run-time environment 164, a data store 166, and/or a score determination logic 168. According to one embodiment, processing logic 162 may be configured to control inter-operability between components within the dynamic analysis engine 160. For instance, the processing logic 162 may control the buffering of the passed objects and their corresponding metadata into the data store 166 and the loading of the objects and corresponding metadata into the VM(s) 1701-170M directly or into the VMM 172 for supply to the VMs 1701-170M.
The virtual run-time environment 164 provides for virtual processing of the object 147 through one or more VMs 1701-170M managed by a virtual machine monitor (VMM) 172. The VMM 172 manages reconfiguration of the one or more VMs 1701-170M before conducting the virtual analysis based on externally provided configuration updates, namely software profiles (e.g., OS and/or application instances), action profiles, or the like. As shown, the VMM 172 features action profile update logic 174, which is responsible for updating rules, parameters, instructions, and/or other data maintained by the action profile(s) 188 hosted in VM 1701, as shown. Of course, the action profile update logic 174 may update action profile(s) 188 hosted in other VMs (e.g., VM 170M) or hosted outside the VM (e.g., within storage device 151, within data store 166, or within storage within the virtual run-time environment (not shown)). For clarity sake, the operations of VM 1701 are described, although all or some of the other VMs 170M or VMs 1702-170M may operate in a similar manner.
As shown, the VM 1701 may be provisioned with an operation system (OS) and, dependent on the object type, one or more applications 180, along with the monitoring logic 181 and user interaction (UI) control logic 182. The monitoring logic 181 monitors run-time behaviors of the object 147 when launched in the VM 1701. The UI control logic 182 provides simulated user interactions to detonate a malicious object that is loaded into the VM 1701 and requires some sort of user interaction to initiate a malicious attack. According to one embodiment of the disclosure, the UI control logic 182 comprises a plurality of components, which include (1) a profile selector 184 and (2) UI framework 186.
According to one embodiment of the disclosure, the profile selector 184 selects an action profile from the action profile(s) 188 that are shown as being hosted in the VM 1701. This selection may be based, at least in part, on the metadata 148 associated with the suspect object 147. For example, the metadata 148 may include data produced by the object-type determination logic 156 that identifies an object type for the object 147. As described above, the metadata 148 may include other data that is uncovered during parsing of the object 147 by the static analysis engine 145 (e.g., password protected fields, password in an email message that included the object 147, etc.), which may be relied upon for selecting a particular action profile within the action profile(s) 188.
As further shown in
When launching the object 147, the actuation logic 340 notifies the UI simulation logic 350 of the launched object. In response, logic within the simulation logic 350 is instantiated with or is instantiated to access the selected action profile, which controls the simulated user interaction conducted by the UI framework 186 during analysis of the object 147. The simulated user interaction may include signaling that simulates a particular action during a particular operating state of the object 147 at which such an action is expected if running on a targeted endpoint (client device). These particular actions may be order dependent (sequenced) and/or time dependent (e.g., occur at a particular time, occur at a particular time after a previous action, etc.).
Referring back to
For instance, when a submitted object 147 is classified as malicious, the UI framework log 176 can provide information for understanding which simulation logic caused or helped a successful detonation. In other words, from data within the UI framework logic 176, a determination can be made as to the efficacy of action profiles and the UI framework. Such feedback can be used to “fine-tune” action profiles. Additionally, by use of data within the UI framework logic, malwares can be classified based on user interaction(s) necessary for detonation. This classification and details of user interaction(s) can augment the Threat Intelligence aspects such as forensic analysis of malwares and incidence response. Similarly, when the object 147 is classified as suspicious, the UI framework logic 176 provides information for understanding the shortcomings in the set of user interactions the UI framework 186 provides (e.g., a new feature might be required in UI framework 186 or new rules or parameters may be needed for the selected action profile). On the other hand, if a user interaction performed by the UI framework obstructs object detonation, it can be rectified in subsequent action profile update.
As shown in
Although
Referring now to
Referring to
According to one embodiment of the disclosure, the object 147 and metadata 148 are provided to the VM 1701. Based on the metadata 148, the profile selector 184 selects an action profile (herein the “selected action profile” 3001) within the action profile(s) 188, namely a plurality of action profiles 3001-300R (R≥2) that may be hosted in the VM 1701 (as shown) or outside the VM 1701 within the virtual run-time environment. This selection may be based, at least in part, on metadata identifying the object type. Of course, it is contemplated that, besides object type, other metadata may be used by the profile selector 184 to better identify the object 147 in order to choose the selected action profile 3001 best suited for the particular object under analysis. Examples of other metadata that may be used include, but are not limited or restricted to the following: (i) data identifying whether the object 147 is encrypted and/or its type of encryption scheme, (ii) data identifying whether the object 147 is or contains an embedded object, (iii) data identifying whether the object 147 includes password-protected fields and information associated with the password; (iv) data identifying the type of application needed for processing the object 147, and/or (v) data identifying the transmission protocol used in delivery of network content including the object 147.
Herein, according to one embodiment of the disclosure, each “action profile” is a collection of instructions and/or commands that performs UI functionality in accordance with a set of rules prescribed for that action profile. As a result, the selected action profile 3001 is configured for use in controlling UI functionality during analysis of the object 147. For instance, where the object 147 is identified as a Microsoft® Excel® spreadsheet, the selected action profile 3001 may conduct different UI functions (e.g., select tabs, add text to certain cells, scroll down a certain number of cell rows, etc.) than another action profile 300R for controlling UI functionality during analysis of a PDF document (e.g., scroll pages of the document, etc.).
According to a first embodiment, as shown in
As an optional feature, although not shown, addressing information (e.g., a pointer, memory storage location, etc.) may be provided to the actuation logic 340 associated with that particular object type. The addressing information may be used for accessing a sequence of commands and/or instructions that conducting operations suitable for launching a particular object type.
Referring to both
Upon launching the object 147, the actuation logic 340 provides a launch notification 345 to the simulation logic 350, namely the active UI simulation logic 360, the passive UI simulation logic 370 and the device control simulation logic 380. According to one embodiment, the launch notification 345 may cause the simulation logic 350 to poll for data 347. According to one embodiment of the disclosure, the data 347 may include (i) an identifier for the object 147; (ii) an identifier as to a type of actuation logic (e.g., particular software module) used to launch the object 147; and/or (iii) the time that the object 147 was launched. Of course, in accordance with a “push” communication scheme, the data 347 may be provided as part of the launch notification 345.
According to this embodiment, the identifier of the object 147 and/or the identifier of the actuation logic 340 may be used to verify that the correct selected action profile 3001 has been passed to the simulation logic 350 for use at the correct time(s) during processing of the object 147. The launch time may be used to synchronize the active UI simulation logic 360, the passive UI simulation logic 370 and the device control simulation logic 380 with each other. The launch time also establishes a reference time for use when the passive UI simulation logic 370 is conducting time-based simulated human, and/or the device control simulation logic 380 is conducting time-based simulated device control interaction in accordance with the selected action profile 3001. The synchronization is especially relevant for actions conducted by the passive UI simulation logic 370 and the device control simulation logic 380 in accordance with the selected action profile 3001, as illustrated in
As further shown in
Operating as part the UI framework 186, the active UI simulation logic 360 is a first type of simulated user interaction which is configured to detect input requests (e.g., password request, an attempt to display a dialog or text box for selection of a radio button or text input, etc.) initiated by the object 147 that require “active” human interaction. In response, based on the contents of the selected action profile 3001, the active UI simulation logic 360 determines whether to provide a response and, where appropriate, the type of response that simulates the requested human interaction. For instance, the selected action profile 3001 may cause the active UI simulation logic 360 to provide signaling that simulates human interaction responsive to the input request initiated by the launched object 147. For example, the signaling may simulate the user closing a dialog box that requires dismissal before continuing or simulate the user selecting a particular radio button that closes the dialog box and opens another dialog box for handling. Such signaling may be intentionally delayed by a prescribed or random period of time to further simulate human interaction. This response and/or responses to subsequent input requests may trigger the object 147 to commence a malicious attack, which could only have been activated by such simulated human interactions.
The passive UI simulation logic 370 is a second type of simulated user interaction which provides “passive” simulated human interaction. The “passive” simulated human interaction is in accordance with the selected action profile, but it is not responsive to an input request by the launched object 147 (e.g., a behavior of the launched object that requiring user action). In some cases, the simulated human interaction is in response to a prescribed level of inactivity by the object.
Herein, the “passive” simulated human interaction may include any simulated operations that, without prompting, may be conducted by the user on the object such as moving to a particular page in a Microsoft® Office Word document (object) or switching to a particular tab in a Microsoft® Office Excel document (object). As an illustrative example, assuming the object has an object-type of a Microsoft® Office Excel document, experiential knowledge of typical placement of exploit/malicious code (e.g., through machine learning techniques) in a Microsoft® Office Excel document may result in instructions in the selected action profile for the passive UI simulation logic 370 to switch to the second sheet of the Microsoft® Office® Excel document at a predetermined time after the actuation logic launches the object.
The device control simulation logic 380 is a third type of simulated user interaction that may be performed during virtual analysis of the suspect object 147. The device control simulation logic 380 simulates device control interactions that are object-type agnostic. For example, the device control simulation logic 380 may receive instructions from the selected action profile 3001 to simulate certain device control interactions, such as simulate particular keystrokes and/or particular mouse movements, in an attempt to detonate a malicious object that is awaiting user interaction before conducting a malicious attack.
Additionally, the UI framework log 176 records the activities conducted by the simulation logic 350. As discussed above, the UI framework log 176 may record any suspicious activity and/or malicious activity as well as any actions taken, or refrained from being taken, any requested input and timestamps for all actions and requested input. Upon completion of the dynamic analysis, the information recorded in the UI framework log 176 may be accessible to the score determination logic 168 and/or the classification engine 190.
It is contemplated that the action profile(s) 188 may be updated through a configuration file that may be propagated to the MDS 1101 over a network 125 of
Alternatively, the action profile update may be provided by over the network 105 (for example through a download using the cloud computing services 228 and/or manual installation through the use of a storage device such as flash storage).
Referring now to
Herein, a first determination is made as to whether the object has been launched by the actuation logic (block 400). If not, the UI framework does not receive a launch notification from the actuation logic, and thus, the simulation logic remains in an idle state. However, once an object is launched, the simulation logic receives a launch notification from the actuation logic, which causes the simulation logic to reference the selected action profile. A first determination is made as to whether user interaction is currently being requested based on resultant behaviors of the object during analysis (block 405). Stated differently, a determination is made as to whether the object process has initiated an input request, where timely “active” simulated human interaction is necessary. This determination may be conducted by monitoring system calls and other signaling that is directed to generation of a dialog box, text box, window or other perceivable element that would require user interaction.
In event that the passive UI simulation logic is currently conducting “passive” simulated human interactions and/or the device control simulation logic is currently conducting simulated device control interactions in accordance with rules outlined in the selected action profile, these simulated operations are paused for a prescribed duration. The prescribed duration may be set by the rules set forth in the selected action profile that identify the amount of time necessary to complete a particular type of “active” simulated human interaction. Furthermore, the “paused” simulated operations are time-stamped and placed in a wait queue for subsequent processing after the active UI simulation logic has completed its simulated human interaction. The selected action profile triggers the active UI simulation logic to conduct a particular “active” simulated human interaction and store the activity in the UI framework log. Thereafter, the simulation logic determines if the analysis of the object has completed, and if not, cycles back to determine whether the object is actively requesting user interaction (blocks 410-425).
In the event that active user interaction is not needed at this time, a determination is made as to whether there are any “paused” passive simulated human interactions and/or simulated device control interactions (blocks 405 and 430). This determination may be accomplished by analysis of the wait queue and/or determining whether a prescribed wait duration has elapsed (e.g., difference between current time and the time-stamp is greater than or equal to the prescribed duration). If so, these paused simulated operations are resumed (block 435). However, if there are no paused passive simulated human interactions and/or the simulated device control interactions, a determination is made as to whether there are any “passive” simulated human interactions that, according to the selected action profile, should be initiated (block 440). If so, the selected action profile triggers the passive UI simulation logic to conduct a particular “passive” simulated human interaction and store the activity in the UI framework log (block 445).
In the event that there has been at least a predetermined level of UI simulated activity thus far, the simulation logic may return to determine if the analysis of the object has completed, and if not, cycles back to determine whether the object is actively requesting certain user interaction (blocks 450, 420 and 405). The prescribed level of UI simulated activity may be measured by a variety of ways. For instance, the prescribed level of UI simulated activity may be determined based on whether simulated human interactions have occurred for a certain percentage of the run-time since the object was launched. Alternatively, the process may determine the number of “active” simulated human interactions or the number of active/passive simulated human interactions that have been completed since the object was launched.
In the event that the predetermined level of UI simulated activity has not been met, the device control simulation logic accesses the selected action profile to determine what simulated device control interactions are requested by the selection action profile, and thereafter, the selected action profile triggers the device control simulation logic to simulate such device controls and store such activity in the UI framework log. Thereafter, the simulation logic returns to determine if the analysis of the object has completed, and if not, cycles back to determine whether the object is actively requesting user interaction (blocks 450, 420 and 405).
According to these operations, the UI control logic is adapted to prioritize “active” simulated human interaction above “passive” simulated human interaction and the simulated device control interaction. Hence, in some cases as described herein, simulated human interaction and simulated device control interactions may be temporarily halted to direct resources to respond to an activity initiated by the object. Of course, it is contemplated that some types of “passive” simulated human interactions and simulated device control interactions may continue despite detection of an input request by the object. This may be done to maintain perceived consistency in simulated operations to avoid sophisticated malware to detect abnormally prompt changes in operation.
Referring now to
If so, the active UI simulation logic notifies the passive UI simulation and the device control simulation logic of an imminent active user interaction (block 480). This notification prompts the passive UI simulation and the device control simulation logic to pause any current operations as described in
If the active UI simulation logic determines that the suspect object under analysis is not currently requesting active user interaction or responsive simulated human interactions have been provided, the active UI simulation logic determines whether the analysis of the suspect object has completed. If not, the active UI simulation logic initiates another iterative cycle awaiting a requested user interaction (block 490).
Referring now to
According to one embodiment of the disclosure, the first communication interface logic 510 and/or the second communication interface logic 530 may be implemented as a physical interface including one or more ports for wired connectors. Additionally, or in the alternative, the first communication interface logic 510 and/or the second communication interface logic 530 may be implemented with one or more radio units for supporting wireless communications with other network devices.
The processor(s) 500 are further coupled to the persistent storage 550 via the transmission medium 560. According to one embodiment of the disclosure, the persistent storage 550 may be configured to store software components associated with the static analysis engine 145, the dynamic analysis engine 160, the classification engine 190 and the reporting engine 195. As shown, software components associated with the static analysis engine 145 may include the static analysis logic 152, the metadata extraction logic 154 and/or the object-type determination logic 156. The persistent storage 550 may be further configured to store software components associated with the dynamic analysis engine 160, which includes the VMM 172 along with the VMs 1701-170M. All or some of the VMs 1701-170M may be provisioned with the UI control logic 182, which may include the profile selector 184, UI framework 186 and/or action profile(s) 188.
Additionally, the persistent storage 550 may include the magic number database 158 that is accessed by the object-type determination logic 156 (described above) and data stores 159 and 164 that may operate, at least part, as data buffers.
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.
This application is a continuation of U.S. application Ser. No. 14/586,233 filed Dec. 30, 2014, now U.S. Pat. No. 9,838,417, issued Dec. 5, 2017, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4292580 | Ott et al. | Sep 1981 | A |
5175732 | Hendel et al. | Dec 1992 | A |
5278901 | Shieh et al. | Jan 1994 | A |
5319776 | Hile et al. | Jun 1994 | A |
5440723 | Arnold et al. | Aug 1995 | A |
5452442 | Kephart | Sep 1995 | A |
5490249 | Miller | Feb 1996 | A |
5657473 | Killean et al. | Aug 1997 | A |
5802277 | Cowlard | Sep 1998 | A |
5842002 | Schnurer et al. | Nov 1998 | A |
5889973 | Moyer | Mar 1999 | A |
5960170 | Chen et al. | Sep 1999 | A |
5978917 | Chi | Nov 1999 | A |
5983348 | Ji | Nov 1999 | A |
6088803 | Tso et al. | Jul 2000 | A |
6088804 | Hill et al. | Jul 2000 | A |
6092194 | Touboul | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6108799 | Boulay et al. | Aug 2000 | A |
6118382 | Hibbs et al. | Sep 2000 | A |
6154844 | Touboul et al. | Nov 2000 | A |
6269330 | Cidon et al. | Jul 2001 | B1 |
6272641 | Ji | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6298445 | Shostack et al. | Oct 2001 | B1 |
6357008 | Nachenberg | Mar 2002 | B1 |
6417774 | Hibbs et al. | Jul 2002 | B1 |
6424627 | Sørhaug et al. | Jul 2002 | B1 |
6442696 | Wray et al. | Aug 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6493756 | O'Brien et al. | Dec 2002 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6700497 | Hibbs et al. | Mar 2004 | B2 |
6775657 | Baker | Aug 2004 | B1 |
6831893 | Ben Nun et al. | Dec 2004 | B1 |
6832367 | Choi et al. | Dec 2004 | B1 |
6895550 | Kanchirayappa et al. | May 2005 | B2 |
6898632 | Gordy et al. | May 2005 | B2 |
6907396 | Muttik et al. | Jun 2005 | B1 |
6941348 | Petry et al. | Sep 2005 | B2 |
6971097 | Wallman | Nov 2005 | B1 |
6981279 | Arnold et al. | Dec 2005 | B1 |
6995665 | Appelt et al. | Feb 2006 | B2 |
7007107 | Ivchenko et al. | Feb 2006 | B1 |
7028179 | Anderson et al. | Apr 2006 | B2 |
7043757 | Hoefelmeyer et al. | May 2006 | B2 |
7058822 | Edery et al. | Jun 2006 | B2 |
7069316 | Gryaznov | Jun 2006 | B1 |
7080407 | Zhao et al. | Jul 2006 | B1 |
7080408 | Pak et al. | Jul 2006 | B1 |
7093002 | Wolff et al. | Aug 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096498 | Judge | Aug 2006 | B2 |
7100201 | Izatt | Aug 2006 | B2 |
7107617 | Hursey et al. | Sep 2006 | B2 |
7159149 | Spiegel et al. | Jan 2007 | B2 |
7213260 | Judge | May 2007 | B2 |
7231667 | Jordan | Jun 2007 | B2 |
7237008 | Tarbotton et al. | Jun 2007 | B1 |
7240364 | Branscomb et al. | Jul 2007 | B1 |
7240368 | Roesch et al. | Jul 2007 | B1 |
7243371 | Kasper et al. | Jul 2007 | B1 |
7249175 | Donaldson | Jul 2007 | B1 |
7287278 | Liang | Oct 2007 | B2 |
7308716 | Danford et al. | Dec 2007 | B2 |
7325251 | Szor | Jan 2008 | B1 |
7328453 | Merkle, Jr. et al. | Feb 2008 | B2 |
7346486 | Ivancic et al. | Mar 2008 | B2 |
7356736 | Natvig | Apr 2008 | B2 |
7386888 | Liang et al. | Jun 2008 | B2 |
7392542 | Bucher | Jun 2008 | B2 |
7418729 | Szor | Aug 2008 | B2 |
7428300 | Drew et al. | Sep 2008 | B1 |
7441272 | Durham et al. | Oct 2008 | B2 |
7448084 | Apap et al. | Nov 2008 | B1 |
7458098 | Judge et al. | Nov 2008 | B2 |
7464404 | Carpenter et al. | Dec 2008 | B2 |
7464407 | Nakae et al. | Dec 2008 | B2 |
7467408 | O'Toole, Jr. | Dec 2008 | B1 |
7478428 | Thomlinson | Jan 2009 | B1 |
7480773 | Reed | Jan 2009 | B1 |
7487543 | Arnold et al. | Feb 2009 | B2 |
7496960 | Chen et al. | Feb 2009 | B1 |
7496961 | Zimmer et al. | Feb 2009 | B2 |
7519990 | Xie | Apr 2009 | B1 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530104 | Thrower et al. | May 2009 | B1 |
7540025 | Tzadikario | May 2009 | B2 |
7546638 | Anderson et al. | Jun 2009 | B2 |
7565550 | Liang et al. | Jul 2009 | B2 |
7568233 | Szor et al. | Jul 2009 | B1 |
7584455 | Ball | Sep 2009 | B2 |
7603715 | Costa et al. | Oct 2009 | B2 |
7607171 | Marsden et al. | Oct 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7644441 | Schmid et al. | Jan 2010 | B2 |
7657419 | van der Made | Feb 2010 | B2 |
7676841 | Sobchuk et al. | Mar 2010 | B2 |
7693947 | Judge et al. | Apr 2010 | B2 |
7698548 | Shelest et al. | Apr 2010 | B2 |
7707633 | Danford et al. | Apr 2010 | B2 |
7712136 | Sprosts et al. | May 2010 | B2 |
7730011 | Deninger et al. | Jun 2010 | B1 |
7739740 | Nachenberg et al. | Jun 2010 | B1 |
7743419 | Mashevsky et al. | Jun 2010 | B1 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7818800 | Lemley, III et al. | Oct 2010 | B1 |
7832008 | Kraemer | Nov 2010 | B1 |
7836502 | Zhao et al. | Nov 2010 | B1 |
7849506 | Dansey et al. | Dec 2010 | B1 |
7854007 | Sprosts et al. | Dec 2010 | B2 |
7869073 | Oshima | Jan 2011 | B2 |
7877803 | Enstone et al. | Jan 2011 | B2 |
7904959 | Sidiroglou et al. | Mar 2011 | B2 |
7908660 | Bahl | Mar 2011 | B2 |
7930738 | Petersen | Apr 2011 | B1 |
7937387 | Frazier et al. | May 2011 | B2 |
7937761 | Bennett | May 2011 | B1 |
7949849 | Lowe et al. | May 2011 | B2 |
7996556 | Raghavan et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
7996904 | Chiueh et al. | Aug 2011 | B1 |
7996905 | Arnold et al. | Aug 2011 | B2 |
8006305 | Aziz | Aug 2011 | B2 |
8010667 | Zhang et al. | Aug 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8028338 | Schneider et al. | Sep 2011 | B1 |
8042184 | Batenin | Oct 2011 | B1 |
8045094 | Teragawa | Oct 2011 | B2 |
8045458 | Alperovitch et al. | Oct 2011 | B2 |
8069484 | McMillan et al. | Nov 2011 | B2 |
8087086 | Lai et al. | Dec 2011 | B1 |
8171553 | Aziz et al. | May 2012 | B2 |
8176049 | Deninger et al. | May 2012 | B2 |
8176480 | Spertus | May 2012 | B1 |
8201072 | Matulic | Jun 2012 | B2 |
8201246 | Wu et al. | Jun 2012 | B1 |
8204984 | Aziz et al. | Jun 2012 | B1 |
8214905 | Doukhvalov et al. | Jul 2012 | B1 |
8220055 | Kennedy | Jul 2012 | B1 |
8225288 | Miller et al. | Jul 2012 | B2 |
8225373 | Kraemer | Jul 2012 | B2 |
8233882 | Rogel | Jul 2012 | B2 |
8234640 | Fitzgerald et al. | Jul 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8239944 | Nachenberg et al. | Aug 2012 | B1 |
8260914 | Ranjan | Sep 2012 | B1 |
8266091 | Gubin et al. | Sep 2012 | B1 |
8286251 | Eker et al. | Oct 2012 | B2 |
8291198 | Mott et al. | Oct 2012 | B2 |
8291499 | Aziz et al. | Oct 2012 | B2 |
8307435 | Mann et al. | Nov 2012 | B1 |
8307443 | Wang et al. | Nov 2012 | B2 |
8312545 | Tuvell et al. | Nov 2012 | B2 |
8321240 | Lorsch | Nov 2012 | B2 |
8321936 | Green et al. | Nov 2012 | B1 |
8321941 | Tuvell et al. | Nov 2012 | B2 |
8332571 | Edwards, Sr. | Dec 2012 | B1 |
8365286 | Poston | Jan 2013 | B2 |
8365297 | Parshin et al. | Jan 2013 | B1 |
8370938 | Daswani et al. | Feb 2013 | B1 |
8370939 | Zaitsev et al. | Feb 2013 | B2 |
8375444 | Aziz et al. | Feb 2013 | B2 |
8381299 | Stolfo et al. | Feb 2013 | B2 |
8402529 | Green et al. | Mar 2013 | B1 |
8464340 | Ahn et al. | Jun 2013 | B2 |
8468604 | Claudatos et al. | Jun 2013 | B2 |
8479174 | Chiriac | Jul 2013 | B2 |
8479276 | Vaystikh et al. | Jul 2013 | B1 |
8479291 | Bodke | Jul 2013 | B1 |
8510827 | Leake et al. | Aug 2013 | B1 |
8510828 | Guo et al. | Aug 2013 | B1 |
8510842 | Amit et al. | Aug 2013 | B2 |
8516478 | Edwards et al. | Aug 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8516593 | Aziz | Aug 2013 | B2 |
8522348 | Chen et al. | Aug 2013 | B2 |
8528086 | Aziz | Sep 2013 | B1 |
8533824 | Hutton et al. | Sep 2013 | B2 |
8539582 | Aziz et al. | Sep 2013 | B1 |
8549638 | Aziz | Oct 2013 | B2 |
8555391 | Demir et al. | Oct 2013 | B1 |
8561177 | Aziz et al. | Oct 2013 | B1 |
8566476 | Shiffer et al. | Oct 2013 | B2 |
8566946 | Aziz et al. | Oct 2013 | B1 |
8584094 | Dadhia et al. | Nov 2013 | B2 |
8584234 | Sobel et al. | Nov 2013 | B1 |
8584239 | Aziz et al. | Nov 2013 | B2 |
8595834 | Xie et al. | Nov 2013 | B2 |
8627476 | Satish et al. | Jan 2014 | B1 |
8635696 | Aziz | Jan 2014 | B1 |
8682054 | Xue et al. | Mar 2014 | B2 |
8682812 | Ranjan | Mar 2014 | B1 |
8689333 | Aziz | Apr 2014 | B2 |
8695096 | Zhang | Apr 2014 | B1 |
8695097 | Mathes et al. | Apr 2014 | B1 |
8707437 | Ming-Chang et al. | Apr 2014 | B1 |
8713631 | Pavlyushchik | Apr 2014 | B1 |
8713681 | Silberman et al. | Apr 2014 | B2 |
8726392 | McCorkendale et al. | May 2014 | B1 |
8739280 | Chess et al. | May 2014 | B2 |
8769692 | Muttik et al. | Jul 2014 | B1 |
8776229 | Aziz | Jul 2014 | B1 |
8782792 | Bodke | Jul 2014 | B1 |
8789172 | Stolfo et al. | Jul 2014 | B2 |
8789178 | Kejriwal et al. | Jul 2014 | B2 |
8793278 | Frazier et al. | Jul 2014 | B2 |
8793787 | Ismael et al. | Jul 2014 | B2 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806647 | Daswani et al. | Aug 2014 | B1 |
8832829 | Manni et al. | Sep 2014 | B2 |
8850570 | Ramzan | Sep 2014 | B1 |
8850571 | Staniford et al. | Sep 2014 | B2 |
8869144 | Pratt et al. | Oct 2014 | B2 |
8879558 | Rijsman | Nov 2014 | B1 |
8881234 | Narasimhan et al. | Nov 2014 | B2 |
8881271 | Butler, II | Nov 2014 | B2 |
8881282 | Aziz et al. | Nov 2014 | B1 |
8898788 | Aziz et al. | Nov 2014 | B1 |
8935779 | Manni et al. | Jan 2015 | B2 |
8949257 | Shiffer et al. | Feb 2015 | B2 |
8959428 | Majidian | Feb 2015 | B2 |
8984638 | Aziz et al. | Mar 2015 | B1 |
8990939 | Staniford et al. | Mar 2015 | B2 |
8990944 | Singh et al. | Mar 2015 | B1 |
8997219 | Staniford et al. | Mar 2015 | B2 |
9009822 | Ismael et al. | Apr 2015 | B1 |
9009823 | Ismael et al. | Apr 2015 | B1 |
9009834 | Ren et al. | Apr 2015 | B1 |
9015814 | Zakorzhevsky et al. | Apr 2015 | B1 |
9027135 | Aziz | May 2015 | B1 |
9071638 | Aziz et al. | Jun 2015 | B1 |
9092625 | Kashyap | Jul 2015 | B1 |
9104814 | Mompoint et al. | Aug 2015 | B1 |
9104867 | Thioux et al. | Aug 2015 | B1 |
9106630 | Frazier et al. | Aug 2015 | B2 |
9106694 | Aziz et al. | Aug 2015 | B2 |
9118715 | Staniford et al. | Aug 2015 | B2 |
9159035 | Ismael et al. | Oct 2015 | B1 |
9165142 | Sanders et al. | Oct 2015 | B1 |
9171157 | Flores et al. | Oct 2015 | B2 |
9171160 | Vincent et al. | Oct 2015 | B2 |
9176843 | Ismael et al. | Nov 2015 | B1 |
9189627 | Islam | Nov 2015 | B1 |
9195829 | Goradia et al. | Nov 2015 | B1 |
9197664 | Aziz et al. | Nov 2015 | B1 |
9210185 | Pinney Wood et al. | Dec 2015 | B1 |
9223972 | Vincent et al. | Dec 2015 | B1 |
9225695 | Riera et al. | Dec 2015 | B1 |
9225740 | Ismael et al. | Dec 2015 | B1 |
9241010 | Bennett et al. | Jan 2016 | B1 |
9251343 | Vincent et al. | Feb 2016 | B1 |
9262635 | Paithane et al. | Feb 2016 | B2 |
9268936 | Butler | Feb 2016 | B2 |
9275229 | LeMasters | Mar 2016 | B2 |
9282109 | Aziz et al. | Mar 2016 | B1 |
9292686 | Ismael et al. | Mar 2016 | B2 |
9294501 | Mesdaq et al. | Mar 2016 | B2 |
9300686 | Pidathala et al. | Mar 2016 | B2 |
9306960 | Aziz | Apr 2016 | B1 |
9306974 | Aziz et al. | Apr 2016 | B1 |
9311479 | Manni et al. | Apr 2016 | B1 |
9355246 | Wan et al. | May 2016 | B1 |
9355247 | Thioux et al. | May 2016 | B1 |
9356941 | Kislyuk et al. | May 2016 | B1 |
9356944 | Aziz | May 2016 | B1 |
9363280 | Rivlin et al. | Jun 2016 | B1 |
9367681 | Ismael et al. | Jun 2016 | B1 |
9398028 | Karandikar et al. | Jul 2016 | B1 |
9413781 | Cunningham et al. | Aug 2016 | B2 |
9426071 | Caldejon et al. | Aug 2016 | B1 |
9430646 | Mushtaq et al. | Aug 2016 | B1 |
9432389 | Khalid et al. | Aug 2016 | B1 |
9438613 | Paithane et al. | Sep 2016 | B1 |
9438622 | Staniford et al. | Sep 2016 | B1 |
9438623 | Thioux et al. | Sep 2016 | B1 |
9459901 | Jung et al. | Oct 2016 | B2 |
9467460 | Otvagin et al. | Oct 2016 | B1 |
9483644 | Paithane et al. | Nov 2016 | B1 |
9495180 | Ismael | Nov 2016 | B2 |
9497213 | Thompson et al. | Nov 2016 | B2 |
9507935 | Ismael et al. | Nov 2016 | B2 |
9516057 | Aziz | Dec 2016 | B2 |
9519782 | Aziz et al. | Dec 2016 | B2 |
9536091 | Paithane et al. | Jan 2017 | B2 |
9537972 | Edwards et al. | Jan 2017 | B1 |
9560059 | Islam | Jan 2017 | B1 |
9565202 | Kindlund et al. | Feb 2017 | B1 |
9591015 | Amin et al. | Mar 2017 | B1 |
9591020 | Aziz | Mar 2017 | B1 |
9594904 | Jain et al. | Mar 2017 | B1 |
9594905 | Ismael et al. | Mar 2017 | B1 |
9594912 | Thioux et al. | Mar 2017 | B1 |
9609007 | Rivlin et al. | Mar 2017 | B1 |
9626509 | Khalid et al. | Apr 2017 | B1 |
9628498 | Aziz et al. | Apr 2017 | B1 |
9628507 | Haq et al. | Apr 2017 | B2 |
9633134 | Ross | Apr 2017 | B2 |
9635039 | Islam et al. | Apr 2017 | B1 |
9641546 | Manni et al. | May 2017 | B1 |
9654485 | Neumann | May 2017 | B1 |
9661009 | Karandikar et al. | May 2017 | B1 |
9661018 | Aziz | May 2017 | B1 |
9674298 | Edwards et al. | Jun 2017 | B1 |
9680862 | Ismael et al. | Jun 2017 | B2 |
9690606 | Ha et al. | Jun 2017 | B1 |
9690933 | Singh et al. | Jun 2017 | B1 |
9690935 | Shiffer et al. | Jun 2017 | B2 |
9690936 | Malik et al. | Jun 2017 | B1 |
9736179 | Ismael | Aug 2017 | B2 |
9740857 | Ismael et al. | Aug 2017 | B2 |
9747446 | Pidathala et al. | Aug 2017 | B1 |
9756074 | Aziz et al. | Sep 2017 | B2 |
9773112 | Rathor et al. | Sep 2017 | B1 |
9773240 | McCauley | Sep 2017 | B1 |
9781144 | Otvagin et al. | Oct 2017 | B1 |
9787700 | Amin et al. | Oct 2017 | B1 |
9787706 | Otvagin et al. | Oct 2017 | B1 |
9792196 | Ismael et al. | Oct 2017 | B1 |
9804948 | Kolberg | Oct 2017 | B2 |
9824209 | Ismael et al. | Nov 2017 | B1 |
9824211 | Wilson | Nov 2017 | B2 |
9824216 | Khalid et al. | Nov 2017 | B1 |
9825976 | Gomez et al. | Nov 2017 | B1 |
9825989 | Mehra et al. | Nov 2017 | B1 |
9838408 | Karandikar et al. | Dec 2017 | B1 |
9838411 | Aziz | Dec 2017 | B1 |
9838416 | Aziz | Dec 2017 | B1 |
9838417 | Khalid et al. | Dec 2017 | B1 |
9846776 | Paithane et al. | Dec 2017 | B1 |
9876701 | Caldejon et al. | Jan 2018 | B1 |
9888016 | Amin et al. | Feb 2018 | B1 |
9888019 | Pidathala et al. | Feb 2018 | B1 |
9910988 | Vincent et al. | Mar 2018 | B1 |
9912644 | Cunningham | Mar 2018 | B2 |
9912681 | Ismael et al. | Mar 2018 | B1 |
9912684 | Aziz et al. | Mar 2018 | B1 |
9912691 | Mesdaq et al. | Mar 2018 | B2 |
9912698 | Thioux et al. | Mar 2018 | B1 |
9916440 | Paithane et al. | Mar 2018 | B1 |
9921860 | Banga | Mar 2018 | B1 |
9921978 | Chan et al. | Mar 2018 | B1 |
9934376 | Ismael | Apr 2018 | B1 |
9934381 | Kindlund et al. | Apr 2018 | B1 |
9946568 | Ismael et al. | Apr 2018 | B1 |
9954890 | Staniford et al. | Apr 2018 | B1 |
9973531 | Thioux | May 2018 | B1 |
10002252 | Ismael et al. | Jun 2018 | B2 |
10019338 | Goradia et al. | Jul 2018 | B1 |
10019573 | Silberman et al. | Jul 2018 | B2 |
10025691 | Ismael et al. | Jul 2018 | B1 |
10025927 | Khalid et al. | Jul 2018 | B1 |
10027689 | Rathor et al. | Jul 2018 | B1 |
10027690 | Aziz et al. | Jul 2018 | B2 |
10027696 | Rivlin et al. | Jul 2018 | B1 |
10033747 | Paithane et al. | Jul 2018 | B1 |
10033748 | Cunningham et al. | Jul 2018 | B1 |
10033753 | Islam et al. | Jul 2018 | B1 |
10033759 | Kabra et al. | Jul 2018 | B1 |
10050998 | Singh | Aug 2018 | B1 |
10068091 | Aziz et al. | Sep 2018 | B1 |
10075455 | Zafar et al. | Sep 2018 | B2 |
10083302 | Paithane et al. | Sep 2018 | B1 |
10084813 | Eyada | Sep 2018 | B2 |
10089461 | Ha et al. | Oct 2018 | B1 |
10097573 | Aziz | Oct 2018 | B1 |
10104102 | Neumann | Oct 2018 | B1 |
10108446 | Steinberg et al. | Oct 2018 | B1 |
10121000 | Rivlin et al. | Nov 2018 | B1 |
10122746 | Manni et al. | Nov 2018 | B1 |
10133863 | Bu et al. | Nov 2018 | B2 |
10133866 | Kumar et al. | Nov 2018 | B1 |
10146810 | Shiffer et al. | Dec 2018 | B2 |
10148693 | Singh et al. | Dec 2018 | B2 |
10165000 | Aziz et al. | Dec 2018 | B1 |
10169585 | Pilipenko et al. | Jan 2019 | B1 |
10176321 | Abbasi et al. | Jan 2019 | B2 |
10181029 | Ismael et al. | Jan 2019 | B1 |
10191861 | Steinberg et al. | Jan 2019 | B1 |
10192052 | Singh et al. | Jan 2019 | B1 |
10198574 | Thioux et al. | Feb 2019 | B1 |
10200384 | Mushtaq et al. | Feb 2019 | B1 |
10210329 | Malik et al. | Feb 2019 | B1 |
10216927 | Steinberg | Feb 2019 | B1 |
10218740 | Mesdaq et al. | Feb 2019 | B1 |
10242185 | Goradia | Mar 2019 | B1 |
10265627 | Ghanchi | Apr 2019 | B2 |
10366231 | Singh et al. | Jul 2019 | B1 |
10454953 | Amin et al. | Oct 2019 | B1 |
20010005889 | Albrecht | Jun 2001 | A1 |
20010047326 | Broadbent et al. | Nov 2001 | A1 |
20020018903 | Kokubo et al. | Feb 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020054068 | Ellis et al. | May 2002 | A1 |
20020056103 | Gong | May 2002 | A1 |
20020091819 | Melchione et al. | Jul 2002 | A1 |
20020095607 | Lin-Hendel | Jul 2002 | A1 |
20020116627 | Tarbotton et al. | Aug 2002 | A1 |
20020144156 | Copeland | Oct 2002 | A1 |
20020162015 | Tang | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169952 | DiSanto et al. | Nov 2002 | A1 |
20020184528 | Shevenell et al. | Dec 2002 | A1 |
20020188887 | Largman et al. | Dec 2002 | A1 |
20020194490 | Halperin et al. | Dec 2002 | A1 |
20030021728 | Sharpe et al. | Jan 2003 | A1 |
20030051168 | King et al. | Mar 2003 | A1 |
20030074578 | Ford et al. | Apr 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030101381 | Mateev et al. | May 2003 | A1 |
20030115483 | Liang | Jun 2003 | A1 |
20030188190 | Aaron et al. | Oct 2003 | A1 |
20030191957 | Hypponen et al. | Oct 2003 | A1 |
20030200460 | Morota et al. | Oct 2003 | A1 |
20030212902 | van der Made | Nov 2003 | A1 |
20030229801 | Kouznetsov et al. | Dec 2003 | A1 |
20030237000 | Denton et al. | Dec 2003 | A1 |
20040003323 | Bennett et al. | Jan 2004 | A1 |
20040006473 | Mills et al. | Jan 2004 | A1 |
20040015712 | Szor | Jan 2004 | A1 |
20040019832 | Arnold et al. | Jan 2004 | A1 |
20040047356 | Bauer | Mar 2004 | A1 |
20040083372 | Williamson et al. | Apr 2004 | A1 |
20040083408 | Spiegel et al. | Apr 2004 | A1 |
20040088581 | Brawn et al. | May 2004 | A1 |
20040093513 | Cantrell et al. | May 2004 | A1 |
20040111531 | Staniford et al. | Jun 2004 | A1 |
20040111632 | Halperin | Jun 2004 | A1 |
20040117478 | Triulzi et al. | Jun 2004 | A1 |
20040117624 | Brandt et al. | Jun 2004 | A1 |
20040128355 | Chao et al. | Jul 2004 | A1 |
20040165588 | Pandya | Aug 2004 | A1 |
20040199569 | Kalkunte et al. | Oct 2004 | A1 |
20040199792 | Tan et al. | Oct 2004 | A1 |
20040205374 | Poletto et al. | Oct 2004 | A1 |
20040236963 | Danford et al. | Nov 2004 | A1 |
20040243349 | Greifeneder et al. | Dec 2004 | A1 |
20040249911 | Alkhatib et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040261030 | Nazzal | Dec 2004 | A1 |
20040268147 | Wiederin et al. | Dec 2004 | A1 |
20050005159 | Oliphant | Jan 2005 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050022018 | Szor | Jan 2005 | A1 |
20050033960 | Vialen et al. | Feb 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050050148 | Mohammadioun et al. | Mar 2005 | A1 |
20050086523 | Zimmer et al. | Apr 2005 | A1 |
20050091513 | Mitomo et al. | Apr 2005 | A1 |
20050091533 | Omote et al. | Apr 2005 | A1 |
20050091652 | Ross et al. | Apr 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114663 | Cornell et al. | May 2005 | A1 |
20050125195 | Brendel | Jun 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050157662 | Bingham et al. | Jul 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050201297 | Peikari | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050238005 | Chen et al. | Oct 2005 | A1 |
20050240781 | Gassoway | Oct 2005 | A1 |
20050262562 | Gassoway | Nov 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060010495 | Cohen et al. | Jan 2006 | A1 |
20060015416 | Hoffman et al. | Jan 2006 | A1 |
20060015715 | Anderson | Jan 2006 | A1 |
20060015747 | Van de Ven | Jan 2006 | A1 |
20060021029 | Brickell et al. | Jan 2006 | A1 |
20060021054 | Costa et al. | Jan 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060047665 | Neil | Mar 2006 | A1 |
20060064721 | Del Val et al. | Mar 2006 | A1 |
20060070130 | Costea et al. | Mar 2006 | A1 |
20060075496 | Carpenter et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060101517 | Banzhof et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060129382 | Anand et al. | Jun 2006 | A1 |
20060143709 | Brooks et al. | Jun 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060161983 | Cothrell et al. | Jul 2006 | A1 |
20060161987 | Levy-Yurista | Jul 2006 | A1 |
20060161989 | Reshef et al. | Jul 2006 | A1 |
20060164199 | Gilde et al. | Jul 2006 | A1 |
20060173992 | Weber | Aug 2006 | A1 |
20060179147 | Tran et al. | Aug 2006 | A1 |
20060184632 | Marino et al. | Aug 2006 | A1 |
20060190561 | Conboy et al. | Aug 2006 | A1 |
20060191010 | Benjamin | Aug 2006 | A1 |
20060200863 | Ray et al. | Sep 2006 | A1 |
20060221956 | Narayan et al. | Oct 2006 | A1 |
20060236393 | Kramer et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060248519 | Jaeger et al. | Nov 2006 | A1 |
20060248582 | Panjwani et al. | Nov 2006 | A1 |
20060251104 | Koga | Nov 2006 | A1 |
20060253906 | Rubin et al. | Nov 2006 | A1 |
20060288415 | Wong | Dec 2006 | A1 |
20060288417 | Bookbinder et al. | Dec 2006 | A1 |
20070006288 | Mayfield et al. | Jan 2007 | A1 |
20070006313 | Porras et al. | Jan 2007 | A1 |
20070011174 | Takaragi et al. | Jan 2007 | A1 |
20070016951 | Piccard et al. | Jan 2007 | A1 |
20070019286 | Kikuchi | Jan 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070038943 | FitzGerald et al. | Feb 2007 | A1 |
20070064689 | Shin et al. | Mar 2007 | A1 |
20070074169 | Chess et al. | Mar 2007 | A1 |
20070094730 | Bhikkaji et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070128855 | Cho et al. | Jun 2007 | A1 |
20070142030 | Sinha et al. | Jun 2007 | A1 |
20070143827 | Nicodemus et al. | Jun 2007 | A1 |
20070156895 | Vuong | Jul 2007 | A1 |
20070157180 | Tillmann et al. | Jul 2007 | A1 |
20070157306 | Elrod et al. | Jul 2007 | A1 |
20070168988 | Eisner et al. | Jul 2007 | A1 |
20070169195 | Anand et al. | Jul 2007 | A1 |
20070171824 | Ruello et al. | Jul 2007 | A1 |
20070174915 | Gribble et al. | Jul 2007 | A1 |
20070192500 | Lum | Aug 2007 | A1 |
20070192858 | Lum | Aug 2007 | A1 |
20070198275 | Malden et al. | Aug 2007 | A1 |
20070208822 | Wang et al. | Sep 2007 | A1 |
20070220607 | Sprosts et al. | Sep 2007 | A1 |
20070240215 | Flores et al. | Oct 2007 | A1 |
20070240217 | Tuvell et al. | Oct 2007 | A1 |
20070240218 | Tuvell et al. | Oct 2007 | A1 |
20070240219 | Tuvell et al. | Oct 2007 | A1 |
20070240220 | Tuvell et al. | Oct 2007 | A1 |
20070240222 | Tuvell et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070256132 | Oliphant | Nov 2007 | A2 |
20070271446 | Nakamura | Nov 2007 | A1 |
20080005782 | Aziz | Jan 2008 | A1 |
20080018122 | Zierler et al. | Jan 2008 | A1 |
20080028463 | Dagon et al. | Jan 2008 | A1 |
20080032556 | Schreier | Feb 2008 | A1 |
20080040710 | Chiriac | Feb 2008 | A1 |
20080046781 | Childs et al. | Feb 2008 | A1 |
20080066179 | Liu | Mar 2008 | A1 |
20080072326 | Danford et al. | Mar 2008 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080080518 | Hoeflin et al. | Apr 2008 | A1 |
20080086720 | Lekel | Apr 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080120722 | Sima et al. | May 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080134334 | Kim et al. | Jun 2008 | A1 |
20080141376 | Clausen et al. | Jun 2008 | A1 |
20080163356 | Won-Jip et al. | Jul 2008 | A1 |
20080181227 | Todd | Jul 2008 | A1 |
20080184367 | McMillan et al. | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080189787 | Arnold et al. | Aug 2008 | A1 |
20080201778 | Guo et al. | Aug 2008 | A1 |
20080209557 | Herley et al. | Aug 2008 | A1 |
20080215742 | Goldszmidt et al. | Sep 2008 | A1 |
20080222729 | Chen et al. | Sep 2008 | A1 |
20080263665 | Ma et al. | Oct 2008 | A1 |
20080295172 | Bohacek | Nov 2008 | A1 |
20080301810 | Lehane et al. | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20080313734 | Rozenberg et al. | Dec 2008 | A1 |
20080313738 | Enderby | Dec 2008 | A1 |
20080320594 | Jiang | Dec 2008 | A1 |
20090003317 | Kasralikar et al. | Jan 2009 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090013405 | Schipka | Jan 2009 | A1 |
20090013408 | Schipka | Jan 2009 | A1 |
20090031423 | Liu et al. | Jan 2009 | A1 |
20090036111 | Danford et al. | Feb 2009 | A1 |
20090037835 | Goldman | Feb 2009 | A1 |
20090044024 | Oberheide et al. | Feb 2009 | A1 |
20090044274 | Budko et al. | Feb 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090064335 | Sinn et al. | Mar 2009 | A1 |
20090076791 | Rhoades | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090083369 | Marmor | Mar 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090089879 | Wang et al. | Apr 2009 | A1 |
20090094697 | Provos et al. | Apr 2009 | A1 |
20090113425 | Ports et al. | Apr 2009 | A1 |
20090125976 | Wassermann et al. | May 2009 | A1 |
20090126015 | Monastyrsky et al. | May 2009 | A1 |
20090126016 | Sobko et al. | May 2009 | A1 |
20090133125 | Choi et al. | May 2009 | A1 |
20090144823 | Lamastra et al. | Jun 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090172815 | Gu et al. | Jul 2009 | A1 |
20090187992 | Poston | Jul 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090198651 | Shiffer et al. | Aug 2009 | A1 |
20090198670 | Shiffer et al. | Aug 2009 | A1 |
20090198689 | Frazier et al. | Aug 2009 | A1 |
20090199274 | Frazier et al. | Aug 2009 | A1 |
20090199296 | Xie et al. | Aug 2009 | A1 |
20090204514 | Bhogal | Aug 2009 | A1 |
20090228233 | Anderson et al. | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090265692 | Godefroid et al. | Oct 2009 | A1 |
20090271866 | Liske | Oct 2009 | A1 |
20090271867 | Zhang | Oct 2009 | A1 |
20090300415 | Zhang et al. | Dec 2009 | A1 |
20090300761 | Park et al. | Dec 2009 | A1 |
20090328185 | Berg et al. | Dec 2009 | A1 |
20090328221 | Blumfield et al. | Dec 2009 | A1 |
20100005146 | Drako et al. | Jan 2010 | A1 |
20100011205 | McKenna | Jan 2010 | A1 |
20100017546 | Poo et al. | Jan 2010 | A1 |
20100030996 | Butler, II | Feb 2010 | A1 |
20100031353 | Thomas et al. | Feb 2010 | A1 |
20100037314 | Perdisci et al. | Feb 2010 | A1 |
20100043073 | Kuwamura | Feb 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100058474 | Hicks | Mar 2010 | A1 |
20100064044 | Nonoyama | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100083376 | Pereira et al. | Apr 2010 | A1 |
20100103837 | Jungck et al. | Apr 2010 | A1 |
20100115621 | Staniford et al. | May 2010 | A1 |
20100132038 | Zaitsev | May 2010 | A1 |
20100154056 | Smith et al. | Jun 2010 | A1 |
20100180344 | Malyshev et al. | Jul 2010 | A1 |
20100192057 | Majidian | Jul 2010 | A1 |
20100192223 | Ismael et al. | Jul 2010 | A1 |
20100220863 | Dupaquis et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100251104 | Massand | Sep 2010 | A1 |
20100275210 | Phillips et al. | Oct 2010 | A1 |
20100281102 | Chinta et al. | Nov 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20100287260 | Peterson et al. | Nov 2010 | A1 |
20100287613 | Singh et al. | Nov 2010 | A1 |
20100299754 | Amit et al. | Nov 2010 | A1 |
20100306173 | Frank | Dec 2010 | A1 |
20100306825 | Spivack | Dec 2010 | A1 |
20100332593 | Barash et al. | Dec 2010 | A1 |
20110004737 | Greenebaum | Jan 2011 | A1 |
20110025504 | Lyon et al. | Feb 2011 | A1 |
20110041179 | St Hlberg | Feb 2011 | A1 |
20110047594 | Mahaffey et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110055907 | Narasimhan et al. | Mar 2011 | A1 |
20110078794 | Manni et al. | Mar 2011 | A1 |
20110093951 | Aziz | Apr 2011 | A1 |
20110099620 | Stavrou et al. | Apr 2011 | A1 |
20110099633 | Aziz | Apr 2011 | A1 |
20110099635 | Silberman et al. | Apr 2011 | A1 |
20110113231 | Kaminsky | May 2011 | A1 |
20110113427 | Dotan | May 2011 | A1 |
20110126232 | Lee et al. | May 2011 | A1 |
20110145918 | Jung et al. | Jun 2011 | A1 |
20110145920 | Mahaffey et al. | Jun 2011 | A1 |
20110145934 | Abramovici et al. | Jun 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110173178 | Conboy et al. | Jul 2011 | A1 |
20110173213 | Frazier et al. | Jul 2011 | A1 |
20110173460 | Ito et al. | Jul 2011 | A1 |
20110219449 | St. Neitzel et al. | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225624 | Sawhney et al. | Sep 2011 | A1 |
20110225655 | Niemela et al. | Sep 2011 | A1 |
20110247072 | Staniford et al. | Oct 2011 | A1 |
20110265182 | Peinado et al. | Oct 2011 | A1 |
20110289582 | Kejriwal et al. | Nov 2011 | A1 |
20110302587 | Nishikawa et al. | Dec 2011 | A1 |
20110302656 | El-Moussa | Dec 2011 | A1 |
20110307954 | Melnik et al. | Dec 2011 | A1 |
20110307955 | Kaplan et al. | Dec 2011 | A1 |
20110307956 | Yermakov et al. | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20110320816 | Yao et al. | Dec 2011 | A1 |
20120023593 | Puder et al. | Jan 2012 | A1 |
20120054869 | Yen et al. | Mar 2012 | A1 |
20120066698 | Yanoo | Mar 2012 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120084859 | Radinsky et al. | Apr 2012 | A1 |
20120096553 | Srivastava et al. | Apr 2012 | A1 |
20120110667 | Zubrilin et al. | May 2012 | A1 |
20120117652 | Manni et al. | May 2012 | A1 |
20120121154 | Xue et al. | May 2012 | A1 |
20120124426 | Maybee et al. | May 2012 | A1 |
20120151587 | Wang et al. | Jun 2012 | A1 |
20120167219 | Zaitsev et al. | Jun 2012 | A1 |
20120174186 | Aziz et al. | Jul 2012 | A1 |
20120174196 | Bhogavilli et al. | Jul 2012 | A1 |
20120174218 | McCoy et al. | Jul 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120210423 | Friedrichs et al. | Aug 2012 | A1 |
20120222121 | Staniford et al. | Aug 2012 | A1 |
20120255015 | Sahita et al. | Oct 2012 | A1 |
20120255017 | Sallam | Oct 2012 | A1 |
20120260342 | Dube et al. | Oct 2012 | A1 |
20120266244 | Green et al. | Oct 2012 | A1 |
20120278886 | Luna | Nov 2012 | A1 |
20120284710 | Vinberg | Nov 2012 | A1 |
20120297489 | Dequevy | Nov 2012 | A1 |
20120304244 | Xie et al. | Nov 2012 | A1 |
20120317641 | Coskun et al. | Dec 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20120331553 | Aziz et al. | Dec 2012 | A1 |
20130014259 | Gribble et al. | Jan 2013 | A1 |
20130036472 | Aziz | Feb 2013 | A1 |
20130047257 | Aziz | Feb 2013 | A1 |
20130074185 | McDougal et al. | Mar 2013 | A1 |
20130086684 | Mohler | Apr 2013 | A1 |
20130097699 | Balupari et al. | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130111587 | Goel et al. | May 2013 | A1 |
20130117852 | Stute | May 2013 | A1 |
20130117855 | Kim et al. | May 2013 | A1 |
20130139264 | Brinkley et al. | May 2013 | A1 |
20130160125 | Likhachev et al. | Jun 2013 | A1 |
20130160127 | Jeong et al. | Jun 2013 | A1 |
20130160130 | Mendelev et al. | Jun 2013 | A1 |
20130160131 | Madou et al. | Jun 2013 | A1 |
20130167236 | Sick | Jun 2013 | A1 |
20130174214 | Duncan | Jul 2013 | A1 |
20130185789 | Hagiwara et al. | Jul 2013 | A1 |
20130185795 | Winn et al. | Jul 2013 | A1 |
20130185798 | Saunders et al. | Jul 2013 | A1 |
20130191915 | Antonakakis et al. | Jul 2013 | A1 |
20130196649 | Paddon et al. | Aug 2013 | A1 |
20130227691 | Aziz et al. | Aug 2013 | A1 |
20130246370 | Bartram et al. | Sep 2013 | A1 |
20130247186 | LeMasters | Sep 2013 | A1 |
20130247187 | Hsiao et al. | Sep 2013 | A1 |
20130263260 | Mahaffey et al. | Oct 2013 | A1 |
20130291109 | Staniford et al. | Oct 2013 | A1 |
20130298192 | Kumar et al. | Nov 2013 | A1 |
20130298243 | Kumar et al. | Nov 2013 | A1 |
20130305369 | Karta et al. | Nov 2013 | A1 |
20130318038 | Shiffer et al. | Nov 2013 | A1 |
20130318073 | Shiffer et al. | Nov 2013 | A1 |
20130325791 | Shiffer et al. | Dec 2013 | A1 |
20130325792 | Shiffer et al. | Dec 2013 | A1 |
20130325871 | Shiffer et al. | Dec 2013 | A1 |
20130325872 | Shiffer et al. | Dec 2013 | A1 |
20130333046 | Sambamurthy | Dec 2013 | A1 |
20140019963 | Deng et al. | Jan 2014 | A1 |
20140026217 | Saxena et al. | Jan 2014 | A1 |
20140032875 | Butler | Jan 2014 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140053261 | Gupta et al. | Feb 2014 | A1 |
20140096184 | Zaitsev | Apr 2014 | A1 |
20140130158 | Wang et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140169762 | Ryu | Jun 2014 | A1 |
20140179360 | Jackson et al. | Jun 2014 | A1 |
20140181131 | Ross | Jun 2014 | A1 |
20140181975 | Spernow et al. | Jun 2014 | A1 |
20140189687 | Jung et al. | Jul 2014 | A1 |
20140189866 | Shiffer et al. | Jul 2014 | A1 |
20140189882 | Jung et al. | Jul 2014 | A1 |
20140237600 | Silberman et al. | Aug 2014 | A1 |
20140258384 | Spikes et al. | Sep 2014 | A1 |
20140280245 | Wilson | Sep 2014 | A1 |
20140283037 | Sikorski et al. | Sep 2014 | A1 |
20140283063 | Thompson et al. | Sep 2014 | A1 |
20140317735 | Kolbitsch et al. | Oct 2014 | A1 |
20140325344 | Bourke et al. | Oct 2014 | A1 |
20140328204 | Klotsche et al. | Nov 2014 | A1 |
20140337836 | Ismael | Nov 2014 | A1 |
20140344926 | Cunningham et al. | Nov 2014 | A1 |
20140351935 | Shao et al. | Nov 2014 | A1 |
20140380473 | Bu et al. | Dec 2014 | A1 |
20140380474 | Paithane et al. | Dec 2014 | A1 |
20150007312 | Pidathala et al. | Jan 2015 | A1 |
20150026810 | Friedrichs et al. | Jan 2015 | A1 |
20150096022 | Vincent et al. | Apr 2015 | A1 |
20150096023 | Mesdaq et al. | Apr 2015 | A1 |
20150096024 | Haq et al. | Apr 2015 | A1 |
20150096025 | Ismael | Apr 2015 | A1 |
20150121526 | McLamon et al. | Apr 2015 | A1 |
20150180886 | Staniford et al. | Jun 2015 | A1 |
20150186296 | Guidry | Jul 2015 | A1 |
20150186645 | Aziz et al. | Jul 2015 | A1 |
20150199513 | Ismael et al. | Jul 2015 | A1 |
20150199531 | Ismael et al. | Jul 2015 | A1 |
20150199532 | Ismael et al. | Jul 2015 | A1 |
20150220735 | Paithane et al. | Aug 2015 | A1 |
20150242627 | Lee et al. | Aug 2015 | A1 |
20150244732 | Golshan et al. | Aug 2015 | A1 |
20150363598 | Xu et al. | Dec 2015 | A1 |
20150372980 | Eyada | Dec 2015 | A1 |
20160004869 | Ismael et al. | Jan 2016 | A1 |
20160006756 | Ismael et al. | Jan 2016 | A1 |
20160044000 | Cunningham | Feb 2016 | A1 |
20160127393 | Aziz et al. | May 2016 | A1 |
20160191547 | Zafar et al. | Jun 2016 | A1 |
20160191550 | Ismael et al. | Jun 2016 | A1 |
20160261612 | Mesdaq et al. | Sep 2016 | A1 |
20160285914 | Singh et al. | Sep 2016 | A1 |
20160301703 | Aziz | Oct 2016 | A1 |
20160335110 | Paithane et al. | Nov 2016 | A1 |
20160357965 | Prowell et al. | Dec 2016 | A1 |
20160359880 | Pang et al. | Dec 2016 | A1 |
20170083703 | Abbasi et al. | Mar 2017 | A1 |
20170295089 | Saltsidis et al. | Oct 2017 | A1 |
20180013770 | Ismael | Jan 2018 | A1 |
20180048660 | Paithane et al. | Feb 2018 | A1 |
20180121316 | Ismael et al. | May 2018 | A1 |
20180288077 | Siddiqui et al. | Oct 2018 | A1 |
20180357812 | Church | Dec 2018 | A1 |
20190066377 | Schoening | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
2439806 | Jan 2008 | GB |
2490431 | Oct 2012 | GB |
0206928 | Jan 2002 | WO |
0223805 | Mar 2002 | WO |
2007117636 | Oct 2007 | WO |
2008041950 | Apr 2008 | WO |
2011084431 | Jul 2011 | WO |
2011112348 | Sep 2011 | WO |
2012075336 | Jun 2012 | WO |
2012145066 | Oct 2012 | WO |
2013067505 | May 2013 | WO |
Entry |
---|
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003). |
“Packet”, Microsoft Computer Dictionary Microsoft Press, (Mar. 2002), 1 page. |
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.iso?reload=true&arnumber=990073, (Dec. 7, 2013). |
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108. |
Adetoye, Adedayo, et al., “Network Intrusion Detection & Response System”, (“Adetoye”) (Sep. 2003). |
AltaVista Advanced Search Results (subset). “attack vector identifier” Http://www.altavista.com/web/results?ltag=ody&pg=aq&aqmode=aqa=Event+Orchestrator . . . , (Accessed on Sep. 15, 2009). |
AltaVista Advanced Search Results (subset). “Event Orchestrator”. Http://www.altavista.com/web/results?ltag=ody&pg=aq&aqmode=aqa=Event+Orchesrator . . . , (Accessed on Sep. 3, 2009). |
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126. |
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006. |
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlaq Berlin Heidelberg, (2006), pp. 165-184. |
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238. |
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77. |
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists,org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003). |
Bowen, B. M. et al “BotSwindler: Tamper Resistant Injection of Believable Decoys in VM-Based Hosts for Crimeware Detection”, in Recent Advances in Intrusion Detection, Springer ISBN: 978-3-642-15511-6 (pp. 118-137) (Sep. 15, 2010). |
Chaudet, C., et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82. |
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012). |
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992-2003). |
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011. |
Cohen, M.I., “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120. |
Costa, M., et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05 Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005). |
Crandall, J.R., et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004). |
Deutsch, P., ““Zlib compressed data format specification version 3.3” RFC 1950, (1996)”. |
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007). |
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002). |
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005). |
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007). |
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010. |
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010. |
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011. |
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012. |
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review vol. 42 Issue 3, pp. 21-28. |
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-d/1035069? [retrieved on Jun. 1, 2016]. |
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007. |
Hjelmvik, Erik, “Passive Network Security Analysis with NetworkMiner”, (IN)SECURE, Issue 18, (Oct. 2008), pp. 1-100. |
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University. |
IEEE Xplore Digital Library Sear Results (subset) for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc&ResultC . . . (Accessed on Aug. 28, 2009). |
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011. |
Kaeo, Merike, “Designing Network Security”, (“Kaeo”), (Nov. 2003). |
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6. |
Kim, H., et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286. |
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (Dec 2002). |
Krasnyansky, Max, et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”). |
Kreibich, C., et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003). |
Kristoff, J., “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages. |
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009. |
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711. |
Liljenstam, Michael, et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College, (“Liljenstam”), (Oct. 27, 2003). |
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011. |
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014]. |
Marchette, David J., Computer Intrusion Detection and Network Monitoring: A Statistical (“Marchette”), (2001). |
Margolis, P.E., “Random House Webster's 'Computer & Internet Dictionary 3rd Edition”, ISBN 0375703519, p. 595 (Dec. 1998). |
Moore, D., et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910. |
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34. |
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg. |
Natvig, Kurt, “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002). |
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987. |
Newsome, J., et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005). |
Newsome, J., et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005). |
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302. |
Oberheide et al., CloudAV.sub.--N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA. |
PCT/US2014/043726 filed Jun. 23, 2014 International Search Report and Written Opinion dated Oct. 9, 2014. |
PCT/US2015/067082 filed Dec. 21, 2015 International Search Report and Written Opinion dated Feb. 24, 2016. |
Peter M. Chen, and Brian D. Noble, “When Virtual Is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”), (2001). |
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Approach to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”). |
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25. |
Singh, S., et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004). |
Spitzner, Lance, “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002). |
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/˜casado/pcap/sectionl.html, (Jan. 6, 2014). |
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998). |
U.S. Appl. No. 11/717,475, filed Mar. 12, 2007 Final Office Action dated Feb. 27, 2013. |
U.S. Appl. No. 11/717,475, filed Mar. 12, 2007 Final Office Action dated Nov. 22, 2010. |
U.S. Appl. No. 11/717,475, filed Mar. 12, 2007 Non-Final Office Action dated Aug. 28, 2012. |
U.S. Appl. No. 11/717,475, filed Mar. 12, 2007 Non-Final Office Action dated May 6, 2010. |
U.S. Appl. No. 13/925,688, filed Jun. 24, 2013 Final Office Action dated Jan. 12, 2017. |
U.S. Appl. No. 13/925,688, filed Jun. 24, 2013 Final Office Action dated Mar. 11, 2016. |
U.S. Appl. No. 13/925,688, filed Jun. 24, 2013 Non-Final Office Action dated Jun. 2, 2015. |
U.S. Appl. No. 13/925,688, filed Jun. 24, 2013 Non-Final Office Action dated Sep. 16, 2016. |
U.S. Appl. No. 14/059,381, filed Oct. 21, 2013 Non-Final Office Action dated Oct. 29, 2014. |
U.S. Appl. No. 14/229,541, filed Mar. 28, 2014 Non-Final Office Action dated Apr. 20, 2016. |
U.S. Appl. No. 14/579,896, filed Dec. 22, 2014 Advisory Action dated Aug. 23, 2016. |
U.S. Appl. No. 14/579,896, filed Dec. 22, 2014 Final Office Action dated Jul. 6, 2016. |
U.S. Appl. No. 14/579,896, filed Dec. 22, 2014 Non-Final Office Action dated Mar. 22, 2016. |
U.S. Appl. No. 14/579,896, filed Dec. 22, 2014 Non-Final Office Action dated Oct. 18, 2016. |
U.S. Appl. No. 14/579,896, filed Dec. 22, 2014 Notice of Allowance dated Mar. 1, 2017. |
U.S. Appl. No. 14/586,233, filed Dec. 30, 2014 Advisory Action dated Jun. 13, 2017. |
U.S. Appl. No. 14/586,233, filed Dec. 30, 2014 Final Office Action dated Mar. 9, 2017. |
U.S. Appl. No. 14/586,233, filed Dec. 30, 2014 Non-Final Office Action dated Aug. 24, 2016. |
U.S. Appl. No. 14/620,060, filed Feb. 11, 2015, Non-Final Office Action dated Apr. 3, 2015. |
U.S. Appl. No. 14/675,648, filed Mar. 31, 2015 Notice of Allowance dated Jul. 5, 2016. |
U.S. Appl. No. 15/339,459, filed Oct. 31, 2016 Non-Final Office Action dated Feb. 9, 2017. |
U.S. Appl. No. 15/451,243, filed Mar. 6, 2017 Notice of Allowance dated Jul. 26, 2017. |
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015. |
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015. |
Venezia, Paul, “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003). |
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350. |
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages. |
Williamson, Mathew M., “Throttling Virses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9. |
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1. |
Zhang et al., the Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82. |
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb/edu/.about.chris/research/doc/esec07.sub.--mining.pdf-. |
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14. |
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4. |
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013). |
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8. |
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012). |
U.S. Appl. No. 14/316,716, filed Jun. 26, 2014 Notice of Allowance dated May 4, 2020. |
U.S. Appl. No. 16/525,455, filed Jul. 29, 2019 Non-Final Office Action dated May 15, 2020. |
Number | Date | Country | |
---|---|---|---|
Parent | 14586233 | Dec 2014 | US |
Child | 15831311 | US |