Intelligent digital assistant in a multi-tasking environment

Information

  • Patent Grant
  • 11037565
  • Patent Number
    11,037,565
  • Date Filed
    Tuesday, December 17, 2019
    4 years ago
  • Date Issued
    Tuesday, June 15, 2021
    2 years ago
Abstract
Systems and processes for operating a digital assistant are provided. In one example, a method includes receiving a first speech input from a user. The method further includes identifying context information and determining a user intent based on the first speech input and the context information. The method further includes determining whether the user intent is to perform a task using a searching process or an object managing process. The searching process is configured to search data, and the object managing process is configured to manage objects. The method further includes, in accordance with a determination the user intent is to perform the task using the searching process, performing the task using the searching process; and in accordance with the determination that the user intent is to perform the task using the object managing process, performing the task using the object managing process.
Description
FIELD

The present disclosure relates generally to a digital assistant and, more specifically, to a digital assistant that interacts with a user to perform a task in a multi-tasking environment.


BACKGROUND

Digital assistants are increasing popular. In a desktop or tablet environment, a user frequently multi-tasks including searching files or information, managing files or folders, playing movies or songs, editing documents, adjusting system configurations, sending emails, etc. It is often cumbersome and inconvenient for the user to manually perform multiple tasks in parallel and to frequently switch between tasks. It is thus desirable for a digital assistant to have the ability to assist the user to perform some of the tasks in a multi-tasking environment based on a user's voice input.


BRIEF SUMMARY

Some existing techniques for assisting the user to perform a task in a multi-tasking environment may include, for example, dictation. Typically, a user may be required to manually perform many other tasks in a multi-tasking environment. As an example, a user may have been working on a presentation yesterday on his or her desktop computer and may wish to continue to work on the presentation. The user is typically required to manually locate the presentation on his or her desktop computer, open the presentation, and continue the editing of the presentation.


As another example, a user may have been booking a flight on his or her smartphone when the user is away from his desktop computer. The user may wish to continue booking the flight when the desktop computer is available. In existing technologies, the user needs to launch a web browser and start over on the flight booking process at the user's desktop computer. In other words, the prior flight booking progress that the user made at the smartphone may not be continued at the user's desktop computer.


As another example, a user may be editing a document on his or her desktop computer and wish to change a system configuration such as changing the brightness level of the screen, turning on Bluetooth connections, or the like. In existing technologies, the user may need to stop editing the document, find and launch the brightness configuration application, and manually change the settings. In a multi-tasking environment, some existing technologies are incapable of performing tasks as described in the above examples based on a user's speech input. Providing a voice-enabled digital assistant in a multi-tasking environment is thus desired and advantageous.


Systems and processes for operating a digital assistant are provided. In accordance with one or more examples, a method includes, at a user device with one or more processors and memory, receiving a first speech input from a user. The method further includes identifying context information associated with the user device and determining a user intent based on the first speech input and the context information. The method further includes determining whether the user intent is to perform a task using a searching process or an object managing process. The searching process is configured to search data stored internally or externally to the user device, and the object managing process is configured to manage objects associated with the user device. The method further includes, in accordance with a determination that the user intent is to perform the task using the searching process, performing the task using the searching process. The method further includes, in accordance with the determination that the user intent is to perform the task using the object managing process, performing the task using the object managing process.


In accordance with one or more examples, a method includes, at a user device with one or more processors and memory, receiving a speech input from a user to perform a task. The method further includes identifying context information associated with the user device and determining a user intent based on the speech input and context information associated with the user device. The method further includes, in accordance with user intent, determining whether the task is to be performed at the user device or at a first electronic device communicatively connected to the user device. The method further includes, in accordance with a determination that the task is to be performed at the user device and content for performing the task is located remotely, receiving the content for performing the task. The method further includes, in accordance with a determination that the task is to be performed at the first electronic device and the content for performing the task is located remotely to the first electronic device, providing the content for performing the task to the first electronic device.


In accordance with one or more examples, a method includes, at a user device with one or more processors and memory, receiving a speech input from a user to manage one or more system configurations of the user device. The user device is configured to concurrently provide a plurality of user interfaces. The method further includes identifying context information associated with the user device and determining a user intent based on the speech input and context information. The method further includes determining whether the user intent indicates an informational request or a request for performing a task. The method further includes, in accordance with a determination that the user intent indicates an informational request, providing a spoken response to the informational request. The method further includes, in accordance with a determination that the user intent indicates a request for performing a task, instantiating a process associated with the user device to perform the task.


Executable instructions for performing these functions are, optionally, included in a non-transitory computer-readable storage medium or other computer program product configured for execution by one or more processors. Executable instructions for performing these functions are, optionally, included in a transitory computer-readable storage medium or other computer program product configured for execution by one or more processors.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the various described embodiments, reference should be made to the Detailed Description below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.



FIG. 1 is a block diagram illustrating a system and environment for implementing a digital assistant according to various examples.



FIG. 2A is a block diagram illustrating a portable multifunction device implementing the client-side portion of a digital assistant in accordance with some embodiments.



FIG. 2B is a block diagram illustrating exemplary components for event handling according to various examples.



FIG. 3 illustrates a portable multifunction device implementing the client-side portion of a digital assistant according to various examples.



FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface according to various examples.



FIG. 5A illustrates an exemplary user interface for a menu of applications on a portable multifunction device according to various examples.



FIG. 5B illustrates an exemplary user interface for a multifunction device with a touch-sensitive surface that is separate from the display according to various examples.



FIG. 6A illustrates a personal electronic device according to various examples.



FIG. 6B is a block diagram illustrating a personal electronic device according to various examples.



FIG. 7A is a block diagram illustrating a digital assistant system or a server portion thereof according to various examples.



FIG. 7B illustrates the functions of the digital assistant shown in FIG. 7A according to various examples.



FIG. 7C illustrates a portion of an ontology according to various examples.



FIGS. 8A-8F illustrate functionalities of performing a task using a search process or an object managing process by a digital assistant according to various examples.



FIGS. 9A-9H illustrate functionalities of performing a task using a search process by a digital assistant according to various examples.



FIGS. 10A-10B illustrate functionalities of performing a task using an object managing process by a digital assistant according to various examples.



FIGS. 11A-11D illustrate functionalities of performing a task using a search process by a digital assistant according to various examples.



FIGS. 12A-12D illustrate functionalities of performing a task using a search process or an object managing process by a digital assistant according to various examples.



FIGS. 13A-13C illustrate functionalities of performing a task using an object managing process by a digital assistant according to various examples.



FIGS. 14A-14D illustrate functionalities of performing a task at a user device using remotely located content by a digital assistant according to various examples.



FIGS. 15A-15D illustrate functionalities of performing a task at a first electronic device using remotely located content by a digital assistant according to various examples.



FIGS. 16A-16C illustrate functionalities of performing a task at a first electronic device using remotely located content by a digital assistant according to various examples.



FIGS. 17A-17E illustrate functionalities of performing a task at a user device using remotely located content by a digital assistant according to various examples.



FIGS. 18A-18F illustrate functionalities of providing system configuration information in response to an informational request of the user by a digital assistant according to various examples.



FIGS. 19A-19D illustrate functionalities of performing a task in response to a user request by a digital assistant according to various examples.



FIGS. 20A-20G illustrate a flow diagram of an exemplary process for operating a digital assistant according to various examples.



FIGS. 21A-21E illustrate a flow diagram of an exemplary process for operating a digital assistant according to various examples.



FIGS. 22A-22D illustrate a flow diagram of an exemplary process for operating a digital assistant according to various examples.



FIG. 23 illustrates a block diagram of an electronic device according to various examples.





DETAILED DESCRIPTION

In the following description of the disclosure and embodiments, reference is made to the accompanying drawings, in which it is shown by way of illustration, of specific embodiments that can be practiced. It is to be understood that other embodiments and examples can be practiced and changes can be made without departing from the scope of the disclosure.


Techniques for providing a digital assistant in a multi-tasking environment are desirable. As described herein, techniques for providing a digital assistant in a multi-tasking environment are desired for various purposes such as reducing the cumbersomeness of searching objects or information, enabling efficient object management, maintaining continuity between tasks performed at the user device and at another electronic device, and reducing the user's manual effort in adjusting system configurations. Such techniques are advantageous by allowing the user to operate a digital assistant to perform various tasks using speech inputs in a multi-tasking environment. Further, such techniques alleviate the cumbersomeness or inconvenience associated with performing various tasks in a multi-tasking environment. Furthermore, by allowing the user to perform tasks using speech, they are able to keep both hands on the keyboard or mouse while performing tasking that would require a context switch—effectively, allowing the digital assistant to perform tasks as if a “third-hand” of the user. As will be appreciated, by allowing the user to perform tasks using speech it allows the user to more efficiently complete tasks that may require multiple interactions with multiple applications. For example, searching for images and sending them to an individual in an email may require opening a search interface, entering search terms, selecting one or more results, opening am email for composition, copying or moving the resulting files to the open email, addressing the email and sending it. Such a task can be completed more efficiently by voice with a command such as “find pictures from X date and send them to my wife”. Similar requests for moving files, searching for information on the internet, composing messages can all be made more efficient using voice, while simultaneously allowing the user to perform other tasks using their hands.


Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first storage could be termed a second storage, and, similarly, a second storage could be termed a first storage, without departing from the scope of the various described examples. The first storage and the second storage can both be storages and, in some cases, can be separate and different storages.


The terminology used in the description of the various described examples herein is for the purpose of describing particular examples only and is not intended to be limiting. As used in the description of the various described examples and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


The term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.


1. System and Environment



FIG. 1 illustrates a block diagram of system 100 according to various examples. In some examples, system 100 can implement a digital assistant. The terms “digital assistant,” “virtual assistant,” “intelligent automated assistant,” or “automatic digital assistant” can refer to any information processing system that interprets natural language input in spoken and/or textual form to infer user intent, and performs actions based on the inferred user intent. For example, to act on an inferred user intent, the system can perform one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent, inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the like; and generating output responses to the user in an audible (e.g., speech) and/or visual form.


Specifically, a digital assistant can be capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request can seek either an informational answer or performance of a task by the digital assistant. A satisfactory response to the user request can be a provision of the requested informational answer, a performance of the requested task, or a combination of the two. For example, a user can ask the digital assistant a question, such as “Where am I right now?” Based on the user's current location, the digital assistant can answer, “You are in Central Park near the west gate.” The user can also request the performance of a task, for example, “Please invite my friends to my girlfriend's birthday party next week.” In response, the digital assistant can acknowledge the request by saying “Yes, right away,” and then send a suitable calendar invite on behalf of the user to each of the user's friends listed in the user's electronic address book. During performance of a requested task, the digital assistant can sometimes interact with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a digital assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant can also provide responses in other visual or audio forms, e.g., as text, alerts, music, videos, animations, etc.


As shown in FIG. 1, in some examples, a digital assistant can be implemented according to a client-server model. The digital assistant can include client-side portion 102 (hereafter “DA client 102”) executed on user device 104 and server-side portion 106 (hereafter “DA server 106”) executed on server system 108. DA client 102 can communicate with DA server 106 through one or more networks 110. DA client 102 can provide client-side functionalities such as user-facing input and output processing and communication with DA server 106. DA server 106 can provide server-side functionalities for any number of DA clients 102 each residing on a respective user device 104.


In some examples, DA server 106 can include client-facing I/O interface 112, one or more processing modules 114, data and models 116, and I/O interface to external services 118. The client-facing I/O interface 112 can facilitate the client-facing input and output processing for DA server 106. One or more processing modules 114 can utilize data and models 116 to process speech input and determine the user's intent based on natural language input. Further, one or more processing modules 114 perform task execution based on inferred user intent. In some examples, DA server 106 can communicate with external services 120 through network(s) 110 for task completion or information acquisition. I/O interface to external services 118 can facilitate such communications.


User device 104 can be any suitable electronic device. For example, user devices can be a portable multifunctional device (e.g., device 200, described below with reference to FIG. 2A), a multifunctional device (e.g., device 400, described below with reference to FIG. 4), or a personal electronic device (e.g., device 600, described below with reference to FIG. 6A-B). A portable multifunctional device can be, for example, a mobile telephone that also contains other functions, such as PDA and/or music player functions. Specific examples of portable multifunction devices can include the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, Calif. Other examples of portable multifunction devices can include, without limitation, laptop or tablet computers. Further, in some examples, user device 104 can be a non-portable multifunctional device. In particular, user device 104 can be a desktop computer, a game console, a television, or a television set-top box. In some examples, user device 104 can operate in a multi-tasking environment. A multi-tasking environment allows a user to operate device 104 to perform multiple tasks in parallel. For example, a multi-tasking environment may be a desktop or laptop environment, in which device 104 may perform one task in response to the user input received from a physical user-interface device and, in parallel, perform another task in response to the user's voice input. In some examples, user device 104 can include a touch-sensitive surface (e.g., touch screen displays and/or touchpads). Further, user device 104 can optionally include one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick. Various examples of electronic devices, such as multifunctional devices, are described below in greater detail.


Examples of communication network(s) 110 can include local area networks (LAN) and wide area networks (WAN), e.g., the Internet. Communication network(s) 110 can be implemented using any known network protocol, including various wired or wireless protocols, such as, for example, Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wi-Fi, voice over Internet Protocol (VoIP), Wi-MAX, or any other suitable communication protocol.


Server system 108 can be implemented on one or more standalone data processing apparatus or a distributed network of computers. In some examples, server system 108 can also employ various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 108.


In some examples, user device 104 can communicate with DA server 106 via second user device 122. Second user device 122 can be similar or identical to user device 104. For example, second user device 122 can be similar to devices 200, 400, or 600 described below with reference to FIGS. 2A, 4, and 6A-B. User device 104 can be configured to communicatively couple to second user device 122 via a direct communication connection, such as Bluetooth, NFC, BTLE, or the like, or via a wired or wireless network, such as a local Wi-Fi network. In some examples, second user device 122 can be configured to act as a proxy between user device 104 and DA server 106. For example, DA client 102 of user device 104 can be configured to transmit information (e.g., a user request received at user device 104) to DA server 106 via second user device 122. DA server 106 can process the information and return relevant data (e.g., data content responsive to the user request) to user device 104 via second user device 122.


In some examples, user device 104 can be configured to communicate abbreviated requests for data to second user device 122 to reduce the amount of information transmitted from user device 104. Second user device 122 can be configured to determine supplemental information to add to the abbreviated request to generate a complete request to transmit to DA server 106. This system architecture can advantageously allow user device 104 having limited communication capabilities and/or limited battery power (e.g., a watch or a similar compact electronic device) to access services provided by DA server 106 by using second user device 122, having greater communication capabilities and/or battery power (e.g., a mobile phone, laptop computer, tablet computer, or the like), as a proxy to DA server 106. While only two user devices 104 and 122 are shown in FIG. 1, it should be appreciated that system 100 can include any number and type of user devices configured in this proxy configuration to communicate with DA server system 106.


Although the digital assistant shown in FIG. 1 can include both a client-side portion (e.g., DA client 102) and a server-side portion (e.g., DA server 106), in some examples, the functions of a digital assistant can be implemented as a standalone application installed on a user device. In addition, the divisions of functionalities between the client and server portions of the digital assistant can vary in different implementations. For instance, in some examples, the DA client can be a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the digital assistant to a backend server.


2. Electronic Devices


Attention is now directed toward embodiments of electronic devices for implementing the client-side portion of a digital assistant. FIG. 2A is a block diagram illustrating portable multifunction device 200 with touch-sensitive display system 212 in accordance with some embodiments. Touch-sensitive display 212 is sometimes called a “touch screen” for convenience and is sometimes known as or called a “touch-sensitive display system.” Device 200 includes memory 202 (which optionally includes one or more computer-readable storage mediums), memory controller 222, one or more processing units (CPUs) 220, peripherals interface 218, RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, input/output (I/O) subsystem 206, other input control devices 216, and external port 224. Device 200 optionally includes one or more optical sensors 264. Device 200 optionally includes one or more contact intensity sensors 265 for detecting intensity of contacts on device 200 (e.g., a touch-sensitive surface such as touch-sensitive display system 212 of device 200). Device 200 optionally includes one or more tactile output generators 267 for generating tactile outputs on device 200 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 212 of device 200 or touchpad 455 of device 400). These components optionally communicate over one or more communication buses or signal lines 203.


As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).


As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.


It should be appreciated that device 200 is only one example of a portable multifunction device, and that device 200 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in FIG. 2A are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application-specific integrated circuits.


Memory 202 may include one or more computer-readable storage mediums. The computer-readable storage mediums may be tangible and non-transitory. Memory 202 may include high-speed random access memory and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 222 may control access to memory 202 by other components of device 200.


In some examples, a non-transitory computer-readable storage medium of memory 202 can be used to store instructions (e.g., for performing aspects of process 1200, described below) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In other examples, the instructions (e.g., for performing aspects of process 1200, described below) can be stored on a non-transitory computer-readable storage medium (not shown) of the server system 108 or can be divided between the non-transitory computer-readable storage medium of memory 202 and the non-transitory computer-readable storage medium of server system 108. In the context of this document, a “non-transitory computer-readable storage medium” can be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device.


Peripherals interface 218 can be used to couple input and output peripherals of the device to CPU 220 and memory 202. The one or more processors 220 run or execute various software programs and/or sets of instructions stored in memory 202 to perform various functions for device 200 and to process data. In some embodiments, peripherals interface 218, CPU 220, and memory controller 222 may be implemented on a single chip, such as chip 204. In some other embodiments, they may be implemented on separate chips.


RF (radio frequency) circuitry 208 receives and sends RF signals, also called electromagnetic signals. RF circuitry 208 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 208 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 208 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 208 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.


Audio circuitry 210, speaker 211, and microphone 213 provide an audio interface between a user and device 200. Audio circuitry 210 receives audio data from peripherals interface 218, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 211. Speaker 211 converts the electrical signal to human-audible sound waves. Audio circuitry 210 also receives electrical signals converted by microphone 213 from sound waves. Audio circuitry 210 converts the electrical signal to audio data and transmits the audio data to peripherals interface 218 for processing. Audio data may be retrieved from and/or transmitted to memory 202 and/or RF circuitry 208 by peripherals interface 218. In some embodiments, audio circuitry 210 also includes a headset jack (e.g., 312, FIG. 3). The headset jack provides an interface between audio circuitry 210 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).


I/O subsystem 206 couples input/output peripherals on device 200, such as touch screen 212 and other input control devices 216, to peripherals interface 218. I/O subsystem 206 optionally includes display controller 256, optical sensor controller 258, intensity sensor controller 259, haptic feedback controller 261, and one or more input controllers 260 for other input or control devices. The one or more input controllers 260 receive/send electrical signals from/to other input control devices 216. The other input control devices 216 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 260 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 308, FIG. 3) optionally include an up/down button for volume control of speaker 211 and/or microphone 213. The one or more buttons optionally include a push button (e.g., 306, FIG. 3).


A quick press of the push button may disengage a lock of touch screen 212 or begin a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 306) may turn power to device 200 on or off. The user may be able to customize a functionality of one or more of the buttons. Touch screen 212 is used to implement virtual or soft buttons and one or more soft keyboards.


Touch-sensitive display 212 provides an input interface and an output interface between the device and a user. Display controller 256 receives and/or sends electrical signals from/to touch screen 212. Touch screen 212 displays visual output to the user. The visual output may include graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output may correspond to user interface objects.


Touch screen 212 has a touch-sensitive surface, sensor, or set of sensors that accept input from the user based on haptic and/or tactile contact. Touch screen 212 and display controller 256 (along with any associated modules and/or sets of instructions in memory 202) detect contact (and any movement or breaking of the contact) on touch screen 212 and convert the detected contact into interaction with user interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 212. In an exemplary embodiment, a point of contact between touch screen 212 and the user corresponds to a finger of the user.


Touch screen 212 may use LCD (liquid crystal display) technology, LPD (light-emitting polymer display) technology, or LED (light-emitting diode) technology, although other display technologies may be used in other embodiments. Touch screen 212 and display controller 256 may detect contact and any movement or breaking thereof using any of a plurality of touch-sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 212. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, Calif.


A touch-sensitive display in some embodiments of touch screen 212 may be analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 212 displays visual output from device 200, whereas touch-sensitive touchpads do not provide visual output.


A touch-sensitive display in some embodiments of touch screen 212 may be as described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.


Touch screen 212 may have a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user may make contact with touch screen 212 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.


In some embodiments, in addition to the touch screen, device 200 may include a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad may be a touch-sensitive surface that is separate from touch screen 212 or an extension of the touch-sensitive surface formed by the touch screen.


Device 200 also includes power system 262 for powering the various components. Power system 262 may include a power management system, one or more power sources (e.g., battery or alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode) and any other components associated with the generation, management, and distribution of power in portable devices.


Device 200 may also include one or more optical sensors 264. FIG. 2A shows an optical sensor coupled to optical sensor controller 258 in I/O subsystem 206. Optical sensor 264 may include charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors. Optical sensor 264 receives light from the environment, projected through one or more lenses, and converts the light to data representing an image. In conjunction with imaging module 243 (also called a camera module), optical sensor 264 may capture still images or video. In some embodiments, an optical sensor is located on the back of device 200, opposite touch screen display 212 on the front of the device so that the touch screen display may be used as a viewfinder for still and/or video image acquisition. In some embodiments, an optical sensor is located on the front of the device, so that the user's image may be obtained for video conferencing while the user views the other video conference participants on the touch screen display. In some embodiments, the position of optical sensor 264 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a single optical sensor 264 may be used along with the touch screen display for both video conferencing and still and/or video image acquisition.


Device 200 optionally also includes one or more contact intensity sensors 265. FIG. 2A shows a contact intensity sensor coupled to intensity sensor controller 259 in I/O subsystem 206. Contact intensity sensor 265 optionally includes one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface). Contact intensity sensor 265 receives contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment. In some embodiments, at least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212). In some embodiments, at least one contact intensity sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.


Device 200 may also include one or more proximity sensors 266. FIG. 2A shows proximity sensor 266 coupled to peripherals interface 218. Alternately, proximity sensor 266 may be coupled to input controller 260 in I/O subsystem 206. Proximity sensor 266 may perform as described in U.S. patent application Ser. No. 11/241,839, “Proximity Detector In Handheld Device”; Ser. No. 11/240,788, “Proximity Detector In Handheld Device”; Ser. No. 11/620,702, “Using Ambient Light Sensor To Augment Proximity Sensor Output”; Ser. No. 11/586,862, “Automated Response To And Sensing Of User Activity In Portable Devices”; and Ser. No. 11/638,251, “Methods And Systems For Automatic Configuration Of Peripherals,” which are hereby incorporated by reference in their entirety. In some embodiments, the proximity sensor turns off and disables touch screen 212 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call).


Device 200 optionally also includes one or more tactile output generators 267. FIG. 2A shows a tactile output generator coupled to haptic feedback controller 261 in I/O subsystem 206. Tactile output generator 267 optionally includes one or more electroacoustic devices such as speakers or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device). Contact intensity sensor 265 receives tactile feedback generation instructions from haptic feedback module 233 and generates tactile outputs on device 200 that are capable of being sensed by a user of device 200. In some embodiments, at least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 200) or laterally (e.g., back and forth in the same plane as a surface of device 200). In some embodiments, at least one tactile output generator sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.


Device 200 may also include one or more accelerometers 268. FIG. 2A shows accelerometer 268 coupled to peripherals interface 218. Alternately, accelerometer 268 may be coupled to an input controller 260 in I/O subsystem 206. Accelerometer 268 may perform as described in U.S. Patent Publication No. 20050190059, “Acceleration-based Theft Detection System for Portable Electronic Devices,” and U.S. Patent Publication No. 20060017692, “Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer,” both of which are incorporated by reference herein in their entirety. In some embodiments, information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers. Device 200 optionally includes, in addition to accelerometer(s) 268, a magnetometer (not shown) and a GPS (or GLONASS or other global navigation system) receiver (not shown) for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 200.


In some embodiments, the software components stored in memory 202 include operating system 226, communication module (or set of instructions) 228, contact/motion module (or set of instructions) 230, graphics module (or set of instructions) 232, text input module (or set of instructions) 234, Global Positioning System (GPS) module (or set of instructions) 235, Digital Assistant Client Module 229, and applications (or sets of instructions) 236. Further, memory 202 can store data and models, such as user data and models 231. Furthermore, in some embodiments, memory 202 (FIG. 2A) or 470 (FIG. 4) stores device/global internal state 257, as shown in FIGS. 2A and 4. Device/global internal state 257 includes one or more of: active application state, indicating which applications, if any, are currently active; display state, indicating what applications, views, or other information occupy various regions of touch screen display 212; sensor state, including information obtained from the device's various sensors and input control devices 216; and location information concerning the device's location and/or attitude.


Operating system 226 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.


Communication module 228 facilitates communication with other devices over one or more external ports 224 and also includes various software components for handling data received by RF circuitry 208 and/or external port 224. External port 224 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.


Contact/motion module 230 optionally detects contact with touch screen 212 (in conjunction with display controller 256) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 230 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 230 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 230 and display controller 256 detect contact on a touchpad.


In some embodiments, contact/motion module 230 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 200). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).


Contact/motion module 230 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.


Graphics module 232 includes various known software components for rendering and displaying graphics on touch screen 212 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.


In some embodiments, graphics module 232 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 232 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data and then generates screen image data to output to display controller 256.


Haptic feedback module 233 includes various software components for generating instructions used by tactile output generator(s) 267 to produce tactile outputs at one or more locations on device 200 in response to user interactions with device 200.


Text input module 234, which may be a component of graphics module 232, provides soft keyboards for entering text in various applications (e.g., contacts 237, email 240, IM 241, browser 247, and any other application that needs text input).


GPS module 235 determines the location of the device and provides this information for use in various applications (e.g., to telephone 238 for use in location-based dialing; to camera 243 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).


Digital assistant client module 229 can include various client-side digital assistant instructions to provide the client-side functionalities of the digital assistant. For example, digital assistant client module 229 can be capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., microphone 213, accelerometer(s) 268, touch-sensitive display system 212, optical sensor(s) 264, other input control devices 216, etc.) of portable multifunction device 200. Digital assistant client module 229 can also be capable of providing output in audio (e.g., speech output), visual, and/or tactile forms through various output interfaces (e.g., speaker 211, touch-sensitive display system 212, tactile output generator(s) 267, etc.) of portable multifunction device 200. For example, output can be provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, digital assistant client module 229 can communicate with DA server 106 using RF circuitry 208.


User data and models 231 can include various data associated with the user (e.g., user-specific vocabulary data, user preference data, user-specified name pronunciations, data from the user's electronic address book, to-do lists, shopping lists, etc.) to provide the client-side functionalities of the digital assistant. Further, user data and models 231 can includes various models (e.g., speech recognition models, statistical language models, natural language processing models, ontology, task flow models, service models, etc.) for processing user input and determining user intent.


In some examples, digital assistant client module 229 can utilize the various sensors, subsystems, and peripheral devices of portable multifunction device 200 to gather additional information from the surrounding environment of the portable multifunction device 200 to establish a context associated with a user, the current user interaction, and/or the current user input. In some examples, digital assistant client module 229 can provide the contextual information or a subset thereof with the user input to DA server 106 to help infer the user's intent. In some examples, the digital assistant can also use the contextual information to determine how to prepare and deliver outputs to the user. Contextual information can be referred to as context data.


In some examples, the contextual information that accompanies the user input can include sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc. In some examples, the contextual information can also include the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signals strength, etc. In some examples, information related to the software state of DA server 106, e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc., and of portable multifunction device 200 can be provided to DA server 106 as contextual information associated with a user input.


In some examples, the digital assistant client module 229 can selectively provide information (e.g., user data 231) stored on the portable multifunction device 200 in response to requests from DA server 106. In some examples, digital assistant client module 229 can also elicit additional input from the user via a natural language dialogue or other user interfaces upon request by DA server 106. Digital assistant client module 229 can pass the additional input to DA server 106 to help DA server 106 in intent deduction and/or fulfillment of the user's intent expressed in the user request.


A more detailed description of a digital assistant is described below with reference to FIGS. 7A-C. It should be recognized that digital assistant client module 229 can include any number of the sub-modules of digital assistant module 726 described below.


Applications 236 may include the following modules (or sets of instructions), or a subset or superset thereof:

    • Contacts module 237 (sometimes called an address book or contact list);
    • Video conference module 239;
    • Email client module 240;
    • Instant messaging (IM) module 241;
    • Workout support module 242;
    • Camera module 243 for still and/or video images;
    • Image management module 244;
    • Video player module;
    • Music player module;
    • Browser module 247;
    • Calendar module 248;
    • Widget modules 249, which may include one or more of: weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, dictionary widget 249-5, and other widgets obtained by the user, as well as user-created widgets 249-6;
    • Widget creator module 250 for making user-created widgets 249-6;
    • Search module 251;
    • Video and music player module 252, which merges video player module and music player module;
    • Notes module 253;
    • Map module 254; and/or
    • Online video module 255.


Examples of other applications 236 that may be stored in memory 202 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, contacts module 237 may be used to manage an address book or contact list (e.g., stored in application internal state 292 of contacts module 237 in memory 202 or memory 470), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), email address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or email addresses to initiate and/or facilitate communications by telephone 238, video conference module 239, email 240, or IM 241; and so forth.


In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, telephone module 238 may be used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 237, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication may use any of a plurality of communications standards, protocols, and technologies.


In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, optical sensor 264, optical sensor controller 258, contact/motion module 230, graphics module 232, text input module 234, contacts module 237, and telephone module 238, video conference module 239 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, email client module 240 includes executable instructions to create, send, receive, and manage email in response to user instructions. In conjunction with image management module 244, email client module 240 makes it very easy to create and send emails with still or video images taken with camera module 243.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, instant messaging module 241 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages may include graphics, photos, audio files, video files, and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, map module 254, and music player module, workout support module 242 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.


In conjunction with touch screen 212, display controller 256, optical sensor(s) 264, optical sensor controller 258, contact/motion module 230, graphics module 232, and image management module 244, camera module 243 includes executable instructions to capture still images or video (including a video stream) and store them into memory 202, modify characteristics of a still image or video, or delete a still image or video from memory 202.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and camera module 243, image management module 244 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, browser module 247 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, email client module 240, and browser module 247, calendar module 248 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, widget modules 249 are mini-applications that may be downloaded and used by a user (e.g., weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, and dictionary widget 249-5) or created by the user (e.g., user-created widget 249-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, the widget creator module 250 may be used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, search module 251 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 202 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, and browser module 247, video and music player module 252 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 212 or on an external, connected display via external port 224). In some embodiments, device 200 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, notes module 253 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, and browser module 247, map module 254 may be used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, text input module 234, email client module 240, and browser module 247, online video module 255 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 224), send an email with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 241, rather than email client module 240, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.


Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise rearranged in various embodiments. For example, video player module may be combined with music player module into a single module (e.g., video and music player module 252, FIG. 2A). In some embodiments, memory 202 may store a subset of the modules and data structures identified above. Furthermore, memory 202 may store additional modules and data structures not described above.


In some embodiments, device 200 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 200, the number of physical input control devices (such as push buttons, dials, and the like) on device 200 may be reduced.


The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 200 to a main, home, or root menu from any user interface that is displayed on device 200. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.



FIG. 2B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments. In some embodiments, memory 202 (FIG. 2A) or 470 (FIG. 4) includes event sorter 270 (e.g., in operating system 226) and a respective application 236-1 (e.g., any of the aforementioned applications 237-251, 255, 480-490).


Event sorter 270 receives event information and determines the application 236-1 and application view 291 of application 236-1 to which to deliver the event information. Event sorter 270 includes event monitor 271 and event dispatcher module 274. In some embodiments, application 236-1 includes application internal state 292, which indicates the current application view(s) displayed on touch-sensitive display 212 when the application is active or executing. In some embodiments, device/global internal state 257 is used by event sorter 270 to determine which application(s) is (are) currently active, and application internal state 292 is used by event sorter 270 to determine application views 291 to which to deliver event information.


In some embodiments, application internal state 292 includes additional information, such as one or more of: resume information to be used when application 236-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 236-1, a state queue for enabling the user to go back to a prior state or view of application 236-1, and a redo/undo queue of previous actions taken by the user.


Event monitor 271 receives event information from peripherals interface 218. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 212, as part of a multi-touch gesture). Peripherals interface 218 transmits information it receives from I/O subsystem 206 or a sensor, such as proximity sensor 266, accelerometer(s) 268, and/or microphone 213 (through audio circuitry 210). Information that peripherals interface 218 receives from I/O subsystem 206 includes information from touch-sensitive display 212 or a touch-sensitive surface.


In some embodiments, event monitor 271 sends requests to the peripherals interface 218 at predetermined intervals. In response, peripherals interface 218 transmits event information. In other embodiments, peripherals interface 218 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).


In some embodiments, event sorter 270 also includes a hit view determination module 272 and/or an active event recognizer determination module 273.


Hit view determination module 272 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 212 displays more than one view. Views are made up of controls and other elements that a user can see on the display.


Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected may correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected may be called the hit view, and the set of events that are recognized as proper inputs may be determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.


Hit view determination module 272 receives information related to sub events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 272 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 272, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.


Active event recognizer determination module 273 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 273 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 273 determines that all views that include the physical location of a sub-event are actively involved views and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.


Event dispatcher module 274 dispatches the event information to an event recognizer (e.g., event recognizer 280). In embodiments including active event recognizer determination module 273, event dispatcher module 274 delivers the event information to an event recognizer determined by active event recognizer determination module 273. In some embodiments, event dispatcher module 274 stores in an event queue the event information, which is retrieved by a respective event receiver 282.


In some embodiments, operating system 226 includes event sorter 270. Alternatively, application 236-1 includes event sorter 270. In yet other embodiments, event sorter 270 is a stand-alone module or a part of another module stored in memory 202, such as contact/motion module 230.


In some embodiments, application 236-1 includes a plurality of event handlers 290 and one or more application views 291, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 291 of the application 236-1 includes one or more event recognizers 280. Typically, a respective application view 291 includes a plurality of event recognizers 280. In other embodiments, one or more of event recognizers 280 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 236-1 inherits methods and other properties. In some embodiments, a respective event handler 290 includes one or more of: data updater 276, object updater 277, GUI updater 278, and/or event data 279 received from event sorter 270. Event handler 290 may utilize or call data updater 276, object updater 277, or GUI updater 278 to update the application internal state 292. Alternatively, one or more of the application views 291 include one or more respective event handlers 290. Also, in some embodiments, one or more of data updater 276, object updater 277, and GUI updater 278 are included in a respective application view 291.


A respective event recognizer 280 receives event information (e.g., event data 279) from event sorter 270 and identifies an event from the event information. Event recognizer 280 includes event receiver 282 and event comparator 284. In some embodiments, event recognizer 280 also includes at least a subset of: metadata 283 and event delivery instructions 288 (which may include sub-event delivery instructions).


Event receiver 282 receives event information from event sorter 270. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information may also include speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.


Event comparator 284 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 284 includes event definitions 286. Event definitions 286 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (287-1), event 2 (287-2), and others. In some embodiments, sub-events in an event (287) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (287-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (287-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 212, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 290.


In some embodiments, event definition 287 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 284 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 212, when a touch is detected on touch-sensitive display 212, event comparator 284 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 290, the event comparator uses the result of the hit test to determine which event handler 290 should be activated. For example, event comparator 284 selects an event handler associated with the sub-event and the object triggering the hit test.


In some embodiments, the definition for a respective event (287) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.


When a respective event recognizer 280 determines that the series of sub-events do not match any of the events in event definitions 286, the respective event recognizer 280 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.


In some embodiments, a respective event recognizer 280 includes metadata 283 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate how event recognizers may interact, or are enabled to interact, with one another. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.


In some embodiments, a respective event recognizer 280 activates event handler 290 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 280 delivers event information associated with the event to event handler 290. Activating an event handler 290 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 280 throws a flag associated with the recognized event, and event handler 290 associated with the flag catches the flag and performs a predefined process.


In some embodiments, event delivery instructions 288 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.


In some embodiments, data updater 276 creates and updates data used in application 236-1. For example, data updater 276 updates the telephone number used in contacts module 237, or stores a video file used in video player module. In some embodiments, object updater 277 creates and updates objects used in application 236-1. For example, object updater 277 creates a new user-interface object or updates the position of a user-interface object. GUI updater 278 updates the GUI. For example, GUI updater 278 prepares display information and sends it to graphics module 232 for display on a touch-sensitive display.


In some embodiments, event handler(s) 290 includes or has access to data updater 276, object updater 277, and GUI updater 278. In some embodiments, data updater 276, object updater 277, and GUI updater 278 are included in a single module of a respective application 236-1 or application view 291. In other embodiments, they are included in two or more software modules.


It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 200 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.



FIG. 3 illustrates a portable multifunction device 200 having a touch screen 212 in accordance with some embodiments. The touch screen optionally displays one or more graphics within user interface (UI) 300. In this embodiment, as well as others described below, a user is enabled to select one or more of the graphics by making a gesture on the graphics, for example, with one or more fingers 302 (not drawn to scale in the figure) or one or more styluses 303 (not drawn to scale in the figure). In some embodiments, selection of one or more graphics occurs when the user breaks contact with the one or more graphics. In some embodiments, the gesture optionally includes one or more taps, one or more swipes (from left to right, right to left, upward, and/or downward), and/or a rolling of a finger (from right to left, left to right, upward, and/or downward) that has made contact with device 200. In some implementations or circumstances, inadvertent contact with a graphic does not select the graphic. For example, a swipe gesture that sweeps over an application icon optionally does not select the corresponding application when the gesture corresponding to selection is a tap.


Device 200 may also include one or more physical buttons, such as “home” or menu button 304. As described previously, menu button 304 may be used to navigate to any application 236 in a set of applications that may be executed on device 200. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 212.


In one embodiment, device 200 includes touch screen 212, menu button 304, push button 306 for powering the device on/off and locking the device, volume adjustment button(s) 308, subscriber identity module (SIM) card slot 310, headset jack 312, and docking/charging external port 224. Push button 306 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 200 also accepts verbal input for activation or deactivation of some functions through microphone 213. Device 200 also, optionally, includes one or more contact intensity sensors 265 for detecting intensity of contacts on touch screen 212 and/or one or more tactile output generators 267 for generating tactile outputs for a user of device 200.



FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments. Device 400 need not be portable. In some embodiments, device 400 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child's learning toy), a gaming system, or a control device (e.g., a home or industrial controller). Device 400 typically includes one or more processing units (CPUs) 410, one or more network or other communications interfaces 460, memory 470, and one or more communication buses 420 for interconnecting these components. Communication buses 420 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. Device 400 includes input/output (I/O) interface 430 comprising display 440, which is typically a touch screen display. I/O interface 430 also optionally includes a keyboard and/or mouse (or other pointing device) 450 and touchpad 455, tactile output generator 457 for generating tactile outputs on device 400 (e.g., similar to tactile output generator(s) 267 described above with reference to FIG. 2A), sensors 459 (e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 265 described above with reference to FIG. 2A). Memory 470 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 470 optionally includes one or more storage devices remotely located from CPU(s) 410. In some embodiments, memory 470 stores programs, modules, and data structures analogous to the programs, modules, and data structures stored in memory 202 of portable multifunction device 200 (FIG. 2A), or a subset thereof. Furthermore, memory 470 optionally stores additional programs, modules, and data structures not present in memory 202 of portable multifunction device 200. For example, memory 470 of device 400 optionally stores drawing module 480, presentation module 482, word processing module 484, website creation module 486, disk authoring module 488, and/or spreadsheet module 490, while memory 202 of portable multifunction device 200 (FIG. 2A) optionally does not store these modules.


Each of the above-identified elements in FIG. 4 may be stored in one or more of the previously mentioned memory devices. Each of the above-identified modules corresponds to a set of instructions for performing a function described above. The above-identified modules or programs (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise rearranged in various embodiments. In some embodiments, memory 470 may store a subset of the modules and data structures identified above. Furthermore, memory 470 may store additional modules and data structures not described above.


Attention is now directed towards embodiments of user interfaces that may be implemented on, for example, portable multifunction device 200.



FIG. 5A illustrates an exemplary user interface for a menu of applications on portable multifunction device 200 in accordance with some embodiments. Similar user interfaces may be implemented on device 400. In some embodiments, user interface 500 includes the following elements, or a subset or superset thereof:


Signal strength indicator(s) 502 for wireless communication(s), such as cellular and Wi-Fi signals;

    • Time 504;
    • Bluetooth indicator 505;
    • Battery status indicator 506;
    • Tray 508 with icons for frequently used applications, such as:
      • Icon 516 for telephone module 238, labeled “Phone,” which optionally includes an indicator 514 of the number of missed calls or voicemail messages;
      • Icon 518 for email client module 240, labeled “Mail,” which optionally includes an indicator 510 of the number of unread emails;
      • Icon 520 for browser module 247, labeled “Browser;” and
      • Icon 522 for video and music player module 252, also referred to as iPod (trademark of Apple Inc.) module 252, labeled “iPod;” and
    • Icons for other applications, such as:
      • Icon 524 for IM module 241, labeled “Messages;”
      • Icon 526 for calendar module 248, labeled “Calendar;”
      • Icon 528 for image management module 244, labeled “Photos;”
      • Icon 530 for camera module 243, labeled “Camera;”
      • Icon 532 for online video module 255, labeled “Online Video;”
      • Icon 534 for stocks widget 249-2, labeled “Stocks;”
      • Icon 536 for map module 254, labeled “Maps;”
      • Icon 538 for weather widget 249-1, labeled “Weather;”
      • Icon 540 for alarm clock widget 249-4, labeled “Clock;”
      • Icon 542 for workout support module 242, labeled “Workout Support;”
      • Icon 544 for notes module 253, labeled “Notes;” and
      • Icon 546 for a settings application or module, labeled “Settings,” which provides access to settings for device 200 and its various applications 236.


It should be noted that the icon labels illustrated in FIG. 5A are merely exemplary. For example, icon 522 for video and music player module 252 may optionally be labeled “Music” or “Music Player.” Other labels are, optionally, used for various application icons. In some embodiments, a label for a respective application icon includes a name of an application corresponding to the respective application icon. In some embodiments, a label for a particular application icon is distinct from a name of an application corresponding to the particular application icon.



FIG. 5B illustrates an exemplary user interface on a device (e.g., device 400, FIG. 4) with a touch-sensitive surface 551 (e.g., a tablet or touchpad 455, FIG. 4) that is separate from the display 550 (e.g., touch screen display 212). Device 400 also, optionally, includes one or more contact intensity sensors (e.g., one or more of sensors 457) for detecting intensity of contacts on touch-sensitive surface 551 and/or one or more tactile output generators 459 for generating tactile outputs for a user of device 400.


Although some of the examples which follow will be given with reference to inputs on touch screen display 212 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in FIG. 5B. In some embodiments, the touch-sensitive surface (e.g., 551 in FIG. 5B) has a primary axis (e.g., 552 in FIG. 5B) that corresponds to a primary axis (e.g., 553 in FIG. 5B) on the display (e.g., 550). In accordance with these embodiments, the device detects contacts (e.g., 560 and 562 in FIG. 5B) with the touch-sensitive surface 551 at locations that correspond to respective locations on the display (e.g., in FIG. 5B, 560 corresponds to 568 and 562 corresponds to 570). In this way, user inputs (e.g., contacts 560 and 562, and movements thereof) detected by the device on the touch-sensitive surface (e.g., 551 in FIG. 5B) are used by the device to manipulate the user interface on the display (e.g., 550 in FIG. 5B) of the multifunction device when the touch-sensitive surface is separate from the display. It should be understood that similar methods are, optionally, used for other user interfaces described herein.


Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, and/or finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.



FIG. 6A illustrates exemplary personal electronic device 600. Device 600 includes body 602. In some embodiments, device 600 can include some or all of the features described with respect to devices 200 and 400 (e.g., FIGS. 2A-4B). In some embodiments, device 600 has touch-sensitive display screen 604, hereafter touch screen 604. Alternatively, or in addition to touch screen 604, device 600 has a display and a touch-sensitive surface. As with devices 200 and 400, in some embodiments, touch screen 604 (or the touch-sensitive surface) may have one or more intensity sensors for detecting intensity of contacts (e.g., touches) being applied. The one or more intensity sensors of touch screen 604 (or the touch-sensitive surface) can provide output data that represents the intensity of touches. The user interface of device 600 can respond to touches based on their intensity, meaning that touches of different intensities can invoke different user interface operations on device 600.


Techniques for detecting and processing touch intensity may be found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, each of which is hereby incorporated by reference in their entirety.


In some embodiments, device 600 has one or more input mechanisms 606 and 608. Input mechanisms 606 and 608, if included, can be physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, device 600 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 600 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms may permit device 600 to be worn by a user.



FIG. 6B depicts exemplary personal electronic device 600. In some embodiments, device 600 can include some or all of the components described with respect to FIGS. 2A, 2B, and 4. Device 600 has bus 612 that operatively couples I/O section 614 with one or more computer processors 616 and memory 618. I/O section 614 can be connected to display 604, which can have touch-sensitive component 622 and, optionally, touch-intensity sensitive component 624. In addition, I/O section 614 can be connected with communication unit 630 for receiving application and operating system data using Wi-Fi, Bluetooth, near field communication (NFC), cellular, and/or other wireless communication techniques. Device 600 can include input mechanisms 606 and/or 608. Input mechanism 606 may be a rotatable input device or a depressible and rotatable input device, for example. Input mechanism 608 may be a button, in some examples.


Input mechanism 608 may be a microphone, in some examples. Personal electronic device 600 can include various sensors, such as GPS sensor 632, accelerometer 634, directional sensor 640 (e.g., compass), gyroscope 636, motion sensor 638, and/or a combination thereof, all of which can be operatively connected to I/O section 614.


Memory 618 of personal electronic device 600 can be a non-transitory computer-readable storage medium, for storing computer-executable instructions, which, when executed by one or more computer processors 616, for example, can cause the computer processors to perform the techniques described below, including process 1200 (FIGS. 12A-D). The computer-executable instructions can also be stored and/or transported within any non-transitory computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. Personal electronic device 600 is not limited to the components and configuration of FIG. 6B, but can include other or additional components in multiple configurations.


As used here, the term “affordance” refers to a user-interactive graphical user interface object that may be displayed on the display screen of devices 200, 400, and/or 600 (FIGS. 2, 4, and 6). For example, an image (e.g., icon), a button, and text (e.g., link) may each constitute an affordance.


As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 455 in FIG. 4 or touch-sensitive surface 551 in FIG. 5B) while the cursor is over a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations that include a touch screen display (e.g., touch-sensitive display system 212 in FIG. 2A or touch screen 212 in FIG. 5A) that enables direct interaction with user interface elements on the touch screen display, a detected contact on the touch screen acts as a “focus selector” so that when an input (e.g., a press input by the contact) is detected on the touch screen display at a location of a particular user interface element (e.g., a button, window, slider, or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations, focus is moved from one region of a user interface to another region of the user interface without corresponding movement of a cursor or movement of a contact on a touch screen display (e.g., by using a tab key or arrow keys to move focus from one button to another button); in these implementations, the focus selector moves in accordance with movement of focus between different regions of the user interface. Without regard to the specific form taken by the focus selector, the focus selector is generally the user interface element (or contact on a touch screen display) that is controlled by the user so as to communicate the user's intended interaction with the user interface (e.g., by indicating, to the device, the element of the user interface with which the user is intending to interact). For example, the location of a focus selector (e.g., a cursor, a contact, or a selection box) over a respective button while a press input is detected on the touch-sensitive surface (e.g., a touchpad or touch screen) will indicate that the user is intending to activate the respective button (as opposed to other user interface elements shown on a display of the device).


As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds may include a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.


In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface may receive a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location may be based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm may be applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.


The intensity of a contact on the touch-sensitive surface may be characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.


An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.


In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).


In some embodiments, the device employs intensity hysteresis to avoid accidental inputs, sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).


For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.


3. Digital Assistant System



FIG. 7A illustrates a block diagram of digital assistant system 700 in accordance with various examples. In some examples, digital assistant system 700 can be implemented on a standalone computer system. In some examples, digital assistant system 700 can be distributed across multiple computers. In some examples, some of the modules and functions of the digital assistant can be divided into a server portion and a client portion, where the client portion resides on one or more user devices (e.g., devices 104, 122, 200, 400, or 600) and communicates with the server portion (e.g., server system 108) through one or more networks, e.g., as shown in FIG. 1. In some examples, digital assistant system 700 can be an implementation of server system 108 (and/or DA server 106) shown in FIG. 1. It should be noted that digital assistant system 700 is only one example of a digital assistant system, and that digital assistant system 700 can have more or fewer components than shown, may combine two or more components, or may have a different configuration or arrangement of the components. The various components shown in FIG. 7A can be implemented in hardware, software instructions for execution by one or more processors, firmware, including one or more signal processing and/or application specific integrated circuits, or a combination thereof.


Digital assistant system 700 can include memory 702, one or more processors 704, input/output (I/O) interface 706, and network communications interface 708. These components can communicate with one another over one or more communication buses or signal lines 710.


In some examples, memory 702 can include a non-transitory computer-readable medium, such as high-speed random access memory and/or a non-volatile computer-readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices).


In some examples, I/O interface 706 can couple input/output devices 716 of digital assistant system 700, such as displays, keyboards, touch screens, and microphones, to user interface module 722. I/O interface 706, in conjunction with user interface module 722, can receive user inputs (e.g., voice input, keyboard inputs, touch inputs, etc.) and process them accordingly. In some examples, e.g., when the digital assistant is implemented on a standalone user device, digital assistant system 700 can include any of the components and I/O communication interfaces described with respect to devices 200, 400, or 600 in FIGS. 2A, 4, 6A-B, respectively. In some examples, digital assistant system 700 can represent the server portion of a digital assistant implementation, and can interact with the user through a client-side portion residing on a user device (e.g., devices 104, 200, 400, or 600).


In some examples, the network communications interface 708 can include wired communication port(s) 712 and/or wireless transmission and reception circuitry 714. The wired communication port(s) 712 can receive and send communication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc. The wireless circuitry 714 can receive and send RF signals and/or optical signals from/to communications networks and other communications devices. The wireless communications can use any of a plurality of communications standards, protocols, and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol. Network communications interface 708 can enable communication between digital assistant system 700 with networks, such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices.


In some examples, memory 702, or the computer-readable storage media of memory 702, can store programs, modules, instructions, and data structures including all or a subset of: operating system 718, communications module 720, user interface module 722, one or more applications 724, and digital assistant module 726. In particular, memory 702, or the computer-readable storage media of memory 702, can store instructions for performing process 1200, described below. One or more processors 704 can execute these programs, modules, and instructions, and read/write from/to the data structures.


Operating system 718 (e.g., Darwin, RTXC, LINUX, UNIX, iOS, OS X, WINDOWS, or an embedded operating system such as VxWorks) can include various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.


Communications module 720 can facilitate communications between digital assistant system 700 with other devices over network communications interface 708. For example, communications module 720 can communicate with RF circuitry 208 of electronic devices such as devices 200, 400, and 600 shown in FIGS. 2A, 4, 6A-B, respectively. Communications module 720 can also include various components for handling data received by wireless circuitry 714 and/or wired communications port 712.


User interface module 722 can receive commands and/or inputs from a user via I/O interface 706 (e.g., from a keyboard, touch screen, pointing device, controller, and/or microphone), and generate user interface objects on a display. User interface module 722 can also prepare and deliver outputs (e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, light, etc.) to the user via the I/O interface 706 (e.g., through displays, audio channels, speakers, touch-pads, etc.).


Applications 724 can include programs and/or modules that are configured to be executed by one or more processors 704. For example, if the digital assistant system is implemented on a standalone user device, applications 724 can include user applications, such as games, a calendar application, a navigation application, or an email application. If digital assistant system 700 is implemented on a server, applications 724 can include resource management applications, diagnostic applications, or scheduling applications, for example.


Memory 702 can also store digital assistant module 726 (or the server portion of a digital assistant). In some examples, digital assistant module 726 can include the following sub-modules, or a subset or superset thereof: input/output processing module 728, speech-to-text (STT) processing module 730, natural language processing module 732, dialogue flow processing module 734, task flow processing module 736, service processing module 738, and speech synthesis module 740. Each of these modules can have access to one or more of the following systems or data and models of the digital assistant module 726, or a subset or superset thereof: ontology 760, vocabulary index 744, user data 748, task flow models 754, service models 756, and ASR systems 731.


In some examples, using the processing modules, data, and models implemented in digital assistant module 726, the digital assistant can perform at least some of the following: converting speech input into text; identifying a user's intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully infer the user's intent (e.g., by disambiguating words, games, intentions, etc.); determining the task flow for fulfilling the inferred intent; and executing the task flow to fulfill the inferred intent.


In some examples, as shown in FIG. 7B, I/O processing module 728 can interact with the user through I/O devices 716 in FIG. 7A or with a user device (e.g., devices 104, 200, 400, or 600) through network communications interface 708 in FIG. 7A to obtain user input (e.g., a speech input) and to provide responses (e.g., as speech outputs) to the user input. I/O processing module 728 can optionally obtain contextual information associated with the user input from the user device, along with or shortly after the receipt of the user input. The contextual information can include user-specific data, vocabulary, and/or preferences relevant to the user input. In some examples, the contextual information also includes software and hardware states of the user device at the time the user request is received, and/or information related to the surrounding environment of the user at the time that the user request was received. In some examples, I/O processing module 728 can also send follow-up questions to, and receive answers from, the user regarding the user request. When a user request is received by I/O processing module 728 and the user request can include speech input, I/O processing module 728 can forward the speech input to STT processing module 730 (or a speech recognizer) for speech-to-text conversions.


STT processing module 730 can include one or more ASR systems. The one or more ASR systems can process the speech input that is received through I/O processing module 728 to produce a recognition result. Each ASR system can include a front-end speech pre-processor. The front-end speech pre-processor can extract representative features from the speech input. For example, the front-end speech pre-processor can perform a Fourier transform on the speech input to extract spectral features that characterize the speech input as a sequence of representative multi-dimensional vectors. Further, each ASR system can include one or more speech recognition models (e.g., acoustic models and/or language models) and can implement one or more speech recognition engines. Examples of speech recognition models can include Hidden Markov Models, Gaussian-Mixture Models, Deep Neural Network Models, n-gram language models, and other statistical models. Examples of speech recognition engines can include the dynamic time warping based engines and weighted finite-state transducers (WFST) based engines. The one or more speech recognition models and the one or more speech recognition engines can be used to process the extracted representative features of the front-end speech pre-processor to produce intermediate recognitions results (e.g., phonemes, phonemic strings, and sub-words), and ultimately, text recognition results (e.g., words, word strings, or sequence of tokens). In some examples, the speech input can be processed at least partially by a third-party service or on the user's device (e.g., device 104, 200, 400, or 600) to produce the recognition result. Once STT processing module 730 produces recognition results containing a text string (e.g., words, or sequence of words, or sequence of tokens), the recognition result can be passed to natural language processing module 732 for intent deduction.


More details on the speech-to-text processing are described in U.S. Utility application Ser. No. 13/236,942 for “Consolidating Speech Recognition Results,” filed on Sep. 20, 2011, the entire disclosure of which is incorporated herein by reference.


In some examples, STT processing module 730 can include and/or access a vocabulary of recognizable words via phonetic alphabet conversion module 731. Each vocabulary word can be associated with one or more candidate pronunciations of the word represented in a speech recognition phonetic alphabet. In particular, the vocabulary of recognizable words can include a word that is associated with a plurality of candidate pronunciations. For example, the vocabulary may include the word “tomato” that is associated with the candidate pronunciations of /custom character/ and /custom character/. Further, vocabulary words can be associated with custom candidate pronunciations that are based on previous speech inputs from the user. Such custom candidate pronunciations can be stored in STT processing module 730 and can be associated with a particular user via the user's profile on the device. In some examples, the candidate pronunciations for words can be determined based on the spelling of the word and one or more linguistic and/or phonetic rules. In some examples, the candidate pronunciations can be manually generated, e.g., based on known canonical pronunciations.


In some examples, the candidate pronunciations can be ranked based on the commonness of the candidate pronunciation. For example, the candidate pronunciation /custom character/ can be ranked higher than /custom character/, because the former is a more commonly used pronunciation (e.g., among all users, for users in a particular geographical region, or for any other appropriate subset of users). In some examples, candidate pronunciations can be ranked based on whether the candidate pronunciation is a custom candidate pronunciation associated with the user. For example, custom candidate pronunciations can be ranked higher than canonical candidate pronunciations. This can be useful for recognizing proper nouns having a unique pronunciation that deviates from canonical pronunciation. In some examples, candidate pronunciations can be associated with one or more speech characteristics, such as geographic origin, nationality, or ethnicity. For example, the candidate pronunciation /custom character/ can be associated with the United States, whereas the candidate pronunciation /custom character/ can be associated with Great Britain. Further, the rank of the candidate pronunciation can be based on one or more characteristics (e.g., geographic origin, nationality, ethnicity, etc.) of the user stored in the user's profile on the device. For example, it can be determined from the user's profile that the user is associated with the United States. Based on the user being associated with the United States, the candidate pronunciation /custom character/ (associated with the United States) can be ranked higher than the candidate pronunciation /custom character/ (associated with Great Britain). In some examples, one of the ranked candidate pronunciations can be selected as a predicted pronunciation (e.g., the most likely pronunciation).


When a speech input is received, STT processing module 730 can be used to determine the phonemes corresponding to the speech input (e.g., using an acoustic model), and then attempt to determine words that match the phonemes (e.g., using a language model). For example, if STT processing module 730 can first identify the sequence of phonemes /custom character/ corresponding to a portion of the speech input, it can then determine, based on vocabulary index 744, that this sequence corresponds to the word “tomato.”


In some examples, STT processing module 730 can use approximate matching techniques to determine words in a voice input. Thus, for example, the STT processing module 730 can determine that the sequence of phonemes /custom character/ corresponds to the word “tomato,” even if that particular sequence of phonemes is not one of the candidate sequence of phonemes for that word.


Natural language processing module 732 (“natural language processor”) of the digital assistant can take the sequence of words or tokens (“token sequence”) generated by STT processing module 730 and attempt to associate the token sequence with one or more “actionable intents” recognized by the digital assistant. An “actionable intent” can represent a task that can be performed by the digital assistant and can have an associated task flow implemented in task flow models 754. The associated task flow can be a series of programmed actions and steps that the digital assistant takes in order to perform the task. The scope of a digital assistant's capabilities can be dependent on the number and variety of task flows that have been implemented and stored in task flow models 754 or, in other words, on the number and variety of “actionable intents” that the digital assistant recognizes. The effectiveness of the digital assistant, however, can also be dependent on the assistant's ability to infer the correct “actionable intent(s)” from the user request expressed in natural language.


In some examples, in addition to the sequence of words or tokens obtained from STT processing module 730, natural language processing module 732 can also receive contextual information associated with the user request, e.g., from I/O processing module 728. The natural language processing module 732 can optionally use the contextual information to clarify, supplement, and/or further define the information contained in the token sequence received from STT processing module 730. The contextual information can include, for example, user preferences, hardware and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like. As described herein, contextual information can be dynamic, and can change with time, location, content of the dialogue, and other factors.


In some examples, the natural language processing can be based on, e.g., ontology 760. Ontology 760 can be a hierarchical structure containing many nodes, each node representing either an “actionable intent” or a “property” relevant to one or more of the “actionable intents” or other “properties.” As noted above, an “actionable intent” can represent a task that the digital assistant is capable of performing, i.e., it is “actionable” or can be acted on. A “property” can represent a parameter associated with an actionable intent or a sub-aspect of another property. A linkage between an actionable intent node and a property node in ontology 760 can define how a parameter represented by the property node pertains to the task represented by the actionable intent node.


In some examples, ontology 760 can be made up of actionable intent nodes and property nodes. Within ontology 760, each actionable intent node can be linked to one or more property nodes either directly or through one or more intermediate property nodes. Similarly, each property node can be linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes. For example, as shown in FIG. 7C, ontology 760 can include a “restaurant reservation” node (i.e., an actionable intent node). Property nodes “restaurant,” “date/time” (for the reservation), and “party size” can each be directly linked to the actionable intent node (i.e., the “restaurant reservation” node).


In addition, property nodes “cuisine,” “price range,” “phone number,” and “location” can be sub-nodes of the property node “restaurant,” and can each be linked to the “restaurant reservation” node (i.e., the actionable intent node) through the intermediate property node “restaurant.” For another example, as shown in FIG. 7C, ontology 760 can also include a “set reminder” node (i.e., another actionable intent node). Property nodes “date/time” (for setting the reminder) and “subject” (for the reminder) can each be linked to the “set reminder” node. Since the property “date/time” can be relevant to both the task of making a restaurant reservation and the task of setting a reminder, the property node “date/time” can be linked to both the “restaurant reservation” node and the “set reminder” node in ontology 760.


An actionable intent node, along with its linked concept nodes, can be described as a “domain.” In the present discussion, each domain can be associated with a respective actionable intent and refers to the group of nodes (and the relationships there between) associated with the particular actionable intent. For example, ontology 760 shown in FIG. 7C can include an example of restaurant reservation domain 762 and an example of reminder domain 764 within ontology 760. The restaurant reservation domain includes the actionable intent node “restaurant reservation,” property nodes “restaurant,” “date/time,” and “party size,” and sub-property nodes “cuisine,” “price range,” “phone number,” and “location.” Reminder domain 764 can include the actionable intent node “set reminder,” and property nodes “subject” and “date/time.” In some examples, ontology 760 can be made up of many domains. Each domain can share one or more property nodes with one or more other domains. For example, the “date/time” property node can be associated with many different domains (e.g., a scheduling domain, a travel reservation domain, a movie ticket domain, etc.), in addition to restaurant reservation domain 762 and reminder domain 764.


While FIG. 7C illustrates two example domains within ontology 760, other domains can include, for example, “find a movie,” “initiate a phone call,” “find directions,” “schedule a meeting,” “send a message,” and “provide an answer to a question,” “read a list,” “providing navigation instructions,” “provide instructions for a task,” and so on. A “send a message” domain can be associated with a “send a message” actionable intent node, and may further include property nodes such as “recipient(s),” “message type,” and “message body.” The property node “recipient” can be further defined, for example, by the sub-property nodes such as “recipient name” and “message address.”


In some examples, ontology 760 can include all the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon. In some examples, ontology 760 can be modified, such as by adding or removing entire domains or nodes, or by modifying relationships between the nodes within the ontology 760.


In some examples, nodes associated with multiple related actionable intents can be clustered under a “super domain” in ontology 760. For example, a “travel” super-domain can include a cluster of property nodes and actionable intent nodes related to travel. The actionable intent nodes related to travel can include “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest,” and so on. The actionable intent nodes under the same super domain (e.g., the “travel” super domain) can have many property nodes in common. For example, the actionable intent nodes for “airline reservation,” “hotel reservation,” “car rental,” “get directions,” and “find points of interest” can share one or more of the property nodes “start location,” “destination,” “departure date/time,” “arrival date/time,” and “party size.”


In some examples, each node in ontology 760 can be associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node. The respective set of words and/or phrases associated with each node can be the so-called “vocabulary” associated with the node. The respective set of words and/or phrases associated with each node can be stored in vocabulary index 744 in association with the property or actionable intent represented by the node. For example, returning to FIG. 7B, the vocabulary associated with the node for the property of “restaurant” can include words such as “food,” “drinks,” “cuisine,” “hungry,” “eat,” “pizza,” “fast food,” “meal,” and so on. For another example, the vocabulary associated with the node for the actionable intent of “initiate a phone call” can include words and phrases such as “call,” “phone,” “dial,” “ring,” “call this number,” “make a call to,” and so on. The vocabulary index 744 can optionally include words and phrases in different languages.


Natural language processing module 732 can receive the token sequence (e.g., a text string) from STT processing module 730, and determine what nodes are implicated by the words in the token sequence. In some examples, if a word or phrase in the token sequence is found to be associated with one or more nodes in ontology 760 (via vocabulary index 744), the word or phrase can “trigger” or “activate” those nodes. Based on the quantity and/or relative importance of the activated nodes, natural language processing module 732 can select one of the actionable intents as the task that the user intended the digital assistant to perform. In some examples, the domain that has the most “triggered” nodes can be selected. In some examples, the domain having the highest confidence value (e.g., based on the relative importance of its various triggered nodes) can be selected. In some examples, the domain can be selected based on a combination of the number and the importance of the triggered nodes. In some examples, additional factors are considered in selecting the node as well, such as whether the digital assistant has previously correctly interpreted a similar request from a user.


User data 748 can include user-specific information, such as user-specific vocabulary, user preferences, user address, user's default and secondary languages, user's contact list, and other short-term or long-term information for each user. In some examples, natural language processing module 732 can use the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request “invite my friends to my birthday party,” natural language processing module 732 can be able to access user data 748 to determine who the “friends” are and when and where the “birthday party” would be held, rather than requiring the user to provide such information explicitly in his/her request.


Other details of searching an ontology based on a token string is described in U.S. Utility application Ser. No. 12/341,743 for “Method and Apparatus for Searching Using An Active Ontology,” filed Dec. 22, 2008, the entire disclosure of which is incorporated herein by reference.


In some examples, once natural language processing module 732 identifies an actionable intent (or domain) based on the user request, natural language processing module 732 can generate a structured query to represent the identified actionable intent. In some examples, the structured query can include parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user may say “Make me a dinner reservation at a sushi place at 7.” In this case, natural language processing module 732 can be able to correctly identify the actionable intent to be “restaurant reservation” based on the user input. According to the ontology, a structured query for a “restaurant reservation” domain may include parameters such as {Cuisine}, {Time}, {Date}, {Party Size}, and the like. In some examples, based on the speech input and the text derived from the speech input using STT processing module 730, natural language processing module 732 can generate a partial structured query for the restaurant reservation domain, where the partial structured query includes the parameters {Cuisine=“Sushi”} and {Time=“7 pm”}. However, in this example, the user's speech input contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as {Party Size} and {Date} may not be specified in the structured query based on the information currently available. In some examples, natural language processing module 732 can populate some parameters of the structured query with received contextual information. For example, in some examples, if the user requested a sushi restaurant “near me,” natural language processing module 732 can populate a {location} parameter in the structured query with GPS coordinates from the user device.


In some examples, natural language processing module 732 can pass the generated structured query (including any completed parameters) to task flow processing module 736 (“task flow processor”). Task flow processing module 736 can be configured to receive the structured query from natural language processing module 732, complete the structured query, if necessary, and perform the actions required to “complete” the user's ultimate request. In some examples, the various procedures necessary to complete these tasks can be provided in task flow models 754. In some examples, task flow models 754 can include procedures for obtaining additional information from the user and task flows for performing actions associated with the actionable intent.


As described above, in order to complete a structured query, task flow processing module 736 may need to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous speech inputs. When such interactions are necessary, task flow processing module 736 can invoke dialogue flow processing module 734 to engage in a dialogue with the user. In some examples, dialogue flow processing module 734 can determine how (and/or when) to ask the user for the additional information and receive and processes the user responses. The questions can be provided to and answers can be received from the users through I/O processing module 728. In some examples, dialogue flow processing module 734 can present dialogue output to the user via audio and/or visual output, and receive input from the user via spoken or physical (e.g., clicking) responses. Continuing with the example above, when task flow processing module 736 invokes dialogue flow processing module 734 to determine the “party size” and “date” information for the structured query associated with the domain “restaurant reservation,” dialogue flow processing module 734 can generate questions such as “For how many people?” and “On which day?” to pass to the user. Once answers are received from the user, dialogue flow processing module 734 can then populate the structured query with the missing information or pass the information to task flow processing module 736 to complete the missing information from the structured query.


Once task flow processing module 736 has completed the structured query for an actionable intent, task flow processing module 736 can proceed to perform the ultimate task associated with the actionable intent. Accordingly, task flow processing module 736 can execute the steps and instructions in the task flow model according to the specific parameters contained in the structured query. For example, the task flow model for the actionable intent of “restaurant reservation” can include steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time. For example, using a structured query such as: {restaurant reservation, restaurant=ABC Café, date=Mar. 12, 2012, time=7 pm, party size=5}, task flow processing module 736 can perform the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system such as OPENTABLE®; (2) entering the date, time, and party size information in a form on the website; (3) submitting the form; and (4) making a calendar entry for the reservation in the user's calendar.


In some examples, task flow processing module 736 can employ the assistance of service processing module 738 (“service processing module”) to complete a task requested in the user input or to provide an informational answer requested in the user input. For example, service processing module 738 can act on behalf of task flow processing module 736 to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third-party services (e.g., a restaurant reservation portal, a social networking website, a banking portal, etc.). In some examples, the protocols and application programming interfaces (API) required by each service can be specified by a respective service model among service models 756. Service processing module 738 can access the appropriate service model for a service and generate requests for the service in accordance with the protocols and APIs required by the service according to the service model.


For example, if a restaurant has enabled an online reservation service, the restaurant can submit a service model specifying the necessary parameters for making a reservation and the APIs for communicating the values of the necessary parameter to the online reservation service. When requested by task flow processing module 736, service processing module 738 can establish a network connection with the online reservation service using the web address stored in the service model and send the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service.


In some examples, natural language processing module 732, dialogue flow processing module 734, and task flow processing module 736 can be used collectively and iteratively to infer and define the user's intent, obtain information to further clarify and refine the user intent, and finally generate a response (i.e., an output to the user, or the completion of a task) to fulfill the user's intent. The generated response can be a dialogue response to the speech input that at least partially fulfills the user's intent. Further, in some examples, the generated response can be output as a speech output. In these examples, the generated response can be sent to speech synthesis module 740 (e.g., speech synthesizer) where it can be processed to synthesize the dialogue response in speech form. In yet other examples, the generated response can be data content relevant to satisfying a user request in the speech input.


Speech synthesis module 740 can be configured to synthesize speech outputs for presentation to the user. Speech synthesis module 740 synthesizes speech outputs based on text provided by the digital assistant. For example, the generated dialogue response can be in the form of a text string. Speech synthesis module 740 can convert the text string to an audible speech output. Speech synthesis module 740 can use any appropriate speech synthesis technique in order to generate speech outputs from text, including, but not limited to, concatenative synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, articulatory synthesis, hidden Markov model (HMM) based synthesis, and sinewave synthesis. In some examples, speech synthesis module 740 can be configured to synthesize individual words based on phonemic strings corresponding to the words. For example, a phonemic string can be associated with a word in the generated dialogue response. The phonemic string can be stored in metadata associated with the word. Speech synthesis model 740 can be configured to directly process the phonemic string in the metadata to synthesize the word in speech form.


In some examples, instead of (or in addition to) using speech synthesis module 740, speech synthesis can be performed on a remote device (e.g., the server system 108), and the synthesized speech can be sent to the user device for output to the user. For example, this can occur in some implementations where outputs for a digital assistant are generated at a server system. And because server systems generally have more processing power or resources than a user device, it can be possible to obtain higher quality speech outputs than would be practical with client-side synthesis.


Additional details on digital assistants can be found in the U.S. Utility application Ser. No. 12/987,982, entitled “Intelligent Automated Assistant,” filed Jan. 10, 2011, and U.S. Utility application Ser. No. 13/251,088, entitled “Generating and Processing Task Items That Represent Tasks to Perform,” filed Sep. 30, 2011, the entire disclosures of which are incorporated herein by reference.


4. Exemplary Functions of a Digital Assistant—Intelligent Search and Object Management



FIGS. 8A-8F, 9A-9H, 10A-10B, 11A-11D, 12A-12D, and 13A-13C illustrate functionalities of performing a task using a search process or an object managing process by a digital assistant. In some examples, the digital assistant system (e.g., digital assistant system 700) is implemented by a user device according to various examples. In some examples, the user device, a server (e.g., server 108), or a combination thereof, may implement a digital assistant system (e.g., digital assistant system 700). The user device can be implemented using, for example, device 104, 200, or 400. In some examples, the user device is a laptop computer, a desktop computer, or a tablet computer. The user device can operate in a multi-tasking environment, such as a desktop environment.


With references to FIGS. 8A-8F, 9A-9H, 10A-10B, 11A-11D, 12A-12D, and 13A-13C, in some examples, a user device provides various user interfaces (e.g., user interfaces 810, 910, 1010, 1110, 1210, and 1310). The user device displays the various user interfaces on a display (e.g., touch-sensitive display system 212, display 440) associated with the user device. The various user interfaces provide one or more affordances representing different processes (e.g., affordances 820, 920, 1020, 1120, 1220, and 1320 representing searching processes; and affordances 830, 930, 1030, 1130, 1230, and 1330 representing object managing processes). The one or more processes can be instantiated directly or indirectly by the user. For example, a user instantiates the one or more processes by selecting the affordances using an input device such as a keyboard, a mouse, a joystick, a finger, or the like. A user can also instantiate the one or more processes using a speech input, as described in more detail below. Instantiating a process includes invoking the process if the process is not already executing. If at least one instance of the process is executing, instantiating a process includes executing an existing instance of the process or generating a new instance of the process. For example, instantiating an object managing process includes invoking the object managing process, using an existing object managing process, or generate a new instance of the object managing process.


As shown in FIGS. 8A-8F, 9A-9H, 10A-10B, 11A-11D, 12A-12D, and 13A-13C, the user device displays, on a user interface (e.g., user interface 810, 910, 1010, 1110, 1210, and 1310) an affordance (e.g., affordance 840, 940, 1040, 1140, 1240, and 1340) to instantiate a digital assistant service. The affordance can be, for example, a microphone icon representing the digital assistant. The affordance can be displayed at any location on the user interfaces. For example, the affordance can be displayed on the dock (e.g., dock 808, 908, 1008, 1108, 1208, and 1308) at the bottom of the user interfaces, on the menu bar (e.g. menu bar 806, 906, 1006, 1106, 1206, and 1306) at the top of the user interfaces, in a notification center at the right side of the user interfaces, or the like. The affordance can also be displayed dynamically on the user interface. For example, the user device displays the affordance near an application user interface (e.g., an application window) such that the digital assistant service can be conveniently instantiated.


In some examples, the digital assistant is instantiated in response to receiving a pre-determined phrase. For example, the digital assistant is invoked in response to receiving a phrase such as “Hey, Assistant,” “Wake up, Assistant,” “Listen up, Assistant,” “OK, Assistant,” or the like. In some examples, the digital assistant is instantiated in response to receiving a selection of the affordance. For example, a user selects affordance 840, 940, 1040, 1140, 1240, and/or 1340 using an input device such as a mouse, a stylus, a finger, or the like. Providing a digital assistant on a user device consumes computing resources (e.g., power, network bandwidth, memory, and processor cycles). In some examples, the digital assistant is suspended or shut down until a user invokes it. In some examples, the digital assistant is active for various periods of time. For example, the digital assistant can be active and monitoring the user's speech input during the time that various user interfaces are displayed, that the user device is turned on, that the user device is hibernating or sleeping, that the user is logged off, or a combination thereof.


With reference to FIGS. 8A-8F, 9A-9H, 10A-10B, 11A-11D, 12A-12D, and 13A-13C, a digital assistant receives one or more speech inputs, such as speech inputs 852, 854, 855, 856, 952, 954, 1052, 1054, 1152, 1252, or 1352, from a user. The user provides various speech inputs for the purpose of, for example, performing a task using a searching process or an object managing process. In some examples, the digital assistant receives speech inputs directly from the user at the user device or indirectly through another electronic device that is communicatively connected to the user device. The digital assistant receives speech inputs directly from the user via, for example, a microphone (e.g., microphone 213) of the user device. The user device includes a device that is configured to operate in a multi-tasking environment, such as a laptop computer, a desktop computer, a tablet, a server, or the like. The digital assistant can also receive speech inputs indirectly through one or more electronic devices such as a headset, a smartphone, a tablet, or the like. For instance, the user may speak to a headset (not shown). The headset receives the speech input from the user and transmits the speech input or a representation of it to the digital assistant of the user device via, for example, a Bluetooth connection between the headset and the user device.


With reference to FIGS. 8A-8F, 9A-9H, 10A-10B, 11A-11D, 12A-12D, and 13A-13C, in some embodiments, the digital assistant (e.g., represented by affordance 840, 940, 1040, 1140, 1240, and 1340) identifies context information associated with the user device. The context information includes, for example, user-specific data, metadata associated with one or more objects, sensor data, and user device configuration data. An object can be a target or a component of a process (e.g., an object managing process) associated with performing a task or a graphical element currently displayed on screen, and the object or graphical element may have or may not currently have focus (e.g., be currently selected). For example, an object can include a file (e.g., a photo, a document), a folder, a communication (e.g., an email, a message, a notification, or a voicemail), a contact, a calendar, an application, an online resource, or the like. In some examples, the user-specific data includes log information, user preferences, the history of user's interaction with the user device, or the like. Log information indicates recent objects (e.g., a presentation file) used in a process. In some examples, metadata associated with one or more objects includes the title of the object, the time information of the object, the author of the object, the summary of the object, or the like. In some examples, the sensor data includes various data collected by a sensor associated with the user device. For example, the sensor data includes location data indicating the physical location of the user device. In some examples, the user device configuration data includes the current device configurations. For example, the device configurations indicate that the user device is communicatively connected to one or more electronic devices such as a smartphone, a tablet, or the like. As described in more detail below, the user device can perform one or more processes using the context information.


With reference to FIGS. 8A-8F, 9A-9H, 10A-10B, 11A-11D, 12A-12D, and 13A-13C, in response to receiving a speech input, the digital assistant determines a user intent based on the speech input. As described above, in some examples, the digital assistant processes a speech input via an I/O processing module (e.g., I/O processing module 728 as shown in FIG. 7B), an STT processing module (e.g., STT processing module 730 as shown in FIG. 7B), and a natural language processing module (e.g., natural language processing module 732 as shown in FIG. 7B). The I/O processing module forwards the speech input to an STT processing module (or a speech recognizer) for speech-to-text conversions. The speech-to-text conversion generates text based on the speech input. As described above, the STT processing module generates a sequence of words or tokens (“token sequence”) and provides the token sequence to the natural language processing module. The natural language processing module performs natural language processing of the text and determines the user intent based on a result of the natural language processing. For example, the natural language processing module may attempt to associate the token sequence with one or more actionable intents recognized by the digital assistant. As described, once the natural language processing module identifies an actionable intent based on the user input, it generates a structured query to represent the identified actionable intent. The structured query includes one or more parameters associated with the actionable intent. The one or more parameters are used to facilitate the performance of a task based on the actionable intent.


In some embodiments, the digital assistant further determines whether the user intent is to perform a task using a searching process or an object managing process. The searching process is configured to search data stored internally or externally to the user device. The object managing process is configured to manage objects associated with the user device. Various examples of determination of the user intent are provided below in more detail with respect to FIGS. 8A-8F, 9A-9H, 10A-10B, 11A-11D, 12A-12D, and 13A-13C.


With reference to FIG. 8A, in some examples, a user device receives a speech input 852 from a user to instantiate the digital assistant. Speech input 852 includes, for example, “Hey, Assistant.” In response to the speech input, the user device instantiates the digital assistant represented by affordance 840 or 841 such that the digital assistant is actively monitoring subsequent speech inputs. In some examples, the digital assistant provides a spoken output 872 indicating that it is instantiated. For example, spoken output 872 includes “Go ahead, I am listening.” In some examples, the user device receives a selection of affordance 840 or affordance 841 from the user to instantiate the digital assistant. The selection of affordance is performed by using an input device such as a mouse, a stylus, a finger, or the like.


With reference to FIG. 8B, in some examples, the digital assistant receives a speech input 854. Speech input 854 includes, for example, “Open the searching process and find the AAPL stock price today,” or simply “show me the AAPL stock price today.” Based on speech input 854, the digital assistant determines the user intent. For example, to determine the user intent, the digital assistant determines that the actionable intent is obtaining online information and that one or more parameters associated with this actionable intent include “AAPL stock price,” and “today.”


As described, in some examples, the digital assistant further determines whether the user intent is to perform a task using a searching process or an object managing process. In some embodiments, to make the determination, the digital assistant determines whether the speech input includes one or more keywords representing the searching process or the object managing process. For example, the digital assistant determines that speech input 854 includes keywords or a phrase such as “open the searching process,” indicating the user intent is to use the searching process to perform the task. As a result, the digital assistant determines that the user intent is to perform a task using the searching process.


As shown in FIG. 8B, in accordance with a determination the user intent is to perform the task using the searching process, the digital assistant performs the task using the searching process. As described, the natural language processing module of the digital assistant generates a structured query based on the user intent and passes the generated structured query to a task flow processing module (e.g., task flow processing module 736). The task flow processing module receives the structured query from the natural language processing module, completes the structured query, if necessary, and performs the actions required to “complete” the user's ultimate request. Performing the task using the searching process includes, for example, searching at least one object. In some embodiments, at least one object includes a folder, a file (e.g., a photo, an audio, a video), a communication (e.g., an email, a message, a notification, a voicemail), a contact, a calendar, an application (e.g., Keynote, Number, iTunes, Safari), an online informational source (e.g., Google, Yahoo, Bloomberg), or a combination thereof. In some examples, searching an object is based on metadata associated with the object. For example, the searching of a file or folder can use metadata such as a tag, a date, a time, an author, a title, a type of the file, a size, a page count, and/or a file location associated with the folder or file. In some examples, the file or folder is stored internally or externally to the user device. For example, the file or folder can be stored on the hard disk of the user device or stored on a cloud server. In some examples, searching a communication is based on metadata associated with the communication. For example, the searching of an email uses metadata such as the sender of the email, the receiver of the email, the sent/receive dates of the email, or the like.


As illustrated in FIG. 8B, in accordance with the determination that the user intent is to obtain the AAPL stock price using the searching process, the digital assistant performs the searching. For example, the digital assistant instantiates a searching process, represented by affordance 820, and causes the searching process to search today's AAPL stock price. In some examples, the digital assistant further causes the searching process to display a user interface 822 (e.g., a snippet or a window) providing text corresponding to speech input 854 (e.g., “Open the searching process and find the AAPL stock price today”).


With reference to FIG. 8C, in some embodiments, the digital assistant provides a response based on a result of performing the task using the searching process. As illustrated in FIG. 8C, as a result of searching the AAPL stock price, the digital assistant displays a user interface 824 (e.g., a snippet or a window) providing the result of performing the task using the searching process. In some embodiments, user interface 824 is located within user interface 822 as a separate user interface. In some embodiments, user interfaces 824 and 822 are integrated together as a single user interface. On user interface 824, the search result of the stock price of AAPL is displayed. In some embodiments, user interface 824 further provides affordances 831 and 833. Affordance 831 enables closing of user interface 824. For example, if the digital assistant receives a user's selection of affordance 831, user interface 824 disappears or closes from the display of the user device. Affordance 833 enables moving or sharing of the search result displayed on user interface 824. For example, if the digital assistant receives the user's selection of affordance 833, it instantiates a process (e.g., the object managing process) to move or share user interface 824 (or the search result thereof) with a notification application. As shown in FIG. 8C, the digital assistant displays a user interface 826 that is associated with the notification application to provide the search result of AAPL stock price. In some embodiments, user interface 826 displays an affordance 827. Affordance 827 enables scrolling within user interface 826 such that the user can view the entire content (e.g., multiple notifications) within user interface 826 and/or indicates that relative position of the document with respect to its entire length and/or width. In some embodiments, user interface 826 displays results and/or dialog history (e.g., search results obtained from a current and/or past searching process) stored by the digital assistant. Further, in some examples, results of the performance the task are dynamically updated over time. For example, the AAPL stock price can be dynamically updated over time and displayed on user interface 826.


In some embodiments, the digital assistant also provides a spoken output corresponding to the search result. For example, the digital assistant (e.g., represented by affordance 840) provides a spoken output 874 including “Today's AAPL price is $100.00.” In some examples, user interface 822 includes text corresponding to spoken output 874.


With reference to FIG. 8D, in some examples, the digital assistant instantiates a process (e.g., the object managing process) to move or share the search result displayed on user interface 824 in response to a subsequent speech input. For example, the digital assistant receives a speech input 855 such as “Copy the AAPL stock price to my notes.” In response, the digital assistant instantiates a process to move or copy the search result (e.g., the AAPL stock price) to the user's note. As shown in FIG. 8D, in some examples, the digital assistant further displays a user interface 825 providing the copied or moved search result in user's note. In some examples, the digital assistant further provides a spoken output 875 such as “OK, the AAPL stock price is copied to your notes.” In some examples, user interface 822 includes text corresponding to spoken output 875.


With reference to FIG. 8E, in some examples, the digital assistant determines that the user intent is to perform a task using the object managing process and performs the task using an object managing process. For example, the digital assistant receives a speech input 856 such as “Open the object managing process and show me all the photos from my Colorado trip,” or simply “Show me all the photos from my Colorado trip.” Based on speech input 856 and context information, the digital assistant determines the user intent. For example, the digital assistant determines that the actionable intent is to display photos and determines one or more parameters such as “all,” and “Colorado trip.” The digital assistant further determines which photos correspond to the user's Colorado trip using context information. As described, context information includes user-specific data, metadata of one or more objects, sensor data, and/or device configuration data. As an example, metadata associated with one or more files (e.g., file 1, file 2, and file 3 displayed in user interface 832) indicates that the file names includes the word “Colorado” or a city name of Colorado (e.g., “Denver”). The metadata may also indicate that a folder name includes the word “Colorado” or a city name of Colorado (e.g., “Denver”). As another example, sensor data (e.g., GPS data) indicates that the user was travelling within Colorado during a certain period of time. As a result, any photos the user took during that particular period of time are photos taken during the user's Colorado trip. As well, photos themselves may include geotagged metadata that associates the photo with the location at which it was taken. Based on the context information, the digital assistant determines that the user intent is to, for example, display photos stored in a folder having a folder name “Colorado trip,” or display photos taken during the period of time that the user was travelling within Colorado.


As described, in some examples, the digital assistant determines whether the user intent is to perform a task using a searching process or an object managing process. To make such determination, the digital assistant determines whether the speech input includes one or more keywords representing the searching process or the object managing process. For example, the digital assistant determines that speech input 856 includes keywords or a phrase such as “open the object managing process,” indicating that the user intent is to use the object managing process to perform the task.


In accordance with a determination the user intent is to perform the task using the object managing process, the digital assistant performs the task using the object managing process. For example, the digital assistant searches at least one object using the object managing process. In some examples, at least one object includes at least one of a folder or a file. A file can include at least one of a photo, an audio (e.g., a song), or a video (e.g., a movie). In some examples, searching a file or a folder is based on metadata associated with the folder or file. For example, the searching of a file or folder uses metadata such as a tag, a date, a time, an author, a title, a type of the file, a size, a page count, and/or a file location associated with the folder or file. In some examples, the file or folder can be stored internally or externally to the user device. For example, the file or folder can be stored on the hard disk of the user device or stored on a cloud server.


As illustrated in FIG. 8E, in accordance with the determination that the user intent is, for example, to display photos stored in a folder having a folder name “Colorado trip,” or display photos taken during the period of time that the user was travelling within Colorado, the digital assistant performs the task using the object managing process. For example, the digital assistant instantiates an object managing process represented by affordance 830 and causes the object managing process to search for photos from the user's Colorado trip. In some examples, the digital assistant also causes the object managing process to display a snippet or a window (not shown) providing text of the user's speech input 856.


With reference to FIG. 8F, in some embodiments, the digital assistant further provides a response based on a result of performing the task using the object managing process. As illustrated in FIG. 8F, as a result of searching the photos of the user's Colorado trip, the digital assistant displays a user interface 834 (e.g., a snippet or a window) providing the result of performing the task using the obj ect managing process. For example, on user interface 834, a preview of the photos is displayed. In some examples, the digital assistant instantiates a process (e.g., the object managing process) to perform additional tasks on the photos, such as inserting the photos to a document or attaching the photos to email. As described in more detail below, the digital assistant can instantiate a process to perform the additional tasks in response to a user's additional speech input. As well, the digital assistant can perform multiple tasks in response to a single speech input, such as “send the photos from my Colorado trip to my Mom by email.” The digital assistant can also instantiate a process to perform such additional tasks in response to the user's input using an input device (e.g., a mouse input to select of one or more affordances or perform a drag-and-drop operation). In some embodiments, the digital assistant further provides a spoken output corresponding to the result. For example, the digital assistant provides a spoken output 876 including “Here are the photos from your Colorado trip.”


With reference to FIG. 9A, in some examples, user's speech input may not include one or more keywords indicating whether the user intent is to use the searching process or the object managing process. For example, the user provides a speech input 952 such as “What is the score of today's Warriors game?” Speech input 952 does not include keywords indicating “the searching process” or the “object managing process.” As a result, the keywords may not be available for the digital assistant to determine whether the user intent is to perform the task using the searching process or the object managing process.


In some embodiments, to determine whether the user intent is to perform the task using the searching process or the object managing process, the digital assistant determines whether the task is associated with searching based on the speech input. In some examples, a task that is associated with searching can be performed by either the searching process or the object managing process. For example, both the searching process and the object managing process can search a folder and a file. In some examples, the searching process can further search a variety of objects including online information sources (e.g., websites), communications (e.g., emails), contacts, calendars, or the like. In some examples, the object managing process may not be configured to search certain objects such as online information sources.


In accordance with a determination that the task is associated with searching, the digital assistant further determines whether performing the task requires the searching process. As described, if a task is associated with searching, either the searching process or the object managing process can be used to perform the task. However, the object managing process may not be configured to search certain objects. As a result, to determine whether the user intent is to use the searching process or the object managing process, the digital assistant further determines whether the task requires the searching process. For example, as illustrated in FIG. 9A, based on speech input 952, the digital assistant determines that the user intent is, for example, to obtain the score of today's Warriors game. According to the user intent, the digital assistant further determines that performing the task requires searching online information sources and therefore is associated with searching. The digital assistant further determines whether performing the task requires the searching process. As described, in some examples, the searching process is configured to search online information sources such as websites, while the object managing process may not be configured to search such online information sources. As a result, the digital assistant determines that searching online information sources (e.g., searching Warriors' website to obtain the score) requires the searching process.


With reference to FIG. 9B, in some embodiments, in accordance with a determination that performing the task requires the searching process, the digital assistant performs the task using the searching process. For example, in accordance with the determination that searching the score of today's Warriors game requires the searching process, the digital assistant instantiates a searching process represented by affordance 920, and causes the searching process to search score of today's Warriors game. In some examples, the digital assistant further causes the searching process to display a user interface 922 (e.g., a snippet or a window) providing text of user speech input 952 (e.g., “What is the score of today's Warriors game?”). User interface 922 includes one or more affordances 921 and 927. Similar to described above, affordance 921 (e.g., a close button) enables closing of user interface 922 and affordance 927 (e.g., a scrolling bar) enables scrolling within user interface 922 such that the user can view the entire content within user interface 922.


With reference to FIG. 9B, in some examples, based on the search results, the digital assistant further provides one or more responses. As illustrated in FIG. 9B, as a result of searching the score of today's Warriors game, the digital assistant displays a user interface 924 (e.g., a snippet or a window) providing the result of performing the task using the searching process. In some embodiments, user interface 924 is located within user interface 922 as a separate user interface. In some embodiments, user interfaces 924 and 922 are integrated together as a single user interface. In some examples, the digital assistant displays the user interface 924 providing the current search results (e.g., the Warriors game score) together with another user interface (e.g., user interface 824 shown on FIG. 8C) providing prior search results (e.g., the AAPL stock price). In some embodiments, the digital assistant only displays user interface 924 providing the current search results and does not display another user interface providing prior search results. As illustrated in FIG. 9B, the digital assistant only displays user interface 924 to provide the current search results (e.g., the Warriors game score). In some examples, affordance 927 (e.g., a scrolling bar) enables scrolling within user interface 922 such that the user can view the prior search results. Further, in some examples, prior search results dynamically update or refresh, e.g., such that stock prices, sports score, weather forecast, etc., update over time.


As illustrated in FIG. 9B, on user interface 924, the search result of the score of today's Warriors game is displayed (e.g., Warriors 104-89 Cavaliers). In some embodiments, user interface 924 further provides affordances 923 and 925. Affordance 923 enables closing of user interface 924. For example, if the digital assistant receives a user's selection of affordance 923, user interface 924 disappears or closes from the display of the user device. Affordance 925 enables moving or sharing of the search result displayed on user interface 924. For example, if the digital assistant receives the user's selection of affordance 925, it moves or shares user interface 924 (or the search result thereof) with a notification application. As shown in FIG. 9B, the digital assistant displays user interface 926 that is associated with the notification application to provide the search result of Warriors game score. As described, results of the performance the task are dynamically updated over time. For example, the Warriors game score can be dynamically updated over time while the game is ongoing and displayed on user interface 924 (e.g., the snippet or window) and/or on user interface 926 (e.g., the notification application user interface). In some embodiments, the digital assistant further provides a spoken output corresponding to the search result. For example, the digital assistant represented by affordance 940 or 941 provides a spoken output 972 such as “Warriors beats Cavaliers, 104-89.” In some examples, user interface 922 (e.g., a snippet or a window) provides text corresponding to spoken output 972.


As described above, in some embodiments, the digital assistant determines whether the task is associated with searching, and in accordance with such a determination, the digital assistant determines whether performing the task requires the searching process. With reference to FIG. 9C, in some embodiments, the digital assistant determines that performing the task does not require the searching process. For example, as illustrated in FIG. 9C, the digital assistant receives a speech input 954 such as “Show me all the files called Expenses.” Based on speech input 954 and context information, the digital assistant determines that user intent is to display all the files having the word “Expenses” (or a portion, a variation, a paraphrase thereof) contained in their file names, the metadata, the content of the files, or the like. According to the user intent, the digital assistant determines that the task to be performed includes searching all the files associated with the word “Expenses.” As a result, the digital assistant determines that performing the task is associated with searching. As described above, in some examples, the searching process and the object managing process can both perform searching of files. As a result, the digital assistant determines that performing the task of searching all the files associated with the word “Expenses” does not require the searching process.


With reference to FIG. 9D, in some examples, in accordance with a determination that performing the task does not require the searching process, the digital assistant determines, based on a pre-determined configuration, whether the task is to be performed using the searching process or the object managing process. For example, if both the searching process and the object managing process can perform the task, a pre-determined configuration may indicate that the task is to be performed using the searching process. The pre-determined configuration can be generated and updated using context information such as user preferences or user-specific data. For example, the digital assistant determines that historically, for a particular user, the searching process was selected more frequently than the object managing process for file searching. As a result, the digital assistant generates or updates the pre-determined configuration to indicate that the searching process is the default process for searching files. In some examples, the digital assistant generates or updates the pre-determined configuration to indicate that the object managing process is the default process.


As illustrated in FIG. 9D, based on a pre-determined configuration, the digital assistant determines that the task of searching all the files associated with the word “Expense” is to be performed using the searching process. As a result, the digital assistant performs the searching of all the files associated with the word “Expenses” using the searching process. For example, the digital assistant instantiates a searching process represented by affordance 920 displayed on user interface 910, and causes the searching process to search all files associated with the word “Expenses.” In some examples, the digital assistant further provides a spoken output 974, informing the user that the task is being performed. Spoken output 974 includes, for example, “OK, searching all files called ‘Expenses’.” In some examples, the digital assistant further causes the searching process to display a user interface 928 (e.g., a snippet or a window) providing text corresponding to speech input 954 and spoken output 974.


With reference to FIG. 9E, in some embodiments, the digital assistant further provides one or more responses based on a result of performing the task using the searching process. As illustrated in FIG. 9E, as a result of searching all files associated with the word “Expenses,” the digital assistant displays a user interface 947 (e.g., a snippet or a window) providing the search results. In some embodiments, user interface 947 is located within user interface 928 as a separate user interface. In some embodiments, user interfaces 947 and 928 are integrated together as a single user interface. On user interface 947, a list of files that are associated with the word “Expenses” are displayed. In some embodiments, the digital assistant further provides a spoken output corresponding to the search result. For example, the digital assistant represented by affordance 940 or 941 provides a spoken output 976 such as “Here are all the files called Expenses.” In some examples, the digital assistant further provides, on user interface 928, text corresponding to spoken output 976.


In some embodiments, the digital assistant provides one or more links associated with the result of performing the task using the searching process. A link enables instantiating a process (e.g., opening a file, invoking an object managing process) using the search result. As illustrated in FIG. 9E, on user interface 947, the list of files (e.g., Expenses File 1, Expenses File 2, Expenses File 3) represented by their file names can be associated with links. As an example, a link is displayed on the side of each file name. As another example, the file names is displayed in a particular color (e.g., blue) indicating that the file names are associated with links. In some examples, the file names associated with links are displayed in the same color as other items displayed on user interface 947.


As described, a link enables instantiating a process using the search result. Instantiating a process includes invoking the process if the process is not already running. If at least one instance of the process is running, instantiating a process includes executing an existing instance of the process or generating a new instance of the process. For example, instantiating an object managing process includes invoking the object managing process, using an existing object managing process, or generating a new instance of the object managing process. As illustrated in FIGS. 9E and 9F, a link displayed on user interface 947 enables managing an object (e.g., a file) associated with the link. For example, user interface 947 receives a user selection of a link (e.g., a selection by a cursor 934) associated with a file (e.g., “Expenses file 3”). In response, the digital assistant instantiates an object managing process represented by affordance 930 to enable managing of the file. As shown in FIG. 9F, the digital assistant displays a user interface 936 (e.g., a snippet or a window) providing the folder containing the file associated with the link (e.g., “Expenses file 3”). Using user interface 936, the digital assistant instantiates the object managing process to perform one or more additional tasks (e.g., copying, editing, viewing, moving, compressing, or the like) with respect to the files.


With reference back to FIG. 9E, in some examples, a link displayed on user interface 947 enables direct viewing and/or editing of the object. For example, the digital assistant, via user interface 947, receives a selection of a link (e.g., a selection by a cursor 934) associated with a file (e.g., “Expenses file 3”). In response, the digital assistant instantiates a process (e.g., a document viewing/editing process) to view and/or edit the file. In some examples, the digital assistant instantiates the process to view and/or edit the file without instantiating an object managing process. For example, the digital assistant directly instantiates a Number process or an Excel process to view and/or edit of the Expense file 3.


With reference to FIGS. 9E and 9G, in some examples, the digital assistant instantiates a process (e.g., the searching process) to refine the search results. As illustrated in FIGS. 9E and 9G, the user may desire to refine the search result displayed on user interface 947. For example, the user may desire to select one or more files from the search results. In some examples, the digital assistant receives, from the user, a speech input 977 such as “Just the ones Kevin sent me that I tagged with draft.” Based on speech input 977 and context information, the digital assistant determines that the user intent is to display only the Expenses files that were sent from Kevin and that are associated with draft tags. Based on the user intent, the digital assistant instantiates a process (e.g., the searching process) to refine the search results. For example, as shown in FIG. 9G, based on the search result, the digital assistant determines that Expenses File 1 and Expense file 2 were sent from Kevin to the user and were tagged. As a result, the digital assistant continues to display these two files on user interface 947 and remove the Expense file 3 from user interface 947. In some examples, the digital assistant provides a spoken output 978 such as “Here are just the ones Kevin sent you that you tagged with draft.” The digital assistant may further provide text corresponding to spoken output 978 on user interface 928.


With reference to FIG. 9H, in some examples, the digital assistant instantiates a process (e.g., an object managing process) to perform an object managing task (e.g., coping, moving, sharing, etc.). For example, as shown in FIG. 9H, the digital assistant receives, from the user, a speech input 984 such as “Move the Expenses file 1 to Documents folder.” Based on speech input 984 and context information, the digital assistant determines that the user intent is to copy or move Expense file 1 from its current folder to Document folder. In accordance with the user intent, the digital assistant instantiates a process (e.g., the object managing process) to copy or move Expense file 1 from its current folder to Document folder. In some examples, the digital assistant provides a spoken output 982 such as “Ok, moving Expenses File 1 to your Documents folder.” In some examples, the digital assistant furthers provide text corresponding to spoken output 982 on user interface 928.


As described, in some examples, a user's speech input may not include keywords indicating whether the user intent is to perform the task using the search process or the object managing process. With reference to FIG. 10A-10B, in some embodiments, the digital assistant determines that performing the task does not require the searching process. In accordance with the determination, the digital assistant provides a spoken output requesting the user to select the searching process or the object managing process. For example, as shown in FIG. 10A, the digital assistant receives, from the user, a speech input 1052 such as “Show me all the files called ‘Expenses.’” Based on speech input 1052 and context information, the digital assistant determines that the user intent is to display all the files associated with the word “Expense.” In accordance with the user intent, the digital assistant further determines that the task can be performed by either the searching process or the object managing process, and therefore does not require the search process. In some examples, the digital assistant provides a spoken output 1072 such as “Do you want to search using the searching process or the object managing process?” In some examples, the digital assistant receives, from the user, a speech input 1054 such as “Object managing process.” Speech input 1054 thus indicates that the user intent is to perform the task using the object managing process. According to the selection, for example, the digital assistant instantiates an object managing process represented by affordance 1030 to search all the files associated with the word “Expenses.” As shown in FIG. 10B, similar to those described above, as a result of the searching, the digital assistant displays a user interface 1032 (e.g., a snippet or a window) providing a folder containing the files associated with the word “Expenses”. Similar to those described above, using user interface 1032, the digital assistant instantiates the object managing process to perform additional one or more tasks (e.g., copying, editing, viewing, moving, compressing, or the like) with respect to the files.


With reference to FIGS. 11A and 11B, in some embodiments, the digital assistant identifies context information and determines the user intent based on the context information and the user's speech input. As illustrated in FIG. 11A, the digital assistant represented by affordance 1140 or 1141 receives a speech input 1152 such as “Open the Keynote presentation I created last night.” In response to receiving speech input 1152, the digital assistant identifies context information such as the history of the user's interaction with the user device, the metadata associated with files that the user recently worked on, or the like. For example, the digital assistant identifies the metadata such as the date, the time, and the type of files the user worked on yesterday from 6 p.m.-2 a.m. Based on the identified context information and speech input 1152, the digital assistant determines that the user intent includes searching a Keynote presentation file associated with metadata indicating that the file was edited approximately 6 p.m.-12 a.m yesterday; and instantiating a process (e.g., a Keynote process) to open the presentation file.


In some examples, the context information includes application names or identifications (IDs). For example, a user's speech input provides “Open the Keynote presentation,” “find my Pages document,” or “find my HotNewApp documents.” The context information includes the application names (e.g., Keynote, Pages, HotNewApp) or application IDs. In some examples, the context information is dynamically updated or synchronized. For example, the context information is updated in real time after the user installs a new application named HotNewApp. In some examples, the digital assistant identifies the dynamically updated context information and determines the user intent. For example, the digital assistant identifies the application names Keynote, Pages, HotNewApp or their IDs and determines the user intent according to the application names/IDs and speech inputs.


In accordance with the user intent, the digital assistant further determines whether the user intent is to perform the task using the searching process or the object managing process. As described, the digital assistant makes such determination based on one or more keywords included in the speech input, based on whether the task requires the searching process, based on a pre-determined configuration, and/or based on the user's selection. As illustrated in FIG. 11A, speech input 1152 does not include keywords that indicate whether the user intent is to use the searching process or the object managing process. As a result, the digital assistant determines, for example, based on a pre-determined configuration that the user intent is to use the object managing process. In accordance with the determination, the digital assistant instantiate an object managing process to search a Keynote presentation file associated with metadata that indicates the file was edited approximately 6 p.m.-12 a.m yesterday. In some embodiments, the digital assistant further provides a spoken output 1172 such as “OK, looking for the Keynote presentation you created last night.”


In some embodiments, context information is used in performing the task. For example, application names and/or IDs can be used to form a query for searching the application and/or objects (e.g., files) associated with the application names/IDs. In some examples, a server (e.g., server 108) forms a query using the application names (e.g., Keynote, Pages, HotNewApp) and/or IDs and sends the query to the digital assistant of a user device. Based on the query, the digital assistant instantiates a searching process or an object managing process to search one or more applications and/or objects. In some examples, the digital assistant only searches the objects (e.g., files) that correspond to the application name/ID. For example, if a query includes an application name “Pages,” the digital assistant only searches Pages files and does not search other files (e.g., Word files) that can be opened by a Pages application. In some examples, the digital assistant searches all objects that is associated with the application name/ID in the query.


With references to FIGS. 11B and 11C, in some embodiments, the digital assistant provides one or more responses in accordance with a confidence level associated with the results of performing the task. Inaccuracies may exist or arise during the determination of the user intent, the determination of whether the user intent is to perform the task using the searching process or the object managing process, and/or the performance of the task. In some examples, the digital assistant determines a confidence level representing the accuracy of determining the user intent based on the speech input and context information, the accuracy of determining whether the user intent is to perform the task using the searching process or the object managing process, the accuracy of performing the task using the searching process or the object managing process, or a combination thereof.


Continuing the above example illustrated in FIG. 11A, based on speech input 1152 such as “Open the Keynote presentation I created last night,” the digital assistant instantiates an object managing process to perform a search of a Keynote presentation file associated with metadata that indicates the file was edited approximately 6 p.m-12 a.m yesterday. The search result may include a single file that fully matches the search criteria. That is, the single file is a presentation file that was edited approximately 6 p.m-12 a.m yesterday. Accordingly, the digital assistant determines that the accuracy of the search is high and thus determines that the confidence level is high. As another example, the search result may include a plurality of files that partially match the search criteria. For instance, no file is a presentation file that was edited approximately 6 p.m-12 a.m yesterday, or multiple files are presentation files that were edited approximately 6 p.m-12 a.m yesterday. Accordingly, the digital assistant determines that the accuracy of the search is medium or low and thus determines that the confidence level is medium or low.


As illustrated in FIGS. 11B and 11C, the digital assistant provides a response in accordance with the determination of the confidence level. In some examples, the digital assistant determines whether the confidence level is greater than or equal to a threshold confidence level. In accordance with a determination that the confidence level is greater than or equal to the threshold confidence level, the digital assistant provides a first response. In accordance with a determination that the confidence level is less than a threshold confidence level, the digital assistant provides a second response. In some examples, the second response is different from the first response. As shown in FIG. 11B, if the digital assistant determines that the confidence level is greater than or equal to a threshold confidence level, the digital assistant instantiates a process (e.g., a Keynote process represented by user interface 1142) to enable the viewing and editing of the file. In some examples, the digital assistant provides a spoken output such as “Here is the presentation you created last night,” and displays the text of the spoken output in a user interface 1143. As shown in FIG. 11C, if the digital assistant determines that the confidence level is less than a threshold confidence level, the digital assistant displays a user interface 1122 (e.g., a snippet or a window) providing a list of candidate files. Each of the candidate files may partially satisfy the search criteria. In some embodiments, the confidence level can be pre-determined and/or dynamically updated based on user preferences, historical accuracy rates, or the like. In some examples, the digital assistant further provides a spoken output 1174 such as “Here are all the presentations created last night,” and displays the text corresponding to spoken output 1174 on user interface 1122.


With reference to FIG. 11D, in some embodiments, the digital assistant instantiates a process (e.g., the Keynote presentation process) to perform additional tasks. Continuing with the above example, as shown in FIGS. 11B and 11D, the user may desire to display the presentation file in a full screen mode. The digital assistant receives, from the user, a speech input 1154 such as “Make it full screen.” Based on speech input 1154 and context information, the digital assistant determines that the user intent is to display the presentation file in a full screen mode. In accordance with the user intent, the digital assistant causes the Keynote presentation process to display the slides in a full-screen mode. In some examples, the digital assistant provides a spoken output 1176 such as “OK, showing your presentation in full screen.”


With reference to FIGS. 12A-12C, in some embodiments, the digital assistant determines, based on a single speech input or an utterance, that the user intent is to perform a plurality of tasks. In accordance with the user intent, the digital assistant further instantiates one or more processes to perform the plurality of tasks. For example, as shown in FIG. 12A, the digital assistant represented by affordance 1240 or 1241 receives a single speech input 1252 such as “Show me all the photos from my Colorado trip, and send them to my mom.” Based on speech input 1252 and context information, the digital assistant determines that the user intent is to perform a first task and a second task. Similar to those described above, the first task is to display photos stored in a folder having a folder name “Colorado trip,” or display photos taken during the period of time that the user is travelling within Colorado. With respect to the second task, the context information may indicate that a particular email address stored in the user's contacts is tagged as the user's mom. Accordingly, the second task is to send an email containing the photos associated with the Colorado trip to the particular email address.


In some examples, the digital assistant determines, with respect to each task, whether the user intent is to perform the task using the searching process or the object managing process. As an example, the digital assistant determines that the first task is associated with searching and the user intent is to perform the first task using the object managing process. As illustrated in FIG. 12B, in accordance with a determination the user intent is to perform the first task using the object managing process, the digital assistant instantiates the object managing process to search photos associated with the user's Colorado trip. In some examples, the digital assistant displays a user interface 1232 (e.g., a snippet or a window) providing a folder including the search result (e.g., photos 1, 2, and 3). As another example, the digital assistant determines that the first task is associated with searching and the user intent is to perform the first task using the searching process. As illustrated in FIG. 12C, in accordance with a determination the user intent is to perform the first task using the searching process, the digital assistant instantiates the searching process to search photos associated with the user's Colorado trip. In some examples, the digital assistant displays a user interface 1234 (e.g., a snippet or a window) providing photos and/or links associated with the search result (e.g., photos 1, 2, and 3).


As another example, the digital assistant determines that the second task (e.g., sending an email containing the photos associated with the Colorado trip to the particular email address) is not associated with searching or associated with managing an object. In accordance with the determination, the digital assistant determines whether the task can be performed using a process that is available to the user device. For example, the digital assistant determines that the second task can be performed using an email process at the user device. In accordance with the determination, the digital assistant instantiates the process to perform the second task. As illustrated in FIGS. 12B and 12C, the digital assistant instantiates the email process and displays user interfaces 1242 and 1244 associated with the email process. The email process attaches the photos associated with the user's Colorado trip to email messages. As shown in FIGS. 12B and 12C, in some embodiments, the digital assistant further provides spoken outputs 1272 and 1274 such as “Here are the photos from your Colorado trip. I am ready to send the photos to your mom, proceed?” In some examples, the digital assistant displays text corresponding to spoken output 1274 on user interface 1244. In response to spoken outputs 1272 and 1274, the user provides a speech input such as “OK.” Upon receiving the speech input from the user, the digital assistant causes the email process to send out the email messages.


Techniques for performing a plurality of tasks based on multiple commands contained within a single speech input or an utterance may be found, for example, in related applications: U.S. patent application Ser. No. 14/724,623, titled “MULTI-COMMAND SINGLE UTTERANCE INPUT METHOD,” filed May 28, 2015, which claims the benefit of priority of U.S. Provisional Patent Application No. 62/005,556, entitled “MULTI-COMMAND SINGLE UTTERANCE INPUT METHOD,” filed on May 30, 2014; and U.S. Provisional Patent Application No. 62/129,851, entitled “MULTI-COMMAND SINGLE UTTERANCE INPUT METHOD,” filed on Mar. 8, 2015. Each of these applications is hereby incorporated by reference in their entirety.


As illustrated in FIGS. 12C and 12D, in some examples, the digital assistant causes a process to perform additional tasks based on the user's additional speech inputs. For example, in view of the search result displayed in user interface 1234, the user may desire to send some, but not all, of the photos. The user provides a speech input 1254 such as “Send only Photo 1 and Photo 2.” In some examples, the digital assistant receives speech input 1254 after the user selects affordance 1235 (e.g., a microphone icon displayed on user interface 1234). The digital assistant determines, based on speech input 1254 and context information, that the user intent is to send an email attaching only Photo 1 and Photo 2. In accordance with the user intent, the digital assistant causes the email process to remove Photo 3 from the email message. In some examples, the digital assistant provides a spoken output 1276, such as “OK, attaching Photo 1 and Photo 2 to your email,” and displays the text corresponding to spoken output 1276 on user interface 1234.


With reference to FIG. 13A, in some embodiments, in accordance with a determination that the task is not associated with searching, the digital assistant determines whether the task is associated with managing at least one object. As illustrated in FIG. 13A, for example, the digital assistant receives a speech input 1352 such as “Create a new folder on the desktop called Projects.” Based on speech input 1352 and context information, the digital assistant determines that the user intent is to generate a new folder at the desktop with a folder name “Projects.” The digital assistant further determines that the user intent is not associated with searching, and instead is associated with managing an object (e.g., a folder). Accordingly, the digital assistant determines that the user intent is to perform a task using the object managing process.


In some examples, in accordance with the determination that the user intent is to perform the task using the object managing process, the digital assistant performs the task using the object managing process. Performing the task using the object managing process can include, for example, creating at least one object (e.g., creating a folder or a file), storing at least one object (e.g., storing a folder, a file, or a communication), and compressing at least one object (e.g., compressing folders and files). Performing the task using the object managing process can further include, for example, copying or moving at least one object from a first physical or virtual storage to a second physical or virtual storage. For instance, the digital assistant instantiates an object managing process to cut and paste a file from the user device to a flash drive or a cloud drive.


Performing the task using the object managing process can further include, for example, deleting at least one object stored in a physical or virtual storage (e.g., deleting a folder or a file) and/or recovering at least one object stored at a physical or virtual storage (e.g., recovering a deleted folder or a deleted file). Performing the task using the object managing process can further include, for example, marking at least one object. In some examples, marking of an object can be visible or invisible. For example, the digital assistant can cause the object managing process to generate a “like” sign for a social media post, to tag an email, to mark a file, or the like. The marking may be visible by displaying, for example, a flag, a sign, or the like. The marking may also be performed with respect to the metadata of the object such that a storage (e.g., a memory) content of the metadata is varied. The metadata may or may not be visible.


Performing the task using the object managing process can further include, for example, backing up at least one object according to a predetermined time period for backing up or upon the user's request. For example, the digital assistant can cause the object managing process to instantiate a backup program (e.g., time machine program) to backup folders and files. The backup can be performed automatically according to a pre-determined schedule (e.g., once a day, a week, a month, or the like) or according to a user request.


Performing the task using the object managing process can further include, for example, sharing at least one object among one or more electronic devices communicatively connected to the user device. For example, the digital assistant can cause the object managing process to share a photo stored on the user device with another electronic device (e.g., the user's smartphone or tablet).


As illustrated in FIG. 13B, in accordance with the determination that the user intent is to perform the task using the object managing process, the digital assistant performs the task using the object managing process. For example, the digital assistant instantiates an object managing process to generate a folder named “Projects” on the desktop of user interface 1310. In some examples, the digital assistant can cause the object managing process to further open the folder either automatically or in response to an additional user input. For example, the digital assistant provides a spoken output 1372 such as “OK, I've created a folder on the desktop called Projects, would you like to open it?” The user provides a speech input 1374 such as “Yes.” In response to the user's speech input 1374, the digital assistant causes the object managing process to open the Projects folder and display a user interface 1332 corresponding to the Projects folder.


With reference to FIG. 13C, in some embodiments, the digital assistant provides one or more affordances that enable the user to manipulate the result of performing the task using the searching process or the object managing process. The one or more affordances include, for example, an edit button, a cancel button, a redo button, an undo button, or the like. For example, as shown in FIG. 13C, after generating the folder named “Projects” on the desktop, the digital assistant provides a user interface 1334, which displays an edit button 1336A, an undo button 1336B, and a redo button 1336C. In some examples, the edit button 1336A enables the user to edit one or more aspects of the object (e.g., edit the name of the Projects folder); the undo button 1336B enables the user to reverse the last task performed by the object managing process (e.g., delete the Projects folder); and the redo button 1336C enables the user to repeat the last task performed by the object managing process (e.g., creating another folder using the object managing process). It is appreciated that the digital assistant can provide any desired affordances to enable the user to perform any manipulation of the result of performing a task using the searching process or the object managing process.


As described, the digital assistant can determine whether the user intent is to perform a task using a searching process or an object managing process. In some examples, the digital assistant determines that the user intent is not associated with the searching process or the object managing process. For example, the user provides a speech input such as “start dictation.” The digital assistant determines that the task of dictation is not associated with searching. In some examples, in accordance with a determination that the task is not associated with searching, the digital assistant further determines whether the task is associated with managing at least one object. For example, the digital assistant determines that the task of dictation is also not associated with managing an object, such as copying, moving, or deleting a file, a folder, or an email. In some examples, in accordance with a determination that the task is not associated with managing an object, the digital assistant determines whether the task can be performed using a process available to the user device. For example, the digital assistant determines that the task of dictation can be performed using a dictation process that is available to the user device. In some examples, the digital assistant initiates a dialog with the user with respect to performing the task using a process available to the user device. For example, the digital assistant provides a spoken output such as “OK, starting dictation.” or “Would you like to dictate in this presentation you are working now?” After providing the spoken output, the digital assistant receives a response from the user, for example, confirming that the user intent is to dictate in the presentation the user is currently working on.


5. Exemplary Functions of a Digital Assistant—Continuity



FIGS. 14A-14D, 15A-15D, 16A-16C, and 17A-17E illustrate functionalities of performing a task at a user device or a first electronic device using remotely located content by a digital assistant. In some examples, the digital assistant system (e.g., digital assistant system 700) is implemented by a user device (e.g., devices 1400, 1500, 1600, and 1700) according to various examples. In some examples, the user device, a server (e.g., server 108), or a combination thereof, may implement a digital assistant system (e.g., digital assistant system 700). The user device can be implemented using, for example, device 104, 200, or 400. In some examples, the user device can be a laptop computer, a desktop computer, or a tablet computer. The user device operates in a multi-tasking environment, such as a desktop environment.


With references to FIGS. 14A-14D, 15A-15D, 16A-16C, and 17A-17E, in some examples, a user device (e.g., devices 1400, 1500, 1600, and 1700) provides various user interfaces (e.g., user interfaces 1410, 1510, 1610, and 1710). Similar to those described above, the user device displays the various user interfaces on a display, and the various user interfaces enable the user to instantiate one or more processes (e.g., a movie process, a photo process, a web-browsing process).


As shown in FIGS. 14A-14D, 15A-15D, 16A-16C, and 17A-17E, similar to those described above, the user device (e.g., devices 1400, 1500, 1600, and 1700) displays, on a user interface (e.g., user interfaces 1410, 1510, 1610, and 1710) an affordance (e.g., affordance 1440, 1540, 1640, and 1740) to instantiate a digital assistant service. Similar to those described above, in some examples, the digital assistant is instantiated in response to receiving a pre-determined phrase. In some examples, the digital assistant is instantiated in response to receiving a selection of the affordance.


With reference to FIGS. 14A-14D, 15A-15D, 16A-16C, and 17A-17E, in some embodiments, a digital assistant receives one or more speech inputs, such as speech inputs 1452, 1454, 1456, 1458, 1552, 1554, 1556, 1652, 1654, 1656, 1752, and 1756 from a user. The user may provide various speech inputs for the purpose of, for example, performing a task at the user device (e.g., devices 1400, 1500, 1600, and 1700) or at a first electronic device (e.g., electronic devices 1420, 1520, 1530, 1522, 1532, 1620, 1622, 1630, 1720, and 1730) using remotely located content. Similar to those described above, in some examples, the digital assistant can receive speech inputs directly from the user at the user device or indirectly through another electronic device that is communicatively connected to the user device.


With reference to FIGS. 14A-14D, 15A-15D, 16A-16C, and 17A-17E, in some embodiments, the digital assistant identifies context information associated with the user device. The context information includes, for example, user-specific data, sensor data, and user device configuration data. In some examples, the user-specific data includes log information indicating user preferences, the history of user's interaction with the user device (e.g., devices 1400, 1500, 1600, and 1700), and/or electronic devices communicative connected to the user device, or the like. For example, user-specific data indicates that the user recently took a self-portrait photo using an electronic device 1420 (e.g., a smartphone); that the user recently accessed a podcast, webcast, movie, song, audio book, or the like. In some examples, the sensor data includes various data collected by a sensor associated with the user device or other electronic devices. For example, the sensor data includes GPS location data indicating the physical location of the user device or electronic devices communicatively connected to the user device at any time point or during any time period. For example, the sensor data indicates that a photo stored in electronic device 1420 was taken at Hawaii. In some examples, the user device configuration data includes the current or historical device configurations. For example, the user device configuration data indicates that the user device is currently communicatively connected to some electronic devices but disconnected from other electronic devices. The electronic devices includes, for example, a smartphone, a set-top box, a tablet, or the like. As described in more detail below, the context information can be used in determining a user intent and/or in performing one or more tasks.


With reference to FIGS. 14A-14D, 15A-15D, 16A-16C, and 17A-17E, similar to those described above, in response to receiving a speech input, the digital assistant determines a user intent based on the speech input. The digital assistant determines the user intent based on a result of natural language processing. For example, the digital assistant identifies an actionable intent based on the user input, and generates a structured query to represent the identified actionable intent. The structured query includes one or more parameters associated with the actionable intent. The one or more parameters can be used to facilitate the performance of a task based on the actionable intent. For example, based on a speech input such as “show the selfie I just took,” the digital assistant determines that the actionable intent is to display a photo, and the parameters include a self-portrait that the user recently took during the past few days. In some embodiments, the digital assistant further determines the user intent based on the speech input and context information. For example, the context information indicates that the user device is communicatively connected to the user's phone using a Bluetooth connection and indicates that a self-portrait photo was added to the user's phone two days ago. As a result, the digital assistant determines that the user intent is to display a photo that is a self-portrait that was added to the user's phone two days ago. Determining the user intent based on speech input and context information is described in more detail below in various examples.


In some embodiments, in accordance with user intent, the digital assistant further determines whether the task is to be performed at the user device or at a first electronic device communicatively connected to the user device. Various examples of the determination are provided below in more detail with respect to FIGS. 14A-14D, 15A-15D, 16A-16C, and 17A-17E.


With reference to FIG. 14A, in some examples, user device 1400 receives a speech input 1452 from a user to invoke the digital assistant. As shown in FIG. 14A, in some examples, the digital assistant is represented by affordances 1440 or 1441 displayed on user interface 1410. Speech input 1452 includes, for example, “Hey, Assistant.” In response to speech input 1452, user device 1400 invokes the digital assistant such that the digital assistant actively monitors subsequent speech inputs. In some examples, the digital assistant provides a spoken output 1472 indicating that it is invoked. For example, spoken output 1472 includes “Go ahead, I am listening.” As shown in FIG. 14A, in some examples, user device 1400 is communicatively connected to one or more electronic devices such as electronic device 1420. Electronic device 1420 can communicate with user device 1400 using wired or wireless networks. For example, electronic device 1420 communicates with user device 1400 using Bluetooth connections such that voice and data (e.g., audio and video files) can be exchanged between the two devices.


With reference to FIG. 14B, in some examples, the digital assistant receives a speech input 1454 such as “Show me the selfie I just took using my phone on this device.” Based on speech input 1454 and/or context information, the digital assistant determines the user intent. For example, as shown in FIG. 14B, context information indicates that the user device 1400 is communicatively connected to electronic device 1420 using wired or wireless networks (e.g., a Bluetooth connection, a Wi-Fi connection, or the like). Context information also indicates that the user recently took a self-portrait, which is stored in electronic device 1420 with a name “selfie0001.” As a result, the digital assistant determines that the user intent is to display the photo named selfie0001 stored in electronic device 1420. Alternatively, the photo may have been tagged with photo recognition software as containing the user's face and be identified accordingly.


As described, in accordance with the user intent, the digital assistant further determines whether the task is to be performed at the user device or at a first electronic device communicatively connected to the user device. In some embodiments, determining whether the task is to be performed at the user device or at the first electronic device is based on one or more keywords included in the speech input. For example, the digital assistant determines that speech input 1454 includes keywords or a phrase such as “on this device,” indicating the task is to be performed on user device 1400. As a result, the digital assistant determines that displaying the photo named selfie0001 stored in electronic device 1420 is to be performed at user device 1400. User device 1400 and electronic device 1420 are different devices. For example, user device 1400 can be a laptop computer, and electronic device 1420 can be a phone.


In some embodiments, the digital assistant further determines whether the content associated with the performance of the task is located remotely. Content is located remotely if at or near the time the digital assistant determines which device is to perform the task, at least a portion of the content for performing the task is not stored in the device that is determined to perform the task. For example, as shown in FIG. 14B, at or near the time the digital assistant of user device 1400 determines that the user intent is to display the photo named selfie0001 at user device 1400, the photo named selfie0001 is not stored at user device 1400 and instead is stored at electronic device 1420 (e.g., a smartphone). Accordingly, the digital assistant determines that the photo is located remotely to user device 1400.


As illustrated in FIG. 14B, in some embodiments, in accordance with a determination that the task is to be performed at the user device and content for performing the task is located remotely, the digital assistant of the user device receives the content for performing the task. In some examples, the digital assistant of the user device 1400 receives at least a portion of the content stored in the electronic device 1420. For example, to display the photo named selfie0001, the digital assistant of user device 1400 sends a request to electronic device 1420 to obtain the photo named selfie0001. Electronic device 1420 receives the request and, in response, transmits the photo named selfie0001 to user device 1400. The digital assistant of user device 1400 then receives the photo named selfie0001.


As illustrated in FIG. 14B, in some embodiments, after receiving the remotely located content, the digital assistant provides a response at the user device. In some examples, providing a response includes performing the task using the received content. For example, the digital assistant of user device 1400 displays a user interface 1442 (e.g., a snippet or a window) providing a view 1443 of the photo named selfie0001. View 1443 can be a preview (e.g., a thumbnail), an icon, or a full view of the photo named selfie0001.


In some examples, providing a response includes providing a link that is associated with the task to be performed at the user device. A link enables instantiating of a process. As described, instantiating a process includes invoking the process if the process is not already running. If at least one instance of the process is running, instantiating a process includes executing an existing instance of the process or generating a new instance of the process. As shown in FIG. 14B, user interface 1442 may provide a link 1444 associated with view 1443 of the photo named selfie0001. Link 1444 enables, for example, instantiating a photo process to view a full representation of the photo or edit the photo. As an example, link 1444 is displayed on the side of view 1443. As another example, view 1443 can itself include or incorporate link 1444 such that a selection of view 1443 instantiates a photo process.


In some embodiments, providing a response includes providing one or more affordances that enable the user to further manipulate the results of the performance of the task. As shown in FIG. 14B, in some examples, the digital assistant provides affordances 1445 and 1446 on user interface 1442 (e.g., a snippet or a window). Affordance 1445 can include a button for adding a photo to an album, and affordance 1446 can include a button for canceling view 1443 of the photo. The user may select one or both of affordances 1445 and 1446. In response to the selection of affordance 1445, for example, a photo process adds the photo associated with view 1443 to an album. In response to the selection of affordance 1446, for example, a photo process removes view 1443 from user interface 1442.


In some embodiments, providing a response includes providing a spoken output according to the task to be performed at the user device. As illustrated in FIG. 14B, the digital assistant represented by affordances 1440 or 1441 provides a spoken output 1474 such as “Here is the last selfie from your phone.”


With reference to FIG. 14C, in some examples, based on a single speech input/utterance and context information, the digital assistant determines that the user intent is to perform a plurality of tasks. As shown in FIG. 14C, the digital assistant receives a speech input 1456 such as “Show me the selfie I just took using my phone on this device and set it as my wallpaper.” Based on speech input 1456 and context information, the digital assistant determines that the user intent is to perform a first task of displaying the photo named selfie0001 stored at electronic device 1420 and performs a second task of setting the photo named selfie0001 as the wallpaper. Thus, based on a single speech input 1456, the digital assistant determines that the user intent is to perform multiple tasks.


In some embodiments, the digital assistant determines whether the plurality of tasks is to be performed at the user device or at an electronic device communicatively connected to the user device. For example, using the keywords “this device” included in speech input 1456, the digital assistant determines that the plurality of tasks is to be performed at user device 1400. Similar to those described above, the digital assistant further determines whether the content for performing at least one task is located remotely. For example, the digital assistant determines that the content for performing at least the first task (e.g., displaying the photo named selfie0001) is located remotely. In some embodiments, in accordance with a determination that the plurality of tasks is to be performed at the user device and content for performing at least one task is located remotely, the digital assistant requests the content from another electronic device (e.g., electronic device 1420), receives the content for performing the tasks, and provides a response at the user device.


In some embodiments, providing a response includes performing the plurality of tasks. For example, as illustrated in FIG. 14C, providing a response includes performing the first task of displaying a view 1449 of the photo named selfie0001, and performing the second task of setting the photo named selfie0001 as the wallpaper. In some examples, the digital assistant automatically configures the wallpaper to be the photo named selfi0001 using a desktop settings configuration process. In some examples, the digital assistant provides a link to desktop settings 1450, enabling the user to manually configure the wallpaper using the photo named selfie0001. For example, the user may select the link to desktop settings 1450 by using an input device such as a mouse, a stylus, or a finger. Upon receiving the selection of the link to desktop setting 1450, the digital assistant initiates the desktop setting configuration process that enables the user to select the photo named selfie0001 and set it as the wallpaper of user device 1400.


As illustrated in FIG. 14C, in some examples, the digital assistant initiates a dialog with the user and facilitates the configuration of the wallpaper in response to receiving a speech input from the user. For example, the digital assistant provides a spoken output 1476 such as “Here is the last selfie from your phone. Set is as wallpaper?” The user provides a speech input such as “OK.” Upon receiving the speech input, the digital assistant instantiates the desktop settings configuration process to configure the wallpaper as the photo named selfie0001.


As described, in some examples, the digital assistant determines the user intent based on the speech input and context information. With reference to FIG. 14D, in some examples, the speech input may not include information sufficient to determine the user intent. For example, the speech input may not indicate the location of the content for performing the task. As shown in FIG. 14D, the digital assistant receives a speech input 1458 such as “Show me the selfie I just took.” Speech input 1458 does not include one or more keywords indicating which photo is to be displayed or the location of the selfie to be displayed. As a result, the user intent may not be determined based solely on speech input 1458. In some examples, the digital assistant determines the user intent based on speech input 1458 and context information. For example, based on context information, the digital assistant determines that user device 1400 is communicatively connected to electronic device 1420. In some examples, the digital assistant instantiates a searching process to search for photos that the user recently took at user device 1400 and electronic device 1420. Based on the search result, the digital assistant determines that a photo named selfie0001 is stored in electronic device 1420. Accordingly, the digital assistant determines that the user intent is to display the photo named selfie0001 located at electronic device 1420. In some examples, if the user intent cannot be determined based on the speech input and context information, the digital assistant initiates a dialog with the user to further clarify or disambiguate the user intent.


As illustrated in FIG. 14D, in some examples, the speech input may not include one or more keywords indicating whether a task is to be performed at the user device or at an electronic device communicatively connected to the user device. For example, speech input 1458 does not indicate whether the task of displaying the selfie is to be performed at user device 1400 or at electronic device 1420. In some examples, the digital assistant determines whether a task is to be performed at the user device or at an electronic device based on context information. As an example, the context information indicates that the digital assistant receives speech input 1458 at user device 1400, not at electronic device 1420. As a result, the digital assistant determines that the task of displaying the selfie is to be performed at user device 1400. As another example, context information indicates that a photo is to be displayed on electronic device 1420 according to user preferences. As a result, the digital assistant determines that the task of displaying the selfie is to be performed at electronic device 1420. It is appreciated that the digital assistant can determine whether a task is to be performed at the user device or at an electronic device based on any context information.


With reference to FIG. 15A, in some embodiments, a digital assistant determines that the task is to be performed at an electronic device (e.g., electronic device 1520 and/or 1530) communicatively connected to the user device (e.g., user device 1500) and determine that the content is located remotely to the electronic device. As shown in FIG. 15A, in some examples, the digital assistant receives a speech input 1552 such as “Play this movie on my TV.” As described, the digital assistant can determine the user intent based on speech input 1552 and context information. For example, context information indicates that user interface 1542 is displaying a movie named ABC.mov. As a result, the digital assistant determines that the user intent is to play the movie named ABC.mov.


In accordance with the user intent, the digital assistant furthers determine whether the task is to be performed at the user device or at a first electronic device communicatively connected to the user device. In some embodiments, determining whether the task is to be performed at the user device or at the first electronic device is based on one or more keywords included in the speech input. For example, speech input 1552 includes the words or phrase “on my TV.” In some examples, context information indicates that user device 1500 is connected to a set-top box 1520 and/or a TV 1530 using, for example, a wired connection, a Bluetooth connection, or a Wi-Fi connection. As a result, the digital assistant determines that the task of playing the movie named ABC.mov is to be performed on set-top box 1520 and/or TV 1530.


In some embodiments, the digital assistant further determines whether the content associated with the performance of the task is located remotely. As described, content is located remotely if at or near the time the digital assistant determines which device is to perform the task, at least a portion of the content for performing the task is not stored in the device that is determined to perform the task. For example, as shown in FIG. 15A, at or near the time the digital assistant of user device 1500 determines that movie ABC.mov is to be played at set-top box 1520 and/or TV1530, at least a portion of the movie ABC.mov is stored at user device 1500 (e.g., a laptop computer) and/or a server (not shown) and is not stored at set-top box 1520 and/or TV 1530. Accordingly, the digital assistant determines that the movie ABC.mov is located remotely to set-top box 1520 and/or TV 1530.


With reference to FIG. 15B, in accordance with a determination that the task is to be performed at the first electronic device (e.g., set-top box 1520 and/or TV 1530) and the content for performing the task is located remotely to the first electronic device, the digital assistant of the user device provides the content to the first electronic device to perform the task. For example, to play the movie ABC.mov on set-top box 1520 and/or TV 1530, the digital assistant of user device 1500 transmits at least a portion of the movie ABC.mov to set-top box 1520 and/or TV 1530.


In some examples, instead of providing the content from the user device, the digital assistant of the user device causes at least a portion of the content to be provided from another electronic device (e.g., a server) to the first electronic device to perform the task. For example, the movie ABC.mov is stored in a server (not shown) and not at user device 1500. As a result, the digital assistant of user device 1500 causes at least a portion of the movie named ABC.mov to be transmitted from the server to set-top box 1520 and/or TV 1530. In some examples, the content for performing the task is provided to set-top box 1520, which then transmits the content to TV 1530. In some examples, the content for performing the task is provided to TV 1530 directly.


As illustrated in FIG. 15B, in some examples, after the content is provided to the first electronic device (e.g., set-top box 1520 and/or TV 1530), the digital assistant of user device 1500 provides a response at user device 1500. In some examples, providing the response includes causing the task to be performed at set-top box 1520 and/or TV 1530 using the content. For example, the digital assistant of user device 1500 sends a request to set-top box 1520 and/or TV 1530 to initiate a multimedia process to play the movie ABC.mov. In response to the request, set-top box 1520 and/or TV 1530 initiates the multimedia process to play the movie ABC.mov.


In some examples, the task to be performed at the first electronic device (e.g., set-top box 1520 and/or TV 1530) is a continuation of a task performed remotely to the first electronic device. For example, as illustrated in FIGS. 15A and 15B, the digital assistant of user device 1500 has caused a multimedia process of user device 1500 to play a portion of the movie ABC.mov at user device 1500. In accordance with the determination that the user intent is to play the movie ABC.mov at the first electronic device (e.g., set-top box 1520 and/or TV 1530), the digital assistant of user device 1500 causes the first electronic device to continue playing the rest of the movie ABC.mov rather than start playing from the beginning. As a result, the digital assistant of user device 1500 enables the user to continuously watch the movie.


As illustrated in FIG. 15B, in some embodiments, providing a response includes providing one or more affordances that enable the user to further manipulate the results of the performance of the task. As shown in FIG. 15B, in some examples, the digital assistant provides affordances 1547 and 1548 on a user interface 1544 (e.g., a snippet or a window). Affordance 1547 can be a button for cancelling the playing of movie ABC.mov on the first electronic device (e.g., set-top box 1520 and/or TV 1530). Affordance 1548 can be a button to pause or resume the playing of movie ABC.mov that is playing on the first electronic device. The user may select affordance 1547 or 1548 using an input device such as a mouse, a stylus, or a finger. Upon receiving a selection of affordance 1547, for example, the digital assistant causes the playing of movie ABC.mov on the first electronic device to stop. In some examples, after the playing on the first electronic device stops, the digital assistant also causes the playing of movie ABC.mov on user device 1500 to resume. Upon receiving a selection of affordance 1548, for example, the digital assistant causes the playing of movie ABC.mov on the first electronic device to pause or resume.


In some embodiments, providing a response includes providing a spoken output according to the task to be performed at the first electronic device. As illustrated in FIG. 15B, the digital assistant represented by affordance 1540 or 1541 provides a spoken output 1572 such as “Playing your movie on TV.”


As described, in accordance with a determination that the task is to be performed at a first electronic device and the content for performing the task is located remotely to the first electronic device, the digital assistant provides the content for performing the task to the first electronic device. With reference to FIG. 15C, the content for performing the task can include, for example, a document (e.g., document 1560) or location information. For instance, the digital assistant of user device 1500 receives a speech input 1556 such as “Open this pdf on my tablet.” The digital assistant determines that the user intent is to perform a task of displaying document 1560 and determines that the task is to be performed at a tablet 1532 that is communicatively connected to user device 1500. As a result, the digital assistant provides document 1560 to tablet 1532 to be displayed. As another example, the digital assistant of user device 1500 receives a speech input 1554 such as “Send this location to my phone.” The digital assistant determines that the user intent is to perform a task of navigation using the location information and determines that the task is to be performed at phone 1522 (e.g., a smartphone) that is communicatively connected to user device 1500. As a result, the digital assistant provides location information (e.g., 1234 Main St.) to phone 1522 to perform the task of navigation.


As described, in some examples, after providing the content for performing the task to the first electronic device, the digital assistant provides a response at the user device. In some embodiments, providing the response includes causing the task to be performed at the first electronic device. For example, as shown in FIG. 15D, the digital assistant of user device 1500 transmits a request to phone 1522 to perform the task of navigating to the location 1234 Main St. The digital assistant of user device 1500 further transmits a request to tablet 1532 to perform the task of displaying document 1560. In some examples, providing the response at the user device includes providing a spoken output according to the task to be performed at the first electronic device. As illustrated in FIG. 15D, the digital assistant provides a spoken output 1574 such as “Showing the pdf on your tablet” and a spoken output 1576 such as “navigating to 1234 Main St on your phone.”


As described, in some examples, the speech input may not include one or more keywords indicating whether a task is to be performed at the user device or at a first electronic device communicatively connected to the user device. With reference to FIG. 16A, for example, the digital assistant receives a speech input 1652 such as “Play this movie.” Speech input 1652 does not indicate whether the task of playing the movie is to be performed at user device 1600 or at a first electronic device (e.g., set-top box 1620 and/or TV 1630, phone 1622, or tablet 1632).


In some embodiments, to determine whether the task is to be performed at the user device or at a first electronic device, the digital assistant of the user device determines whether performing the task at the user device satisfies performance criteria. Performance criteria facilitate evaluating the performance of the task. For example, as illustrated in FIG. 16A, the digital assistant determines that the user intent is to perform the tasking of playing the movie ABC.mov. Performance criteria for playing a movie include, for example, the quality criteria of playing a movie (e.g., 480p, 720p, 1080p), the smoothness criteria of playing the movie (e.g., no delay or waiting), the screen size criteria (e.g., a minimum screen size of 48 inches), the sound effect criteria (e.g., stereo sounds, number of speakers), or the like. The performance criteria can be pre-configured and/or dynamically updated. In some examples, the performance criteria are determined based on context information such as user-specific data (e.g., user preferences), device configuration data (e.g., screen resolution and size of the electronic devices), or the like.


In some examples, the digital assistant of user device 1600 determines that performing the task at the user device satisfies the performance criteria. For example, as illustrated in FIG. 16A, user device 1600 may have a screen resolution, a screen size, and sound effect that satisfy the performance criteria of playing the movie ABC.mov, which may be a low-resolution online video. In accordance with a determination that performing the task at user device 1600 satisfies the performance criteria, the digital assistant determines that the task is to be performed at user device 1600.


In some examples, the digital assistant of user device 1600 determines that performing the task at the user device does not satisfy the performance criteria. For example, user device 1600 may not have the screen size, the resolution, and/or the sound effect to satisfy the performance criteria of playing the movie ABC.mov, which may be a high-resolution Blu-ray video. In some examples, in accordance with a determination that performing the task at the user device does not satisfy the performance criteria, the digital assistant of user device 1600 determines whether performing the task at the first electronic device satisfies the performance criteria. As illustrated in FIG. 16B, the digital assistant of user device 1600 determines that performing the task of playing the movie ABC.mov at set-top box 1620 and/or TV 1630 satisfies the performance criteria. For example, set-top box 1620 and/or TV 1630 may have a screen size of 52 inches, may have a 1080p resolution, and may have eight speakers connected. As a result, the digital assistant determines that the task is to be performed at set-top box 1620 and/or TV 1630.


In some examples, the digital assistant of user device 1600 determines that performing the task at the first electronic device does not satisfy the performance criteria. In accordance with the determination, the digital assistant determines whether performing the task at the second electronic device satisfies the performance criteria. For example, as illustrated in FIG. 16B, TV 1630 may have a screen resolution (e.g., 720p) that does not satisfy the performance criteria (e.g., 1080p). As a result, the digital assistant determines whether any one of phone 1622 (e.g., a smartphone) or tablet 1632 satisfies the performance criteria.


In some examples, the digital assistant determines which device provides the optimum performance of the task. For example, as illustrated in FIG. 16B, the digital assistant evaluates or estimates the performance of the task of playing movie ABC.mov on each of user device 1600, set-top box 1620 and TV 1630, phone 1622, and tablet 1632. Based on the evaluation or estimation, the digital assistant determines whether performing the task at one device (e.g., user device 1600) is better than at another device (e.g., phone 1622) and determines a device for optimum performance.


As described, in some examples, in accordance with the determination of a device for performing the task, the digital assistant provides a response at user device 1600. In some embodiments, providing a response includes providing a spoken output according to the task to be performed at the device. As illustrated in FIG. 16B, the digital assistant represented by affordances 1640 or 1641 provides a spoken output 1672 such as “I will play this movie on your TV, proceed?” In some examples, the digital assistant receives a speech input 1654 such as “OK” from the user. In response, the digital assistant causes the movie ABC.mov to be played at, for example, set-top box 1620 and TV 1630 and provides a spoken output 1674 such as “Playing your movie on your TV.”


In some examples, providing a response includes providing one or more affordances that enable the user to select another electronic device for performance of the task. As illustrated in FIG. 16B, for example, the digital assistant provides affordances 1655A-B (e.g., a cancel button and a tablet button). Affordance 1655A enables the user to cancel playing the movie ABC.mov at set-top box 1620 and TV 1630. Affordance 1655B enables the user to select tablet 1632 to continue playing the movie ABC.mov.


With reference to FIG. 16C, in some embodiments, to determine a device for performing a task, the digital assistant of user device 1600 initiates a dialog with the user. For example, the digital assistant provides a spoken output 1676 such as “Should I play your movie on the TV or on the tablet?” The user provides a speech input 1656 such as “On my tablet.” Upon receiving speech input 1656, the digital assistant determines that the task of playing the movie is to be performed at tablet 1632, which is communicatively connected to user device 1600. In some examples, the digital assistant further provides a spoken output 1678 such as “Playing your movie on your tablet.”


With reference to FIG. 17A, in some embodiments, a digital assistant of a user device 1700 continues to perform a task that was partially performed remotely at a first electronic device. In some embodiments, the digital assistant of a user device continues to perform the task using content received from a third electronic device. As illustrated in FIG. 17A, in some examples, phone 1720 may have been performing a task of flight booking using content from a third electronic device such as a server 1730. For example, the user may have been using phone 1720 to book flights from Kayak.com. As a result, phone 1720 receives content transmitted from server 1730 that is associated with Kayak.com. In some examples, the user may be interrupted while booking his or her flight on phone 1720 and may desire to continue the flight booking using user device 1700. In some examples, the user may desire to continue the flight booking simply because using user device 1700 is more convenient. Accordingly, the user may provide a speech input 1752 such as “Continue the flight booking on Kayak from my phone.”


With reference to FIG. 17B, upon receiving speech input 1752, the digital assistant determines the user intent is to perform a task of flight booking. In some examples, the digital assistant further determines that the task is to be performed at user device 1700 based on context information. For example, the digital assistant determines that speech input 1752 is received at user device 1700 and therefore determines that the task is to be performed at user device 1700. In some examples, the digital assistant further uses context information such as user preferences (e.g., user device 1700 is used frequently in the past for flight booking) to determine that the task is to be performed at user device 1700.


As shown in FIG. 17B, in accordance with the determination that the task is to be performed at the user device 1700, and the content for performing the task is located remotely, the digital assistant receives the content for performing the task. In some examples, the digital assistant receives the at least a portion of the content from phone 1720 (e.g., a smartphone) and/or at least a portion of the content from server 1730. For example, the digital assistant receives data representing the status of flight booking from phone 1720 such that user device 1700 can continue the flight booking. In some examples, the data representing the status of flight booking is stored at server 1730, such as a server associated with Kayak.com. The digital assistant thus receives data from server 1730 for continuing the flight booking.


As illustrated in FIG. 17B, after receiving the content from phone 1720 and/or server 1730, the digital assistant provides a response at user device 1700. In some examples, providing the response includes continuing to perform the task of flight booking that was partially performed remotely at phone 1720. For example, the digital assistant displays a user interface 1742 enabling the user to continue booking the flight on Kayak.com. In some examples, providing the response includes providing a link associated with the task to be performed at user device 1700. For example, the digital assistant displays a user interface 1742 (e.g., a snippet or a window) providing the current status of flight booking (e.g., showing available flights). User interface 1742 also provides a link 1744 (e.g., a link to a web browser) for continuing performing the task of flight booking. In some embodiments, the digital assistant also provides a spoken output 1772 such as “Here is the booking on Kayak. Continue in your web browser?”


As shown in FIGS. 17B and 17C, for example, if the user selects link 1744, the digital assistant instantiates a web browsing process and displays a user interface 1746 (e.g., a snippet or a window) for continuing the flight booking task. In some examples, in response to spoken output 1772, the user provides a speech input 1756 such as “OK” confirming that the user desires to continue flight book using a web browser of user device 1700. Upon receiving speech input 1756, the digital assistant instantiates a web browsing process and displays user interface 1746 (e.g., a snippet or a window) for continuing the flight booking task.


With reference to FIG. 17D, in some embodiments, a digital assistant of a user device 1700 continues to perform a task that was partially performed remotely at a first electronic device. In some embodiments, the digital assistant of the user device continues to perform the task using content received from the first electronic device, rather than a third electronic device such as a server. As illustrated in FIG. 17D, in some examples, the first electronic device (e.g., phone 1720 or tablet 1732) may have been performing a task. For example, the user may have been using phone 1720 to compose an email or using tablet 1732 to edit a document such as a photo. In some examples, the user is interrupted while using phone 1720 or tablet 1732, and/or desires to continue the performance of the task using user device 1700. In some examples, the user may desire to continue the performance of the task simply because using user device 1700 is more convenient (e.g., a larger screen). Accordingly, the user may provide a speech input 1758 such as “Open the document I was just editing” or speech input 1759 such as “Open the email I was just drafting.”


With reference to FIG. 17D, upon receiving speech input 1758 or 1759, the digital assistant determines the user intent is to perform a task of editing a document or composing an email. Similar to those described above, in some examples, the digital assistant further determines that the task is to be performed at user device 1700 based on context information, and determines that the content for performing the task is located remotely. Similar to described above, in some examples, the digital assistant determines, based on context information (e.g., user-specific data), that the content is located remotely at the first electronic device (e.g., at phone 1720 or tablet 1732), rather than at a server. As shown in FIG. 17D, in accordance with the determination that the task is to be performed at the user device 1700 and the content for performing the task is located remotely, the digital assistant receives the content for performing the task. In some examples, the digital assistant receives the at least a portion of the content from phone 1720 (e.g., a smartphone) and/or at least a portion of the content from tablet 1730. After receiving the content from phone 1720 and/or tablet 1732, the digital assistant provides a response at user device 1700, such as displaying a user interface 1748 for the user to continue editing the document and/or displaying a user interface 1749 for the user to continue composing the email. It is appreciated that the digital assistant of user device 1700 can also cause a first electronic device to continue performing a task that was partially performed remotely at the user device 1700. For example, the user may be composing an email on user device 1700 and may need to leave. The user provides a speech input such as “Open the email I was drafting on my phone.” Based on the speech input, the digital assistant determines the user intent is to continue performing the task on phone 1720 and the content is located remotely at the user device 1700. In some examples, the digital assistant provides the content for performing the task to the first electronic device and causes the first electronic device to continue performing the task, similar to those described above.


With reference to FIG. 17E, in some embodiments, continuing to performing a task is based on context information that is shared or synchronized among a plurality of devices including, for example, user device 1700 and first electronic device (e.g., phone 1720). As described, in some examples, the digital assistant determines a user intent based on the speech input and context information. The context information can be stored locally or remotely. For example, as shown in FIG. 17E, the user provides a speech input 1760 such as “What is the weather like in New York?” to phone 1720. A digital assistant of phone 1720 determines the user intent, performs the task to obtain the weather information in New York, and displays the weather information of New York on a user interface of phone 1720. The user subsequently provides a speech input 1761 such as “How about in Los Angeles?” to user device 1700. In some examples, the digital assistant of user device 1700 determines the user intent using context information stored at and/or shared by phone 1720, either directly or through a server. The context information includes, for example, historical user data associated with phone 1720, conversational state, system state, etc. Both the historical user data and conversational state indicate that user was inquiring about weather information. Accordingly, the digital assistant of user device 1700 determines that the user intent is to obtain the weather information in Los Angeles. Based on the user intent, the digital assistant of user device 1700 receives the weather information from, for example, a server, and provides a user interface 1751 displaying the weather information on user device 1710.


6. Exemplary Functions of a Digital Assistant—Voice-enabled System Configuration Management



FIGS. 18A-18F and 19A-19D illustrate functionalities of providing system configuration information or performing a task in response to a user request by a digital assistant. In some examples, the digital assistant system (e.g., digital assistant system 700) can be implemented by a user device according to various examples. In some examples, the user device, a server (e.g., server 108), or a combination thereof, may implement a digital assistant system (e.g., digital assistant system 700). The user device is implemented using, for example, device 104, 200, or 400. In some examples, the user device is a laptop computer, a desktop computer, or a tablet computer. The user device operates in a multi-tasking environment, such as a desktop environment.


With references to FIGS. 18A-18F and 19A-19D, in some examples, a user device provides various user interfaces (e.g., user interfaces1810 and 1910). Similar to those described above, the user device displays the various user interfaces on a display and the various user interfaces enable the user to instantiate one or more processes (e.g., system configuration processes).


As shown in FIGS. 18A-18F and 19A-19D, similar to those described above, the user device displays, on a user interface (e.g., user interfaces 1810 and 1910), an affordance (e.g., affordance 1840 and 1940) to facilitate the instantiation of a digital assistant service.


Similar to those described above, in some examples, the digital assistant is instantiated in response to receiving a pre-determined phrase. In some examples, the digital assistant is instantiated in response to receiving a selection of the affordance.


With reference to FIGS. 18A-18F and 19A-19D, in some embodiments, a digital assistant receives one or more speech inputs, such as speech inputs 1852, 1854, 1856, 1858, 1860, 1862, 1952, 1954, 1956, and 1958 from a user. The user provides various speech inputs for the purpose of managing one or more system configurations of the user device. The system configurations can include audio configurations, date and time configurations, dictation configuration, display configurations, input device configurations, notification configurations, printing configurations, security configurations, backup configurations, application configurations, user interface configurations, or the like. To manage audio configurations, a speech input may include “Mute my microphone,” “Turn the volume all the up,” “Turn the volume up 10%,” or the like. To manage date and time configurations, a speech input may include “What is my time zone?”, “Change my time zone to Cupertino Time,” “Add a clock for London time zone,” or the like. To manage dictation configurations, a speech input may include “Turn on dictation,” “Turn off dictation,” “Dictation in Chinese,” “Enable advanced commands,” or the like. To manage display configurations, a speech input may include “Make my screen brighter,” “Increase the contrast my 20%,” “Extend my screen to a second monitor,” “Mirror my display,” or the like. To manage input device configurations, a speech input may include “Connect my Bluetooth keyboard,” “Make my mouse pointer bigger,” or the like. To manage network configurations, a speech input may include “Turn Wi-Fi on,” “Turn Wi-Fi off,” “Which Wi-Fi network am I connected to?”, “Am I connected to my phone?”, or the like. To manage notification configuration, a speech input may include “Turn on Do not Disturb,” “Stop showing me these notifications,” “Show only new emails,” “No alert for text message,” or the like. To manage printing configurations, a speech input may include “Does my printer have enough ink?”, “Is my printer connected?”, or the like. To manage security configurations, a speech input may include “Change password for John's account,” “Turn on firewall,” “Disable cookie,” or the like. To manage backup configurations, a speech input may include “Run backup now,” “Set backup interval to once a month,” “Recover the July 4 backup of last year,” or the like. To manage application configurations, a speech input may include “Change my default web browser to Safari,” “Automatically log in to Messages application each time I sign in,” or the like. To manage user interface configurations, a speech input may include “Change my desktop wallpapers,” “Hide the dock,” “Add Evernote to the Dock,” or the like. Various examples of using speech inputs to manage system configurations are described below in more details.


Similar to those described above, in some examples, the digital assistant receives speech inputs directly from the user at the user device or indirectly through another electronic device that is communicatively connected to the user device.


With reference to FIGS. 18A-18F and 19A-19D, in some embodiments, the digital assistant identifies context information associated with the user device. The context information includes, for example, user-specific data, sensor data, and user device configuration data. In some examples, the user-specific data includes log information indicating user preferences, the history of user's interaction with the user device, or the like. For example, user-specific data indicates the last time the user's system was backed up; and that the user's preferences of a particular Wi-Fi network when several Wi-Fi networks are available or the like. In some examples, the sensor data includes various data collected by a sensor. For example, the sensor data indicates a printer ink level collected by a printer ink level sensor. In some examples, the user device configuration data includes the current and historical device configurations. For example, the user device configuration data indicates that the user device is currently communicatively connected to one or more electronic devices using Bluetooth connections. The electronic devices may include, for example, a smartphone, a set-top box, a tablet, or the like. As described in more detail below, the user device can determine user intent and/or perform one or more processes using the context information.


With reference to FIGS. 18A-18F and 19A-19D, similar to those described above, in response to receiving a speech input, the digital assistant determines a user intent based on the speech input. The digital assistant determines the user intent based on a result of natural language processing. For example, the digital assistant identifies an actionable intent based on the user input, and generates a structured query to represent the identified actionable intent. The structured query includes one or more parameters associated with the actionable intent. The one or more parameters can be used to facilitate the performance of a task based on the actionable intent. For example, based on a speech input such as “Turn the volume up by 10%,” the digital assistant determines that the actionable intent is to adjust the system volume, and the parameters include setting the volume to be 10% higher than the current volume level. In some embodiments, the digital assistant also determines the user intent based on the speech input and context information. For example, the context information may indicate that the current volume of the user device is at 50%. As a result, upon receiving the speech input such as “Turn the volume up by 10%,” the digital assistant determines that the user intent is to increase the volume level to 60%. Determining the user intent based on speech input and context information is described in more detail below in various examples.


In some embodiments, the digital assistant further determines whether the user intent indicates an informational request or a request for performing a task. Various examples of the determination are provided below in more detail with respect to FIGS. 18A-18F and 19A-19D.


With reference to FIG. 18A, in some examples, the user device displays a user interface 1832 associated with performing a task. For example, the task includes composing a meeting invitation. In composing the meeting invitation, the user may desire to know the time zone of the user device so that the meeting invitation can be properly composed. In some examples, the user provides a speech input 1852 to invoke the digital assistant represented by affordance 1840 or 1841. Speech input 1852 includes, for example, “Hey, Assistant.” The user device receives the speech input 1852 and, in response, invokes the digital assistant such that the digital assistant actively monitors subsequent speech inputs. In some examples, the digital assistant provides a spoken output 1872 indicating that it is invoked. For example, spoken output 1872 includes “Go ahead, I am listening.”


With reference to FIG. 18B, in some examples, the user provides a speech input 1854 such as “What is my time zone?” The digital assistant determines that the user intent is to obtain the time zone of the user device. The digital assistant further determines whether the user intent indicates an informational request or a request for performing a task. In some examples, determining whether the user intent indicates an informational request or a request for performing a task includes determining whether the user intent is to vary a system configuration. For example, based on the determination that the user intent is to obtain the time zone of the user device, the digital assistant determines that no system configuration is to be varied. As a result, the digital assistant determines that the user intent indicates an informational request.


In some embodiments, in accordance with a determination that the user intent indicates an informational request, the digital assistant provides a spoken response to the informational request. In some examples, the digital assistant obtains status of one or more system configurations according to the informational request, and provides the spoken response according to the status of one or more system configurations. As shown in FIG. 18B, the digital assistant determines that the user intent is to obtain the time zone of the user device, and this user intent indicates an informational request. Accordingly, the digital assistant obtains the time zone status from the time and date configuration of the user device. The time zone status indicates, for example, the user device is set to the Pacific time zone. Based on the time zone status, the digital assistant provides a spoken output 1874 such as “Your computer is set to Pacific Standard Time.” In some examples, the digital assistant further provides a link associated with the informational request. As illustrated in FIG. 18B, the digital assistant provides a link 1834, enabling the user to further manage the data and time configurations. In some examples, the user uses an input device (e.g., a mouse) to select link 1834. Upon receiving the user's selection of link 1834, the digital assistant instantiates a date and time configuration process and displays an associated date and time configuration user interface. The user can thus use the date and time configuration user interface to further manage the date and time configurations.


With reference to FIG. 18C, in some examples, the user device displays a user interface 1836 associated with performing a task. For example, the task includes playing a video (e.g., ABC.mov). To enhance the experience of watching the video, the user may desire to use a speaker and may want to know whether a Bluetooth speaker is connected. In some examples, the user provides a speech input 1856 such as “Is my Bluetooth speaker connected?” The digital assistant determines that the user intent is to obtain the connection status of the Bluetooth speaker 1820. The digital assistant further determines that obtaining the connection status of the Bluetooth speaker 1820 does not vary any system configuration and therefore is an informational request.


In some embodiments, in accordance with a determination that the user intent indicates an informational request, the digital assistant obtains status of system configurations according to the informational request, and provides the spoken response according to the status of the system configurations. As shown in FIG. 18C, the digital assistant obtains the connection status from the network configuration of the user device. The connection status indicates, for example, user device 1800 is not connected to a Bluetooth speaker 1820. Based on the connection status, the digital assistant provides a spoken output 1876 such as “No, it is not connected, you can check Bluetooth devices in the network configurations.” In some examples, the digital assistant further provides a link associated with the informational request. As illustrated in FIG. 18C, the digital assistant provides a link 1838, enabling the user to further manage the network configurations. In some examples, the user uses an input device (e.g., a mouse) to select link 1838. Upon receiving the user's selection of link 1838, the digital assistant instantiates a network configuration process and displays an associated network configuration user interface. The user can thus use the network configuration user interface to further manage the network configurations.


With reference to FIG. 18D, in some examples, the user device displays a user interface 1842 associated with performing a task. For example, the task includes viewing and/or editing a document. The user may desire to print out the document and may want to know whether a printer 1830 has enough ink for the printing job. In some examples, the user provides a speech input 1858 such as “Does my printer have enough ink?” The digital assistant determines that the user intent is to obtain printer ink level status of the printer. The digital assistant further determines that the obtaining the printer level status does not vary any system configuration and therefore is an informational request.


In some embodiments, in accordance with a determination that the user intent indicates an informational request, the digital assistant obtains status of system configurations according to the informational request, and provides the spoken response according to the status of the system configurations. As shown in FIG. 18D, the digital assistant obtains the printer ink level status from the printing configuration of the user device. The printer ink level status indicates, for example, the printer ink level of printer 1830 is at 50%. Based on the connection status, the digital assistant provides a spoken output 1878 such as “Yes, your printer has enough ink. You can also look up printer supply levels in the printer configurations.” In some examples, the digital assistant further provides a link associated with the informational request. As illustrated in FIG. 18D, the digital assistant provides a link 1844, enabling the user to further manage the printer configurations. In some examples, the user uses an input device (e.g., a mouse) to select link 1844. Upon receiving the user's selection of the link, the digital assistant instantiates a printer configuration process and displays an associated printer configuration user interface. The user can thus use the printer configuration user interface to further manage the printer configurations.


With reference to FIG. 18E, in some examples, the user device displays a user interface 1846 associated with performing a task. For example, the task includes browsing Internet using a web browser (e.g., Safari). To browse the Internet, the user may desire to know available Wi-Fi networks and select one Wi-Fi network to connect. In some examples, the user provides a speech input 1860 such as “Which Wi-Fi networks are available?” The digital assistant determines that the user intent is to obtain a list of available Wi-Fi networks. The digital assistant further determines that obtaining the list of available Wi-Fi networks does not vary any system configuration and therefore is an informational request.


In some embodiments, in accordance with a determination that the user intent indicates an informational request, the digital assistant obtains status of system configurations according to the informational request, and provides the spoken response according to the status of the system configurations. As shown in FIG. 18E, the digital assistant obtains status of currently available Wi-Fi networks from the network configuration of the user device. The status of currently available Wi-Fi networks indicates, for example, Wi-Fi network 1, Wi-Fi network 2, and Wi-Fi network 3 are available. In some examples, the status further indicates the signal strength of each of the Wi-Fi networks. The digital assistant displays a user interface 1845 providing information according to the status. For example, user interface 1845 provides the list of available Wi-Fi networks. The digital assistant also provides a spoken output 1880 such as “Here is a list of available Wi-Fi networks.” In some examples, the digital assistant further provides a link associated with the informational request. As illustrated in FIG. 18E, the digital assistant provides a link 1847, enabling the user to further manage the network configurations. In some examples, the user uses an input device (e.g., a mouse) to select link 1847. Upon receiving the user's selection of the link 1847, the digital assistant instantiates a network configuration process and displays an associated network configuration user interface. The user can thus use the network configuration user interface to further manage the configurations.


With reference to FIG. 18F, in some examples, the user device displays a user interface 1890 associated with performing a task. For example, the task includes preparing a meeting agenda. In preparing a meeting agenda, the user may desire to find a date and time for the meeting. In some examples, the user provides a speech input 1862 such as “Find a time on my calendar for next Tuesday's meeting in the morning.” The digital assistant determines that the user intent is to find an available time slot on the user's calendar on Tuesday morning. The digital assistant further determines that finding a time slot does not vary any system configuration and therefore is an informational request.


In some embodiments, in accordance with a determination that the user intent indicates an informational request, the digital assistant obtains status of system configurations according to the informational request, and provides the spoken response according to the status of the system configurations. As shown in FIG. 18F, the digital assistant obtains status of user's calendar from calendar configurations. The status of user's calendar indicates, for example, 9 a.m. or 11 a.m. on Tuesday is still available. The digital assistant displays a user interface 1891 providing information according to the status. For example, user interface 1891 provides the user's calendar in the proximity of the date and time the user requested. In some examples, the digital assistant also provides a spoken output 1882 such as “It looks like Tuesday 9 a.m. or 11 a.m is available.” In some examples, the digital assistant further provides a link associated with the informational request. As illustrated in FIG. 18F, the digital assistant provides a link 1849, enabling the user to further manage the calendar configurations. In some examples, the user uses an input device (e.g., a mouse) to select link 1849. Upon receiving the user's selection of link 1849, the digital assistant instantiates a calendar configuration process and displays an associated calendar configuration user interface. The user can thus use the calendar configuration user interface to further manage the configurations.


With reference to FIG. 19A, the user device displays a user interface 1932 associated with performing a task. For example, the task includes playing a video (e.g., ABC.mov). While the video is playing, the user may desire to turn up the volume. In some examples, the user provides a speech input 1952 such as “Turn the volume all the way up.” The digital assistant determines that the user intent is to increase the volume to its maximum level. The digital assistant further determines whether the user intent indicates an informational request or a request for performing a task. For example, based on the determination that the user intent is to increase the volume of the user device, the digital assistant determines that an audio configuration is to be varied, and therefore the user intent indicates a request for performing a task.


In some embodiments, in accordance with a determination that the user intent indicates a request for performing a task, the digital assistant instantiates a process associated with the user device to perform the task. Instantiating a process includes invoking the process if the process is not already running. If at least one instance of the process is running, instantiating a process includes executing an existing instance of the process or generating a new instance of the process. For example, instantiating an audio configuration process includes invoking the audio configuration process, using an existing audio configuration process, or generating a new instance of the audio configuration process. In some examples, instantiating a process includes performing the task using the process. For example, as illustrated in FIG. 19A, in accordance with the user intent to increase the volume to its maximum level, the digital assistant instantiates an audio configuration process to set the volume to its maximum level. In some examples, the digital assistant further provides a spoken output 1972 such as “OK, I turned the volume all the way up.”


With reference to FIG. 19B, the user device displays a user interface 1934 associated with performing a task. For example, the task includes viewing or editing a document. The user may desire to lower the screen brightness for eye protection. In some examples, the user provides a speech input 1954 such as “Set my screen brightness to 10% lower.” The digital assistant determines the user intent based on speech input 1954 and context information. For example, context information indicates that the current brightness configuration is at 90%. As a result, the digital assistant determines that the user intent is to reduce the brightness level from 90% to 80%. The digital assistant further determines whether the user intent indicates an informational request or a request for performing a task. For example, based on the determination that the user intent is to change the screen brightness to 80%, the digital assistant determines that a display configuration is to be varied, and therefore the user intent indicates a request for performing a task.


In some embodiments, in accordance with a determination that the user intent indicates a request for performing a task, the digital assistant instantiates a process to perform the task. For example, as illustrated in FIG. 19B, in accordance with the user intent to change the brightness level, the digital assistant instantiates a display configuration process to reduce the brightness level to 80%. In some examples, the digital assistant further provides a spoken output 1974 such as “OK, I turned your screen brightness to 80%.” In some examples, as illustrated in FIG. 19B, the digital assistant provides an affordance 1936 enabling the user to manipulate a result of performing the task. For example, affordance 1936 can be a sliding bar allowing the user to further change the brightness level.


With reference to FIG. 19C, the user device displays a user interface 1938 associated with performing a task. For example, the task includes providing one or more notifications. A notification can include an alert of an email, a message, a reminder, or the like. In some examples, notifications are provided in user interface 1938. A notification can be displayed or provided to the user in real time or shortly after it is available at the user device. For example, a notification appears on user interface 1938 and/or user interface 1910 shorted after the user device receives it. Sometimes, the user may be performing an important task (e.g., editing a document) and may not want to be disturbed by the notifications. In some examples, the user provides a speech input 1956 such as “Don't notify me about incoming emails.” The digital assistant determines that the user intent is to turn off the alert of emails. Based on the determination that the user intent is to turn off the alert of incoming emails, the digital assistant determines that a notification configuration is to be varied, and therefore the user intent indicates a request for performing a task.


In some embodiments, in accordance with a determination that the user intent indicates a request for performing a task, the digital assistant instantiates a process to perform the task. For example, as illustrated in FIG. 19C, in accordance with the user intent, the digital assistant instantiates a notification configuration process to turn off the alert of emails. In some examples, the digital assistant further provides a spoken output 1976 such as “OK, I turned off notifications for mail.” In some examples, as illustrated in FIG. 19C, the digital assistant provides a user interface 1942 (e.g., a snippet or a window) enabling the user to manipulate a result of performing the task. For example, user interface 1942 provides an affordance 1943 (e.g., a cancel button). If the user desires to continue receiving notification of emails, for example, the user can select affordance 1943 to turn the notifications of emails back on. In some examples, the user can also provide another speech input, such as “Notify me of incoming emails” to turn on the notification of emails.


With reference to FIG. 19D, in some embodiments, the digital assistant may not be able to complete a task based on user's speech input and can thus provide a user interface to enable the user to perform the task. As shown in FIG. 19D, in some examples, the user provides a speech input 1958 such as “Show a custom message on my screen saver.” The digital assistant determines that the user intent is to change the screen saver settings to show a custom message. The digital assistant further determines that the user intent is to vary a display configuration, and therefore the user intent indicates a request for performing a task.


In some embodiments, in accordance with a determination that the user intent indicates a request for performing a task, the digital assistant instantiates a process associated with the user device to perform the task. In some examples, if the digital assistant cannot complete the task based on the user intent, it provides a user interface enabling the user to perform the task. For example, based on speech input 1958, the digital assistant may not be able to determine the content of the custom message that is to be shown on the screen saver and therefore cannot complete the task of displaying the custom message. As illustrated in FIG. 19D, in some examples, the digital assistant instantiates a display configuration process and provides a user interface 1946 (e.g., a snippet or a window) to enable the user to manually change the screen saver settings. As another example, the digital assistant provides a link 1944 (e.g., a link to the display configurations) enabling the user to perform the task. The user selects link 1944 by using an input device such as a mouse, a finger, or a stylus. Upon receiving the user's selection, the digital assistant instantiates a display configuration process and displays user interface 1946 to enable the user to change the screen saver settings. In some examples, the digital assistant further provides a spoken output 1978 such as “You can explore screen saver options in the screen saver configurations.”


7. Process for Operating a Digital Assistant—Intelligent Search and Object Management.



FIGS. 20A-20G illustrate a flow diagram of an exemplary process 2000 for operating a digital assistant in accordance with some embodiments. Process 2000 may be performed using one or more devices 104, 108, 200, 400, or 600 (FIG. 1, 2A, 4, or 6A-B). Operations in process 2000 are, optionally, combined or split, and/or the order of some operations is, optionally, changed.


With reference to FIG. 20A, at block 2002, prior to receiving a first speech input, an affordance to invoke a digital assistant service is displayed on a display associated with a user device. At block 2003, the digital assistant is invoked in response to receiving a pre-determined phrase. At block 2004, the digital assistant is invoked in response to receiving a selection of the affordance.


At block 2006, a first speech input is received from a user. At block 2008, context information associated with the user device is identified. At block 2009, the context information includes at least one of: user-specific data, metadata associated with one or more objects, sensor data, and user device configuration data.


At block 2010, a user intent is determined based on the first speech input and the context information. At block 2012, to determine the user intent, one or more actionable intents are determined. At block 2013, one or more parameters associated with the actionable intent are determined.


With reference to FIG. 20B, at block 2015, it is determined whether the user intent is to perform a task using a searching process or an object managing process. The searching process is configured to search data stored internally or externally to the user device, and the object managing process is configured to manage objects associated with the user device. At block 2016, it is determined whether the speech input includes one or more keywords representing the searching process or the object managing process. At block 2018, it is determined whether the task is associated with searching. At block 2020, in accordance with a determination that the task is associated with searching, it is determined whether performing the task requires the searching process. At block 2021, in accordance with a determination that performing the task does not require the searching process, a spoken request to select the searching process or the object managing process is outputted, and a second speech input is received from the user. The second speech input indicates the selection of the searching process or the object managing process.


At block 2022, in accordance with a determination that performing the task does not require the searching process, it is determined, based on a pre-determined configuration, whether the task is to be performed using the searching process or the object managing process.


With reference to FIG. 20C, at block 2024, in accordance with a determination that the task is not associated with searching, it is determined whether the task is associated with managing at least one object. At block 2025, in accordance with a determination that the task is not associated with managing the at least one object, at least one of the following is performed: determining whether that task can be performed using a fourth process available to the user device and initiating a dialog with the user.


At block 2026, in accordance with a determination the user intent is to perform the task using the searching process, the task is performed using the searching process. At block 2028, at least one object is searched using the searching process. At block 2029, the at least one object includes at least one of a folder or a file. At block 2030, the file includes at least one of a photo, audio, or a video. At block 2031, the file is stored internally or externally to the user device. At block 2032, searching at least one of the folder or the file is based on metadata associated with the folder or the file. At block 2034, the at least one object includes a communication. At block 2035, the communication includes at least one of an email, a message, a notification, or a voicemail. At block 2036, metadata associated with the communication is searched.


With reference to FIG. 20D, at block 2037, the at least one object includes at least one of a contact or a calendar. At block 2038, the at least one object includes an application. At block 2039, the at least one object includes an online informational source.


At block 2040, in accordance with the determination that the user intent is to perform the task using the object managing process, the task is performed using the object managing process. At block 2042, the task is associated with searching, and the at least one object is searched using the object managing process. At block 2043, the at least one object includes at least one of a folder or a file. At block 2044, the file includes at least one of a photo, an audio, or a video. At block 2045, the file is stored internally or externally to the user device. At block 2046, searching at least one of the folder or the file is based on metadata associated with the folder or the file.


At block 2048, the object managing process is instantiated. Instantiating the object managing process includes invoking the object managing process, generating a new instance of the object managing process, or executing an existing instance of the object managing process.


With reference to FIG. 20E, at block 2049, the at least one object is created. At block 2050, the at least one object is stored. At block 2051, the at least one object is compressed. At block 2052, the at least one object is moved from a first physical or virtual storage to a second physical or virtual storage. At block 2053, the at least one object is copied from a first physical or virtual storage to a second physical or virtual storage. At block 2054, the at least one object stored in a physical or virtual storage is deleted. At block 2055, the at least one object stored at a physical or virtual storage is recovered. At block 2056, the at least one object is marked. Marking of the at least one object is at least one of visible or associated with metadata of the at least one object. At block 2057, the at least one object is backup according to a predetermined time period for backing up. At block 2058, the at least one object is shared among one or more electronic devices communicatively connected to the user device.


With reference to FIG. 20F, at block 2060, a response is provided based on a result of performing the task using the searching process or the object managing process. At block 2061, a first user interface is displayed providing the result of performing the task using the searching process or the object managing process. At block 2062, a link associated with the result of performing the task using the searching process is displayed. At block 2063, a spoken output is provided according to the result of performing the task using the searching process or the object managing process.


At block 2064, it is provided an affordance that enables the user to manipulate the result of performing the task using the searching process or the object managing process. At block 2065, it is instantiated a third process that operates using the result of performing the task.


With reference to FIG. 20F, at block 2066, a confidence level is determined. At block 2067, the confidence level represents the accuracy in determining the user intent based on the first speech input and context information associated with the user device. At block 2068, the confidence level represents the accuracy in determining whether the user intent is to perform the task using the searching process or the object managing process.


With reference to FIG. 20G, at block 2069, the confidence level represents the accuracy in performing the task using the searching process or the object managing process.


At block 2070, the response is provided in accordance with the determination of the confidence level. At block 2071, it is determined whether the confidence level is greater than or equal to a threshold confidence level. At block 2072, in accordance with a determination that the confidence level is greater than or equal to the threshold confidence level, a first response is provided. At block 2073, in accordance with a determination that the confidence level is less than a threshold confidence level, a second response is provided.


8. Process for Operating a Digital Assistant—Continuity.



FIGS. 21A-21E illustrate a flow diagram of an exemplary process 2100 for operating a digital assistant in accordance with some embodiments. Process 2100 may be performed using one or more devices 104, 108, 200, 400, 600, 1400, 1500, 1600, or 1700 (FIGS. 1, 2A, 4, 6A-6B, 14A-14D, 15A-15D, 16A-16C, and 17A-17E). Operations in process 2100 are, optionally, combined or split and/or the order of some operations is, optionally, changed.


With reference to FIG. 21A, at block 2102, prior to receiving a first speech input, an affordance to invoke a digital assistant service is displayed on a display associated with a user device. At block 2103, the digital assistant is invoked in response to receiving a pre-determined phrase. At block 2104, the digital assistant is invoked in response to receiving a selection of the affordance.


At block 2106, a first speech input is received from a user to perform a task. At block 2108, context information associated with the user device is identified. At block 2109, the user device is configured to provide a plurality of user interfaces. At block 2110, the user device includes a laptop computer, a desktop computer, or a server. At block 2112, the context information includes at least one of: user-specific data, metadata associated with one or more objects, sensor data, and user device configuration data.


At block 2114, a user intent is determined based on the speech input and the context information. At block 2115, to determine the user intent, one or more actionable intents are determined. At block 2116, one or more parameters associated with the actionable intent are determined.


With reference to FIG. 21B, at block 2118, in accordance with user intent, it is determined whether the task is to be performed at the user device or at a first electronic device communicatively connected to the user device. At block 2120, the first electronic device includes a laptop computer, a desktop computer, a server, a smartphone, a tablet, a set-top box, or a watch. At block 2121, determining whether the task is to be performed at the user device or at the first electronic device is based on one or more keywords included in the speech input. At block 2122, it is determined whether performing the task at the user device satisfies performance criteria. At block 2123, the performance criteria are determined based on one or more user preferences. At block 2124, the performance criteria are determined based on the device configuration data. At block 2125, the performance criteria are dynamically updated. At block 2126, in accordance with a determination that performing the task at the user device satisfies the performance criteria, it is determined that the task is to be performed at the user device.


With reference to FIG. 21C, at block 2128, in accordance with a determination that performing the task at the user device does not satisfy the performance criteria, it is determined whether performing the task at the first electronic device satisfies the performance criteria. At block 2130, in accordance with a determination that performing the task at the first electronic device satisfies the performance criteria, it is determined that the task is to be performed at the first electronic device. At block 2132, in accordance with a determination that performing the task at the first electronic device does not meet the performance criteria, it is determined whether performing the task at the second electronic device satisfies the performance criteria.


At block 2134, in accordance with a determination that the task is to be performed at the user device and content for performing the task is located remotely, the content for performing the task is received. At block 2135, at least a portion of the content is received from the first electronic device. At least a portion of the content is stored in the first electronic device. At block 2136, at least a portion of the content is received from a third electronic device.


With reference to FIG. 21D, at block 2138, in accordance with a determination that the task is to be performed at the first electronic device and the content for performing the task is located remotely to the first electronic device, the content for performing the task is provided to the first electronic device. At block 2139, at least a portion of the content is provided from the user device to the first electronic device. At least a portion of the content is stored at the user device. At block 2140, at least a portion of the content is caused to be provided from a fourth electronic device to the first electronic device. At least a portion of the content is stored at the fourth electronic device.


At block 2142, the task is to be performed at the user device. A first response is provided at the user device using the received content. At block 2144, the task is performed at the user device. At block 2145, performing the task at the user device is a continuation of a task partially performed remotely to the user device. At block 2146, a first user interface is displayed associated with the task to be performed at the user device. At block 2148, a link associated with the task is to be performed at the user device. At block 2150, a spoken output is provided according to the task to be performed at the user device.


With reference to FIG. 21E, at block 2152, the task is to be performed at the first electronic device, and a second response is provided at the user device. At block 2154, the task is to be performed at the first electronic device. At block 2156, the task to be performed at the first electronic device is a continuation of a task performed remotely to the first electronic device. At block 2158, a spoken output is provided according to the task to be performed at the first electronic device. At block 2160, a spoken output is provided according to the task to be performed at the first electronic device.


9. Process for Operating a Digital Assistant—System Configuration Management.



FIGS. 22A-22D illustrate a flow diagram of an exemplary process 2200 for operating a digital assistant in accordance with some embodiments. Process 2200 may be performed using one or more devices 104, 108, 200, 400, 600, or 1800 (FIGS. 1, 2A, 4, 6A-6B, and 18C-18D). Operations in process 2200 are, optionally, combined or split, and/or the order of some operations is, optionally, changed.


With reference to FIG. 22A, at block 2202, prior to receiving a speech input, an affordance to invoke a digital assistant service is displayed on a display associated with a user device. At block 2203, the digital assistant is invoked in response to receiving a pre-determined phrase. At block 2204, the digital assistant is invoked in response to receiving a selection of the affordance.


At block 2206, a speech input is received from a user to manage one or more system configurations of the user device. The user device is configured to concurrently provide a plurality of user interfaces. At block 2207, the one or more system configurations of the user device comprise audio configurations. At block 2208, the one or more system configurations of the user device comprise date and time configurations. At block 2209, the one or more system configurations of the user device comprise dictation configurations. At block 2210, the one or more system configurations of the user device comprise display configurations. At block 2211, the one or more system configurations of the user device comprise input device configurations. At block 2212, the one or more system configurations of the user device comprise network configurations. At block 2213, the one or more system configurations of the user device comprise notification configurations.


With reference to FIG. 22B, at block 2214, the one or more system configurations of the user device comprise printer configurations. At block 2215, the one or more system configurations of the user device comprise security configurations. At block 2216, the one or more system configurations of the user device comprise backup configurations. At block 2217, the one or more system configurations of the user device comprise application configurations. At block 2218, the one or more system configurations of the user device comprise user interface configurations.


At block 2220, context information associated with the user device is identified. At block 2223, the context information comprises at least one of: user-specific data, device configuration data, and sensor data. At block 2224, the user intent is determined based on the speech input and the context information. At block 2225, one or more actionable intents are determined. At block 2226, one or more parameters associated with the actionable intent are determined.


With reference to FIG. 22C, at block 2228, it is determined whether the user intent indicates an informational request or a request for performing a task. At block 2229, it is determined whether the user intent is to vary a system configuration.


At block 2230, in accordance with a determination that the user intent indicates an informational request, a spoken response is provided to the informational request. At block 2231, status of one or more system configurations is obtained according to the informational request. At block 2232, the spoken response is provided according to the status of one or more system configurations.


At block 2234, in addition to providing the spoken response to the informational request, a first user interface is displayed to provide information according to the status of the one or more system configurations. At block 2236, in addition to providing the spoken response to the informational request, a link associated with the informational request is provided.


At block 2238, in accordance with a determination that the user intent indicates a request for performing a task, a process associated with the user device is instantiated to perform the task. At block 2239, the task is performed using the process. At block 2240, a first spoken output is provided according to a result of performing the task.


With reference to FIG. 22D, at block 2242, a second user interface is provided to enable the user to manipulate a result of performing the task. At block 2244, the second user interface comprises a link associated with the result of performing the task.


At block 2246, a third user interface is provided to enable the user to perform the task. At block 2248, the third user interface includes a link enabling the user to perform the task. At block 2250, a second spoken output associated with the third user interface is provided.


10. Electronic Device—Intelligent Search and Object Management



FIG. 23 shows a functional block diagram of electronic device 2300 configured in accordance with the principles of the various described examples, including those described with reference to FIGS. 8A-8F, 9A-9H, 10A-10B, 11A-11F, 12A-12D, 13A-13C, 14A-14D, 15A-15D, 16A-16C, 17A-17E, 18A-18F, and 19A-19D. The functional blocks of the device can be optionally implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 23 can be optionally combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination, separation, or further definition of the functional blocks described herein.


As shown in FIG. 23, electronic device 2300 can include a microphone 2302 and processing unit 2308. In some examples, processing unit 2308 includes a receiving unit 2310, a an identifying unit 2312, a determining unit 2314, a performing unit 2316, a providing unit 2318, an instantiating unit 2320, a displaying unit 2322, an outputting unit 2324, an initiating unit 2326, a searching unit 2328, a generating unit 2330, an executing unit 2332, a creating unit 2334, an instantiating unit 2335, a storing unit 2336, a compressing unit 2338, a copying unit 2340, a deleting unit 2342, a recovering unit 2344, a marking unit 2346, a backing up unit 2348, a sharing unit 2350, a causing unit 2352, and an obtaining unit 2354.


In some examples, the processing unit 2308 is configured to receive (e.g., with the receiving unit 2310) a first speech input from a user; identify (e.g., with the identifying unit 2312) context information associated with the user device; and determine (e.g., with the determining unit 2314) a user intent based on the first speech input and the context information.


In some examples, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) whether the user intent is to perform a task using a searching process or an object managing process. The searching process is configured to search data stored internally or externally to the user device, and the object managing process is configured to manage objects associated with the user device.


In some examples, in accordance with a determination the user intent is to perform the task using the searching process, the processing unit 2308 is configured to perform (e.g., with the performing unit 2316) the task using the searching process. In some examples, in accordance with the determination that the user intent is to perform the task using the object managing process, the processing unit 2308 is configured to perform (e.g., with the performing unit 2316) the task using the object managing process.


In some examples, prior to receiving the first speech input, the processing unit 2308 is configured to display (e.g., with the displaying unit 2322), on a display associated with the user device, an affordance to invoke the digital assistant service.


In some examples, the processing unit 2308 is configured to invoke (e.g., with the invoking unit 2320) the digital assistant in response to receiving a pre-determined phrase.


In some examples, the processing unit 2308 is configured to invoke (e.g., with the invoking unit 2320) the digital assistant in response to receiving a selection of the affordance.


In some examples, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) one or more actionable intents; and determine (e.g., with determining unit 2314) one or more parameters associated with the actionable intent.


In some examples, the context information comprises at least one of: user-specific data, metadata associated with one or more objects, sensor data, and user device configuration data.


In some examples, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) whether the speech input includes one or more keywords representing the searching process or the object managing process.


In some examples, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) whether the task is associated with searching. In accordance with a determination that the task is associated with searching, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) whether performing the task requires the searching process; and in accordance with a determination that the task is not associated with searching, determine (e.g., with the determining unit 2314) whether the task is associated with managing at least one object.


In some examples, the task is associated with searching, and in accordance with a determination that performing the task does not require the searching process, the processing unit 2308 is configured to output (e.g., with the outputting unit 2324) a spoken request to select the searching process or the object managing process and receive (e.g., with the receiving unit 2310), from the user, a second speech input indicating the selection of the searching process or the object managing process.


In some examples, the task is associated with searching, and in accordance with a determination that performing the task does not require the searching process, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314), based on a pre-determined configuration, whether the task is to be performed using the searching process or the object managing process.


In some examples, the task is not associated with searching, and in accordance with a determination that the task is not associated with managing the at least one object, the processing unit 2308 is configured to perform (e.g., with the performing unit 2316) at least one of: determining (e.g., with the determining unit 2314) whether that task can be performed using a fourth process available to the user device; and initiating (e.g., with the initiating unit 2326) dialog with the user.


In some examples, the processing unit 2308 is configured to search (e.g., with the searching unit 2328) at least one object using the searching process.


In some examples, the at least one object includes at least one of a folder or a file. The file includes at least one of a photo, audio, or a video. The file is stored internally or externally to the user device.


In some examples, searching at least one of the folder or the file is based on metadata associated with the folder or the file.


In some examples, the at least one object includes a communication. The communication includes at least one of an email, a message, a notification, or a voicemail.


In some examples, the processing unit 2308 is configured to search (e.g., with the searching unit 2328) metadata associated with the communication.


In some examples, the at least one object includes at least one of a contact or a calendar.


In some examples, the at least one object includes an application.


In some examples, the at least one object includes an online informational source.


In some examples, the task is associated with searching, and the processing unit 2308 is configured to search (e.g., with the searching unit 2328) the at least one object using the object managing process.


In some examples, the at least one object includes at least one of a folder or a file. The file includes at least one of a photo, an audio, or a video. The file is stored internally or externally to the user device.


In some examples, searching at least one of the folder or the file is based on metadata associated with the folder or the file.


In some examples, the processing unit 2308 is configured to instantiate (e.g., with the instantiating unit 2335) the object managing process. Instantiating of the object managing process includes invoking the object managing process, generating a new instance of the object managing process, or executing an existing instance of the object managing process.


In some examples, the processing unit 2308 is configured to create (e.g., with the creating unit 2334) the at least one object.


In some examples, the processing unit 2308 is configured to store (e.g., with the storing unit 2336) the at least one object.


In some examples, the processing unit 2308 is configured to compress (e.g., with the compressing unit 2338) the at least one object.


In some examples, the processing unit 2308 is configured to move (e.g., with the moving unit 2339) the at least one object from a first physical or virtual storage to a second physical or virtual storage.


In some examples, the processing unit 2308 is configured to copy (e.g., with the copying unit 2340) the at least one object from a first physical or virtual storage to a second physical or virtual storage.


In some examples, the processing unit 2308 is configured to delete (e.g., with the deleting unit 2342) the at least one object stored in a physical or virtual storage.


In some examples, the processing unit 2308 is configured to recover (e.g., with the recovering unit 2344) at least one object stored at a physical or virtual storage.


In some examples, the processing unit 2308 is configured to mark (e.g., with the marking unit 2346) the at least one object. Marking of the at least one object is at least one of visible or associated with metadata of the at least one object.


In some examples, the processing unit 2308 is configured to back up (e.g., with the backing up unit 2348) the at least one object according to a predetermined time period for backing up.


In some examples, the processing unit 2308 is configured to share (e.g., with the sharing unit 2350) the at least one object among one or more electronic devices communicatively connected to the user device.


In some examples, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a response based on a result of performing the task using the searching process or the object managing process.


In some examples, the processing unit 2308 is configured to display (e.g., with the displaying unit 2322) a first user interface providing the result of performing the task using the searching process or the object managing process.


In some examples, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a link associated with the result of performing the task using the searching process.


In some examples, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a spoken output according to the result of performing the task using the searching process or the object managing process.


In some examples, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) an affordance that enables the user to manipulate the result of performing the task using the searching process or the object managing process.


In some examples, the processing unit 2308 is configured to instantiate (e.g., with the instantiating unit 2335) a third process that operates using the result of performing the task.


In some examples, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) a confidence level; and provide (e.g., with providing unit 2318) the response in accordance with the determination of the confidence level.


In some examples, the confidence level represents the accuracy in determining the user intent based on the first speech input and context information associated with the user device.


In some examples, the confidence level represents the accuracy in determining whether the user intent is to perform the task using the searching process or the object managing process.


In some examples, the confidence level represents the accuracy in performing the task using the searching process or the object managing process.


In some examples, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) whether the confidence level is greater than or equal to a threshold confidence level. In accordance with a determination that the confidence level is greater than or equal to the threshold confidence level, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a first response; and in accordance with a determination that the confidence level is less than a threshold confidence level, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a second response.


11. Electronic Device—Continuity


In some examples, the processing unit 2308 is configured to receive (e.g., with the receiving unit 2310) a speech input from a user to perform a task; identify (e.g., with the identifying unit 2312) context information associated with the user device; and determine (e.g., with the determining unit 2314) a user intent based on the speech input and context information associated with the user device.


In some examples, the processing unit 2308 is configured to, in accordance with user intent, determine (e.g., with the determining unit 2314) whether the task is to be performed at the user device or at a first electronic device communicatively connected to the user device.


In some examples, in accordance with a determination that the task is to be performed at the user device and content for performing the task is located remotely, the processing unit 2308 is configured to receive (e.g., with the receiving unit 2310) the content for performing the task.


In some examples, in accordance with a determination that the task is to be performed at the first electronic device and the content for performing the task is located remotely to the first electronic device, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) the content for performing the task to the first electronic device.


In some examples, the user device is configured to provide a plurality of user interfaces.


In some examples, the user device includes a laptop computer, a desktop computer, or a server.


In some examples, the first electronic device includes a laptop computer, a desktop computer, a server, a smartphone, a tablet, a set-top box, or a watch.


In some examples, the processing unit 2308 is configured to, prior to receiving the speech input, display (e.g., with the displaying unit 2322), on a display of the user device, an affordance to invoke the digital assistant.


In some examples, the processing unit 2308 is configured to invoke (e.g., with the invoking unit 2320) the digital assistant in response to receiving a pre-determined phrase.


In some examples, the processing unit 2308 is configured to invoke (e.g., with the invoking unit 2320) the digital assistant in response to receiving a selection of the affordance.


In some examples, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) one or more actionable intents; and determine (e.g., with the determining unit 2314) one or more parameters associated with the actionable intent.


In some examples, the context information comprises at least one of: user-specific data, sensor data, and user device configuration data.


In some examples, determining whether the task is to be performed at the user device or at the first electronic device is based on one or more keywords included in the speech input.


In some examples, the processing unit 2308 is configured to determine (e.g., with determining unit 2314) whether performing the task at the user device satisfies performance criteria.


In some examples, in accordance with a determination that performing the task at the user device satisfies the performance criteria, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) that the task is to be performed at the user device.


In some examples, in accordance with a determination that performing the task at the user device does not satisfy the performance criteria, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) whether performing the task at the first electronic device satisfies the performance criteria.


In some examples, in accordance with a determination that performing the task at the first electronic device satisfies the performance criteria, the processing unit 2308 is configured to determine (e.g., with the determining 2314) that the task is to be performed at the first electronic device.


In some examples, in accordance with a determination that the performing the task at the first electronic device does not meet the performance criteria, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) whether performing the task at the second electronic device satisfies the performance criteria.


In some examples, the performance criteria are determined based on one or more user preferences.


In some examples, the performance criteria are determined based on the device configuration data.


In some examples, the performance criteria are dynamically updated.


In some examples, in accordance with a determination that the task is to be performed at the user device and content for performing the task is located remotely, the processing unit 2308 is configured to receive (e.g., with the receiving unit 2310) at least a portion of the content from the first electronic device, wherein at least a portion of the content is stored in the first electronic device.


In some examples, in accordance with a determination that the task is to be performed at the user device and content for performing the task is located remotely, the processing unit 2308 is configured to receive (e.g., with the receiving unit 2310) at least a portion of the content from a third electronic device.


In some examples, in accordance with a determination that the task is to be performed at the first electronic device and the content for performing the task is located remotely to the first electronic device, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) at least a portion of the content from the user device to the first electronic device, wherein at least a portion of the content is stored at the user device.


In some examples, in accordance with a determination that the task is to be performed at the first electronic device and the content for performing the task is located remotely to the first electronic device, the processing unit 2308 is configured to cause (e.g., with the causing unit 2352) at least a portion of the content to be provided from a fourth electronic device to the first electronic device. At least a portion of the content is stored at the fourth electronic device.


In some examples, the task is to be performed at the user device, and processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a first response at the user device using the received content.


In some examples, the processing unit 2308 is configured to perform (e.g., with the performing unit 2316) the task at the user device.


In some examples, performing the task at the user device is a continuation of a task partially performed remotely to the user device.


In some examples, the processing unit 2308 is configured to display (e.g., with the displaying unit 2322) a first user interface associated with the task to be performed at the user device.


In some examples, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a link associated with the task to be performed at the user device.


In some examples, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a spoken output according to the task to be performed at the user device.


In some examples, the task is to be performed at the first electronic device, and the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a second response at the user device.


In some examples, the processing unit 2308 is configured to cause (e.g., with the causing unit 2352) the task to be performed at the first electronic device.


In some examples, the task to be performed at the first electronic device is a continuation of a task performed remotely to the first electronic device.


In some examples, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a spoken output according to the task to be performed at the first electronic device.


In some examples, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) an affordance that enables the user to select another electronic device for performance of the task.


12. Electronic Device—System Configuration Management


In some examples, the processing unit 2308 is configured to receive (e.g., with the receiving unit 2310) a speech input from a user to manage one or more system configurations of the user device. The user device is configured to concurrently provide a plurality of user interfaces.


In some examples, the processing unit 2308 is configured to identify (e.g., with the identifying unit 2312) context information associated with the user device; and determine (e.g., with the determining unit 2314) a user intent based on the speech input and context information.


In some examples, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) whether the user intent indicates an informational request or a request for performing a task.


In some examples, in accordance with a determination that the user intent indicates an informational request, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a spoken response to the informational request.


In some examples, in accordance with a determination that the user intent indicates a request for performing a task, the processing unit 2308 is configured to instantiate (e.g., with the instantiating unit 2335) a process associated with the user device to perform the task.


In some examples, the processing unit 2308 is configured to, prior to receiving the speech input, display (e.g., with the displaying unit 2322) on a display of the user device, an affordance to invoke the digital assistant.


In some examples, the processing unit 2308 is configured to invoke (e.g., with the invoking unit 2320) the digital assistant service in response to receiving a pre-determined phrase.


In some examples, the processing unit 2308 is configured to invoke (e.g., with the invoking unit 2320) the digital assistant service in response to receiving a selection of the affordance.


In some examples, the one or more system configurations of the user device comprise audio configurations.


In some examples, the one or more system configurations of the user device comprise date and time configurations.


In some examples, the one or more system configurations of the user device comprise dictation configurations.


In some examples, the one or more system configurations of the user device comprise display configurations.


In some examples, the one or more system configurations of the user device comprise input device configurations.


In some examples, the one or more system configurations of the user device comprise network configurations.


In some examples, the one or more system configurations of the user device comprise notification configurations.


In some examples, the one or more system configurations of the user device comprise printer configurations.


In some examples, the one or more system configurations of the user device comprise security configurations.


In some examples, the one or more system configurations of the user device comprise backup configurations.


In some examples, the one or more system configurations of the user device comprise application configurations.


In some examples, the one or more system configurations of the user device comprise user interface configurations.


In some examples, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) one or more actionable intents; and determine (e.g., with the determining unit 2314) one or more parameters associated with the actionable intent.


In some examples, the context information comprises at least one of: user-specific data, device configuration data, and sensor data.


In some examples, the processing unit 2308 is configured to determine (e.g., with the determining unit 2314) whether the user intent is to vary a system configuration.


In some examples, the processing unit 2308 is configured to obtain (e.g., with the obtaining unit 2354) status of one or more system configurations according to the informational request; and provide (e.g., with the providing unit 2318) the spoken response according to the status of one or more system configurations.


In some examples, in accordance with a determination that the user intent indicates an informational request, the processing unit 2308 is configured to, in addition to providing the spoken response to the informational request, display (e.g., with the displaying unit 2322) a first user interface providing information according to the status of the one or more system configurations.


In some examples, in accordance with a determination that the user intent indicates an informational request, the processing unit 2308 is configured to, in addition to providing the spoken response to the informational request, provide (e.g., with the providing unit 2318) a link associated with the informational request.


In some examples, in accordance with a determination that the user intent indicates a request for performing a task, the processing unit 2308 is configured to perform (e.g., with the performing unit 2316) the task using the process.


In some examples, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a first spoken output according to a result of performing the task.


In some examples, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a second user interface enabling the user to manipulate a result of performing the task.


In some examples, the second user interface comprises a link associated with the result of performing the task.


In some examples, in accordance with a determination that the user intent indicates a request for performing a task, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a third user interface enabling the user to perform the task.


In some examples, the third user interface includes a link enabling the user to perform the task.


In some examples, the processing unit 2308 is configured to provide (e.g., with the providing unit 2318) a second spoken output associated with the third user interface.


The operation described above with respect to FIG. 23 is, optionally, implemented by components depicted in FIG. 1, 2A, 4, 6A-B, or 7A-7B. For example, receiving operation 2310, identifying operation 2312, determining operation 2314, performing operation 2316, and providing operation 2318 are optionally implemented by processor(s) 220. It would be clear to a person of ordinary skill in the art how other processes can be implemented based on the components depicted in FIG. 1, 2A, 4, 6A-B, or 7A-7B.


It is understood by persons of skill in the art that the functional blocks described in FIG. 12 are, optionally, combined or separated into sub-blocks to implement the principles of the various described embodiments. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein. For example, processing unit 2308 can have an associated “controller” unit that is operatively coupled with processing unit 2308 to enable operation. This controller unit is not separately illustrated in FIG. 23 but is understood to be within the grasp of one of ordinary skill in the art who is designing a device having a processing unit 2308, such as device 2300. As another example, one or more units, such as the receiving unit 2310, may be hardware units outside of processing unit 2308 in some embodiments. The description herein thus optionally supports combination, separation, and/or further definition of the functional blocks described herein.


The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.


Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the claims.

Claims
  • 1. A non-transitory computer-readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of a first electronic device, cause the first electronic device to: provide a media output;while providing the media output: receive a speech input requesting to continue providing the media output at a second electronic device different from the first electronic device;determine, based on the speech input, whether to continue providing the media output at the second electronic device; andin accordance with a determination to continue providing the media output at the second electronic device: cause the second electronic device to continue providing the media output by resuming the media output based on where the media output was previously stopped at the first electronic device.
  • 2. The non-transitory computer-readable storage medium of claim 1, wherein causing the second electronic device to continue providing the media output by resuming the media output based on where the media output was previously stopped at the first electronic device further comprises: determining a point in the media output when the speech input was received; andcausing the second electronic device to continue providing the media output at the point in the media output when the speech input was received.
  • 3. The non-transitory computer-readable storage medium of claim 1, wherein the one or more programs further comprise instructions, which when executed by one or more processors of the first electronic device, cause the first electronic device to: cease the media output at the first electronic device.
  • 4. The non-transitory computer-readable storage medium of claim 1, wherein the one or more programs further comprise instructions, which when executed by one or more processors of the first electronic device, cause the first electronic device to: in accordance with the determination to continue providing the media output at the second electronic device: cause the second electronic device provide a spoken output indicating the media output.
  • 5. The non-transitory computer-readable storage medium of claim 1, wherein the one or more programs further comprise instructions, which when executed by one or more processors of the first electronic device, cause the first electronic device to: provide content to be provided as the media output to the second electronic device, prior to causing the second electronic device to continue providing the media output.
  • 6. The non-transitory computer-readable storage medium of claim 1, wherein determining, based on the speech input, whether to provide the media output at the second electronic device further comprises: determining whether providing the media output at the second electronic device satisfies performance criteria.
  • 7. The non-transitory computer-readable storage medium of claim 6, wherein the performance criteria is determined based on context information.
  • 8. The non-transitory computer-readable storage medium of claim 6, wherein the one or more programs further comprise instructions, which when executed by one or more processors of the first electronic device, cause the first electronic device to: in accordance with a determination that providing the media output at the second electronic device does not satisfy performance criteria: continue to provide the media output.
  • 9. The non-transitory computer-readable storage medium of claim 1, wherein the one or more programs further comprise instructions, which when executed by one or more processors of the first electronic device, cause the first electronic device to: in accordance with the determination to continue providing the media output at the second electronic device: provide an output requesting whether a third electronic device should continue providing the media output.
  • 10. The non-transitory computer-readable storage medium of claim 9 wherein the one or more programs further comprise instructions, which when executed by one or more processors of the first electronic device, cause the first electronic device to: receive an input confirming that the third electronic device should continue providing the media output from a user; andin response to receiving the input confirming that the third electronic device should provide the media output from the user, cause the third electronic device to continue providing the media output.
  • 11. The non-transitory computer-readable storage medium of claim 1, wherein the one or more programs further comprise instructions, which when executed by one or more processors of the first electronic device, cause the first electronic device to: in accordance with the determination to continue providing the media output at the second electronic device: request confirmation to continue providing the media output at the second electronic device.
  • 12. The non-transitory computer-readable storage medium of claim 11, wherein the request for confirmation is provided as a spoken output.
  • 13. A first electronic device comprising: one or more processors;a memory; and
  • 14. The first electronic device of claim 13, wherein causing the second electronic device to continue providing the media output by resuming the media output based on where the media output was previously stopped at the first electronic device further comprises: determining a point in the media output when the speech input was received; andcausing the second electronic device to continue providing the media output at the point in the media output when the speech input was received.
  • 15. The first electronic device of claim 13, wherein the one or more programs further include instructions for: ceasing the media output at the first electronic device.
  • 16. The first electronic device of claim 13, wherein the one or more programs further include instructions for: in accordance with the determination to continue providing the media output at the second electronic device: causing the second electronic device provide a spoken output indicating the media output.
  • 17. The first electronic device of claim 13, wherein the one or more programs further include instructions for: providing content to be provided as the media output to the second electronic device, prior to causing the second electronic device to continue providing the media output.
  • 18. The first electronic device of claim 13, wherein the one or more programs further include instructions for: determining whether providing the media output at the second electronic device satisfies performance criteria.
  • 19. The first electronic device of claim 18, wherein the performance criteria is determined based on context information.
  • 20. The first electronic device of claim 18, wherein the one or more programs further include instructions for: in accordance with a determination that providing the media output at the second electronic device does not satisfy performance criteria: continuing to provide the media output.
  • 21. The first electronic device of claim 13, wherein the one or more programs further include instructions for: in accordance with the determination to continue providing the media output at the second electronic device: providing an output requesting whether a third electronic device should continue providing the media output.
  • 22. The first electronic device of claim 21, wherein the one or more programs further include instructions for: receiving an input confirming that the third electronic device should continue providing the media output from the user; andin response to receiving the input confirming that the third electronic device should provide the media output from the user, causing the third electronic device to continue providing the media output.
  • 23. The first electronic device of claim 13, wherein the one or more programs further include instructions for: in accordance with the determination to continue providing the media output at the second electronic device: requesting confirmation to continue providing the media output at the second electronic device.
  • 24. The first electronic device of claim 23, wherein the request for confirmation is provided as a spoken output.
  • 25. A method comprising: at a first electronic device with one or more processors and memory: providing a media output;while providing the media output: receiving a speech input requesting to continue providing the media output at a second electronic device different from the first electronic device;determining, based on the speech input, whether to continue providing the media output at the second electronic device; andin accordance with a determination to continue providing the media output at the second electronic device: causing the second electronic device to continue providing the media output by resuming the media output based on where the media output was previously stopped at the first electronic device.
  • 26. The method of claim 25, further comprising: determining a point in the media output when the speech input was received; andcausing the second electronic device to continue providing the media output at the point in the media output when the speech input was received.
  • 27. The method of claim 25, further comprising: ceasing the media output at the first electronic device.
  • 28. The method of claim 25, further comprising: in accordance with the determination to continue providing the media output at the second electronic device: causing the second electronic device provide a spoken output indicating the media output.
  • 29. The method of claim 25, further comprising: providing content to be provided as the media output to the second electronic device, prior to causing the second electronic device to continue providing the media output.
  • 30. The method of claim 25, further comprising: determining whether providing the media output at the second electronic device satisfies performance criteria.
  • 31. The method of claim 30, wherein the performance criteria is determined based on context information.
  • 32. The method of claim 30, further comprising: in accordance with a determination that providing the media output at the second electronic device does not satisfy performance criteria:continuing to provide the media output.
  • 33. The method of claim 25, further comprising: in accordance with the determination to continue providing the media output at the second electronic device: providing an output requesting whether a third electronic device should continue providing the media output.
  • 34. The method of claim 33, further comprising: receiving an input confirming that the third electronic device should continue providing the media output from the user; andin response to receiving the input confirming that the third electronic device should provide the media output from the user, causing the third electronic device to continue providing the media output.
  • 35. The method of claim 25, further comprising: in accordance with the determination to continue providing the media output at the second electronic device: requesting confirmation to continue providing the media output at the second electronic device.
  • 36. The method of claim 35, wherein the request for confirmation is provided as a spoken output.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/271,766, filed Sep. 21, 2016, entitled “INTELLIGENT DIGITAL ASSISTANT IN A MULTI-TASKING ENVIRONMENT,” which claims priority to U.S. Provisional Patent Application Ser. No. 62/348,728, entitled “INTELLIGENT DIGITAL ASSISTANT IN A MULTI-TASKING ENVIRONMENT,” filed on Jun. 10, 2016. The content of both applications are hereby incorporated by reference in their entirety for all purposes.

US Referenced Citations (6316)
Number Name Date Kind
1559320 Hirsh Oct 1925 A
2180522 Henne Nov 1939 A
2495222 Bierig Jan 1950 A
3704345 Coker Nov 1972 A
3710321 Rubenstein Jan 1973 A
3787542 Gallagher et al. Jan 1974 A
3828132 Flanagan Aug 1974 A
3979557 Schulman Sep 1976 A
4013085 Wright Mar 1977 A
4081631 Feder Mar 1978 A
4090216 Constable May 1978 A
4107784 Van Bemmelen Aug 1978 A
4108211 Tanaka Aug 1978 A
4159536 Kehoe Jun 1979 A
4181821 Pirz Jan 1980 A
4204089 Key May 1980 A
4241286 Gordon Dec 1980 A
4253477 Eichman Mar 1981 A
4278838 Antonov Jul 1981 A
4282405 Taguchi Aug 1981 A
4310721 Manley Jan 1982 A
4332464 Bartulis Jun 1982 A
4348553 Baker Sep 1982 A
4384169 Mozer May 1983 A
4386345 Narveson May 1983 A
4433377 Eustis Feb 1984 A
4451849 Fuhrer May 1984 A
4485439 Rothstein Nov 1984 A
4495644 Parks Jan 1985 A
4513379 Wilson Apr 1985 A
4513435 Sakoe Apr 1985 A
4555775 Pike Nov 1985 A
4577343 Oura Mar 1986 A
4586158 Brandle Apr 1986 A
4587670 Levinson May 1986 A
4589022 Prince May 1986 A
4611346 Bednar Sep 1986 A
4615081 Lindahl Oct 1986 A
4618984 Das Oct 1986 A
4642790 Minshull Feb 1987 A
4653021 Takagi Mar 1987 A
4654875 Srihari Mar 1987 A
4655233 Laughlin Apr 1987 A
4658425 Julstrom Apr 1987 A
4670848 Schramm Jun 1987 A
4677570 Taki Jun 1987 A
4680429 Murdock Jul 1987 A
4680805 Scott Jul 1987 A
4686522 Hernandez Aug 1987 A
4688195 Thompson Aug 1987 A
4692941 Jacks Sep 1987 A
4698625 McCaskill Oct 1987 A
4709390 Atal Nov 1987 A
4713775 Scott Dec 1987 A
4718094 Bahl Jan 1988 A
4724542 Williford Feb 1988 A
4726065 Froessl Feb 1988 A
4727354 Lindsay Feb 1988 A
RE32632 Atkinson Mar 1988 E
4736296 Katayama Apr 1988 A
4750122 Kaji Jun 1988 A
4754489 Bokser Jun 1988 A
4755811 Slavin Jul 1988 A
4759070 Voroba Jul 1988 A
4776016 Hansen Oct 1988 A
4783804 Juang Nov 1988 A
4783807 Marley Nov 1988 A
4785413 Atsumi Nov 1988 A
4790028 Ramage Dec 1988 A
4797930 Goudie Jan 1989 A
4802223 Lin Jan 1989 A
4803729 Baker Feb 1989 A
4807752 Chodorow Feb 1989 A
4811243 Racine Mar 1989 A
4813074 Marcus Mar 1989 A
4819271 Bahl Apr 1989 A
4827518 Feustel May 1989 A
4827520 Zeinstra May 1989 A
4829576 Porter May 1989 A
4829583 Monroe May 1989 A
4831551 Schalk May 1989 A
4833712 Bahl May 1989 A
4833718 Sprague May 1989 A
4837798 Cohen Jun 1989 A
4837831 Gillick Jun 1989 A
4839853 Deerwester Jun 1989 A
4852168 Sprague Jul 1989 A
4862504 Nomura Aug 1989 A
4875187 Smith Oct 1989 A
4878230 Murakami Oct 1989 A
4887212 Zamora Dec 1989 A
4896359 Yamamoto Jan 1990 A
4903305 Gillick Feb 1990 A
4905163 Garber Feb 1990 A
4908867 Silverman Mar 1990 A
4914586 Swinehart Apr 1990 A
4914590 Loatman Apr 1990 A
4918723 Iggulden Apr 1990 A
4926491 Maeda May 1990 A
4928307 Lynn May 1990 A
4931783 Atkinson Jun 1990 A
4935954 Thompson Jun 1990 A
4939639 Lee Jul 1990 A
4941488 Marxer Jul 1990 A
4944013 Gouvianakis Jul 1990 A
4945504 Nakama Jul 1990 A
4953106 Gansner Aug 1990 A
4955047 Morganstein Sep 1990 A
4965763 Zamora Oct 1990 A
4972462 Shibata Nov 1990 A
4974191 Amirghodsi Nov 1990 A
4975975 Filipski Dec 1990 A
4977598 Doddington Dec 1990 A
4980916 Zinser Dec 1990 A
4985924 Matsuura Jan 1991 A
4992972 Brooks Feb 1991 A
4994966 Hutchins Feb 1991 A
4994983 Landell Feb 1991 A
5001774 Lee Mar 1991 A
5003577 Ertz Mar 1991 A
5007095 Nara Apr 1991 A
5007098 Kumagai Apr 1991 A
5010574 Wang Apr 1991 A
5016002 Levanto May 1991 A
5020112 Chou May 1991 A
5021971 Lindsay Jun 1991 A
5022081 Hirose Jun 1991 A
5027110 Chang Jun 1991 A
5027406 Roberts Jun 1991 A
5027408 Kroeker Jun 1991 A
5029211 Ozawa Jul 1991 A
5031217 Nishimura Jul 1991 A
5032989 Tornetta Jul 1991 A
5033087 Bahl Jul 1991 A
5040218 Vitale Aug 1991 A
5046099 Nishimura Sep 1991 A
5047614 Bianco Sep 1991 A
5047617 Shepard Sep 1991 A
5050215 Nishimura Sep 1991 A
5053758 Cornett Oct 1991 A
5054084 Tanaka Oct 1991 A
5057915 Von Kohorn Oct 1991 A
5062143 Schmitt Oct 1991 A
5067158 Arjmand Nov 1991 A
5067503 Stile Nov 1991 A
5072452 Brown Dec 1991 A
5075896 Wilcox Dec 1991 A
5079723 Herceg Jan 1992 A
5083119 Trevett Jan 1992 A
5083268 Hemphill Jan 1992 A
5086792 Chodorow Feb 1992 A
5090012 Kajiyama Feb 1992 A
5091790 Silverberg Feb 1992 A
5091945 Kleijn Feb 1992 A
5103498 Lanier Apr 1992 A
5109509 Katayama Apr 1992 A
5111423 Kopec, Jr. May 1992 A
5119079 Hube Jun 1992 A
5122951 Kamiya Jun 1992 A
5123103 Ohtaki Jun 1992 A
5125022 Hunt Jun 1992 A
5125030 Nomura Jun 1992 A
5127043 Hunt Jun 1992 A
5127053 Koch Jun 1992 A
5127055 Larkey Jun 1992 A
5128672 Kaehler Jul 1992 A
5133011 McKiel, Jr. Jul 1992 A
5133023 Bokser Jul 1992 A
5142584 Ozawa Aug 1992 A
5144875 Nakada Sep 1992 A
5148541 Lee Sep 1992 A
5153913 Kandefer Oct 1992 A
5157610 Asano Oct 1992 A
5157779 Washburn Oct 1992 A
5161102 Griffin Nov 1992 A
5163809 Akgun Nov 1992 A
5164900 Bernath Nov 1992 A
5164982 Davis Nov 1992 A
5165007 Bahl Nov 1992 A
5167004 Netsch Nov 1992 A
5175536 Aschliman Dec 1992 A
5175803 Yeh Dec 1992 A
5175814 Anick Dec 1992 A
5179627 Sweet Jan 1993 A
5179652 Rozmanith Jan 1993 A
5194950 Murakami Mar 1993 A
5195034 Garneau Mar 1993 A
5195167 Bahl Mar 1993 A
5197005 Shwartz Mar 1993 A
5199077 Wilcox Mar 1993 A
5201034 Matsuura Apr 1993 A
5202952 Gillick Apr 1993 A
5208862 Ozawa May 1993 A
5210689 Baker May 1993 A
5212638 Bernath May 1993 A
5212821 Gorin May 1993 A
5216747 Hardwick Jun 1993 A
5218700 Beechick Jun 1993 A
5220629 Kosaka Jun 1993 A
5220639 Lee Jun 1993 A
5220657 Bly Jun 1993 A
5222146 Bahl Jun 1993 A
5230036 Akamine Jul 1993 A
5231670 Goldhor Jul 1993 A
5235680 Bijnagte Aug 1993 A
5237502 White Aug 1993 A
5241619 Schwartz Aug 1993 A
5252951 Tannenbaum Oct 1993 A
5253325 Clark Oct 1993 A
5255386 Prager Oct 1993 A
5257387 Richek Oct 1993 A
5260697 Barrett Nov 1993 A
5266931 Tanaka Nov 1993 A
5266949 Rossi Nov 1993 A
5267345 Brown Nov 1993 A
5268990 Cohen Dec 1993 A
5274771 Hamilton Dec 1993 A
5274818 Vasilevsky Dec 1993 A
5276616 Kuga Jan 1994 A
5276794 Lamb, Jr. Jan 1994 A
5278980 Pedersen Jan 1994 A
5282265 Rohra Suda Jan 1994 A
5283818 Klausner Feb 1994 A
5287448 Nicol Feb 1994 A
5289562 Mizuta Feb 1994 A
RE34562 Murakami Mar 1994 E
5291286 Murakami Mar 1994 A
5293254 Eschbach Mar 1994 A
5293448 Honda Mar 1994 A
5293452 Picone Mar 1994 A
5296642 Konishi Mar 1994 A
5297170 Eyuboglu Mar 1994 A
5297194 Hunt Mar 1994 A
5299125 Baker Mar 1994 A
5299284 Roy Mar 1994 A
5301109 Landauer Apr 1994 A
5303406 Hansen Apr 1994 A
5305205 Weber Apr 1994 A
5305421 Li Apr 1994 A
5305768 Gross Apr 1994 A
5309359 Katz May 1994 A
5315689 Kanazawa May 1994 A
5317507 Gallant May 1994 A
5317647 Pagallo May 1994 A
5325297 Bird Jun 1994 A
5325298 Gallant Jun 1994 A
5325462 Farrett Jun 1994 A
5326270 Ostby Jul 1994 A
5327342 Roy Jul 1994 A
5327498 Hamon Jul 1994 A
5329608 Bocchieri Jul 1994 A
5333236 Bahl Jul 1994 A
5333266 Boaz Jul 1994 A
5333275 Wheatley Jul 1994 A
5335011 Addeo Aug 1994 A
5335276 Thompson Aug 1994 A
5341293 Vertelney Aug 1994 A
5341466 Perlin Aug 1994 A
5345536 Hoshimi Sep 1994 A
5349645 Zhao Sep 1994 A
5353374 Wilson Oct 1994 A
5353376 Oh Oct 1994 A
5353377 Kuroda Oct 1994 A
5353408 Kato Oct 1994 A
5353432 Richek Oct 1994 A
5357431 Nakada Oct 1994 A
5367640 Hamilton Nov 1994 A
5369575 Lamberti Nov 1994 A
5369577 Kadashevich Nov 1994 A
5371853 Kao Dec 1994 A
5371901 Reed Dec 1994 A
5373566 Murdock Dec 1994 A
5377103 Lamberti Dec 1994 A
5377301 Rosenberg Dec 1994 A
5377303 Firman Dec 1994 A
5384671 Fisher Jan 1995 A
5384892 Strong Jan 1995 A
5384893 Hutchins Jan 1995 A
5386494 White Jan 1995 A
5386556 Hedin Jan 1995 A
5390236 Klausner Feb 1995 A
5390279 Strong Feb 1995 A
5390281 Luciw Feb 1995 A
5392419 Walton Feb 1995 A
5396625 Parkes Mar 1995 A
5400434 Pearson Mar 1995 A
5404295 Katz Apr 1995 A
5406305 Shimomura Apr 1995 A
5408060 Muurinen Apr 1995 A
5412756 Bauman May 1995 A
5412804 Krishna May 1995 A
5412806 Du May 1995 A
5418951 Damashek May 1995 A
5422656 Allard Jun 1995 A
5424947 Nagao Jun 1995 A
5425108 Hwang Jun 1995 A
5428731 Powers, III Jun 1995 A
5434777 Luciw Jul 1995 A
5440615 Caccuro Aug 1995 A
5442598 Haikawa Aug 1995 A
5442780 Takanashi Aug 1995 A
5444823 Nguyen Aug 1995 A
5449368 Kuzmak Sep 1995 A
5450523 Zhao Sep 1995 A
5455888 Iyengar Oct 1995 A
5457768 Tsuboi Oct 1995 A
5459488 Geiser Oct 1995 A
5463696 Beernink Oct 1995 A
5463725 Henckel Oct 1995 A
5465401 Thompson Nov 1995 A
5469529 Bimbot Nov 1995 A
5471611 McGregor Nov 1995 A
5473728 Luginbuhl Dec 1995 A
5475587 Anick Dec 1995 A
5475796 Iwata Dec 1995 A
5477447 Luciw Dec 1995 A
5477448 Golding Dec 1995 A
5477451 Brown Dec 1995 A
5479488 Lennig Dec 1995 A
5481739 Staats Jan 1996 A
5483261 Yasutake Jan 1996 A
5485372 Golding Jan 1996 A
5485543 Aso Jan 1996 A
5488204 Mead Jan 1996 A
5488727 Agrawal Jan 1996 A
5490234 Narayan Feb 1996 A
5491758 Bellegarda Feb 1996 A
5491772 Hardwick Feb 1996 A
5493677 Balogh Feb 1996 A
5495604 Harding Feb 1996 A
5497319 Chong Mar 1996 A
5500903 Gulli Mar 1996 A
5500905 Martin Mar 1996 A
5500937 Thompson-Rohrlich Mar 1996 A
5502774 Bellegarda Mar 1996 A
5502790 Yi Mar 1996 A
5502791 Nishimura Mar 1996 A
5515475 Gupta May 1996 A
5521816 Roche May 1996 A
5524140 Klausner Jun 1996 A
5530861 Diamant Jun 1996 A
5533182 Bates Jul 1996 A
5535121 Roche Jul 1996 A
5536902 Serra Jul 1996 A
5537317 Schabes Jul 1996 A
5537618 Boulton Jul 1996 A
5537647 Hermansky Jul 1996 A
5543588 Bisset Aug 1996 A
5543897 Altrieth, III Aug 1996 A
5544264 Bellegarda Aug 1996 A
5548507 Martino Aug 1996 A
5555343 Luther Sep 1996 A
5555344 Zunkler Sep 1996 A
5559301 Bryan, Jr. Sep 1996 A
5559945 Beaudet Sep 1996 A
5564446 Wiltshire Oct 1996 A
5565888 Selker Oct 1996 A
5568536 Tiller Oct 1996 A
5568540 Greco Oct 1996 A
5570324 Geil Oct 1996 A
5572576 Klausner Nov 1996 A
5574823 Hassanein Nov 1996 A
5574824 Slyh Nov 1996 A
5577135 Grajski Nov 1996 A
5577164 Kaneko Nov 1996 A
5577241 Spencer Nov 1996 A
5578808 Taylor Nov 1996 A
5579037 Tahara Nov 1996 A
5579436 Chou Nov 1996 A
5581484 Prince Dec 1996 A
5581652 Abe Dec 1996 A
5581655 Cohen Dec 1996 A
5583993 Foster Dec 1996 A
5584024 Shwartz Dec 1996 A
5586540 Marzec Dec 1996 A
5594641 Kaplan Jan 1997 A
5596260 Moravec Jan 1997 A
5596676 Swaminathan Jan 1997 A
5596994 Bro Jan 1997 A
5608624 Luciw Mar 1997 A
5608698 Yamanoi Mar 1997 A
5608841 Tsuboka Mar 1997 A
5610812 Schabes Mar 1997 A
5613036 Strong Mar 1997 A
5613122 Burnard Mar 1997 A
5615378 Nishino Mar 1997 A
5615384 Allard Mar 1997 A
5616876 Cluts Apr 1997 A
5617386 Choi Apr 1997 A
5617507 Lee Apr 1997 A
5617539 Ludwig Apr 1997 A
5619583 Page Apr 1997 A
5619694 Shimazu Apr 1997 A
5621859 Schwartz Apr 1997 A
5621903 Luciw Apr 1997 A
5627939 Huang May 1997 A
5634084 Malsheen May 1997 A
5636325 Farrett Jun 1997 A
5638425 Meador, III Jun 1997 A
5638489 Tsuboka Jun 1997 A
5638523 Mullet Jun 1997 A
5640487 Lau Jun 1997 A
5642464 Yue Jun 1997 A
5642466 Narayan Jun 1997 A
5642519 Martin Jun 1997 A
5644656 Akra Jul 1997 A
5644727 Atkins Jul 1997 A
5644735 Luciw Jul 1997 A
5649060 Ellozy Jul 1997 A
5652828 Silverman Jul 1997 A
5652884 Palevich Jul 1997 A
5652897 Linebarger Jul 1997 A
5661787 Pocock Aug 1997 A
5664055 Kroon Sep 1997 A
5664206 Murow Sep 1997 A
5670985 Cappels, Sr. Sep 1997 A
5675704 Juang Oct 1997 A
5675819 Schuetze Oct 1997 A
5678039 Hinks Oct 1997 A
5678053 Anderson Oct 1997 A
5682475 Johnson Oct 1997 A
5682539 Conrad Oct 1997 A
5684513 Decker Nov 1997 A
5687077 Gough, Jr. Nov 1997 A
5689287 Mackinlay Nov 1997 A
5689616 Li Nov 1997 A
5689618 Gasper Nov 1997 A
5692205 Berry Nov 1997 A
5696962 Kupiec Dec 1997 A
5697793 Huffman Dec 1997 A
5699082 Marks Dec 1997 A
5701400 Amado Dec 1997 A
5706442 Anderson Jan 1998 A
5708659 Rostoker Jan 1998 A
5708822 Wical Jan 1998 A
5710886 Christensen Jan 1998 A
5710922 Alley Jan 1998 A
5712949 Kato Jan 1998 A
5712957 Waibel Jan 1998 A
5715468 Budzinski Feb 1998 A
5717877 Orton Feb 1998 A
5721827 Logan Feb 1998 A
5721949 Smith Feb 1998 A
5724406 Juster Mar 1998 A
5724985 Snell Mar 1998 A
5726672 Hernandez Mar 1998 A
5727950 Cook Mar 1998 A
5729694 Holzrichter Mar 1998 A
5729704 Stone Mar 1998 A
5732216 Logan Mar 1998 A
5732390 Katayanagi Mar 1998 A
5732395 Alexander Silverman Mar 1998 A
5734750 Arai Mar 1998 A
5734791 Acero Mar 1998 A
5736974 Selker Apr 1998 A
5737487 Bellegarda Apr 1998 A
5737609 Reed Apr 1998 A
5737734 Schultz Apr 1998 A
5739451 Winksy Apr 1998 A
5740143 Suetomi Apr 1998 A
5742705 Parthasarathy Apr 1998 A
5742736 Haddock Apr 1998 A
5745116 Pisutha-Arnond Apr 1998 A
5745843 Wetters Apr 1998 A
5745873 Braida Apr 1998 A
5748512 Vargas May 1998 A
5748974 Johnson May 1998 A
5749071 Silverman May 1998 A
5749081 Whiteis May 1998 A
5751906 Silverman May 1998 A
5757358 Osga May 1998 A
5757979 Hongo May 1998 A
5758024 Alleva May 1998 A
5758079 Ludwig May 1998 A
5758083 Singh May 1998 A
5758314 McKenna May 1998 A
5758318 Kojima May 1998 A
5759101 Von Kohorn Jun 1998 A
5761640 Kalyanswamy Jun 1998 A
5761687 Hon Jun 1998 A
5764852 Williams Jun 1998 A
5765131 Stentiford Jun 1998 A
5765168 Burrows Jun 1998 A
5771276 Wolf Jun 1998 A
5774834 Visser Jun 1998 A
5774855 Foti Jun 1998 A
5774859 Houser Jun 1998 A
5777614 Ando Jul 1998 A
5778405 Ogawa Jul 1998 A
5790978 Olive Aug 1998 A
5794050 Dahlgren Aug 1998 A
5794182 Manduchi Aug 1998 A
5794207 Walker Aug 1998 A
5794237 Gore, Jr. Aug 1998 A
5797008 Burrows Aug 1998 A
5799268 Boguraev Aug 1998 A
5799269 Schabes Aug 1998 A
5799276 Komissarchik Aug 1998 A
5799279 Gould Aug 1998 A
5801692 Muzio Sep 1998 A
5802466 Gallant Sep 1998 A
5802526 Fawcett Sep 1998 A
5806021 Chen Sep 1998 A
5812697 Sakai Sep 1998 A
5812698 Platt Sep 1998 A
5815142 Allard Sep 1998 A
5815225 Nelson Sep 1998 A
5818142 Edleblute Oct 1998 A
5818451 Bertram Oct 1998 A
5818924 King Oct 1998 A
5822288 Shinada Oct 1998 A
5822720 Bookman Oct 1998 A
5822730 Roth Oct 1998 A
5822743 Gupta Oct 1998 A
5825349 Meier Oct 1998 A
5825352 Bisset Oct 1998 A
5825881 Colvin, Sr. Oct 1998 A
5826261 Spencer Oct 1998 A
5828768 Eatwell Oct 1998 A
5828999 Bellegarda Oct 1998 A
5832433 Yashchin Nov 1998 A
5832435 Silverman Nov 1998 A
5833134 Ho Nov 1998 A
5835077 Dao Nov 1998 A
5835079 Shieh Nov 1998 A
5835721 Donahue Nov 1998 A
5835732 Kikinis Nov 1998 A
5835893 Ushioda Nov 1998 A
5839106 Bellegarda Nov 1998 A
5841902 Tu Nov 1998 A
5842165 Raman Nov 1998 A
5845255 Mayaud Dec 1998 A
5848410 Walls Dec 1998 A
5850480 Scanlon Dec 1998 A
5850629 Holm Dec 1998 A
5852801 Hon Dec 1998 A
5854893 Ludwig Dec 1998 A
5855000 Waibel Dec 1998 A
5857184 Lynch Jan 1999 A
5859636 Pandit Jan 1999 A
5860063 Gorin Jan 1999 A
5860064 Henton Jan 1999 A
5860075 Hashizume Jan 1999 A
5862223 Walker Jan 1999 A
5862233 Poletti Jan 1999 A
5864806 Mokbel Jan 1999 A
5864815 Rozak Jan 1999 A
5864844 James Jan 1999 A
5864855 Ruocco Jan 1999 A
5864868 Contois Jan 1999 A
5867799 Lang Feb 1999 A
5870710 Ozawa Feb 1999 A
5873056 Liddy Feb 1999 A
5873064 De Armas Feb 1999 A
5875427 Yamazaki Feb 1999 A
5875429 Douglas Feb 1999 A
5875437 Atkins Feb 1999 A
5876396 Lo Mar 1999 A
5877751 Kanemitsu Mar 1999 A
5877757 Baldwin Mar 1999 A
5878393 Hata Mar 1999 A
5878394 Muhling Mar 1999 A
5878396 Henton Mar 1999 A
5880411 Gillespie Mar 1999 A
5880731 Liles Mar 1999 A
5884039 Ludwig Mar 1999 A
5884323 Hawkins Mar 1999 A
5890117 Silverman Mar 1999 A
5890122 Van Kleeck Mar 1999 A
5891180 Greeninger Apr 1999 A
5893126 Drews Apr 1999 A
5893132 Huffman Apr 1999 A
5895448 Vysotsky Apr 1999 A
5895464 Bhandari Apr 1999 A
5895466 Goldberg Apr 1999 A
5896321 Miller Apr 1999 A
5896500 Ludwig Apr 1999 A
5899972 Miyazawa May 1999 A
5905498 Diament May 1999 A
5907597 Mark May 1999 A
5909666 Gould Jun 1999 A
5912951 Checchio Jun 1999 A
5912952 Brendzel Jun 1999 A
5913185 Martino Jun 1999 A
5913193 Huang Jun 1999 A
5915001 Uppaluru Jun 1999 A
5915236 Gould Jun 1999 A
5915238 Tjaden Jun 1999 A
5915249 Spencer Jun 1999 A
5917487 Ulrich Jun 1999 A
5918303 Yamaura Jun 1999 A
5920327 Seidensticker, Jr. Jul 1999 A
5920836 Gould Jul 1999 A
5920837 Gould Jul 1999 A
5923757 Hocker Jul 1999 A
5924068 Richard Jul 1999 A
5926769 Valimaa Jul 1999 A
5926789 Barbara Jul 1999 A
5930408 Seto Jul 1999 A
5930751 Cohrs Jul 1999 A
5930754 Karaali Jul 1999 A
5930769 Rose Jul 1999 A
5930783 Li Jul 1999 A
5933477 Wu Aug 1999 A
5933806 Beyerlein Aug 1999 A
5933822 Braden-Harder Aug 1999 A
5936926 Yokouchi Aug 1999 A
5937163 Lee Aug 1999 A
5940811 Norris Aug 1999 A
5940841 Schmuck Aug 1999 A
5941944 Messerly Aug 1999 A
5943043 Furuhata Aug 1999 A
5943049 Matsubara Aug 1999 A
5943052 Allen Aug 1999 A
5943429 Handel Aug 1999 A
5943443 Itonori Aug 1999 A
5943670 Prager Aug 1999 A
5946647 Miller Aug 1999 A
5946648 Halstead, Jr. Aug 1999 A
5948040 DeLorme Sep 1999 A
5949961 Sharman Sep 1999 A
5950123 Schwelb Sep 1999 A
5952992 Helms Sep 1999 A
5953541 King Sep 1999 A
5956021 Kubota Sep 1999 A
5956699 Wong Sep 1999 A
5960385 Skiena Sep 1999 A
5960394 Gould Sep 1999 A
5960422 Prasad Sep 1999 A
5963208 Dolan Oct 1999 A
5963924 Williams Oct 1999 A
5963964 Nielsen Oct 1999 A
5966126 Szabo Oct 1999 A
5970446 Goldberg Oct 1999 A
5970474 LeRoy Oct 1999 A
5973612 Deo Oct 1999 A
5973676 Kawakura Oct 1999 A
5974146 Randle Oct 1999 A
5977950 Rhyne Nov 1999 A
5982352 Pryor Nov 1999 A
5982370 Kamper Nov 1999 A
5982891 Ginter Nov 1999 A
5982902 Terano Nov 1999 A
5983179 Gould Nov 1999 A
5983184 Noguchi Nov 1999 A
5983216 Kirsch Nov 1999 A
5987132 Rowney Nov 1999 A
5987140 Rowney Nov 1999 A
5987401 Trudeau Nov 1999 A
5987404 Della Pietra Nov 1999 A
5987440 O'Neil Nov 1999 A
5990887 Redpath Nov 1999 A
5991441 Jourjine Nov 1999 A
5995460 Takagi Nov 1999 A
5995590 Brunet Nov 1999 A
5995918 Kendall Nov 1999 A
5998972 Gong Dec 1999 A
5999169 Lee Dec 1999 A
5999895 Forest Dec 1999 A
5999908 Abelow Dec 1999 A
5999927 Tukey Dec 1999 A
6005495 Connolly Dec 1999 A
6006274 Hawkins Dec 1999 A
6009237 Hirabayashi Dec 1999 A
6011585 Anderson Jan 2000 A
6014428 Wolf Jan 2000 A
6016471 Kuhn Jan 2000 A
6017219 Adams, Jr. Jan 2000 A
6018705 Gaudet Jan 2000 A
6018711 French-St. George Jan 2000 A
6020881 Naughton Feb 2000 A
6023536 Visser Feb 2000 A
6023676 Erell Feb 2000 A
6023684 Pearson Feb 2000 A
6024288 Gottlich Feb 2000 A
6026345 Shah Feb 2000 A
6026375 Hall Feb 2000 A
6026388 Liddy Feb 2000 A
6026393 Gupta Feb 2000 A
6029132 Kuhn Feb 2000 A
6029135 Krasle Feb 2000 A
6035267 Watanabe Mar 2000 A
6035303 Baer Mar 2000 A
6035336 Lu Mar 2000 A
6038533 Buchsbaum Mar 2000 A
6040824 Maekawa Mar 2000 A
6041023 Lakhansingh Mar 2000 A
6047255 Williamson Apr 2000 A
6047300 Walfish Apr 2000 A
6052654 Gaudet Apr 2000 A
6052656 Suda Apr 2000 A
6054990 Tran Apr 2000 A
6055514 Wren Apr 2000 A
6055531 Bennett Apr 2000 A
6061646 Martino May 2000 A
6064767 Muir May 2000 A
6064951 Park May 2000 A
6064959 Young May 2000 A
6064960 Bellegarda May 2000 A
6064963 Gainsboro May 2000 A
6067519 Lowry May 2000 A
6069648 Suso May 2000 A
6070138 Iwata May 2000 A
6070139 Miyazawa May 2000 A
6070140 Tran May 2000 A
6070147 Harms May 2000 A
6073033 Campo Jun 2000 A
6073036 Heikkinen Jun 2000 A
6073091 Kanevsky Jun 2000 A
6073097 Gould Jun 2000 A
6076051 Messerly Jun 2000 A
6076060 Lin Jun 2000 A
6076088 Paik Jun 2000 A
6078885 Beutnagel Jun 2000 A
6078914 Redfern Jun 2000 A
6081750 Hoffberg Jun 2000 A
6081774 de Hita Jun 2000 A
6081780 Lumelsky Jun 2000 A
6085204 Chijiwa Jul 2000 A
6088671 Gould Jul 2000 A
6088731 Kiraly Jul 2000 A
6092036 Hamann Jul 2000 A
6092038 Kanevsky Jul 2000 A
6092043 Squires Jul 2000 A
6094649 Bowen Jul 2000 A
6097391 Wilcox Aug 2000 A
6101468 Gould Aug 2000 A
6101470 Eide Aug 2000 A
6105865 Hardesty Aug 2000 A
6108627 Sabourin Aug 2000 A
6108640 Slotznick Aug 2000 A
6111562 Downs Aug 2000 A
6111572 Blair Aug 2000 A
6115686 Chung Sep 2000 A
6116907 Baker Sep 2000 A
6119101 Peckover Sep 2000 A
6121960 Carroll Sep 2000 A
6122340 Darley Sep 2000 A
6122614 Kahn Sep 2000 A
6122616 Henton Sep 2000 A
6122647 Horowitz Sep 2000 A
6125284 Moore Sep 2000 A
6125346 Nishimura Sep 2000 A
6125356 Brockman Sep 2000 A
6129582 Wilhite Oct 2000 A
6138098 Shieber Oct 2000 A
6138158 Boyle Oct 2000 A
6141642 Oh Oct 2000 A
6141644 Kuhn Oct 2000 A
6144377 Oppermann Nov 2000 A
6144380 Shwarts Nov 2000 A
6144938 Surace Nov 2000 A
6144939 Pearson Nov 2000 A
6151401 Annaratone Nov 2000 A
6154551 Frenkel Nov 2000 A
6154720 Onishi Nov 2000 A
6157935 Tran Dec 2000 A
6161084 Messerly Dec 2000 A
6161087 Wightman Dec 2000 A
6161944 Leman Dec 2000 A
6163769 Acero Dec 2000 A
6163809 Buckley Dec 2000 A
6167369 Schulze Dec 2000 A
6169538 Nowlan Jan 2001 B1
6172948 Keller Jan 2001 B1
6173194 Vanttila Jan 2001 B1
6173251 Ito Jan 2001 B1
6173261 Arai Jan 2001 B1
6173263 Conkie Jan 2001 B1
6173279 Levin Jan 2001 B1
6177905 Welch Jan 2001 B1
6177931 Alexander Jan 2001 B1
6179432 Zhang Jan 2001 B1
6182028 Karaali Jan 2001 B1
6182099 Nakasato Jan 2001 B1
6185533 Holm Feb 2001 B1
6188391 Seely Feb 2001 B1
6188967 Kurtzberg Feb 2001 B1
6188999 Moody Feb 2001 B1
6191939 Burnett Feb 2001 B1
6192253 Charlier Feb 2001 B1
6192340 Abecassis Feb 2001 B1
6195641 Loring Feb 2001 B1
6199076 Logan Mar 2001 B1
6205456 Nakao Mar 2001 B1
6208044 Viswanadham Mar 2001 B1
6208932 Ohmura Mar 2001 B1
6208956 Motoyama Mar 2001 B1
6208964 Sabourin Mar 2001 B1
6208967 Pauws Mar 2001 B1
6208971 Bellegarda Mar 2001 B1
6212564 Harter Apr 2001 B1
6216102 Martino Apr 2001 B1
6216131 Liu Apr 2001 B1
6217183 Shipman Apr 2001 B1
6222347 Gong Apr 2001 B1
6226403 Parthasarathy May 2001 B1
6226533 Akahane May 2001 B1
6226614 Mizuno May 2001 B1
6226655 Borman May 2001 B1
6230322 Saib May 2001 B1
6232539 Looney May 2001 B1
6232966 Kurlander May 2001 B1
6233545 Datig May 2001 B1
6233547 Denber May 2001 B1
6233559 Balakrishnan May 2001 B1
6233578 Machihara May 2001 B1
6237025 Ludwig May 2001 B1
6240303 Katzur May 2001 B1
6243681 Guji Jun 2001 B1
6246981 Papineni Jun 2001 B1
6248946 Dwek Jun 2001 B1
6249606 Kiraly Jun 2001 B1
6259436 Moon Jul 2001 B1
6259826 Pollard Jul 2001 B1
6260011 Heckerman Jul 2001 B1
6260013 Sejnoha Jul 2001 B1
6260016 Holm Jul 2001 B1
6260024 Shkedy Jul 2001 B1
6266098 Cove Jul 2001 B1
6266637 Donovan Jul 2001 B1
6268859 Andresen Jul 2001 B1
6269712 Zentmyer Aug 2001 B1
6271835 Hoeksma Aug 2001 B1
6272456 de Campos Aug 2001 B1
6272464 Kiraz Aug 2001 B1
6275795 Tzirkel-Hancock Aug 2001 B1
6275824 O'Flaherty Aug 2001 B1
6278443 Amro Aug 2001 B1
6278970 Milner Aug 2001 B1
6282507 Horiguchi Aug 2001 B1
6282511 Mayer Aug 2001 B1
6285785 Bellegarda Sep 2001 B1
6285786 Seni Sep 2001 B1
6289085 Miyashita Sep 2001 B1
6289124 Okamoto Sep 2001 B1
6289301 Higginbotham Sep 2001 B1
6289353 Hazlehurst Sep 2001 B1
6292772 Kantrowitz Sep 2001 B1
6292778 Sukkar Sep 2001 B1
6295390 Kobayashi Sep 2001 B1
6295541 Bodnar Sep 2001 B1
6297818 Ulrich Oct 2001 B1
6298314 Blackadar Oct 2001 B1
6298321 Karlov Oct 2001 B1
6300947 Kanevsky Oct 2001 B1
6304844 Pan Oct 2001 B1
6304846 George Oct 2001 B1
6307548 Flinchem Oct 2001 B1
6308149 Gaussier Oct 2001 B1
6310610 Beaton Oct 2001 B1
6311152 Bai Oct 2001 B1
6311157 Strong Oct 2001 B1
6311189 deVries Oct 2001 B1
6317237 Nakao Nov 2001 B1
6317594 Gossman Nov 2001 B1
6317707 Bangalore Nov 2001 B1
6317831 King Nov 2001 B1
6321092 Fitch Nov 2001 B1
6321179 Glance Nov 2001 B1
6323846 Westerman Nov 2001 B1
6324499 Lewis Nov 2001 B1
6324502 Handel Nov 2001 B1
6324512 Junqua Nov 2001 B1
6324514 Matulich Nov 2001 B2
6330538 Breen Dec 2001 B1
6331867 Eberhard Dec 2001 B1
6332175 Birrell Dec 2001 B1
6334103 Surace Dec 2001 B1
6335722 Tani Jan 2002 B1
6336365 Blackadar Jan 2002 B1
6336727 Kim Jan 2002 B1
6340937 Stepita-Klauco Jan 2002 B1
6341316 Kloba Jan 2002 B1
6343267 Kuhn Jan 2002 B1
6345240 Havens Feb 2002 B1
6345250 Martin Feb 2002 B1
6351522 Vitikainen Feb 2002 B1
6351762 Ludwig Feb 2002 B1
6353442 Masui Mar 2002 B1
6353794 Davis Mar 2002 B1
6356287 Ruberry Mar 2002 B1
6356854 Schubert Mar 2002 B1
6356864 Foltz Mar 2002 B1
6356905 Gershman Mar 2002 B1
6357147 Darley Mar 2002 B1
6359572 Vale Mar 2002 B1
6359970 Burgess Mar 2002 B1
6360227 Aggarwal Mar 2002 B1
6360237 Schulz Mar 2002 B1
6363348 Besling Mar 2002 B1
6366883 Campbell Apr 2002 B1
6366884 Bellegarda Apr 2002 B1
6374217 Bellegarda Apr 2002 B1
6374226 Hunt Apr 2002 B1
6377530 Burrows Apr 2002 B1
6377925 Greene, Jr. Apr 2002 B1
6377928 Saxena Apr 2002 B1
6381593 Yano Apr 2002 B1
6385586 Dietz May 2002 B1
6385662 Moon May 2002 B1
6389114 Dowens May 2002 B1
6397183 Baba May 2002 B1
6397186 Bush May 2002 B1
6400806 Uppaluru Jun 2002 B1
6400996 Hoffberg Jun 2002 B1
6401065 Kanevsky Jun 2002 B1
6401085 Gershman Jun 2002 B1
6405169 Kondo Jun 2002 B1
6405238 Votipka Jun 2002 B1
6408272 White Jun 2002 B1
6411924 de Hita Jun 2002 B1
6411932 Molnar Jun 2002 B1
6415250 van den Akker Jul 2002 B1
6417873 Fletcher Jul 2002 B1
6421305 Gioscia Jul 2002 B1
6421672 McAllister Jul 2002 B1
6421707 Miller Jul 2002 B1
6424944 Hikawa Jul 2002 B1
6430531 Polish Aug 2002 B1
6430551 Thelen Aug 2002 B1
6434522 Tsuboka Aug 2002 B1
6434524 Weber Aug 2002 B1
6434529 Walker Aug 2002 B1
6434604 Harada Aug 2002 B1
6437818 Ludwig Aug 2002 B1
6438523 Oberteuffer Aug 2002 B1
6442518 Van Thong Aug 2002 B1
6442523 Siegel Aug 2002 B1
6446076 Burkey Sep 2002 B1
6448485 Barile Sep 2002 B1
6448986 Smith Sep 2002 B1
6449620 Draper Sep 2002 B1
6453281 Walters Sep 2002 B1
6453292 Ramaswamy Sep 2002 B2
6453312 Goiffon Sep 2002 B1
6453315 Weissman Sep 2002 B1
6456616 Rantanen Sep 2002 B1
6456972 Gladstein Sep 2002 B1
6460015 Hetherington Oct 2002 B1
6460029 Fries Oct 2002 B1
6462778 Abram Oct 2002 B1
6463128 Elwin Oct 2002 B1
6463413 Applebaum Oct 2002 B1
6466654 Cooper Oct 2002 B1
6467924 Shipman Oct 2002 B2
6469712 Hilpert, Jr. Oct 2002 B1
6469722 Kinoe Oct 2002 B1
6469732 Chang Oct 2002 B1
6470347 Gillam Oct 2002 B1
6473630 Baranowski Oct 2002 B1
6473754 Matsubayashi Oct 2002 B1
6477488 Bellegarda Nov 2002 B1
6477494 Hyde-Thomson Nov 2002 B2
6487533 Hyde-Thomson Nov 2002 B2
6487534 Thelen Nov 2002 B1
6487663 Jaisimha Nov 2002 B1
6489951 Wong Dec 2002 B1
6490547 Atkin Dec 2002 B1
6490560 Ramaswamy Dec 2002 B1
6493006 Gourdol Dec 2002 B1
6493428 Hillier Dec 2002 B1
6493652 Ohlenbusch Dec 2002 B1
6493667 de Souza Dec 2002 B1
6499013 Weber Dec 2002 B1
6499014 Chihara Dec 2002 B1
6499016 Anderson Dec 2002 B1
6501937 Ho Dec 2002 B1
6502194 Berman Dec 2002 B1
6505158 Conkie Jan 2003 B1
6505175 Silverman Jan 2003 B1
6505183 Loofbourrow Jan 2003 B1
6507829 Richards Jan 2003 B1
6510406 Marchisio Jan 2003 B1
6510412 Sasai Jan 2003 B1
6510417 Woods Jan 2003 B1
6513006 Howard Jan 2003 B2
6513008 Pearson Jan 2003 B2
6513063 Julia Jan 2003 B1
6519565 Clements Feb 2003 B1
6519566 Boyer Feb 2003 B1
6523026 Gillis Feb 2003 B1
6523061 Halverson Feb 2003 B1
6523172 Martinez-Guerra Feb 2003 B1
6526351 Whitham Feb 2003 B2
6526382 Yuschik Feb 2003 B1
6526395 Morris Feb 2003 B1
6529592 Khan Mar 2003 B1
6529608 Gersabeck Mar 2003 B2
6532444 Weber Mar 2003 B1
6532446 King Mar 2003 B1
6535610 Stewart Mar 2003 B1
6535852 Eide Mar 2003 B2
6535983 McCormack Mar 2003 B1
6536139 Darley Mar 2003 B2
6538665 Crow Mar 2003 B2
6542171 Satou Apr 2003 B1
6542584 Sherwood Apr 2003 B1
6542868 Badt Apr 2003 B1
6546262 Freadman Apr 2003 B1
6546367 Otsuka Apr 2003 B2
6546388 Edlund Apr 2003 B1
6549497 Miyamoto Apr 2003 B2
6553343 Kagoshima Apr 2003 B1
6553344 Bellegarda Apr 2003 B2
6556971 Rigsby Apr 2003 B1
6556983 Altschuler Apr 2003 B1
6560903 Darley May 2003 B1
6563769 Van Der Meulen May 2003 B1
6564186 Kiraly May 2003 B1
6567549 Marianetti, II May 2003 B1
6570557 Westerman May 2003 B1
6570596 Frederiksen May 2003 B2
6582342 Kaufman Jun 2003 B2
6583806 Ludwig Jun 2003 B2
6584464 Warthen Jun 2003 B1
6587403 Keller Jul 2003 B1
6587404 Keller Jul 2003 B1
6590303 Austin Jul 2003 B1
6591379 LeVine Jul 2003 B1
6594673 Smith Jul 2003 B1
6594688 Ludwig Jul 2003 B2
6597345 Hirshberg Jul 2003 B2
6598021 Shambaugh Jul 2003 B1
6598022 Yuschik Jul 2003 B2
6598039 Livowsky Jul 2003 B1
6598054 Schuetze Jul 2003 B2
6601026 Appelt Jul 2003 B2
6601234 Bowman-Amuah Jul 2003 B1
6603837 Kesanupalli Aug 2003 B1
6604059 Strubbe Aug 2003 B2
6606101 Malamud Aug 2003 B1
6606388 Townsend Aug 2003 B1
6606632 Saulpaugh Aug 2003 B1
6611789 Darley Aug 2003 B1
6615172 Bennett Sep 2003 B1
6615175 Gazdzinski Sep 2003 B1
6615176 Lewis Sep 2003 B2
6615220 Austin Sep 2003 B1
6621768 Keller Sep 2003 B1
6621892 Banister Sep 2003 B1
6622121 Crepy Sep 2003 B1
6622136 Russell Sep 2003 B2
6623529 Lakritz Sep 2003 B1
6625583 Silverman Sep 2003 B1
6628808 Bach Sep 2003 B1
6631186 Adams Oct 2003 B1
6631346 Karaorman Oct 2003 B1
6633741 Posa Oct 2003 B1
6633846 Bennett Oct 2003 B1
6633932 Bork Oct 2003 B1
6642940 Dakss Nov 2003 B1
6643401 Kashioka Nov 2003 B1
6643824 Bates Nov 2003 B1
6647260 Dusse Nov 2003 B2
6650735 Burton Nov 2003 B2
6651042 Field Nov 2003 B1
6651218 Adler Nov 2003 B1
6654740 Tokuda Nov 2003 B2
6658389 Alpdemir Dec 2003 B1
6658408 Yano Dec 2003 B2
6658577 Huppi Dec 2003 B2
6661438 Shiraishi Dec 2003 B1
6662023 Helle Dec 2003 B1
6665639 Mozer Dec 2003 B2
6665640 Bennett Dec 2003 B1
6665641 Coorman Dec 2003 B1
6671672 Heck Dec 2003 B1
6671683 Kanno Dec 2003 B2
6671856 Gillam Dec 2003 B1
6675169 Bennett Jan 2004 B1
6675233 Du Jan 2004 B1
6677932 Westerman Jan 2004 B1
6680675 Suzuki Jan 2004 B1
6684187 Conkie Jan 2004 B1
6684376 Kerzman Jan 2004 B1
6690387 Zimmerman Feb 2004 B2
6690800 Resnick Feb 2004 B2
6690828 Meyers Feb 2004 B2
6691064 Vroman Feb 2004 B2
6691090 Laurila Feb 2004 B1
6691111 Lazaridis Feb 2004 B2
6691151 Cheyer Feb 2004 B1
6694295 Lindholm Feb 2004 B2
6694297 Sato Feb 2004 B2
6697777 Ho et al. Feb 2004 B1
6697780 Beutnagel Feb 2004 B1
6697824 Bowman-Amuah Feb 2004 B1
6701294 Ball Mar 2004 B1
6701305 Holt Mar 2004 B1
6701318 Fox Mar 2004 B2
6704015 Bovarnick Mar 2004 B1
6704034 Rodriguez Mar 2004 B1
6704698 Paulsen, Jr. Mar 2004 B1
6704710 Strong Mar 2004 B2
6708153 Brittan Mar 2004 B2
6711585 Copperman Mar 2004 B1
6714221 Christie Mar 2004 B1
6716139 Hosseinzadeh-Dolkhani Apr 2004 B1
6718324 Edlund Apr 2004 B2
6718331 Davis Apr 2004 B2
6720980 Lui Apr 2004 B1
6721728 McGreevy Apr 2004 B2
6721734 Subasic Apr 2004 B1
6724370 Dutta Apr 2004 B2
6725197 Wuppermann Apr 2004 B1
6728675 Maddalozzo, Jr. Apr 2004 B1
6728681 Whitham Apr 2004 B2
6728729 Jawa Apr 2004 B1
6731312 Robbin May 2004 B2
6732142 Bates May 2004 B1
6735562 Zhang May 2004 B1
6735632 Kiraly May 2004 B1
6738738 Henton May 2004 B2
6738742 Badt May 2004 B2
6741264 Lesser May 2004 B1
6742021 Halverson May 2004 B1
6751592 Shiga Jun 2004 B1
6751595 Busayapongchai Jun 2004 B2
6751621 Calistri-Yeh Jun 2004 B1
6754504 Reed Jun 2004 B1
6757362 Cooper Jun 2004 B1
6757365 Bogard Jun 2004 B1
6757646 Marchisio Jun 2004 B2
6757653 Buth Jun 2004 B2
6757718 Halverson Jun 2004 B1
6760412 Loucks Jul 2004 B1
6760700 Lewis Jul 2004 B2
6760754 Isaacs Jul 2004 B1
6762741 Weindorf Jul 2004 B2
6762777 Carroll Jul 2004 B2
6763089 Feigenbaum Jul 2004 B2
6766294 MacGinite Jul 2004 B2
6766295 Murveit Jul 2004 B1
6766320 Wang Jul 2004 B1
6766324 Carlson Jul 2004 B2
6768979 Menendez-Pidal Jul 2004 B1
6771982 Toupin Aug 2004 B1
6772123 Cooklev Aug 2004 B2
6772195 Hatlelid Aug 2004 B1
6772394 Kamada Aug 2004 B1
6775358 Breitenbach Aug 2004 B1
6778951 Contractor Aug 2004 B1
6778952 Bellegarda Aug 2004 B2
6778962 Kasai Aug 2004 B1
6778970 Au Aug 2004 B2
6778979 Grefenstette Aug 2004 B2
6782510 Gross Aug 2004 B1
6784901 Harvey Aug 2004 B1
6789094 Rudoff Sep 2004 B2
6789231 Reynar Sep 2004 B1
6790704 Doyle Sep 2004 B2
6792082 Levine Sep 2004 B1
6792083 Dams Sep 2004 B2
6792086 Saylor Sep 2004 B1
6792407 Kibre Sep 2004 B2
6794566 Pachet Sep 2004 B2
6795059 Endo Sep 2004 B2
6799226 Robbin Sep 2004 B1
6801604 Maes Oct 2004 B2
6801964 Mahdavi Oct 2004 B1
6803905 Capps Oct 2004 B1
6804649 Miranda Oct 2004 B2
6804677 Shadmon Oct 2004 B2
6807536 Achlioptas Oct 2004 B2
6807574 Partovi Oct 2004 B1
6809724 Shiraishi Oct 2004 B1
6810379 Vermeulen Oct 2004 B1
6813218 Antonelli Nov 2004 B1
6813491 McKinney Nov 2004 B1
6813607 Faruquie Nov 2004 B1
6816578 Kredo Nov 2004 B1
6820055 Saindon Nov 2004 B2
6829018 Lin Dec 2004 B2
6829603 Chai Dec 2004 B1
6832194 Mozer Dec 2004 B1
6832381 Mathur Dec 2004 B1
6836651 Segal Dec 2004 B2
6836760 Bellegarda Dec 2004 B1
6839464 Hawkins Jan 2005 B2
6839669 Gould Jan 2005 B1
6839670 Stammler Jan 2005 B1
6839742 Dyer Jan 2005 B1
6842767 Partovi Jan 2005 B1
6847966 Sommer Jan 2005 B1
6847979 Allemang Jan 2005 B2
6850775 Berg Feb 2005 B1
6850887 Epstein Feb 2005 B2
6851115 Cheyer Feb 2005 B1
6856259 Sharp Feb 2005 B1
6857800 Zhang Feb 2005 B2
6859931 Cheyer Feb 2005 B1
6862568 Case Mar 2005 B2
6862710 Marchisio Mar 2005 B1
6862713 Kraft Mar 2005 B1
6865533 Addison Mar 2005 B2
6868045 Schroder Mar 2005 B1
6868385 Gerson Mar 2005 B1
6870529 Davis Mar 2005 B1
6871346 Kumbalimutt Mar 2005 B1
6873953 Lennig Mar 2005 B1
6873986 McConnell Mar 2005 B2
6876947 Darley Apr 2005 B1
6877003 Ho Apr 2005 B2
6879957 Pechter Apr 2005 B1
6882335 Saarinen Apr 2005 B2
6882337 Shetter Apr 2005 B2
6882747 Thawonmas Apr 2005 B2
6882955 Ohlenbusch Apr 2005 B1
6882971 Craner Apr 2005 B2
6885734 Eberle Apr 2005 B1
6889361 Bates May 2005 B1
6895084 Saylor May 2005 B1
6895257 Boman May 2005 B2
6895380 Sepe, Jr. May 2005 B2
6895558 Loveland May 2005 B1
6898550 Blackadar May 2005 B1
6901364 Nguyen May 2005 B2
6901399 Corston May 2005 B1
6904405 Suominen Jun 2005 B2
6907112 Guedalia Jun 2005 B1
6907140 Matsugu Jun 2005 B2
6910004 Tarbouriech Jun 2005 B2
6910007 Stylianou Jun 2005 B2
6910012 Hartley Jun 2005 B2
6910186 Kim Jun 2005 B2
6911971 Suzuki Jun 2005 B2
6912407 Clarke Jun 2005 B1
6912498 Stevens Jun 2005 B2
6912499 Sabourin Jun 2005 B1
6915138 Kraft Jul 2005 B2
6915246 Gusler Jul 2005 B2
6915294 Singh Jul 2005 B1
6917373 Vong Jul 2005 B2
6918677 Shipman Jul 2005 B2
6924828 Hirsch Aug 2005 B1
6925438 Mohamed Aug 2005 B2
6928149 Panjwani Aug 2005 B1
6928614 Everhart Aug 2005 B1
6931255 Mekuria Aug 2005 B2
6931384 Horvitz Aug 2005 B1
6932708 Yamashita Aug 2005 B2
6933928 Lilienthal Aug 2005 B1
6934394 Anderson Aug 2005 B1
6934684 Alpdemir Aug 2005 B2
6934756 Maes Aug 2005 B2
6934812 Robbin Aug 2005 B1
6937975 Elworthy Aug 2005 B1
6937986 Denenberg Aug 2005 B2
6944593 Kuzunuki Sep 2005 B2
6944846 Ryzhov Sep 2005 B2
6948094 Schultz Sep 2005 B2
6950087 Knox Sep 2005 B2
6950502 Jenkins Sep 2005 B1
6952799 Edwards Oct 2005 B2
6954755 Reisman Oct 2005 B2
6954899 Anderson Oct 2005 B1
6956845 Baker Oct 2005 B2
6957076 Hunzinger Oct 2005 B2
6957183 Malayath Oct 2005 B2
6960734 Park Nov 2005 B1
6961699 Kahn Nov 2005 B1
6961912 Aoki Nov 2005 B2
6963759 Gerson Nov 2005 B1
6963841 Handal Nov 2005 B2
6964023 Maes Nov 2005 B2
6965376 Tani Nov 2005 B2
6965863 Zuberec Nov 2005 B1
6968311 Knockeart Nov 2005 B2
6970820 Junqua Nov 2005 B2
6970881 Mohan Nov 2005 B1
6970915 Partovi Nov 2005 B1
6970935 Maes Nov 2005 B1
6976090 Ben-Shaul Dec 2005 B2
6978127 Bulthuis Dec 2005 B1
6978239 Chu Dec 2005 B2
6980949 Ford Dec 2005 B2
6980953 Kanevsky Dec 2005 B1
6980955 Okutani Dec 2005 B2
6983251 Umemoto Jan 2006 B1
6985858 Frey Jan 2006 B2
6985865 Packingham Jan 2006 B1
6985958 Lucovsky Jan 2006 B2
6988063 Tokuda Jan 2006 B2
6988071 Gazdzinski Jan 2006 B1
6990450 Case Jan 2006 B2
6996520 Levin Feb 2006 B2
6996531 Korall Feb 2006 B2
6996575 Cox Feb 2006 B2
6999066 Litwiller Feb 2006 B2
6999914 Boerner Feb 2006 B1
6999925 Fischer Feb 2006 B2
6999927 Mozer Feb 2006 B2
7000189 Dutta Feb 2006 B2
7002556 Tsukada Feb 2006 B2
7003099 Zhang Feb 2006 B1
7003463 Maes et al. Feb 2006 B1
7003522 Reynar Feb 2006 B1
7006969 Atal Feb 2006 B2
7006973 Genly Feb 2006 B1
7007026 Wilkinson Feb 2006 B2
7007239 Hawkins Feb 2006 B1
7010581 Brown Mar 2006 B2
7013289 Horn Mar 2006 B2
7013308 Tunstall-Pedoe Mar 2006 B1
7013429 Fujimoto Mar 2006 B2
7015894 Morohoshi Mar 2006 B2
7020685 Chen Mar 2006 B1
7024363 Comerford Apr 2006 B1
7024364 Guerra Apr 2006 B2
7024366 Deyoe Apr 2006 B1
7024460 Koopmas Apr 2006 B2
7027568 Simpson Apr 2006 B1
7027974 Busch Apr 2006 B1
7027990 Sussman Apr 2006 B2
7028252 Baru Apr 2006 B1
7030861 Westerman Apr 2006 B1
7031530 Driggs Apr 2006 B2
7031909 Mao Apr 2006 B2
7035794 Sirivara Apr 2006 B2
7035801 Jimenez-Feltstrom Apr 2006 B2
7035807 Brittain Apr 2006 B1
7036128 Julia Apr 2006 B1
7036681 Suda May 2006 B2
7038659 Rajkowski May 2006 B2
7039588 Okutani May 2006 B2
7043420 Ratnaparkhi May 2006 B2
7043422 Gao May 2006 B2
7046230 Zadesky May 2006 B2
7046850 Braspenning May 2006 B2
7047193 Bellegarda May 2006 B1
7050550 Steinbiss May 2006 B2
7050976 Packingham May 2006 B1
7050977 Bennett May 2006 B1
7051096 Krawiec May 2006 B1
7054419 Culliss May 2006 B2
7054888 LaChapelle May 2006 B2
7057607 Mayoraz Jun 2006 B2
7058569 Coorman Jun 2006 B2
7058888 Gjerstad Jun 2006 B1
7058889 Trovato Jun 2006 B2
7062223 Gerber Jun 2006 B2
7062225 White Jun 2006 B2
7062428 Hogenhout Jun 2006 B2
7062438 Kobayashi Jun 2006 B2
7065185 Koch Jun 2006 B1
7065485 Chong-White Jun 2006 B1
7069213 Thompson Jun 2006 B2
7069220 Coffman Jun 2006 B2
7069560 Cheyer Jun 2006 B1
7072686 Schrager Jul 2006 B1
7072941 Griffin Jul 2006 B2
7076527 Bellegarda Jul 2006 B2
7079713 Simmons Jul 2006 B2
7082322 Harano Jul 2006 B2
7084758 Cole Aug 2006 B1
7084856 Huppi Aug 2006 B2
7085723 Ross Aug 2006 B2
7085960 Bouat Aug 2006 B2
7088345 Robinson Aug 2006 B2
7089292 Roderick Aug 2006 B1
7092370 Jiang Aug 2006 B2
7092887 Mozer Aug 2006 B2
7092928 Elad Aug 2006 B1
7092950 Wong Aug 2006 B2
7093693 Gazdzinski Aug 2006 B1
7095733 Yarlagadda Aug 2006 B1
7096183 Junqua Aug 2006 B2
7100117 Chwa Aug 2006 B1
7103548 Squibbs Sep 2006 B2
7107204 Liu Sep 2006 B1
7111248 Mulvey Sep 2006 B2
7111774 Song Sep 2006 B2
7113803 Dehlin Sep 2006 B2
7113943 Bradford Sep 2006 B2
7115035 Tanaka Oct 2006 B2
7117231 Fischer Oct 2006 B2
7120865 Horvitz Oct 2006 B1
7123696 Lowe Oct 2006 B2
7124081 Bellegarda Oct 2006 B1
7124082 Freedman Oct 2006 B2
7124164 Chemtob Oct 2006 B1
7127046 Smith Oct 2006 B1
7127394 Strong Oct 2006 B2
7127396 Chu Oct 2006 B2
7127403 Saylor Oct 2006 B1
7129932 Klarlund Oct 2006 B1
7133900 Szeto Nov 2006 B1
7136710 Hoffberg Nov 2006 B1
7136818 Cosatto Nov 2006 B1
7137126 Coffman Nov 2006 B1
7139697 Hakkinen Nov 2006 B2
7139714 Bennett Nov 2006 B2
7139722 Perrella Nov 2006 B2
7143028 Hillis Nov 2006 B2
7143038 Katae Nov 2006 B2
7143040 Durston Nov 2006 B2
7146319 Hunt Dec 2006 B2
7146437 Robbin Dec 2006 B2
7149319 Roeck Dec 2006 B2
7149695 Bellegarda Dec 2006 B1
7149964 Cottrille Dec 2006 B1
7152070 Musick Dec 2006 B1
7152093 Ludwig Dec 2006 B2
7154526 Foote Dec 2006 B2
7155668 Holland Dec 2006 B2
7158647 Azima Jan 2007 B2
7159174 Johnson Jan 2007 B2
7162412 Yamada Jan 2007 B2
7162482 Dunning Jan 2007 B1
7165073 Vandersluis Jan 2007 B2
7166791 Robbin Jan 2007 B2
7171350 Lin Jan 2007 B2
7171360 Huang Jan 2007 B2
7174042 Simmons Feb 2007 B1
7174295 Kivimaki Feb 2007 B1
7174297 Guerra Feb 2007 B2
7174298 Sharma Feb 2007 B2
7177794 Mani Feb 2007 B2
7177798 Hsu Feb 2007 B2
7177817 Khosla Feb 2007 B1
7181386 Mohri Feb 2007 B2
7181388 Tian Feb 2007 B2
7184064 Zimmerman Feb 2007 B2
7185276 Keswa Feb 2007 B2
7188085 Pelletier Mar 2007 B2
7190351 Goren Mar 2007 B1
7190794 Hinde Mar 2007 B2
7191118 Bellegarda Mar 2007 B2
7191131 Nagao Mar 2007 B1
7193615 Kim Mar 2007 B2
7194186 Strub Mar 2007 B1
7194413 Mahoney Mar 2007 B2
7194471 Nagatsuka Mar 2007 B1
7194611 Bear Mar 2007 B2
7194699 Thomson Mar 2007 B2
7197120 Luehrig Mar 2007 B2
7197460 Gupta Mar 2007 B1
7200550 Menezes Apr 2007 B2
7200558 Kato Apr 2007 B2
7200559 Wang Apr 2007 B2
7203297 Vitikainen Apr 2007 B2
7203646 Bennett Apr 2007 B2
7206809 Ludwig Apr 2007 B2
7212827 Veschl May 2007 B1
7216008 Sakata May 2007 B2
7216073 Lavi May 2007 B2
7216080 Tsiao May 2007 B2
7218920 Hyon May 2007 B2
7218943 Klassen May 2007 B2
7219063 Schalk May 2007 B2
7219123 Fiechter May 2007 B1
7225125 Bennett May 2007 B2
7228278 Nguyen Jun 2007 B2
7231343 Treadgold Jun 2007 B1
7231597 Braun Jun 2007 B1
7233790 Kjellberg Jun 2007 B2
7233904 Luisi Jun 2007 B2
7234026 Robbin Jun 2007 B2
7236932 Grajski Jun 2007 B1
7240002 Minamino Jul 2007 B2
7243130 Horvitz Jul 2007 B2
7243305 Schabes Jul 2007 B2
7246118 Chastain Jul 2007 B2
7246151 Isaacs Jul 2007 B2
7248900 Deeds Jul 2007 B2
7251313 Miller Jul 2007 B1
7251454 White Jul 2007 B2
7254773 Bates Aug 2007 B2
7257537 Ross Aug 2007 B2
7259752 Simmons Aug 2007 B1
7260529 Lengen Aug 2007 B1
7260567 Parikh Aug 2007 B2
7263373 Mattisson Aug 2007 B2
7266189 Day Sep 2007 B1
7266495 Beaufays Sep 2007 B1
7266496 Wang Sep 2007 B2
7266499 Surace Sep 2007 B2
7269544 Simske Sep 2007 B2
7269556 Kiss Sep 2007 B2
7272224 Normile Sep 2007 B1
7275063 Horn Sep 2007 B2
7277088 Robinson Oct 2007 B2
7277854 Bennett Oct 2007 B2
7277855 Acker Oct 2007 B1
7280958 Pavlov Oct 2007 B2
7283072 Plachta Oct 2007 B1
7289102 Hinckley Oct 2007 B2
7290039 Lisitsa Oct 2007 B1
7292579 Morris Nov 2007 B2
7292979 Karas Nov 2007 B2
7292980 August Nov 2007 B1
7296019 Chandrasekar Nov 2007 B1
7296230 Fukatsu Nov 2007 B2
7299033 Kjellberg Nov 2007 B2
7302392 Thenthiruperai Nov 2007 B1
7302394 Baray Nov 2007 B1
7302686 Togawa Nov 2007 B2
7308404 Venkataraman Dec 2007 B2
7308408 Stifelman Dec 2007 B1
7310329 Vieri Dec 2007 B2
7310600 Garner Dec 2007 B1
7310605 Janakiraman Dec 2007 B2
7313523 Bellegarda Dec 2007 B1
7315809 Xun Jan 2008 B2
7315818 Stevens Jan 2008 B2
7318020 Kim Jan 2008 B1
7319957 Robinson Jan 2008 B2
7321783 Kim Jan 2008 B2
7322023 Shulman Jan 2008 B2
7324833 White Jan 2008 B2
7324947 Jordan Jan 2008 B2
7328155 Endo Feb 2008 B2
7328250 Wang Feb 2008 B2
7345670 Armstrong Mar 2008 B2
7345671 Robbin Mar 2008 B2
7349953 Lisitsa Mar 2008 B2
7353139 Burrell Apr 2008 B1
7359493 Wang Apr 2008 B1
7359671 Richenstein Apr 2008 B2
7359851 Tong Apr 2008 B2
7360158 Beeman Apr 2008 B1
7362738 Taube Apr 2008 B2
7363227 Mapes-Riordan Apr 2008 B2
7363586 Briggs Apr 2008 B1
7365260 Kawashima Apr 2008 B2
7366461 Brown Apr 2008 B1
7373291 Garst May 2008 B2
7373612 Risch May 2008 B2
7376556 Bennett May 2008 B2
7376632 Sadek May 2008 B1
7376645 Bernard May 2008 B2
7378963 Begault May 2008 B1
7379874 Schmid May 2008 B2
7380203 Keely May 2008 B2
7383170 Mills Jun 2008 B2
7386438 Franz Jun 2008 B1
7386449 Sun Jun 2008 B2
7386799 Clanton Jun 2008 B1
7389224 Elworthy Jun 2008 B1
7389225 Jensen Jun 2008 B1
7392185 Bennett Jun 2008 B2
7394947 Li Jul 2008 B2
7398209 Kennewick Jul 2008 B2
7401300 Nurmi Jul 2008 B2
7403938 Harrison Jul 2008 B2
7403941 Bedworth Jul 2008 B2
7404143 Freelander Jul 2008 B2
7409337 Potter Aug 2008 B1
7409347 Bellegarda Aug 2008 B1
7412389 Yang Aug 2008 B2
7412470 Masuno Aug 2008 B2
7415100 Cooper Aug 2008 B2
7415469 Singh Aug 2008 B2
7418389 Chu Aug 2008 B2
7418392 Mozer Aug 2008 B1
7426467 Nashida Sep 2008 B2
7426468 Coifman Sep 2008 B2
7427024 Gazdzinski Sep 2008 B1
7428541 Houle Sep 2008 B2
7433869 Gollapudi Oct 2008 B2
7433921 Ludwig Oct 2008 B2
7436947 Ordille Oct 2008 B2
7441184 Frerebeau Oct 2008 B2
7443316 Lim Oct 2008 B2
7444589 Zellner Oct 2008 B2
7447360 Li Nov 2008 B2
7447624 Fuhrmann Nov 2008 B2
7447635 Konopka Nov 2008 B1
7447637 Grant Nov 2008 B1
7451081 Gajic Nov 2008 B1
7454351 Jeschke Nov 2008 B2
7460652 Chang Dec 2008 B2
7461043 Hess Dec 2008 B2
7467087 Gillick Dec 2008 B1
7467164 Marsh Dec 2008 B2
7472061 Alewine Dec 2008 B1
7472065 Aaron Dec 2008 B2
7475010 Chao Jan 2009 B2
7475015 Epstein Jan 2009 B2
7475063 Datta Jan 2009 B2
7477238 Fux Jan 2009 B2
7477240 Yanagisawa Jan 2009 B2
7478037 Strong Jan 2009 B2
7478091 Mojsilovic Jan 2009 B2
7478129 Chemtob Jan 2009 B1
7479948 Kim Jan 2009 B2
7479949 Jobs Jan 2009 B2
7483832 Tischer Jan 2009 B2
7483894 Cao Jan 2009 B2
7487089 Mozer Feb 2009 B2
7487093 Mutsuno Feb 2009 B2
7490034 Finnigan Feb 2009 B2
7490039 Shaffer Feb 2009 B1
7493560 Kipnes Feb 2009 B1
7496498 Chu Feb 2009 B2
7496512 Zhao Feb 2009 B2
7499923 Kawatani Mar 2009 B2
7502738 Kennewick Mar 2009 B2
7505795 Lim Mar 2009 B1
7508324 Suraqui Mar 2009 B2
7508373 Lin Mar 2009 B2
7516123 Betz Apr 2009 B2
7519327 White Apr 2009 B2
7519398 Hirose Apr 2009 B2
7522927 Fitch Apr 2009 B2
7523036 Akabane Apr 2009 B2
7523108 Cao Apr 2009 B2
7526466 Au Apr 2009 B2
7526738 Ording Apr 2009 B2
7528713 Singh May 2009 B2
7529671 Rockenbeck May 2009 B2
7529676 Koyama May 2009 B2
7535997 McQuaide, Jr. May 2009 B1
7536029 Choi May 2009 B2
7536565 Girish May 2009 B2
7538685 Cooper May 2009 B1
7539619 Seligman May 2009 B1
7539656 Fratkina May 2009 B2
7541940 Upton Jun 2009 B2
7542967 Hurst-Hiller Jun 2009 B2
7542971 Thione Jun 2009 B2
7543232 Easton, Jr. Jun 2009 B2
7546382 Healey Jun 2009 B2
7546529 Reynar Jun 2009 B2
7548895 Pulsipher Jun 2009 B2
7552045 Barliga Jun 2009 B2
7552055 Lecoeuche Jun 2009 B2
7555431 Bennett Jun 2009 B2
7555496 Lantrip Jun 2009 B1
7558381 Ali Jul 2009 B1
7558730 Davis Jul 2009 B2
7559026 Girish Jul 2009 B2
7561069 Horstemeyer Jul 2009 B2
7562007 Hwang Jul 2009 B2
7562032 Abbosh Jul 2009 B2
7565104 Brown Jul 2009 B1
7565380 Venkatachary Jul 2009 B1
7571092 Nieh Aug 2009 B1
7571106 Cao Aug 2009 B2
7577522 Rosenberg Aug 2009 B2
7580551 Srihari Aug 2009 B1
7580576 Wang Aug 2009 B2
7580839 Tamura Aug 2009 B2
7584093 Potter Sep 2009 B2
7584278 Rajarajan Sep 2009 B2
7584429 Fabritius Sep 2009 B2
7593868 Margiloff Sep 2009 B2
7596269 King Sep 2009 B2
7596499 Anguera Miro Sep 2009 B2
7596606 Codignotto Sep 2009 B2
7596765 Almas Sep 2009 B2
7599918 Shen Oct 2009 B2
7603349 Kraft Oct 2009 B1
7603381 Burke Oct 2009 B2
7606444 Erol Oct 2009 B1
7609179 Diaz-Gutierrez Oct 2009 B2
7610258 Yuknewicz Oct 2009 B2
7613264 Wells Nov 2009 B2
7614008 Ording Nov 2009 B2
7617094 Aoki Nov 2009 B2
7620407 Donald Nov 2009 B1
7620549 Di Cristo Nov 2009 B2
7620894 Kahn Nov 2009 B1
7623119 Autio Nov 2009 B2
7624007 Bennett Nov 2009 B2
7627481 Kuo Dec 2009 B1
7630901 Omi Dec 2009 B2
7633076 Huppi Dec 2009 B2
7634409 Kennewick Dec 2009 B2
7634413 Kuo Dec 2009 B1
7634718 Nakajima Dec 2009 B2
7634732 Blagsvedt Dec 2009 B1
7636657 Ju Dec 2009 B2
7640158 Detlef Dec 2009 B2
7640160 Di Cristo Dec 2009 B2
7643990 Bellegarda Jan 2010 B1
7647225 Bennett Jan 2010 B2
7649454 Singh Jan 2010 B2
7649877 Vieri Jan 2010 B2
7653883 Hotelling Jan 2010 B2
7656393 King Feb 2010 B2
7657424 Bennett Feb 2010 B2
7657430 Ogawa Feb 2010 B2
7657828 Lucas Feb 2010 B2
7657844 Gibson Feb 2010 B2
7657849 Chaudhri Feb 2010 B2
7660715 Thambiratnam Feb 2010 B1
7663607 Hotelling Feb 2010 B2
7664558 Lindahl Feb 2010 B2
7664638 Cooper Feb 2010 B2
7668710 Doyle Feb 2010 B2
7669134 Christie Feb 2010 B1
7672841 Bennett Mar 2010 B2
7672952 Isaacson Mar 2010 B2
7673238 Girish Mar 2010 B2
7673251 Wibisono Mar 2010 B1
7673340 Cohen Mar 2010 B1
7676026 Baxter, Jr. Mar 2010 B1
7676365 Hwang Mar 2010 B2
7676463 Thompson Mar 2010 B2
7679534 Kay Mar 2010 B2
7680649 Park Mar 2010 B2
7681126 Roose Mar 2010 B2
7683886 Willey Mar 2010 B2
7683893 Kim Mar 2010 B2
7684985 Dominach Mar 2010 B2
7684990 Caskey Mar 2010 B2
7684991 Stohr Mar 2010 B2
7689245 Cox Mar 2010 B2
7689408 Chen Mar 2010 B2
7689409 Heinecke Mar 2010 B2
7689412 Wu et al. Mar 2010 B2
7689421 Li Mar 2010 B2
7689916 Goel et al. Mar 2010 B1
7693715 Hwang Apr 2010 B2
7693717 Kahn Apr 2010 B2
7693719 Chu Apr 2010 B2
7693720 Kennewick Apr 2010 B2
7698131 Bennett Apr 2010 B2
7698136 Nguyen et al. Apr 2010 B1
7702500 Blaedow Apr 2010 B2
7702508 Bennett Apr 2010 B2
7703091 Martin Apr 2010 B1
7706510 Ng Apr 2010 B2
7707026 Liu Apr 2010 B2
7707027 Balchandran Apr 2010 B2
7707032 Wang Apr 2010 B2
7707221 Dunning Apr 2010 B1
7707226 Tonse Apr 2010 B1
7707267 Lisitsa Apr 2010 B2
7710262 Ruha May 2010 B2
7711129 Lindahl May 2010 B2
7711550 Feinberg May 2010 B1
7711565 Gazdzinski May 2010 B1
7711672 Au May 2010 B2
7712053 Bradford May 2010 B2
7716056 Weng May 2010 B2
7716077 Mikurak May 2010 B1
7716216 Harik May 2010 B1
7720674 Kaiser May 2010 B2
7720683 Vermeulen May 2010 B1
7721226 Barabe May 2010 B2
7721301 Wong May 2010 B2
7724242 Hillis May 2010 B2
7724696 Parekh May 2010 B1
7725307 Bennett May 2010 B2
7725318 Gavalda May 2010 B2
7725320 Bennett May 2010 B2
7725321 Bennett May 2010 B2
7725419 Lee et al. May 2010 B2
7725838 Williams May 2010 B2
7729904 Bennett Jun 2010 B2
7729916 Coffman Jun 2010 B2
7734461 Kwak Jun 2010 B2
7735012 Naik Jun 2010 B2
7739588 Reynar Jun 2010 B2
7742953 King Jun 2010 B2
7743188 Haitani Jun 2010 B2
7747616 Yamada Jun 2010 B2
7752152 Paek Jul 2010 B2
7756707 Garner et al. Jul 2010 B2
7756708 Cohen Jul 2010 B2
7756868 Lee Jul 2010 B2
7756871 Yacoub Jul 2010 B2
7757173 Beaman Jul 2010 B2
7757176 Vakil et al. Jul 2010 B2
7757182 Elliott Jul 2010 B2
7761296 Bakis Jul 2010 B1
7763842 Hsu Jul 2010 B2
7770104 Scopes Aug 2010 B2
7774202 Spengler et al. Aug 2010 B2
7774204 Mozer Aug 2010 B2
7774388 Runchey Aug 2010 B1
7774753 Reilly et al. Aug 2010 B1
7777717 Fux Aug 2010 B2
7778432 Larsen Aug 2010 B2
7778595 White Aug 2010 B2
7778632 Kurlander Aug 2010 B2
7778830 Davis Aug 2010 B2
7779069 Frid-Nielsen et al. Aug 2010 B2
7779353 Grigoriu Aug 2010 B2
7779356 Griesmer Aug 2010 B2
7779357 Naik Aug 2010 B2
7783283 Kuusinen Aug 2010 B2
7783486 Rosser Aug 2010 B2
7788590 Taboada Aug 2010 B2
7788663 Illowsky Aug 2010 B2
7796980 McKinney Sep 2010 B1
7797265 Brinker Sep 2010 B2
7797269 Rieman Sep 2010 B2
7797331 Theimer Sep 2010 B2
7797338 Feng et al. Sep 2010 B2
7797629 Fux Sep 2010 B2
7801721 Rosart Sep 2010 B2
7801728 Ben-David Sep 2010 B2
7801729 Mozer Sep 2010 B2
7805299 Coifman Sep 2010 B2
7809550 Barrows Oct 2010 B1
7809565 Coifman Oct 2010 B2
7809569 Attwater Oct 2010 B2
7809570 Kennewick Oct 2010 B2
7809610 Cao Oct 2010 B2
7809744 Nevidomski Oct 2010 B2
7813729 Lee et al. Oct 2010 B2
7818165 Carlgren Oct 2010 B2
7818176 Freeman Oct 2010 B2
7818215 King Oct 2010 B2
7818291 Ferguson Oct 2010 B2
7818672 McCormack Oct 2010 B2
7822608 Cross, Jr. Oct 2010 B2
7823123 Sabbouh Oct 2010 B2
7826945 Zhang Nov 2010 B2
7827047 Anderson Nov 2010 B2
7831246 Smith et al. Nov 2010 B1
7831423 Schubert Nov 2010 B2
7831426 Bennett Nov 2010 B2
7831432 Bodin Nov 2010 B2
7835504 Donald et al. Nov 2010 B1
7836437 Kacmarcik Nov 2010 B2
7840348 Kim Nov 2010 B2
7840400 Lavi Nov 2010 B2
7840447 Kleinrock Nov 2010 B2
7840581 Ross Nov 2010 B2
7840912 Elias Nov 2010 B2
7844394 Kim Nov 2010 B2
7848924 Nurminen Dec 2010 B2
7848926 Goto Dec 2010 B2
7853444 Wang Dec 2010 B2
7853445 Bachenko Dec 2010 B2
7853574 Kraenzel Dec 2010 B2
7853577 Sundaresan Dec 2010 B2
7853664 Wang Dec 2010 B1
7853900 Nguyen Dec 2010 B2
7861164 Qin Dec 2010 B2
7865817 Ryan Jan 2011 B2
7869998 Fabbrizio et al. Jan 2011 B1
7869999 Amato Jan 2011 B2
7870118 Jiang Jan 2011 B2
7870133 Krishnamoorthy Jan 2011 B2
7873149 Schultz et al. Jan 2011 B2
7873519 Bennett Jan 2011 B2
7873523 Potter et al. Jan 2011 B2
7873654 Bernard Jan 2011 B2
7877705 Chambers Jan 2011 B2
7880730 Robinson Feb 2011 B2
7881283 Cormier Feb 2011 B2
7881936 Longe Feb 2011 B2
7885390 Chaudhuri Feb 2011 B2
7885844 Cohen Feb 2011 B1
7886233 Rainisto Feb 2011 B2
7889101 Yokota Feb 2011 B2
7889184 Blumenberg Feb 2011 B2
7889185 Blumenberg Feb 2011 B2
7890329 Wu et al. Feb 2011 B2
7890330 Ozkaragoz Feb 2011 B2
7890652 Bull Feb 2011 B2
7895039 Braho et al. Feb 2011 B2
7895531 Radtke Feb 2011 B2
7899666 Varone Mar 2011 B2
7904297 Mirkovic et al. Mar 2011 B2
7908287 Katragadda Mar 2011 B1
7912289 Kansal Mar 2011 B2
7912699 Saraclar Mar 2011 B1
7912702 Bennett Mar 2011 B2
7912720 Hakkani-Tur Mar 2011 B1
7912828 Bonnet Mar 2011 B2
7913185 Benson Mar 2011 B1
7916979 Simmons Mar 2011 B2
7917364 Yacoub Mar 2011 B2
7917367 Di Cristo Mar 2011 B2
7917497 Harrison Mar 2011 B2
7920678 Cooper Apr 2011 B2
7920682 Byrne Apr 2011 B2
7920857 Lau Apr 2011 B2
7925525 Chin Apr 2011 B2
7925610 Elbaz Apr 2011 B2
7929805 Wang Apr 2011 B2
7930168 Weng Apr 2011 B2
7930183 Odell Apr 2011 B2
7930197 Ozzie Apr 2011 B2
7933399 Knott et al. Apr 2011 B2
7936339 Marggraff May 2011 B2
7936861 Knott May 2011 B2
7936863 John et al. May 2011 B2
7937075 Zellner May 2011 B2
7941009 Li May 2011 B2
7945294 Zhang May 2011 B2
7945470 Cohen May 2011 B1
7949529 Weider May 2011 B2
7949534 Davis May 2011 B2
7949752 White et al. May 2011 B2
7953679 Chidlovskii May 2011 B2
7957975 Burns Jun 2011 B2
7958136 Curtis Jun 2011 B1
7962179 Huang Jun 2011 B2
7974835 Balchandran et al. Jul 2011 B2
7974844 Sumita Jul 2011 B2
7974972 Cao Jul 2011 B2
7975216 Woolf Jul 2011 B2
7983478 Liu Jul 2011 B2
7983915 Knight Jul 2011 B2
7983917 Kennewick Jul 2011 B2
7983919 Conkie Jul 2011 B2
7983997 Allen Jul 2011 B2
7984062 Dunning Jul 2011 B2
7986431 Emori Jul 2011 B2
7987151 Schott Jul 2011 B2
7987176 Latzina et al. Jul 2011 B2
7987244 Lewis Jul 2011 B1
7991614 Washio Aug 2011 B2
7992085 Wang-Aryattanwanich Aug 2011 B2
7996228 Miller Aug 2011 B2
7996589 Schultz Aug 2011 B2
7996769 Fux Aug 2011 B2
7996792 Anzures Aug 2011 B2
7999669 Singh Aug 2011 B2
8000453 Cooper Aug 2011 B2
8001125 Magdalin et al. Aug 2011 B1
8005664 Hanumanthappa Aug 2011 B2
8005679 Jordan Aug 2011 B2
8006180 Tunning Aug 2011 B2
8010367 Muschett et al. Aug 2011 B2
8010614 Musat et al. Aug 2011 B1
8014308 Gates, III Sep 2011 B2
8015006 Kennewick Sep 2011 B2
8015011 Nagano Sep 2011 B2
8015144 Zheng Sep 2011 B2
8018431 Zehr Sep 2011 B1
8019271 Izdepski Sep 2011 B1
8019604 Ma Sep 2011 B2
8020104 Robarts et al. Sep 2011 B2
8024195 Mozer Sep 2011 B2
8024415 Horvitz Sep 2011 B2
8027836 Baker Sep 2011 B2
8031943 Chen Oct 2011 B2
8032383 Bhardwaj Oct 2011 B1
8032409 Mikurak Oct 2011 B1
8036901 Mozer Oct 2011 B2
8037034 Plachta Oct 2011 B2
8041557 Liu Oct 2011 B2
8041570 Mirkovic Oct 2011 B2
8041611 Kleinrock Oct 2011 B2
8042053 Darwish Oct 2011 B2
8046231 Hirota et al. Oct 2011 B2
8046363 Cha Oct 2011 B2
8046374 Bromwich Oct 2011 B1
8050500 Batty Nov 2011 B1
8050919 Das Nov 2011 B2
8054180 Scofield et al. Nov 2011 B1
8055296 Persson et al. Nov 2011 B1
8055502 Clark Nov 2011 B2
8055708 Chitsaz Nov 2011 B2
8056070 Goller Nov 2011 B2
8060824 Brownrigg, Jr. Nov 2011 B2
8064753 Freeman Nov 2011 B2
8065143 Yanagihara Nov 2011 B2
8065155 Gazdzinski Nov 2011 B1
8065156 Gazdzinski Nov 2011 B2
8068604 Leeds Nov 2011 B2
8069046 Kennewick Nov 2011 B2
8069422 Sheshagiri Nov 2011 B2
8073681 Baldwin Dec 2011 B2
8073695 Hendricks Dec 2011 B1
8077153 Benko Dec 2011 B2
8078473 Gazdzinski Dec 2011 B1
8078978 Perry et al. Dec 2011 B2
8082153 Coffman Dec 2011 B2
8082498 Salamon Dec 2011 B2
8090571 Elshishiny Jan 2012 B2
8095364 Longe Jan 2012 B2
8099289 Mozer Jan 2012 B2
8099395 Pabla Jan 2012 B2
8099418 Inoue Jan 2012 B2
8103510 Sato Jan 2012 B2
8103947 Lunt et al. Jan 2012 B2
8107401 John Jan 2012 B2
8112275 Kennewick Feb 2012 B2
8112280 Lu Feb 2012 B2
8117026 Lee et al. Feb 2012 B2
8117037 Gazdzinski Feb 2012 B2
8117542 Radtke Feb 2012 B2
8121413 Hwang Feb 2012 B2
8121837 Agapi Feb 2012 B2
8122094 Kotab Feb 2012 B1
8122353 Bouta Feb 2012 B2
8130929 Wilkes et al. Mar 2012 B2
8131557 Davis Mar 2012 B2
8135115 Hogg, Jr. Mar 2012 B1
8138912 Singh Mar 2012 B2
8140330 Cevik et al. Mar 2012 B2
8140335 Kennewick Mar 2012 B2
8140368 Eggenberger et al. Mar 2012 B2
8140567 Padovitz Mar 2012 B2
8145489 Freeman et al. Mar 2012 B2
8150694 Kennewick Apr 2012 B2
8150700 Shin Apr 2012 B2
8155956 Cho Apr 2012 B2
8156005 Vieri Apr 2012 B2
8160877 Nucci et al. Apr 2012 B1
8160883 Lecoeuche Apr 2012 B2
8165321 Paquier Apr 2012 B2
8165886 Gagnon Apr 2012 B1
8166019 Lee Apr 2012 B1
8166032 Sommer Apr 2012 B2
8170790 Lee May 2012 B2
8170966 Musat et al. May 2012 B1
8171137 Parks et al. May 2012 B1
8175872 Kristjansson et al. May 2012 B2
8175876 Bou-Ghazale et al. May 2012 B2
8179370 Yamasani May 2012 B1
8188856 Singh May 2012 B2
8190359 Bourne May 2012 B2
8190596 Nambiar et al. May 2012 B2
8194827 Jaiswal et al. Jun 2012 B2
8195460 Degani et al. Jun 2012 B2
8195467 Mozer Jun 2012 B2
8195468 Weider Jun 2012 B2
8200489 Baggenstoss Jun 2012 B1
8200495 Braho Jun 2012 B2
8201109 Van Os Jun 2012 B2
8204238 Mozer Jun 2012 B2
8205788 Gazdzinski Jun 2012 B1
8209183 Patel Jun 2012 B1
8213911 Williams et al. Jul 2012 B2
8219115 Nelissen Jul 2012 B1
8219406 Yu Jul 2012 B2
8219407 Roy Jul 2012 B1
8219555 Mianji Jul 2012 B1
8219608 alSafadi Jul 2012 B2
8224649 Chaudhari Jul 2012 B2
8224757 Bohle Jul 2012 B2
8228299 Maloney Jul 2012 B1
8233919 Haag et al. Jul 2012 B2
8234111 Lloyd et al. Jul 2012 B2
8239206 LeBeau et al. Aug 2012 B1
8239207 Seligman Aug 2012 B2
8244545 Paek et al. Aug 2012 B2
8244712 Serlet Aug 2012 B2
8250071 Killalea et al. Aug 2012 B1
8254829 Kindred et al. Aug 2012 B1
8255216 White Aug 2012 B2
8255217 Stent Aug 2012 B2
8260117 Xu et al. Sep 2012 B1
8260247 Lazaridis et al. Sep 2012 B2
8260617 Dhanakshirur Sep 2012 B2
8260619 Bansal et al. Sep 2012 B1
8270933 Riemer Sep 2012 B2
8271287 Kermani Sep 2012 B1
8275621 Alewine Sep 2012 B2
8275736 Guo et al. Sep 2012 B2
8279171 Hirai Oct 2012 B2
8280438 Barbera Oct 2012 B2
8285546 Reich Oct 2012 B2
8285551 Gazdzinski Oct 2012 B2
8285553 Gazdzinski Oct 2012 B2
8285737 Lynn et al. Oct 2012 B1
8290777 Nguyen Oct 2012 B1
8290778 Gazdzinski Oct 2012 B2
8290781 Gazdzinski Oct 2012 B2
8296124 Holsztynska Oct 2012 B1
8296145 Clark Oct 2012 B2
8296146 Gazdzinski Oct 2012 B2
8296153 Gazdzinski Oct 2012 B2
8296380 Kelly Oct 2012 B1
8296383 Lindahl Oct 2012 B2
8300776 Davies et al. Oct 2012 B2
8300801 Sweeney Oct 2012 B2
8301456 Gazdzinski Oct 2012 B2
8311189 Champlin et al. Nov 2012 B2
8311834 Gazdzinski Nov 2012 B1
8311835 Lecoeuche Nov 2012 B2
8311838 Lindahl Nov 2012 B2
8312017 Martin Nov 2012 B2
8321786 Lunati Nov 2012 B2
8326627 Kennewick et al. Dec 2012 B2
8332205 Krishnan et al. Dec 2012 B2
8332218 Cross, Jr. Dec 2012 B2
8332224 Di Cristo Dec 2012 B2
8332748 Karam Dec 2012 B1
8335689 Wittenstein et al. Dec 2012 B2
8340975 Rosenberger Dec 2012 B1
8345665 Vieri Jan 2013 B2
8346563 Hjelm et al. Jan 2013 B1
8346757 Lamping et al. Jan 2013 B1
8352183 Thota Jan 2013 B2
8352268 Naik Jan 2013 B2
8352272 Rogers Jan 2013 B2
8355919 Silverman Jan 2013 B2
8359234 Vieri Jan 2013 B2
8370145 Endo et al. Feb 2013 B2
8370158 Gazdzinski Feb 2013 B2
8371503 Gazdzinski Feb 2013 B2
8374871 Ehsani Feb 2013 B2
8375320 Kotler Feb 2013 B2
8380504 Peden Feb 2013 B1
8380507 Herman Feb 2013 B2
8381107 Rottler Feb 2013 B2
8381135 Hotelling Feb 2013 B2
8386485 Kerschberg Feb 2013 B2
8386926 Matsuoka Feb 2013 B1
8391844 Novick Mar 2013 B2
8396714 Rogers Mar 2013 B2
8396715 Odell et al. Mar 2013 B2
8401163 Kirchhoff et al. Mar 2013 B1
8406745 Upadhyay Mar 2013 B1
8407239 Dean et al. Mar 2013 B2
8423288 Stahl Apr 2013 B2
8428758 Naik Apr 2013 B2
8433572 Caskey et al. Apr 2013 B2
8433778 Shreesha et al. Apr 2013 B1
8434133 Kulkarni et al. Apr 2013 B2
8442821 Vanhoucke May 2013 B1
8447612 Gazdzinski May 2013 B2
8452597 Bringert May 2013 B2
8452602 Bringert et al. May 2013 B1
8453058 Coccaro et al. May 2013 B1
8457959 Kaiser Jun 2013 B2
8458115 Cai Jun 2013 B2
8458278 Christie Jun 2013 B2
8463592 Lu et al. Jun 2013 B2
8464150 Davidson Jun 2013 B2
8473289 Jitkoff et al. Jun 2013 B2
8477323 Low et al. Jul 2013 B2
8478816 Parks et al. Jul 2013 B2
8479122 Hotelling Jul 2013 B2
8484027 Murphy Jul 2013 B1
8489599 Bellotti Jul 2013 B2
8498857 Kopparapu Jul 2013 B2
8514197 Shahraray et al. Aug 2013 B2
8515736 Duta Aug 2013 B1
8515750 Lei Aug 2013 B1
8521513 Millett Aug 2013 B2
8521526 Lloyd et al. Aug 2013 B1
8521531 Kim Aug 2013 B1
8527276 Senior Sep 2013 B1
8533266 Koulomzin et al. Sep 2013 B2
8537033 Gueziec Sep 2013 B2
8539342 Lewis Sep 2013 B1
8543375 Hong Sep 2013 B2
8543397 Nguyen Sep 2013 B1
8543398 Strope et al. Sep 2013 B1
8560229 Park Oct 2013 B1
8560366 Mikurak Oct 2013 B2
8571528 Channakeshava Oct 2013 B1
8571851 Tickner et al. Oct 2013 B1
8577683 Dewitt Nov 2013 B2
8583416 Huang Nov 2013 B2
8583511 Hendrickson Nov 2013 B2
8583638 Donelli Nov 2013 B2
8589156 Burke et al. Nov 2013 B2
8589374 Chaudhari Nov 2013 B2
8589869 Wolfram Nov 2013 B2
8589911 Sharkey et al. Nov 2013 B1
8595004 Koshinaka Nov 2013 B2
8595642 Lagassey Nov 2013 B1
8600743 Lindahl et al. Dec 2013 B2
8600746 Lei et al. Dec 2013 B1
8600930 Sata Dec 2013 B2
8606090 Eyer Dec 2013 B2
8606568 Tickner Dec 2013 B1
8606576 Barr et al. Dec 2013 B1
8606577 Stewart et al. Dec 2013 B1
8615221 Cosenza et al. Dec 2013 B1
8620659 Di Cristo Dec 2013 B2
8620662 Bellegarda Dec 2013 B2
8626681 Jurca Jan 2014 B1
8630841 Van Caldwell et al. Jan 2014 B2
8635073 Chang Jan 2014 B2
8638363 King et al. Jan 2014 B2
8639516 Lindahl et al. Jan 2014 B2
8645128 Agiomyrgiannakis Feb 2014 B1
8645137 Bellegarda Feb 2014 B2
8645138 Weinstein Feb 2014 B1
8654936 Eslambolchi Feb 2014 B1
8655646 Lee Feb 2014 B2
8655901 Li Feb 2014 B1
8660843 Falcon Feb 2014 B2
8660849 Gruber Feb 2014 B2
8660924 Hoch et al. Feb 2014 B2
8660970 Fiedorowicz Feb 2014 B1
8661112 Creamer Feb 2014 B2
8661340 Goldsmith Feb 2014 B2
8670979 Gruber Mar 2014 B2
8675084 Bolton Mar 2014 B2
8676904 Lindahl Mar 2014 B2
8677377 Cheyer Mar 2014 B2
8681950 Vlack Mar 2014 B2
8682667 Haughay Mar 2014 B2
8687777 Lavian et al. Apr 2014 B1
8688446 Yanagihara Apr 2014 B2
8688453 Joshi Apr 2014 B1
8689135 Portele et al. Apr 2014 B2
8694322 Snitkovskiy Apr 2014 B2
8695074 Saraf Apr 2014 B2
8696364 Cohen Apr 2014 B2
8706472 Ramerth Apr 2014 B2
8706474 Blume et al. Apr 2014 B2
8706503 Cheyer et al. Apr 2014 B2
8707195 Fleizach et al. Apr 2014 B2
8712778 Thenthiruperai Apr 2014 B1
8713119 Lindahl Apr 2014 B2
8713418 King Apr 2014 B2
8719006 Bellegarda May 2014 B2
8719014 Wagner May 2014 B2
8719039 Sharifi May 2014 B1
8731610 Appaji May 2014 B2
8731912 Tickner May 2014 B1
8731942 Cheyer May 2014 B2
8739208 Davis May 2014 B2
8744852 Seymour Jun 2014 B1
8751971 Fleizach et al. Jun 2014 B2
8760537 Johnson Jun 2014 B2
8762145 Ouchi Jun 2014 B2
8762156 Chen Jun 2014 B2
8762469 Lindahl Jun 2014 B2
8768693 Somekh Jul 2014 B2
8768702 Mason Jul 2014 B2
8775154 Clinchant et al. Jul 2014 B2
8775177 Heigold et al. Jul 2014 B1
8775931 Fux Jul 2014 B2
8781456 Prociw Jul 2014 B2
8781841 Wang Jul 2014 B1
8793301 Wegenkittl et al. Jul 2014 B2
8798255 Lubowich et al. Aug 2014 B2
8798995 Edara Aug 2014 B1
8799000 Guzzoni et al. Aug 2014 B2
8805690 Lebeau Aug 2014 B1
8812299 Su Aug 2014 B1
8812302 Xiao et al. Aug 2014 B2
8812321 Gilbert et al. Aug 2014 B2
8823507 Touloumtzis Sep 2014 B1
8831947 Wasserblat et al. Sep 2014 B2
8831949 Smith et al. Sep 2014 B1
8838457 Cerra Sep 2014 B2
8855915 Furuhata Oct 2014 B2
8861925 Ohme Oct 2014 B1
8862252 Rottler et al. Oct 2014 B2
8868111 Kahn et al. Oct 2014 B1
8868409 Mengibar Oct 2014 B1
8868469 Xu et al. Oct 2014 B2
8868529 Lerenc Oct 2014 B2
8880405 Cerra Nov 2014 B2
8886534 Nakano et al. Nov 2014 B2
8886540 Cerra Nov 2014 B2
8886541 Friedlander Nov 2014 B2
8892446 Cheyer et al. Nov 2014 B2
8893023 Perry et al. Nov 2014 B2
8897822 Martin Nov 2014 B2
8898064 Thomas et al. Nov 2014 B1
8898568 Bull et al. Nov 2014 B2
8903716 Chen Dec 2014 B2
8909693 Frissora et al. Dec 2014 B2
8918321 Czahor Dec 2014 B2
8922485 Lloyd Dec 2014 B1
8930176 Li et al. Jan 2015 B2
8930191 Gruber Jan 2015 B2
8938394 Faaborg et al. Jan 2015 B1
8938450 Spivack et al. Jan 2015 B2
8938688 Bradford et al. Jan 2015 B2
8942986 Cheyer et al. Jan 2015 B2
8943423 Merrill Jan 2015 B2
8972240 Brockett et al. Mar 2015 B2
8972432 Shaw et al. Mar 2015 B2
8972878 Mohler Mar 2015 B2
8976063 Hawkins et al. Mar 2015 B1
8976108 Hawkins et al. Mar 2015 B2
8977255 Freeman et al. Mar 2015 B2
8983383 Haskin Mar 2015 B1
8989713 Doulton Mar 2015 B2
8990235 King et al. Mar 2015 B2
8994660 Neels et al. Mar 2015 B2
8995972 Cronin Mar 2015 B1
8996350 Dub et al. Mar 2015 B1
8996376 Fleizach et al. Mar 2015 B2
8996381 Mozer Mar 2015 B2
8996639 Faaborg et al. Mar 2015 B1
9002714 Kim et al. Apr 2015 B2
9009046 Stewart Apr 2015 B1
9015036 Karov Zangvil et al. Apr 2015 B2
9020804 Barbaiani et al. Apr 2015 B2
9026425 Nikoulina et al. May 2015 B2
9026426 Wu et al. May 2015 B2
9031834 Coorman et al. May 2015 B2
9031970 Das et al. May 2015 B1
9037967 Al-jefri et al. May 2015 B1
9043208 Koch et al. May 2015 B2
9043211 Haiut et al. May 2015 B2
9046932 Medlock et al. Jun 2015 B2
9049255 Macfarlane et al. Jun 2015 B2
9049295 Cooper et al. Jun 2015 B1
9053706 Jitkoff et al. Jun 2015 B2
9058105 Drory et al. Jun 2015 B2
9058332 Darby et al. Jun 2015 B1
9058811 Wang et al. Jun 2015 B2
9063979 Chiu et al. Jun 2015 B2
9064495 Torok et al. Jun 2015 B1
9065660 Ellis et al. Jun 2015 B2
9070247 Kuhn et al. Jun 2015 B2
9070366 Mathias Jun 2015 B1
9071701 Donaldson et al. Jun 2015 B2
9075435 Noble et al. Jul 2015 B1
9076448 Bennett et al. Jul 2015 B2
9076450 Sadek et al. Jul 2015 B1
9081411 Kalns Jul 2015 B2
9081482 Zhai Jul 2015 B1
9082402 Yadgar et al. Jul 2015 B2
9083581 Addepalli et al. Jul 2015 B1
9094636 Sanders et al. Jul 2015 B1
9098467 Blanksteen Aug 2015 B1
9101279 Ritchey et al. Aug 2015 B2
9112984 Sejnoha et al. Aug 2015 B2
9117447 Gruber et al. Aug 2015 B2
9123338 Sanders Sep 2015 B1
9143907 Caldwell et al. Sep 2015 B1
9159319 Hoffmeister Oct 2015 B1
9164983 Liu et al. Oct 2015 B2
9171541 Kennewick et al. Oct 2015 B2
9171546 Pike Oct 2015 B1
9183845 Gopalakrishnan et al. Nov 2015 B1
9190062 Haughay Nov 2015 B2
9208153 Zaveri et al. Dec 2015 B1
9213754 Zhan et al. Dec 2015 B1
9218122 Thoma et al. Dec 2015 B2
9218809 Bellegarda Dec 2015 B2
9218819 Stekkelpa et al. Dec 2015 B1
9223537 Brown Dec 2015 B2
9236047 Rasmussen Jan 2016 B2
9241073 Rensburg et al. Jan 2016 B1
9251713 Giovanniello et al. Feb 2016 B1
9255812 Maeoka Feb 2016 B2
9258604 Bilobrov Feb 2016 B1
9262412 Yang et al. Feb 2016 B2
9262612 Cheyer Feb 2016 B2
9263058 Huang et al. Feb 2016 B2
9280535 Varma et al. Mar 2016 B2
9282211 Osawa Mar 2016 B2
9286910 Li et al. Mar 2016 B1
9292487 Weber Mar 2016 B1
9292489 Sak et al. Mar 2016 B1
9292492 Sarikaya et al. Mar 2016 B2
9299344 Braho Mar 2016 B2
9300718 Khanna Mar 2016 B2
9301256 Mohan et al. Mar 2016 B2
9305543 Fleizach Apr 2016 B2
9305548 Kennewick Apr 2016 B2
9311308 Sankarasubramaniam et al. Apr 2016 B2
9311912 Swietlinski Apr 2016 B1
9313317 LeBeau Apr 2016 B1
9318108 Gruber Apr 2016 B2
9325809 Barros et al. Apr 2016 B1
9325842 Siddiqi et al. Apr 2016 B1
9330659 Ju et al. May 2016 B2
9330668 Nanavati et al. May 2016 B2
9330720 Lee May 2016 B2
9335983 Breiner et al. May 2016 B2
9338493 Van Os May 2016 B2
9349368 Lebeau May 2016 B1
9355472 Kocienda et al. May 2016 B2
9361084 Costa Jun 2016 B1
9367541 Servan et al. Jun 2016 B1
9368114 Larson et al. Jun 2016 B2
9377871 Waddell Jun 2016 B2
9378740 Rosen et al. Jun 2016 B1
9380155 Reding et al. Jun 2016 B1
9383827 Faaborg et al. Jul 2016 B1
9384185 Medlock et al. Jul 2016 B2
9390726 Smus et al. Jul 2016 B1
9396722 Chung et al. Jul 2016 B2
9401147 Jitkoff et al. Jul 2016 B2
9406224 Sanders et al. Aug 2016 B1
9406299 Gollan et al. Aug 2016 B2
9408182 Hurley et al. Aug 2016 B1
9412392 Lindahl Aug 2016 B2
9418650 Bharadwaj et al. Aug 2016 B2
9423266 Clark Aug 2016 B2
9424246 Spencer et al. Aug 2016 B2
9424840 Hart et al. Aug 2016 B1
9431021 Scalise et al. Aug 2016 B1
9432499 Hajdu et al. Aug 2016 B2
9436918 Pantel et al. Sep 2016 B2
9437186 Liu et al. Sep 2016 B1
9437189 Epstein et al. Sep 2016 B2
9442687 Park et al. Sep 2016 B2
9443527 Watanabe et al. Sep 2016 B1
9454599 Golden et al. Sep 2016 B2
9454957 Mathias et al. Sep 2016 B1
9465798 Lin Oct 2016 B2
9465833 Aravamudan et al. Oct 2016 B2
9465864 Hu et al. Oct 2016 B2
9466027 Byrne et al. Oct 2016 B2
9466294 Tunstall-pedoe et al. Oct 2016 B1
9471566 Zhang et al. Oct 2016 B1
9472196 Wang et al. Oct 2016 B1
9483388 Sankaranarasimhan et al. Nov 2016 B2
9483461 Fleizach et al. Nov 2016 B2
9484021 Mairesse et al. Nov 2016 B1
9495129 Fleizach et al. Nov 2016 B2
9501741 Cheyer et al. Nov 2016 B2
9502025 Kennewick et al. Nov 2016 B2
9508028 Bannister et al. Nov 2016 B2
9510044 Pereira et al. Nov 2016 B1
9514470 Topatan et al. Dec 2016 B2
9519453 Perkuhn et al. Dec 2016 B2
9524355 Forbes et al. Dec 2016 B2
9531862 Vadodaria Dec 2016 B1
9535906 Lee et al. Jan 2017 B2
9536527 Carlson Jan 2017 B1
9547647 Badaskar Jan 2017 B2
9548050 Gruber et al. Jan 2017 B2
9548979 Johnson et al. Jan 2017 B1
9569549 Jenkins et al. Feb 2017 B1
9575964 Yadgar et al. Feb 2017 B2
9578173 Sanghavi et al. Feb 2017 B2
9607612 Deleeuw Mar 2017 B2
9619200 Chakladar et al. Apr 2017 B2
9620113 Kennewick et al. Apr 2017 B2
9620126 Chiba Apr 2017 B2
9626955 Fleizach et al. Apr 2017 B2
9633004 Giuli et al. Apr 2017 B2
9633191 Fleizach et al. Apr 2017 B2
9633660 Haughay Apr 2017 B2
9652453 Mathur et al. May 2017 B2
9658746 Cohn et al. May 2017 B2
9659002 Medlock et al. May 2017 B2
9659298 Lynch et al. May 2017 B2
9665567 Li et al. May 2017 B2
9665662 Gautam et al. May 2017 B1
9668121 Naik et al. May 2017 B2
9672725 Dotan-Cohen et al. Jun 2017 B2
9691378 Meyers et al. Jun 2017 B1
9697822 Naik et al. Jul 2017 B1
9697827 Lilly et al. Jul 2017 B1
9698999 Mutagi Jul 2017 B2
9720907 Bangalore et al. Aug 2017 B2
9721566 Newendorp et al. Aug 2017 B2
9723130 Rand Aug 2017 B2
9734817 Putrycz Aug 2017 B1
9734839 Adams Aug 2017 B1
9741343 Miles et al. Aug 2017 B1
9747083 Roman et al. Aug 2017 B1
9747093 Latino et al. Aug 2017 B2
9755605 Li et al. Sep 2017 B1
9767710 Lee et al. Sep 2017 B2
9786271 Combs et al. Oct 2017 B1
9792907 Bocklet et al. Oct 2017 B2
9812128 Mixter et al. Nov 2017 B2
9813882 Masterman Nov 2017 B1
9818400 Paulik et al. Nov 2017 B2
9823811 Brown et al. Nov 2017 B2
9823828 Zambetti et al. Nov 2017 B2
9830044 Brown et al. Nov 2017 B2
9830449 Wagner Nov 2017 B1
9842584 Hart et al. Dec 2017 B1
9846685 Li Dec 2017 B2
9858925 Gruber et al. Jan 2018 B2
9858927 Williams et al. Jan 2018 B2
9886953 Lemay et al. Feb 2018 B2
9887949 Shepherd et al. Feb 2018 B2
9916839 Scalise et al. Mar 2018 B1
9922642 Pitschel et al. Mar 2018 B2
9934777 Joseph et al. Apr 2018 B1
9934785 Hulaud Apr 2018 B1
9946862 Yun et al. Apr 2018 B2
9948728 Linn et al. Apr 2018 B2
9959129 Kannan et al. May 2018 B2
9966065 Gruber et al. May 2018 B2
9966068 Cash et al. May 2018 B2
9967381 Kashimba et al. May 2018 B1
9971495 Shetty et al. May 2018 B2
9984686 Mutagi et al. May 2018 B1
9986419 Naik et al. May 2018 B2
9990176 Gray Jun 2018 B1
9998552 Ledet Jun 2018 B1
10001817 Zambetti et al. Jun 2018 B2
10013416 Bhardwaj et al. Jul 2018 B1
10013654 Levy et al. Jul 2018 B1
10013979 Roma et al. Jul 2018 B1
10019436 Huang Jul 2018 B2
10032451 Mamkina et al. Jul 2018 B1
10032455 Newman et al. Jul 2018 B2
10037758 Jing et al. Jul 2018 B2
10043516 Saddler et al. Aug 2018 B2
10049161 Kaneko Aug 2018 B2
10049663 Orr et al. Aug 2018 B2
10049668 Huang et al. Aug 2018 B2
10055681 Brown et al. Aug 2018 B2
10074360 Kim Sep 2018 B2
10074371 Wang et al. Sep 2018 B1
10083213 Podgorny et al. Sep 2018 B1
10083690 Giuli et al. Sep 2018 B2
10088972 Brown et al. Oct 2018 B2
10089072 Piersol et al. Oct 2018 B2
10096319 Jin et al. Oct 2018 B1
10101887 Bernstein et al. Oct 2018 B2
10102359 Cheyer Oct 2018 B2
10127901 Zhao et al. Nov 2018 B2
10127908 Deller et al. Nov 2018 B1
10134425 Johnson, Jr. Nov 2018 B1
10169329 Futrell et al. Jan 2019 B2
10170123 Orr et al. Jan 2019 B2
10170135 Pearce et al. Jan 2019 B1
10175879 Missig et al. Jan 2019 B2
10176167 Evermann Jan 2019 B2
10176802 Ladhak et al. Jan 2019 B1
10185542 Carson et al. Jan 2019 B2
10186254 Williams et al. Jan 2019 B2
10186266 Devaraj et al. Jan 2019 B1
10191627 Cieplinski et al. Jan 2019 B2
10191646 Zambetti et al. Jan 2019 B2
10191718 Rhee et al. Jan 2019 B2
10192546 Piersol et al. Jan 2019 B1
10192552 Raitio et al. Jan 2019 B2
10192557 Lee et al. Jan 2019 B2
10199051 Binder et al. Feb 2019 B2
10200824 Gross et al. Feb 2019 B2
10216351 Yang Feb 2019 B2
10216832 Bangalore et al. Feb 2019 B2
10223066 Martel et al. Mar 2019 B2
10225711 Parks et al. Mar 2019 B2
10229356 Liu et al. Mar 2019 B1
10248308 Karunamuni et al. Apr 2019 B2
10255922 Sharifi et al. Apr 2019 B1
10269345 Castillo Sanchez et al. Apr 2019 B2
10296160 Shah et al. May 2019 B2
10297253 Walker, II et al. May 2019 B2
10303772 Hosn et al. May 2019 B2
10304463 Mixter et al. May 2019 B2
10311482 Baldwin Jun 2019 B2
10311871 Newendorp et al. Jun 2019 B2
10325598 Basye et al. Jun 2019 B2
10332513 D'souza et al. Jun 2019 B1
10332518 Garg et al. Jun 2019 B2
10346753 Soon-Shiong et al. Jul 2019 B2
10353975 Oh et al. Jul 2019 B2
10354677 Mohamed et al. Jul 2019 B2
10356243 Sanghavi et al. Jul 2019 B2
10366692 Adams et al. Jul 2019 B1
10372814 Gliozzo et al. Aug 2019 B2
10389876 Engelke et al. Aug 2019 B2
10402066 Kawana Sep 2019 B2
10403283 Schramm et al. Sep 2019 B1
10410637 Paulik et al. Sep 2019 B2
10417037 Gruber et al. Sep 2019 B2
10417554 Scheffler Sep 2019 B2
10446142 Lim et al. Oct 2019 B2
10469665 Bell et al. Nov 2019 B1
10474961 Brigham et al. Nov 2019 B2
10496705 Irani et al. Dec 2019 B1
10497365 Gruber et al. Dec 2019 B2
10504518 Irani et al. Dec 2019 B1
10521946 Roche et al. Dec 2019 B1
10568032 Freeman et al. Feb 2020 B2
10659851 Lister et al. May 2020 B2
10757499 Vautrin et al. Aug 2020 B1
20010005859 Okuyama Jun 2001 A1
20010020259 Sekiguchi Sep 2001 A1
20010027394 Theimer Oct 2001 A1
20010027396 Sato Oct 2001 A1
20010029455 Chin Oct 2001 A1
20010030660 Zainoulline Oct 2001 A1
20010032080 Fukada Oct 2001 A1
20010041021 Boyle Nov 2001 A1
20010042107 Palm Nov 2001 A1
20010044724 Hon Nov 2001 A1
20010047264 Roundtree Nov 2001 A1
20010055963 Cloutier Dec 2001 A1
20010056342 Piehn Dec 2001 A1
20010056347 Chazan Dec 2001 A1
20020001395 Davis Jan 2002 A1
20020002039 Qureshey Jan 2002 A1
20020002413 Tokue Jan 2002 A1
20020002461 Tetsumoto Jan 2002 A1
20020002465 Maes Jan 2002 A1
20020004703 Gaspard, II Jan 2002 A1
20020010581 Euler Jan 2002 A1
20020010584 Schultz Jan 2002 A1
20020010589 Nashida Jan 2002 A1
20020010726 Rogson Jan 2002 A1
20020010798 Ben-Shaul Jan 2002 A1
20020013707 Shaw Jan 2002 A1
20020013784 Swanson Jan 2002 A1
20020013852 Janik Jan 2002 A1
20020015024 Westerman Feb 2002 A1
20020015064 Robotham Feb 2002 A1
20020021278 Hinckley Feb 2002 A1
20020026315 Miranda Feb 2002 A1
20020026456 Bradford Feb 2002 A1
20020031254 Lantrip Mar 2002 A1
20020031262 Imagawa Mar 2002 A1
20020032048 Kitao Mar 2002 A1
20020032564 Ehsani Mar 2002 A1
20020032591 Mahaffy Mar 2002 A1
20020032751 Bharadwaj Mar 2002 A1
20020035467 Morimoto Mar 2002 A1
20020035469 Holzapfel Mar 2002 A1
20020035474 Alpdemir Mar 2002 A1
20020040297 Tsiao Apr 2002 A1
20020040359 Green Apr 2002 A1
20020042707 Zhao Apr 2002 A1
20020045438 Tagawa Apr 2002 A1
20020045961 Gibbs Apr 2002 A1
20020046025 Hain Apr 2002 A1
20020046315 Miller Apr 2002 A1
20020052730 Nakao May 2002 A1
20020052740 Charlesworth May 2002 A1
20020052746 Handelman May 2002 A1
20020052747 Sarukkai May 2002 A1
20020052913 Yamada May 2002 A1
20020054094 Matsuda May 2002 A1
20020055844 L'Esperance May 2002 A1
20020055934 Lipscomb May 2002 A1
20020057293 Liao May 2002 A1
20020059066 O'Hagan May 2002 A1
20020059068 Rose May 2002 A1
20020065659 Isono May 2002 A1
20020065797 Meidan May 2002 A1
20020067308 Robertson Jun 2002 A1
20020069063 Buchner Jun 2002 A1
20020069071 Knockeart Jun 2002 A1
20020069220 Tran Jun 2002 A1
20020072816 Shdema Jun 2002 A1
20020072908 Case Jun 2002 A1
20020072914 Alshawi Jun 2002 A1
20020072915 Bower Jun 2002 A1
20020073177 Clark Jun 2002 A1
20020077082 Cruickshank Jun 2002 A1
20020077817 Atal Jun 2002 A1
20020078041 Wu Jun 2002 A1
20020080163 Morey Jun 2002 A1
20020083068 Quass Jun 2002 A1
20020085037 Leavitt Jul 2002 A1
20020086680 Hunzinger Jul 2002 A1
20020087306 Lee Jul 2002 A1
20020087508 Hull Jul 2002 A1
20020087974 Sprague Jul 2002 A1
20020091511 Hellwig Jul 2002 A1
20020091529 Whitham Jul 2002 A1
20020095286 Ross Jul 2002 A1
20020095290 Kahn Jul 2002 A1
20020099547 Chu Jul 2002 A1
20020099552 Rubin Jul 2002 A1
20020101447 Carro Aug 2002 A1
20020103641 Kuo Aug 2002 A1
20020103644 Brocious Aug 2002 A1
20020103646 Kochanski Aug 2002 A1
20020107684 Gao Aug 2002 A1
20020109709 Sagar Aug 2002 A1
20020110248 Kovales Aug 2002 A1
20020111198 Heie Aug 2002 A1
20020111810 Khan Aug 2002 A1
20020116082 Gudorf Aug 2002 A1
20020116171 Russell Aug 2002 A1
20020116185 Cooper Aug 2002 A1
20020116189 Yeh Aug 2002 A1
20020116420 Allam Aug 2002 A1
20020117384 Marchant Aug 2002 A1
20020120697 Generous Aug 2002 A1
20020120925 Logan Aug 2002 A1
20020122053 Dutta Sep 2002 A1
20020123891 Epstein Sep 2002 A1
20020123894 Woodward Sep 2002 A1
20020126097 Savolainen Sep 2002 A1
20020128821 Ehsani Sep 2002 A1
20020128827 Bu Sep 2002 A1
20020128840 Hinde Sep 2002 A1
20020129057 Spielberg Sep 2002 A1
20020133347 Schoneburg Sep 2002 A1
20020133348 Pearson Sep 2002 A1
20020135565 Gordon Sep 2002 A1
20020135618 Maes Sep 2002 A1
20020137505 Eiche Sep 2002 A1
20020138254 Isaka Sep 2002 A1
20020138265 Stevens Sep 2002 A1
20020138270 Bellegarda Sep 2002 A1
20020138616 Basson Sep 2002 A1
20020140679 Wen Oct 2002 A1
20020143533 Lucas Oct 2002 A1
20020143542 Eide Oct 2002 A1
20020143551 Sharma Oct 2002 A1
20020143826 Day Oct 2002 A1
20020151297 Remboski Oct 2002 A1
20020152045 Dowling Oct 2002 A1
20020152255 Smith, Jr. Oct 2002 A1
20020154160 Hosokawa Oct 2002 A1
20020156771 Frieder Oct 2002 A1
20020161865 Nguyen Oct 2002 A1
20020163544 Baker Nov 2002 A1
20020164000 Cohen Nov 2002 A1
20020165918 Bettis Nov 2002 A1
20020166123 Schrader Nov 2002 A1
20020167534 Burke Nov 2002 A1
20020169592 Aityan Nov 2002 A1
20020169605 Damiba Nov 2002 A1
20020173273 Spurgat Nov 2002 A1
20020173889 Odinak Nov 2002 A1
20020173961 Guerra Nov 2002 A1
20020173962 Tang Nov 2002 A1
20020173966 Henton Nov 2002 A1
20020177993 Veditz Nov 2002 A1
20020184003 Hakkinen Dec 2002 A1
20020184015 Li Dec 2002 A1
20020184027 Brittan Dec 2002 A1
20020184189 Hay Dec 2002 A1
20020189426 Hirade Dec 2002 A1
20020191029 Gillespie Dec 2002 A1
20020193996 Squibbs Dec 2002 A1
20020196911 Gao Dec 2002 A1
20020198714 Zhou Dec 2002 A1
20020198715 Belrose Dec 2002 A1
20030001881 Mannheimer Jan 2003 A1
20030002632 Bhogal Jan 2003 A1
20030003609 Sauer Jan 2003 A1
20030003897 Hyon Jan 2003 A1
20030004968 Romer Jan 2003 A1
20030009459 Chastain Jan 2003 A1
20030013483 Ausems Jan 2003 A1
20030016770 Trans Jan 2003 A1
20030018475 Basu Jan 2003 A1
20030020760 Takatsu Jan 2003 A1
20030023420 Goodman Jan 2003 A1
20030023426 Pun Jan 2003 A1
20030025676 Cappendijk Feb 2003 A1
20030026392 Brown Feb 2003 A1
20030026402 Clapper Feb 2003 A1
20030028380 Freeland Feb 2003 A1
20030030645 Ribak Feb 2003 A1
20030033148 Silverman Feb 2003 A1
20030033152 Cameron Feb 2003 A1
20030033153 Olson Feb 2003 A1
20030033214 Mikkelsen Feb 2003 A1
20030036909 Kato Feb 2003 A1
20030037073 Tokuda Feb 2003 A1
20030037077 Brill Feb 2003 A1
20030037254 Fischer Feb 2003 A1
20030038786 Nguyen Feb 2003 A1
20030040908 Yang Feb 2003 A1
20030046075 Stone Mar 2003 A1
20030046401 Abbott Mar 2003 A1
20030046434 Flanagin Mar 2003 A1
20030048881 Trajkovic Mar 2003 A1
20030050781 Tamura Mar 2003 A1
20030051136 Curtis Mar 2003 A1
20030055537 Odinak Mar 2003 A1
20030055623 Epstein Mar 2003 A1
20030061317 Brown Mar 2003 A1
20030061570 Hatori Mar 2003 A1
20030063073 Geaghan Apr 2003 A1
20030069893 Kanai Apr 2003 A1
20030074195 Bartosik Apr 2003 A1
20030074198 Sussman Apr 2003 A1
20030074457 Kluth Apr 2003 A1
20030076301 Tsuk Apr 2003 A1
20030078766 Appelt Apr 2003 A1
20030078779 Desai Apr 2003 A1
20030078780 Kochanski Apr 2003 A1
20030078969 Sprague Apr 2003 A1
20030079024 Hough Apr 2003 A1
20030079038 Robbin Apr 2003 A1
20030080991 Crow May 2003 A1
20030083113 Chua May 2003 A1
20030083878 Lee May 2003 A1
20030083884 Odinak May 2003 A1
20030084350 Eibach May 2003 A1
20030085870 Hinckley May 2003 A1
20030086699 Benyamin May 2003 A1
20030088414 Huang May 2003 A1
20030088421 Maes May 2003 A1
20030090467 Hohl May 2003 A1
20030090474 Schaefer May 2003 A1
20030095096 Robbin May 2003 A1
20030097210 Horst May 2003 A1
20030097379 Ireton May 2003 A1
20030097407 Litwin May 2003 A1
20030097408 Kageyama May 2003 A1
20030098892 Hiipakka May 2003 A1
20030099335 Tanaka May 2003 A1
20030101045 Moffatt May 2003 A1
20030101054 Davis May 2003 A1
20030115060 Junqua Jun 2003 A1
20030115064 Gusler Jun 2003 A1
20030115067 Ibaraki et al. Jun 2003 A1
20030115186 Wilkinson Jun 2003 A1
20030115552 Jahnke Jun 2003 A1
20030117365 Shteyn Jun 2003 A1
20030120494 Jost Jun 2003 A1
20030122652 Himmelstein Jul 2003 A1
20030122787 Zimmerman Jul 2003 A1
20030125927 Seme Jul 2003 A1
20030125955 Arnold Jul 2003 A1
20030126559 Fuhrmann Jul 2003 A1
20030128819 Lee Jul 2003 A1
20030130847 Case Jul 2003 A1
20030131320 Kumhyr Jul 2003 A1
20030133694 Yeo Jul 2003 A1
20030134678 Tanaka Jul 2003 A1
20030135501 Frerebeau Jul 2003 A1
20030135740 Talmor Jul 2003 A1
20030140088 Robinson Jul 2003 A1
20030144846 Denenberg Jul 2003 A1
20030145285 Miyahira Jul 2003 A1
20030147512 Abburi Aug 2003 A1
20030149557 Cox Aug 2003 A1
20030149567 Schmitz Aug 2003 A1
20030149978 Plotnick Aug 2003 A1
20030152203 Berger Aug 2003 A1
20030152894 Townshend Aug 2003 A1
20030154079 Ota Aug 2003 A1
20030154081 Chu Aug 2003 A1
20030157968 Boman Aug 2003 A1
20030158732 Pi Aug 2003 A1
20030158735 Yamada Aug 2003 A1
20030158737 Csicsatka Aug 2003 A1
20030160702 Tanaka Aug 2003 A1
20030160830 DeGross Aug 2003 A1
20030163316 Addison Aug 2003 A1
20030164848 Dutta Sep 2003 A1
20030167155 Reghetti Sep 2003 A1
20030167167 Gong Sep 2003 A1
20030167318 Robbin Sep 2003 A1
20030167335 Alexander Sep 2003 A1
20030171928 Falcon Sep 2003 A1
20030171936 Sall Sep 2003 A1
20030174830 Boyer Sep 2003 A1
20030177046 Socha-Leialoha Sep 2003 A1
20030179222 Noma Sep 2003 A1
20030182115 Malayath Sep 2003 A1
20030182131 Arnold Sep 2003 A1
20030187655 Dunsmuir Oct 2003 A1
20030187659 Cho Oct 2003 A1
20030187775 Du Oct 2003 A1
20030187844 Li Oct 2003 A1
20030187925 Inala Oct 2003 A1
20030188005 Yoneda Oct 2003 A1
20030188192 Tang Oct 2003 A1
20030190074 Loudon Oct 2003 A1
20030191625 Gorin Oct 2003 A1
20030191645 Zhou Oct 2003 A1
20030193481 Sokolsky Oct 2003 A1
20030194080 Michaelis Oct 2003 A1
20030195741 Mani Oct 2003 A1
20030197736 Murphy Oct 2003 A1
20030197744 Irvine Oct 2003 A1
20030200085 Nguyen Oct 2003 A1
20030200452 Tagawa Oct 2003 A1
20030200858 Xie Oct 2003 A1
20030202697 Simard Oct 2003 A1
20030204392 Finnigan Oct 2003 A1
20030204492 Wolf Oct 2003 A1
20030206199 Pusa Nov 2003 A1
20030208756 Macrae Nov 2003 A1
20030210266 Cragun Nov 2003 A1
20030212543 Epstein Nov 2003 A1
20030212961 Soin Nov 2003 A1
20030214519 Smith Nov 2003 A1
20030216919 Roushar Nov 2003 A1
20030221198 Sloo Nov 2003 A1
20030224760 Day Dec 2003 A1
20030228863 Vander Veen Dec 2003 A1
20030228909 Tanaka Dec 2003 A1
20030229490 Etter Dec 2003 A1
20030229616 Wong Dec 2003 A1
20030233230 Ammicht Dec 2003 A1
20030233237 Garside Dec 2003 A1
20030233240 Kaatrasalo Dec 2003 A1
20030234824 Litwiller Dec 2003 A1
20030236663 Dimitrova Dec 2003 A1
20040001396 Keller Jan 2004 A1
20040006467 Anisimovich Jan 2004 A1
20040008277 Nagaishi Jan 2004 A1
20040010484 Foulger Jan 2004 A1
20040012556 Yong Jan 2004 A1
20040013252 Craner Jan 2004 A1
20040015342 Garst Jan 2004 A1
20040021676 Chen Feb 2004 A1
20040022369 Vitikainen Feb 2004 A1
20040022373 Suder Feb 2004 A1
20040023643 Vander Veen Feb 2004 A1
20040030551 Marcu Feb 2004 A1
20040030554 Boxberger-Oberoi Feb 2004 A1
20040030556 Bennett Feb 2004 A1
20040030559 Payne Feb 2004 A1
20040030996 Van Liempd Feb 2004 A1
20040036715 Warren Feb 2004 A1
20040048627 Olvera-Hernandez Mar 2004 A1
20040049388 Roth Mar 2004 A1
20040049391 Polanyi Mar 2004 A1
20040051729 Borden, IV Mar 2004 A1
20040052338 Celi, Jr. et al. Mar 2004 A1
20040054530 Davis Mar 2004 A1
20040054533 Bellegarda Mar 2004 A1
20040054534 Junqua Mar 2004 A1
20040054535 Mackie Mar 2004 A1
20040054541 Kryze Mar 2004 A1
20040054690 Hillerbrand Mar 2004 A1
20040055446 Robbin Mar 2004 A1
20040056899 Sinclair, II Mar 2004 A1
20040059577 Pickering Mar 2004 A1
20040059790 Austin-Lane Mar 2004 A1
20040061717 Menon Apr 2004 A1
20040062367 Fellenstein Apr 2004 A1
20040064593 Sinclair Apr 2004 A1
20040069122 Wilson Apr 2004 A1
20040070567 Longe Apr 2004 A1
20040070612 Sinclair Apr 2004 A1
20040073427 Moore Apr 2004 A1
20040073428 Zlokarnik Apr 2004 A1
20040076086 Keller Apr 2004 A1
20040078382 Mercer Apr 2004 A1
20040085162 Agarwal May 2004 A1
20040085368 Johnson, Jr. May 2004 A1
20040086120 Akins, III May 2004 A1
20040093213 Conkie May 2004 A1
20040093215 Gupta May 2004 A1
20040093328 Damle May 2004 A1
20040094018 Ueshima May 2004 A1
20040096105 Holtsberg May 2004 A1
20040098250 Kimchi May 2004 A1
20040100479 Nakano May 2004 A1
20040106432 Kanamori Jun 2004 A1
20040107169 Lowe Jun 2004 A1
20040111266 Coorman Jun 2004 A1
20040111332 Baar Jun 2004 A1
20040114731 Gillett Jun 2004 A1
20040120476 Harrison Jun 2004 A1
20040122656 Abir Jun 2004 A1
20040122664 Lorenzo Jun 2004 A1
20040122673 Park Jun 2004 A1
20040124583 Landis Jul 2004 A1
20040125088 Zimmerman Jul 2004 A1
20040125922 Specht Jul 2004 A1
20040127198 Roskind Jul 2004 A1
20040127241 Shostak Jul 2004 A1
20040128137 Bush Jul 2004 A1
20040128614 Andrews Jul 2004 A1
20040133817 Choi Jul 2004 A1
20040135701 Yasuda Jul 2004 A1
20040135774 La Monica Jul 2004 A1
20040136510 Vander Veen Jul 2004 A1
20040138869 Heinecke Jul 2004 A1
20040145607 Alderson Jul 2004 A1
20040153306 Tanner Aug 2004 A1
20040155869 Robinson Aug 2004 A1
20040160419 Padgitt Aug 2004 A1
20040162741 Flaxer Aug 2004 A1
20040170379 Yao Sep 2004 A1
20040174399 Wu Sep 2004 A1
20040174434 Walker Sep 2004 A1
20040176958 Salmenkaita Sep 2004 A1
20040177319 Horn Sep 2004 A1
20040178994 Kairls, Jr. Sep 2004 A1
20040181392 Parikh Sep 2004 A1
20040183833 Chua Sep 2004 A1
20040186713 Gomas et al. Sep 2004 A1
20040186714 Baker Sep 2004 A1
20040186777 Margiloff Sep 2004 A1
20040186857 Serlet Sep 2004 A1
20040193398 Chu Sep 2004 A1
20040193420 Kennewick Sep 2004 A1
20040193421 Blass Sep 2004 A1
20040193426 Maddux Sep 2004 A1
20040196256 Wobbrock Oct 2004 A1
20040198436 Alden Oct 2004 A1
20040199375 Ehsani Oct 2004 A1
20040199387 Wang Oct 2004 A1
20040199663 Horvitz Oct 2004 A1
20040203520 Schirtzinger Oct 2004 A1
20040205151 Sprigg Oct 2004 A1
20040205671 Sukehiro Oct 2004 A1
20040208302 Urban Oct 2004 A1
20040210442 Glynn Oct 2004 A1
20040210634 Ferrer Oct 2004 A1
20040213419 Varma Oct 2004 A1
20040215731 Tzann-en Szeto Oct 2004 A1
20040216049 Lewis Oct 2004 A1
20040218451 Said Nov 2004 A1
20040220798 Chi Nov 2004 A1
20040220809 Wang Nov 2004 A1
20040221235 Marchisio Nov 2004 A1
20040223485 Arellano Nov 2004 A1
20040223599 Bear Nov 2004 A1
20040224638 Fadell Nov 2004 A1
20040225501 Cutaia Nov 2004 A1
20040225504 Junqua Nov 2004 A1
20040225650 Cooper Nov 2004 A1
20040225746 Niell Nov 2004 A1
20040230420 Kadambe Nov 2004 A1
20040230637 Lecoueche Nov 2004 A1
20040236778 Junqua Nov 2004 A1
20040242286 Benco Dec 2004 A1
20040243412 Gupta Dec 2004 A1
20040243419 Wang Dec 2004 A1
20040249629 Webster Dec 2004 A1
20040249637 Baker Dec 2004 A1
20040249667 Oon Dec 2004 A1
20040252119 Hunleth Dec 2004 A1
20040252604 Johnson Dec 2004 A1
20040252966 Holloway Dec 2004 A1
20040254791 Coifman Dec 2004 A1
20040254792 Busayapongchai Dec 2004 A1
20040257432 Girish Dec 2004 A1
20040259536 Keskar Dec 2004 A1
20040260438 Chernetsky Dec 2004 A1
20040260547 Cohen Dec 2004 A1
20040260718 Fedorov Dec 2004 A1
20040261023 Bier Dec 2004 A1
20040262051 Carro Dec 2004 A1
20040263636 Cutler Dec 2004 A1
20040267825 Novak Dec 2004 A1
20040268253 DeMello Dec 2004 A1
20040268262 Gupta Dec 2004 A1
20050002507 Timmins Jan 2005 A1
20050010409 Hull Jan 2005 A1
20050012723 Pallakoff Jan 2005 A1
20050015254 Beaman Jan 2005 A1
20050015751 Grassens Jan 2005 A1
20050015772 Saare Jan 2005 A1
20050021330 Mano Jan 2005 A1
20050022114 Shanahan Jan 2005 A1
20050024341 Gillespie Feb 2005 A1
20050024345 Eastty Feb 2005 A1
20050027385 Yueh Feb 2005 A1
20050030175 Wolfe Feb 2005 A1
20050031106 Henderson Feb 2005 A1
20050033582 Gadd Feb 2005 A1
20050033771 Schmitter Feb 2005 A1
20050034164 Sano Feb 2005 A1
20050038657 Roth Feb 2005 A1
20050039141 Burke Feb 2005 A1
20050042591 Bloom Feb 2005 A1
20050043946 Ueyama Feb 2005 A1
20050043949 Roth Feb 2005 A1
20050044569 Marcus Feb 2005 A1
20050045373 Born Mar 2005 A1
20050049862 Choi Mar 2005 A1
20050049870 Zhang Mar 2005 A1
20050049880 Roth Mar 2005 A1
20050055212 Nagao Mar 2005 A1
20050055403 Brittan Mar 2005 A1
20050058438 Hayashi Mar 2005 A1
20050060155 Chu Mar 2005 A1
20050071165 Hofstader Mar 2005 A1
20050071332 Ortega Mar 2005 A1
20050071437 Bear Mar 2005 A1
20050074113 Mathew Apr 2005 A1
20050075881 Rigazio Apr 2005 A1
20050080613 Colledge Apr 2005 A1
20050080620 Rao Apr 2005 A1
20050080625 Bennett Apr 2005 A1
20050080632 Endo Apr 2005 A1
20050080780 Colledge Apr 2005 A1
20050086059 Bennett Apr 2005 A1
20050086255 Schran Apr 2005 A1
20050086605 Ferrer Apr 2005 A1
20050091118 Fano Apr 2005 A1
20050094475 Naoi May 2005 A1
20050099398 Garside May 2005 A1
20050100214 Zhang May 2005 A1
20050102144 Rapoport May 2005 A1
20050102614 Brockett May 2005 A1
20050102625 Lee May 2005 A1
20050105712 Williams May 2005 A1
20050108001 Aarskog May 2005 A1
20050108017 Esser May 2005 A1
20050108074 Bloechl May 2005 A1
20050108338 Simske May 2005 A1
20050108344 Tafoya May 2005 A1
20050108642 Sinclair, II May 2005 A1
20050114124 Liu May 2005 A1
20050114140 Brackett May 2005 A1
20050114306 Shu May 2005 A1
20050114791 Bollenbacher May 2005 A1
20050119890 Hirose Jun 2005 A1
20050119897 Bennett Jun 2005 A1
20050125216 Chitrapura Jun 2005 A1
20050125226 Magee Jun 2005 A1
20050125235 Lazay Jun 2005 A1
20050131951 Zhang Jun 2005 A1
20050132301 Ikeda Jun 2005 A1
20050136949 Barnes Jun 2005 A1
20050138305 Zellner Jun 2005 A1
20050140504 Marshall Jun 2005 A1
20050143972 Gopalakrishnan Jun 2005 A1
20050144003 Iso-Sipila Jun 2005 A1
20050144070 Cheshire Jun 2005 A1
20050144568 Gruen Jun 2005 A1
20050148356 Ferguson Jul 2005 A1
20050149214 Yoo Jul 2005 A1
20050149330 Katae Jul 2005 A1
20050149332 Kuzunuki Jul 2005 A1
20050149510 Shafrir Jul 2005 A1
20050152558 Van Tassel Jul 2005 A1
20050152602 Chen Jul 2005 A1
20050154578 Tong Jul 2005 A1
20050154591 Lecoeuche Jul 2005 A1
20050159939 Mohler Jul 2005 A1
20050159957 Roth Jul 2005 A1
20050162395 Unruh Jul 2005 A1
20050165015 Ncube Jul 2005 A1
20050165607 Di Fabbrizio Jul 2005 A1
20050166153 Eytchison Jul 2005 A1
20050177359 Lu et al. Aug 2005 A1
20050177445 Church Aug 2005 A1
20050181770 Helferich Aug 2005 A1
20050182616 Kotipalli Aug 2005 A1
20050182627 Tanaka Aug 2005 A1
20050182628 Choi Aug 2005 A1
20050182629 Coorman Aug 2005 A1
20050182630 Miro Aug 2005 A1
20050182765 Liddy Aug 2005 A1
20050184958 Gnanamgari Aug 2005 A1
20050187770 Kompe Aug 2005 A1
20050187773 Filoche Aug 2005 A1
20050190970 Griffin Sep 2005 A1
20050192801 Lewis Sep 2005 A1
20050192812 Buchholz Sep 2005 A1
20050195077 McCulloch Sep 2005 A1
20050195429 Archbold Sep 2005 A1
20050196733 Budra Sep 2005 A1
20050201572 Lindahl Sep 2005 A1
20050202854 Kortum Sep 2005 A1
20050203738 Hwang Sep 2005 A1
20050203747 Lecoeuche Sep 2005 A1
20050203991 Kawamura Sep 2005 A1
20050209848 Ishii Sep 2005 A1
20050210394 Crandall Sep 2005 A1
20050216331 Ahrens Sep 2005 A1
20050222843 Kahn Oct 2005 A1
20050222973 Kaiser Oct 2005 A1
20050228665 Kobayashi Oct 2005 A1
20050245243 Zuniga Nov 2005 A1
20050246350 Canaran Nov 2005 A1
20050246365 Lowles Nov 2005 A1
20050246686 Seshadri Nov 2005 A1
20050246726 Labrou Nov 2005 A1
20050251572 McMahan Nov 2005 A1
20050254481 Vishik Nov 2005 A1
20050261901 Davis Nov 2005 A1
20050262440 Stanciu Nov 2005 A1
20050267738 Wilkinson Dec 2005 A1
20050267757 Iso-Sipila Dec 2005 A1
20050268247 Baneth Dec 2005 A1
20050271216 Lashkari Dec 2005 A1
20050273332 Scott Dec 2005 A1
20050273337 Erell Dec 2005 A1
20050273626 Pearson Dec 2005 A1
20050278297 Nelson Dec 2005 A1
20050278643 Ukai Dec 2005 A1
20050278647 Leavitt Dec 2005 A1
20050283363 Weng Dec 2005 A1
20050283364 Longe Dec 2005 A1
20050283726 Lunati Dec 2005 A1
20050283729 Morris Dec 2005 A1
20050288934 Omi Dec 2005 A1
20050288936 Busayapongchai Dec 2005 A1
20050289458 Kylmanen Dec 2005 A1
20050289463 Wu Dec 2005 A1
20060001652 Chiu Jan 2006 A1
20060004570 Ju Jan 2006 A1
20060004640 Swierczek Jan 2006 A1
20060004744 Nevidomski Jan 2006 A1
20060007174 Shen Jan 2006 A1
20060009973 Nguyen Jan 2006 A1
20060013414 Shih Jan 2006 A1
20060013446 Stephens Jan 2006 A1
20060015326 Mori Jan 2006 A1
20060015341 Baker Jan 2006 A1
20060015484 Weng Jan 2006 A1
20060015819 Hawkins Jan 2006 A1
20060018446 Schmandt Jan 2006 A1
20060018492 Chiu Jan 2006 A1
20060020890 Kroll Jan 2006 A1
20060025999 Feng Feb 2006 A1
20060026233 Tenembaum Feb 2006 A1
20060026521 Hotelling Feb 2006 A1
20060026535 Hotelling Feb 2006 A1
20060026536 Hotelling Feb 2006 A1
20060033724 Chaudhri Feb 2006 A1
20060035632 Sorvari Feb 2006 A1
20060036946 Radtke Feb 2006 A1
20060041424 Todhunter Feb 2006 A1
20060041431 Maes Feb 2006 A1
20060041590 King Feb 2006 A1
20060047632 Zhang Mar 2006 A1
20060050865 Kortum Mar 2006 A1
20060052141 Suzuki Mar 2006 A1
20060053007 Niemisto Mar 2006 A1
20060053365 Hollander Mar 2006 A1
20060053379 Henderson Mar 2006 A1
20060053387 Ording Mar 2006 A1
20060058999 Barker Mar 2006 A1
20060059424 Petri Mar 2006 A1
20060059437 Conklin, III Mar 2006 A1
20060060762 Chan Mar 2006 A1
20060061488 Dunton Mar 2006 A1
20060064693 Messer Mar 2006 A1
20060067535 Culbert Mar 2006 A1
20060067536 Culbert Mar 2006 A1
20060069567 Tischer Mar 2006 A1
20060069664 Ling Mar 2006 A1
20060072248 Watanabe Apr 2006 A1
20060072716 Pham Apr 2006 A1
20060074628 Elbaz Apr 2006 A1
20060074651 Arun Apr 2006 A1
20060074660 Waters Apr 2006 A1
20060074674 Zhang Apr 2006 A1
20060074750 Clark Apr 2006 A1
20060074898 Gavalda Apr 2006 A1
20060075429 Istvan Apr 2006 A1
20060077055 Basir Apr 2006 A1
20060080098 Campbell Apr 2006 A1
20060085187 Barquilla Apr 2006 A1
20060085465 Nori Apr 2006 A1
20060085757 Andre Apr 2006 A1
20060093998 Vertegaal May 2006 A1
20060095265 Chu May 2006 A1
20060095790 Nguyen May 2006 A1
20060095846 Nurmi May 2006 A1
20060095848 Naik May 2006 A1
20060097991 Hotelling May 2006 A1
20060100848 Cozzi May 2006 A1
20060100849 Chan May 2006 A1
20060101354 Hashimoto May 2006 A1
20060103633 Gioeli May 2006 A1
20060106592 Brockett May 2006 A1
20060106594 Brockett May 2006 A1
20060106595 Brockett May 2006 A1
20060111906 Cross May 2006 A1
20060111909 Maes May 2006 A1
20060116874 Samuelsson Jun 2006 A1
20060116877 Pickering Jun 2006 A1
20060117002 Swen Jun 2006 A1
20060119582 Ng Jun 2006 A1
20060122834 Bennett Jun 2006 A1
20060122836 Cross, Jr. Jun 2006 A1
20060129379 Ramsey Jun 2006 A1
20060129929 Weber Jun 2006 A1
20060130006 Chitale Jun 2006 A1
20060132812 Barnes Jun 2006 A1
20060135214 Zhang Jun 2006 A1
20060136213 Hirose Jun 2006 A1
20060136280 Cho Jun 2006 A1
20060136352 Brun Jun 2006 A1
20060141990 Zak Jun 2006 A1
20060142576 Meng Jun 2006 A1
20060142993 Menendez-Pidal Jun 2006 A1
20060143007 Koh Jun 2006 A1
20060143559 Spielberg Jun 2006 A1
20060143576 Gupta Jun 2006 A1
20060148520 Baker Jul 2006 A1
20060149557 Kaneko Jul 2006 A1
20060149558 Kahn Jul 2006 A1
20060150087 Cronenberger Jul 2006 A1
20060152496 Knaven Jul 2006 A1
20060153040 Girish Jul 2006 A1
20060156252 Sheshagiri Jul 2006 A1
20060156307 Kunjithapatham Jul 2006 A1
20060161870 Hotelling Jul 2006 A1
20060161871 Hotelling Jul 2006 A1
20060161872 Rytivaara Jul 2006 A1
20060165105 Shenfield Jul 2006 A1
20060167676 Plumb Jul 2006 A1
20060168150 Naik Jul 2006 A1
20060168507 Hansen Jul 2006 A1
20060168539 Hawkins Jul 2006 A1
20060172720 Islam Aug 2006 A1
20060173683 Roth Aug 2006 A1
20060173684 Fischer Aug 2006 A1
20060174207 Deshpande Aug 2006 A1
20060178868 Billerey-Mosier Aug 2006 A1
20060181519 Vernier Aug 2006 A1
20060183466 Lee Aug 2006 A1
20060184886 Chung Aug 2006 A1
20060187073 Lin Aug 2006 A1
20060190269 Tessel Aug 2006 A1
20060190436 Richardson Aug 2006 A1
20060190577 Yamada Aug 2006 A1
20060193518 Dong Aug 2006 A1
20060194181 Rosenberg Aug 2006 A1
20060195206 Moon Aug 2006 A1
20060195323 Monne Aug 2006 A1
20060197753 Hotelling Sep 2006 A1
20060197755 Bawany Sep 2006 A1
20060200253 Hoffberg Sep 2006 A1
20060200342 Corston-Oliver Sep 2006 A1
20060200347 Kim Sep 2006 A1
20060205432 Hawkins Sep 2006 A1
20060206313 Xu Sep 2006 A1
20060206454 Forstall Sep 2006 A1
20060206724 Schaufele Sep 2006 A1
20060212415 Backer Sep 2006 A1
20060217967 Goertzen Sep 2006 A1
20060218244 Rasmussen Sep 2006 A1
20060221738 Park Oct 2006 A1
20060221788 Lindahl Oct 2006 A1
20060224570 Quiroga Oct 2006 A1
20060229802 Vertelney Oct 2006 A1
20060229870 Kobal Oct 2006 A1
20060229876 Aaron Oct 2006 A1
20060230350 Baluja Oct 2006 A1
20060230410 Kurganov Oct 2006 A1
20060234680 Doulton Oct 2006 A1
20060235550 Csicsatka Oct 2006 A1
20060235700 Wong Oct 2006 A1
20060235841 Betz Oct 2006 A1
20060236262 Bathiche Oct 2006 A1
20060239419 Joseph Oct 2006 A1
20060239471 Mao Oct 2006 A1
20060240866 Eilts Oct 2006 A1
20060241948 Abrash Oct 2006 A1
20060242190 Wnek Oct 2006 A1
20060246955 Nirhamo Nov 2006 A1
20060247931 Caskey Nov 2006 A1
20060252457 Schrager Nov 2006 A1
20060253210 Rosenberg Nov 2006 A1
20060253787 Fogg Nov 2006 A1
20060256934 Mazor Nov 2006 A1
20060258376 Ewell, Jr. Nov 2006 A1
20060262876 LaDue Nov 2006 A1
20060265208 Assadollahi Nov 2006 A1
20060265503 Jones Nov 2006 A1
20060265648 Rainisto Nov 2006 A1
20060271627 Szczepanek Nov 2006 A1
20060274051 Longe Dec 2006 A1
20060274905 Lindahl Dec 2006 A1
20060277031 Ramsey Dec 2006 A1
20060277058 J'maev Dec 2006 A1
20060282264 Denny Dec 2006 A1
20060282415 Shibata Dec 2006 A1
20060282455 Lee Dec 2006 A1
20060286527 Morel Dec 2006 A1
20060287864 Pusa Dec 2006 A1
20060288024 Braica Dec 2006 A1
20060291666 Ball Dec 2006 A1
20060293876 Kamatani Dec 2006 A1
20060293880 Elshishiny Dec 2006 A1
20060293886 Odell Dec 2006 A1
20060293889 Kiss Dec 2006 A1
20070003026 Hodge Jan 2007 A1
20070004451 C. Anderson Jan 2007 A1
20070005849 Oliver Jan 2007 A1
20070006098 Krumm Jan 2007 A1
20070011154 Musgrove Jan 2007 A1
20070014280 Cormier Jan 2007 A1
20070016563 Omoigui Jan 2007 A1
20070016865 Johnson Jan 2007 A1
20070021956 Qu Jan 2007 A1
20070022380 Swartz Jan 2007 A1
20070025704 Tsukazaki Feb 2007 A1
20070026852 Logan Feb 2007 A1
20070027732 Hudgens Feb 2007 A1
20070028009 Robbin Feb 2007 A1
20070030824 Ribaudo Feb 2007 A1
20070032247 Shaffer Feb 2007 A1
20070033003 Morris Feb 2007 A1
20070033005 Cristo Feb 2007 A1
20070033026 Bartosik Feb 2007 A1
20070033054 Snitkovskiy Feb 2007 A1
20070036117 Taube Feb 2007 A1
20070036286 Champlin Feb 2007 A1
20070036294 Chaudhuri Feb 2007 A1
20070038436 Cristo Feb 2007 A1
20070038609 Wu Feb 2007 A1
20070040813 Kushler Feb 2007 A1
20070041361 Iso-Sipila Feb 2007 A1
20070042812 Basir Feb 2007 A1
20070043568 Dhanakshirur Feb 2007 A1
20070043687 Bodart Feb 2007 A1
20070043820 George Feb 2007 A1
20070044038 Horentrup Feb 2007 A1
20070046641 Lim Mar 2007 A1
20070047719 Dhawan Mar 2007 A1
20070050184 Drucker Mar 2007 A1
20070050191 Weider Mar 2007 A1
20070050393 Vogel Mar 2007 A1
20070050712 Hull Mar 2007 A1
20070052586 Horstemeyer Mar 2007 A1
20070055493 Lee Mar 2007 A1
20070055508 Zhao Mar 2007 A1
20070055514 Beattie Mar 2007 A1
20070055525 Kennewick Mar 2007 A1
20070055529 Kanevsky Mar 2007 A1
20070058832 Hug Mar 2007 A1
20070060107 Day Mar 2007 A1
20070060118 Guyette Mar 2007 A1
20070061487 Moore Mar 2007 A1
20070061712 Bodin Mar 2007 A1
20070061754 Ardhanari Mar 2007 A1
20070067173 Bellegarda Mar 2007 A1
20070067272 Flynt Mar 2007 A1
20070073540 Hirakawa Mar 2007 A1
20070073541 Tian Mar 2007 A1
20070073745 Scott Mar 2007 A1
20070074131 Assadollahi Mar 2007 A1
20070075965 Huppi Apr 2007 A1
20070079027 Marriott Apr 2007 A1
20070080936 Tsuk Apr 2007 A1
20070083467 Lindahl Apr 2007 A1
20070083623 Nishimura Apr 2007 A1
20070088556 Andrew Apr 2007 A1
20070089132 Qureshey Apr 2007 A1
20070089135 Qureshey Apr 2007 A1
20070093277 Cavacuiti Apr 2007 A1
20070094026 Ativanichayaphong Apr 2007 A1
20070098195 Holmes May 2007 A1
20070100206 Lin May 2007 A1
20070100602 Kim May 2007 A1
20070100619 Purho May 2007 A1
20070100624 Weng May 2007 A1
20070100635 Mahajan May 2007 A1
20070100709 Lee May 2007 A1
20070100790 Cheyer May 2007 A1
20070100814 Lee May 2007 A1
20070100883 Rose May 2007 A1
20070106491 Carter May 2007 A1
20070106497 Ramsey May 2007 A1
20070106512 Acero May 2007 A1
20070106513 Boillot May 2007 A1
20070106657 Brzeski May 2007 A1
20070106674 Agrawal May 2007 A1
20070106685 Houh May 2007 A1
20070112562 Vainio May 2007 A1
20070116195 Thompson May 2007 A1
20070118351 Sumita May 2007 A1
20070118377 Badino May 2007 A1
20070118378 Skuratovsky May 2007 A1
20070121846 Altberg May 2007 A1
20070124131 Chino May 2007 A1
20070124132 Takeuchi May 2007 A1
20070124149 Shen May 2007 A1
20070124291 Hassan May 2007 A1
20070124676 Amundsen May 2007 A1
20070127888 Hayashi Jun 2007 A1
20070128777 Yin Jun 2007 A1
20070129059 Nadarajah Jun 2007 A1
20070130014 Altberg Jun 2007 A1
20070130128 Garg Jun 2007 A1
20070132738 Lowles Jun 2007 A1
20070133771 Stifelman Jun 2007 A1
20070135187 Kreiner Jun 2007 A1
20070135949 Snover Jun 2007 A1
20070136064 Carroll Jun 2007 A1
20070136778 Birger Jun 2007 A1
20070143163 Weiss Jun 2007 A1
20070149252 Jobs Jun 2007 A1
20070150289 Sakuramoto et al. Jun 2007 A1
20070150403 Mock Jun 2007 A1
20070150444 Chesnais Jun 2007 A1
20070150842 Chaudhri Jun 2007 A1
20070152978 Kocienda Jul 2007 A1
20070152980 Kocienda Jul 2007 A1
20070155346 Mijatovic Jul 2007 A1
20070156410 Stohr Jul 2007 A1
20070156627 D'Alicandro Jul 2007 A1
20070157089 Van Os Jul 2007 A1
20070157268 Girish Jul 2007 A1
20070162274 Ruiz Jul 2007 A1
20070162296 Altberg Jul 2007 A1
20070162414 Horowitz Jul 2007 A1
20070165003 Fux Jul 2007 A1
20070167136 Groth Jul 2007 A1
20070168922 Kaiser Jul 2007 A1
20070173233 Vander Veen Jul 2007 A1
20070173267 Klassen Jul 2007 A1
20070174057 Genly Jul 2007 A1
20070174188 Fish Jul 2007 A1
20070174350 Pell Jul 2007 A1
20070174396 Kumar Jul 2007 A1
20070179776 Segond Aug 2007 A1
20070179778 Gong Aug 2007 A1
20070180383 Naik Aug 2007 A1
20070182595 Ghasabian Aug 2007 A1
20070185551 Meadows Aug 2007 A1
20070185754 Schmidt Aug 2007 A1
20070185831 Churcher Aug 2007 A1
20070185917 Prahlad Aug 2007 A1
20070188901 Heckerman Aug 2007 A1
20070192026 Lee Aug 2007 A1
20070192027 Lee Aug 2007 A1
20070192105 Neeracher Aug 2007 A1
20070192179 Van Luchene Aug 2007 A1
20070192293 Swen Aug 2007 A1
20070192403 Heine Aug 2007 A1
20070192744 Reponen Aug 2007 A1
20070198267 Jones Aug 2007 A1
20070198269 Braho Aug 2007 A1
20070198273 Hennecke Aug 2007 A1
20070198566 Sustik Aug 2007 A1
20070203955 Pomerantz Aug 2007 A1
20070207785 Chatterjee Sep 2007 A1
20070208555 Blass Sep 2007 A1
20070208569 Subramanian Sep 2007 A1
20070208579 Peterson Sep 2007 A1
20070208726 Krishnaprasad Sep 2007 A1
20070211071 Slotznick Sep 2007 A1
20070213099 Bast Sep 2007 A1
20070213857 Bodin Sep 2007 A1
20070213984 Ativanichayaphong Sep 2007 A1
20070217693 Kretzschmar, Jr. Sep 2007 A1
20070219645 Thomas Sep 2007 A1
20070219777 Chu Sep 2007 A1
20070219801 Sundaram Sep 2007 A1
20070219803 Chiu Sep 2007 A1
20070219983 Fish Sep 2007 A1
20070225980 Sumita Sep 2007 A1
20070225984 Milstein Sep 2007 A1
20070226652 Kikuchi Sep 2007 A1
20070229323 Plachta Oct 2007 A1
20070230729 Naylor Oct 2007 A1
20070233484 Coelho Oct 2007 A1
20070233487 Cohen Oct 2007 A1
20070233490 Yao Oct 2007 A1
20070233497 Paek Oct 2007 A1
20070233692 Lisa Oct 2007 A1
20070233725 Michmerhuizen Oct 2007 A1
20070238488 Scott Oct 2007 A1
20070238489 Scott Oct 2007 A1
20070238520 Kacmarcik Oct 2007 A1
20070239429 Johnson et al. Oct 2007 A1
20070239453 Paek et al. Oct 2007 A1
20070240043 Fux et al. Oct 2007 A1
20070240044 Fux et al. Oct 2007 A1
20070240045 Fux Oct 2007 A1
20070241885 Clipsham Oct 2007 A1
20070244702 Kahn Oct 2007 A1
20070244976 Carroll et al. Oct 2007 A1
20070247441 Kim Oct 2007 A1
20070255435 Cohen Nov 2007 A1
20070255979 Deily Nov 2007 A1
20070257890 Hotelling Nov 2007 A1
20070258642 Thota Nov 2007 A1
20070260460 Hyatt Nov 2007 A1
20070260595 Beatty Nov 2007 A1
20070260822 Adams Nov 2007 A1
20070261080 Saetti Nov 2007 A1
20070265831 Dinur Nov 2007 A1
20070265850 Kennewick Nov 2007 A1
20070271104 McKay Nov 2007 A1
20070271510 Grigoriu Nov 2007 A1
20070274468 Cai Nov 2007 A1
20070276651 Bliss Nov 2007 A1
20070276714 Beringer Nov 2007 A1
20070276810 Rosen Nov 2007 A1
20070277088 Bodin Nov 2007 A1
20070282595 Tunning Dec 2007 A1
20070285958 Platchta Dec 2007 A1
20070286363 Burg Dec 2007 A1
20070286399 Ramamoorthy Dec 2007 A1
20070288238 Hetherington Dec 2007 A1
20070288241 Cross Dec 2007 A1
20070288449 Datta Dec 2007 A1
20070291108 Huber Dec 2007 A1
20070294077 Narayanan Dec 2007 A1
20070294083 Bellegarda Dec 2007 A1
20070294199 Nelken Dec 2007 A1
20070294263 Punj Dec 2007 A1
20070299664 Peters Dec 2007 A1
20070299831 Williams Dec 2007 A1
20070300140 Makela Dec 2007 A1
20080001785 Elizarov Jan 2008 A1
20080010355 Vieri Jan 2008 A1
20080010605 Frank Jan 2008 A1
20080012950 Lee Jan 2008 A1
20080013751 Hiselius Jan 2008 A1
20080015863 Agapi Jan 2008 A1
20080015864 Ross Jan 2008 A1
20080016575 Vincent Jan 2008 A1
20080021708 Bennett Jan 2008 A1
20080021886 Wang-Aryattanwanich Jan 2008 A1
20080022208 Morse Jan 2008 A1
20080027726 Hansen Jan 2008 A1
20080031475 Goldstein Feb 2008 A1
20080033719 Hall Feb 2008 A1
20080034032 Healey Feb 2008 A1
20080034044 Bhakta Feb 2008 A1
20080036743 Westerman Feb 2008 A1
20080040339 Zhou Feb 2008 A1
20080042970 Liang Feb 2008 A1
20080043936 Liebermann Feb 2008 A1
20080043943 Sipher Feb 2008 A1
20080046239 Boo Feb 2008 A1
20080046250 Agapi Feb 2008 A1
20080046422 Lee Feb 2008 A1
20080046820 Lee Feb 2008 A1
20080046948 Verosub Feb 2008 A1
20080048908 Sato Feb 2008 A1
20080052063 Bennett Feb 2008 A1
20080052073 Goto Feb 2008 A1
20080052077 Bennett Feb 2008 A1
20080052080 Narayanan Feb 2008 A1
20080052262 Kosinov Feb 2008 A1
20080055194 Baudino Mar 2008 A1
20080056459 Vallier Mar 2008 A1
20080056579 Guha Mar 2008 A1
20080059190 Chu Mar 2008 A1
20080059200 Puli Mar 2008 A1
20080059876 Hantler Mar 2008 A1
20080062141 Chandhri Mar 2008 A1
20080065382 Gerl Mar 2008 A1
20080065387 Cross, Jr. Mar 2008 A1
20080071529 Silverman Mar 2008 A1
20080071544 Beaufays Mar 2008 A1
20080075296 Lindahl Mar 2008 A1
20080076972 Dorogusker Mar 2008 A1
20080077310 Murlidar Mar 2008 A1
20080077384 Agapi Mar 2008 A1
20080077386 Gao Mar 2008 A1
20080077391 Chino Mar 2008 A1
20080077393 Gao Mar 2008 A1
20080077406 Ganong, III Mar 2008 A1
20080077859 Schabes Mar 2008 A1
20080079566 Singh Apr 2008 A1
20080080411 Cole Apr 2008 A1
20080082332 Mallett Apr 2008 A1
20080082338 O'Neil Apr 2008 A1
20080082390 Hawkins Apr 2008 A1
20080082576 Bodin Apr 2008 A1
20080082651 Singh Apr 2008 A1
20080084974 Dhanakshirur Apr 2008 A1
20080091406 Baldwin Apr 2008 A1
20080091426 Rempel Apr 2008 A1
20080091443 Strope Apr 2008 A1
20080096531 McQuaide Apr 2008 A1
20080096726 Riley Apr 2008 A1
20080097937 Hadjarian Apr 2008 A1
20080098302 Roose Apr 2008 A1
20080098480 Henry Apr 2008 A1
20080057922 Kokes May 2008 A1
20080100579 Robinson May 2008 A1
20080101584 Gray May 2008 A1
20080103774 White May 2008 A1
20080109222 Liu May 2008 A1
20080109402 Wang May 2008 A1
20080114480 Harb May 2008 A1
20080114598 Prieto May 2008 A1
20080114604 Wei May 2008 A1
20080114841 Lambert May 2008 A1
20080115084 Scott May 2008 A1
20080118143 Gordon May 2008 A1
20080119953 Reed May 2008 A1
20080120102 Rao May 2008 A1
20080120112 Jordan May 2008 A1
20080120196 Reed May 2008 A1
20080120311 Reed May 2008 A1
20080120312 Reed May 2008 A1
20080120330 Reed May 2008 A1
20080120342 Reed May 2008 A1
20080122796 Jobs May 2008 A1
20080124695 Myers May 2008 A1
20080126075 Thorn May 2008 A1
20080126077 Thorn May 2008 A1
20080126091 Clark May 2008 A1
20080126093 Sivadas May 2008 A1
20080126100 Grost May 2008 A1
20080126491 Portele May 2008 A1
20080129520 Lee Jun 2008 A1
20080130867 Bowen Jun 2008 A1
20080131006 Oliver Jun 2008 A1
20080132221 Willey Jun 2008 A1
20080133215 Sarukkai Jun 2008 A1
20080133228 Rao Jun 2008 A1
20080133230 Herforth Jun 2008 A1
20080133241 Baker Jun 2008 A1
20080133956 Fadell Jun 2008 A1
20080140413 Millman Jun 2008 A1
20080140416 Shostak Jun 2008 A1
20080140652 Millman Jun 2008 A1
20080140657 Azvine Jun 2008 A1
20080140702 Reed Jun 2008 A1
20080141125 Ghassabian Jun 2008 A1
20080141180 Reed Jun 2008 A1
20080141182 Barsness Jun 2008 A1
20080146245 Appaji Jun 2008 A1
20080146290 Sreeram Jun 2008 A1
20080147408 Da Palma Jun 2008 A1
20080147411 Dames Jun 2008 A1
20080147874 Yoneda Jun 2008 A1
20080150900 Han Jun 2008 A1
20080154577 Kim Jun 2008 A1
20080154600 Tian Jun 2008 A1
20080154612 Evermann et al. Jun 2008 A1
20080154828 Antebi et al. Jun 2008 A1
20080157867 Krah Jul 2008 A1
20080161113 Hansen et al. Jul 2008 A1
20080162120 MacTavish et al. Jul 2008 A1
20080163119 Kim et al. Jul 2008 A1
20080163131 Hirai et al. Jul 2008 A1
20080165144 Forstall et al. Jul 2008 A1
20080165980 Pavlovic et al. Jul 2008 A1
20080165994 Caren et al. Jul 2008 A1
20080167013 Novick Jul 2008 A1
20080167858 Christie Jul 2008 A1
20080168366 Kocienda Jul 2008 A1
20080183473 Nagano Jul 2008 A1
20080186960 Kocheisen Aug 2008 A1
20080189099 Friedman Aug 2008 A1
20080189106 Low Aug 2008 A1
20080189110 Freeman Aug 2008 A1
20080189114 Fail Aug 2008 A1
20080189606 Rybak Aug 2008 A1
20080195312 Aaron Aug 2008 A1
20080195388 Bower Aug 2008 A1
20080195391 Marple Aug 2008 A1
20080195601 Ntoulas Aug 2008 A1
20080195630 Exartier Aug 2008 A1
20080195940 Gail Aug 2008 A1
20080200142 Abdel-Kader Aug 2008 A1
20080201306 Cooper Aug 2008 A1
20080201375 Khedouri Aug 2008 A1
20080204379 Perez-Noguera Aug 2008 A1
20080207176 Brackbill Aug 2008 A1
20080208585 Ativanichayaphong Aug 2008 A1
20080208587 Ben-David Aug 2008 A1
20080208864 Cucerzan Aug 2008 A1
20080212796 Denda Sep 2008 A1
20080219641 Sandrew Sep 2008 A1
20080221866 Katragadda Sep 2008 A1
20080221879 Cerra Sep 2008 A1
20080221880 Cerra Sep 2008 A1
20080221887 Rose Sep 2008 A1
20080221889 Cerra Sep 2008 A1
20080221903 Kanevsky Sep 2008 A1
20080222118 Scian Sep 2008 A1
20080226130 Kansal Sep 2008 A1
20080228463 Mori Sep 2008 A1
20080228485 Owen Sep 2008 A1
20080228490 Fischer Sep 2008 A1
20080228495 Cross, Jr. Sep 2008 A1
20080228496 Yu Sep 2008 A1
20080228928 Donelli Sep 2008 A1
20080229185 Lynch Sep 2008 A1
20080229218 Maeng Sep 2008 A1
20080235017 Satomura Sep 2008 A1
20080235024 Goldberg Sep 2008 A1
20080235027 Cross Sep 2008 A1
20080240569 Tonouchi Oct 2008 A1
20080242280 Shapiro Oct 2008 A1
20080244390 Fux Oct 2008 A1
20080244446 LeFevre Oct 2008 A1
20080247519 Abella Oct 2008 A1
20080247529 Barton Oct 2008 A1
20080248797 Freeman Oct 2008 A1
20080249770 Kim Oct 2008 A1
20080249778 Barton Oct 2008 A1
20080253577 Eppolito Oct 2008 A1
20080254425 Cohen Oct 2008 A1
20080255837 Kahn Oct 2008 A1
20080255842 Simhi Oct 2008 A1
20080255845 Bennett Oct 2008 A1
20080255852 Hu Oct 2008 A1
20080256613 Grover Oct 2008 A1
20080259022 Mansfield Oct 2008 A1
20080262828 Och Oct 2008 A1
20080262838 Nurminen Oct 2008 A1
20080262846 Burns Oct 2008 A1
20080263139 Martin Oct 2008 A1
20080270118 Kuo Oct 2008 A1
20080270138 Knight Oct 2008 A1
20080270139 Shi Oct 2008 A1
20080270140 Hertz Oct 2008 A1
20080270151 Mahoney Oct 2008 A1
20080277473 Kotlarsky Nov 2008 A1
20080281510 Shahine Nov 2008 A1
20080288259 Chambers Nov 2008 A1
20080288460 Poniatowski Nov 2008 A1
20080292112 Valenzuela Nov 2008 A1
20080294418 Cleary Nov 2008 A1
20080294651 Masuyama Nov 2008 A1
20080294981 Balzano Nov 2008 A1
20080298563 Rondeau Dec 2008 A1
20080298766 Wen Dec 2008 A1
20080299523 Chai Dec 2008 A1
20080300871 Gilbert Dec 2008 A1
20080300878 Bennett Dec 2008 A1
20080303645 Seymour Dec 2008 A1
20080306727 Thurmair Dec 2008 A1
20080312909 Hermansen Dec 2008 A1
20080312928 Goebel Dec 2008 A1
20080313335 Jung Dec 2008 A1
20080316183 Westerman Dec 2008 A1
20080319738 Liu Dec 2008 A1
20080319753 Hancock Dec 2008 A1
20080319763 Di Fabbrizio Dec 2008 A1
20080319783 Yao Dec 2008 A1
20090003115 Lindahl Jan 2009 A1
20090005012 van Heugten Jan 2009 A1
20090005891 Batson Jan 2009 A1
20090006097 Etezadi Jan 2009 A1
20090006099 Sharpe Jan 2009 A1
20090006100 Badger Jan 2009 A1
20090006343 Platt Jan 2009 A1
20090006345 Platt Jan 2009 A1
20090006488 Lindahl Jan 2009 A1
20090006671 Batson Jan 2009 A1
20090007001 Morin Jan 2009 A1
20090011709 Akasaka Jan 2009 A1
20090012748 Beish Jan 2009 A1
20090012775 El Hady Jan 2009 A1
20090018828 Nakadai Jan 2009 A1
20090018829 Kuperstein Jan 2009 A1
20090018834 Cooper Jan 2009 A1
20090018835 Cooper Jan 2009 A1
20090018839 Cooper Jan 2009 A1
20090018840 Lutz Jan 2009 A1
20090022329 Mahowald Jan 2009 A1
20090024595 Chen Jan 2009 A1
20090028435 Wu Jan 2009 A1
20090030800 Grois Jan 2009 A1
20090030978 Johnson Jan 2009 A1
20090043580 Mozer Feb 2009 A1
20090043583 Agapi Feb 2009 A1
20090043763 Peng Feb 2009 A1
20090044094 Rapp Feb 2009 A1
20090048821 Yam Feb 2009 A1
20090048845 Burckart Feb 2009 A1
20090049067 Murray Feb 2009 A1
20090054046 Whittington et al. Feb 2009 A1
20090055168 Wu Feb 2009 A1
20090055175 Terrell, II Feb 2009 A1
20090055179 Cho Feb 2009 A1
20090055186 Lance Feb 2009 A1
20090055381 Wu Feb 2009 A1
20090058823 Kocienda Mar 2009 A1
20090058860 Fong Mar 2009 A1
20090060351 Li Mar 2009 A1
20090060472 Bull Mar 2009 A1
20090063974 Bull Mar 2009 A1
20090064031 Bull Mar 2009 A1
20090070097 Wu Mar 2009 A1
20090070102 Maegawa Mar 2009 A1
20090070109 Didcock Mar 2009 A1
20090070114 Staszak Mar 2009 A1
20090074214 Bradford Mar 2009 A1
20090076792 Lawson-Tancred Mar 2009 A1
20090076796 Daraselia Mar 2009 A1
20090076819 Wouters Mar 2009 A1
20090076821 Brenner Mar 2009 A1
20090076825 Bradford Mar 2009 A1
20090077165 Rhodes Mar 2009 A1
20090079622 Seshadri Mar 2009 A1
20090083034 Hernandez Mar 2009 A1
20090083035 Huang Mar 2009 A1
20090083036 Zhao Mar 2009 A1
20090083037 Gleason Mar 2009 A1
20090083047 Lindahl Mar 2009 A1
20090089058 Bellegarda Apr 2009 A1
20090092239 Macwan Apr 2009 A1
20090092260 Powers Apr 2009 A1
20090092261 Bard Apr 2009 A1
20090092262 Costa Apr 2009 A1
20090094029 Koch Apr 2009 A1
20090094033 Mozer Apr 2009 A1
20090097634 Nambiar Apr 2009 A1
20090097637 Boscher Apr 2009 A1
20090100049 Cao Apr 2009 A1
20090100454 Weber Apr 2009 A1
20090104898 Harris Apr 2009 A1
20090106026 Ferrieux Apr 2009 A1
20090106376 Tom Apr 2009 A1
20090106397 O'Keefe Apr 2009 A1
20090112572 Thorn Apr 2009 A1
20090112576 Jackson Apr 2009 A1
20090112592 Candelore Apr 2009 A1
20090112677 Rhett Apr 2009 A1
20090112892 Cardie Apr 2009 A1
20090119587 Allen May 2009 A1
20090123021 Jung May 2009 A1
20090123071 Iwasaki May 2009 A1
20090125477 Lu May 2009 A1
20090128505 Partridge May 2009 A1
20090132253 Bellegarda May 2009 A1
20090132255 Lu May 2009 A1
20090137286 Luke May 2009 A1
20090138736 Chin May 2009 A1
20090138828 Schultz May 2009 A1
20090144049 Haddad Jun 2009 A1
20090144428 Bowater Jun 2009 A1
20090144609 Liang Jun 2009 A1
20090146848 Ghassabian Jun 2009 A1
20090150147 Jacoby Jun 2009 A1
20090150156 Kennewick Jun 2009 A1
20090152349 Bonev Jun 2009 A1
20090153288 Hope Jun 2009 A1
20090154669 Wood Jun 2009 A1
20090157382 Bar Jun 2009 A1
20090157384 Toutanova Jun 2009 A1
20090157401 Bennett Jun 2009 A1
20090158200 Palahnuk Jun 2009 A1
20090158323 Bober Jun 2009 A1
20090158423 Orlassino Jun 2009 A1
20090160803 Hashimoto Jun 2009 A1
20090164301 O'Sullivan Jun 2009 A1
20090164441 Cheyer Jun 2009 A1
20090164655 Pettersson Jun 2009 A1
20090164937 Alviar Jun 2009 A1
20090167508 Fadell Jul 2009 A1
20090167509 Fadell Jul 2009 A1
20090171578 Kim Jul 2009 A1
20090171662 Huang Jul 2009 A1
20090171664 Kennewick Jul 2009 A1
20090172108 Singh Jul 2009 A1
20090172542 Girish Jul 2009 A1
20090174667 Kocienda Jul 2009 A1
20090174677 Gehani Jul 2009 A1
20090177300 Lee Jul 2009 A1
20090177461 Ehsani Jul 2009 A1
20090177966 Chaudhri Jul 2009 A1
20090182445 Girish Jul 2009 A1
20090187402 Scholl Jul 2009 A1
20090187577 Reznik Jul 2009 A1
20090187950 Nicas Jul 2009 A1
20090191895 Singh Jul 2009 A1
20090192782 Drewes Jul 2009 A1
20090192787 Roon Jul 2009 A1
20090198497 Kwon Aug 2009 A1
20090204409 Mozer Aug 2009 A1
20090204478 Kaib Aug 2009 A1
20090204596 Brun Aug 2009 A1
20090204601 Grasset Aug 2009 A1
20090204620 Thione Aug 2009 A1
20090210230 Schwarz Aug 2009 A1
20090210232 Sanchez Aug 2009 A1
20090213134 Stephanick Aug 2009 A1
20090215503 Zhang Aug 2009 A1
20090216396 Yamagata Aug 2009 A1
20090216540 Tessel Aug 2009 A1
20090216704 Zheng Aug 2009 A1
20090221274 Venkatakrishnan Sep 2009 A1
20090222257 Sumita Sep 2009 A1
20090222270 Likens Sep 2009 A2
20090222488 Boerries Sep 2009 A1
20090225041 Kida et al. Sep 2009 A1
20090228126 Spielberg Sep 2009 A1
20090228273 Wang Sep 2009 A1
20090228281 Singleton Sep 2009 A1
20090228439 Manolescu Sep 2009 A1
20090228792 van Os Sep 2009 A1
20090228842 Westerman Sep 2009 A1
20090234638 Ranjan Sep 2009 A1
20090234655 Kwon Sep 2009 A1
20090235280 Tannier Sep 2009 A1
20090239202 Stone Sep 2009 A1
20090239552 Churchill Sep 2009 A1
20090240485 Dalal Sep 2009 A1
20090241054 Hendricks Sep 2009 A1
20090241760 Georges Oct 2009 A1
20090247237 Mittleman Oct 2009 A1
20090248182 Logan Oct 2009 A1
20090248395 Alewine Oct 2009 A1
20090248420 Basir Oct 2009 A1
20090248422 Li Oct 2009 A1
20090249198 Davis Oct 2009 A1
20090249247 Tseng Oct 2009 A1
20090252350 Seguin Oct 2009 A1
20090253457 Seguin Oct 2009 A1
20090253463 Shin Oct 2009 A1
20090254339 Seguin Oct 2009 A1
20090254345 Fleizach Oct 2009 A1
20090254819 Song Oct 2009 A1
20090254823 Barrett Oct 2009 A1
20090259969 Pallakoff Oct 2009 A1
20090265368 Crider Oct 2009 A1
20090271109 Lee Oct 2009 A1
20090271175 Bodin Oct 2009 A1
20090271176 Bodin Oct 2009 A1
20090271178 Bodin Oct 2009 A1
20090271188 Agapi Oct 2009 A1
20090271189 Agapi Oct 2009 A1
20090274315 Carnes Nov 2009 A1
20090281789 Waibel Nov 2009 A1
20090284482 Chin Nov 2009 A1
20090286514 Lichorowic Nov 2009 A1
20090287583 Holmes Nov 2009 A1
20090290718 Kahn Nov 2009 A1
20090292987 Sorenson Nov 2009 A1
20090296552 Hicks Dec 2009 A1
20090298474 George Dec 2009 A1
20090298529 Mahajan Dec 2009 A1
20090299745 Kennewick Dec 2009 A1
20090299849 Cao Dec 2009 A1
20090300391 Jessup Dec 2009 A1
20090300488 Salamon Dec 2009 A1
20090304198 Herre Dec 2009 A1
20090306967 Nicolov Dec 2009 A1
20090306969 Goud Dec 2009 A1
20090306979 Jaiswal Dec 2009 A1
20090306980 Shin Dec 2009 A1
20090306981 Cromack Dec 2009 A1
20090306985 Roberts Dec 2009 A1
20090306988 Chen Dec 2009 A1
20090306989 Kaji Dec 2009 A1
20090307162 Bui Dec 2009 A1
20090307201 Dunning Dec 2009 A1
20090307584 Davidson Dec 2009 A1
20090313014 Shin Dec 2009 A1
20090313023 Jones Dec 2009 A1
20090313026 Coffman Dec 2009 A1
20090313544 Wood Dec 2009 A1
20090313564 Rottler Dec 2009 A1
20090316943 Frigola Munoz Dec 2009 A1
20090318119 Basir Dec 2009 A1
20090318198 Carroll Dec 2009 A1
20090319266 Brown Dec 2009 A1
20090320126 Harada Dec 2009 A1
20090326923 Yan Dec 2009 A1
20090326936 Nagashima Dec 2009 A1
20090326938 Marila Dec 2009 A1
20090326949 Douthitt Dec 2009 A1
20090327977 Bachfischer Dec 2009 A1
20100004918 Lee Jan 2010 A1
20100004930 Strope et al. Jan 2010 A1
20100004931 Ma Jan 2010 A1
20100005081 Bennett Jan 2010 A1
20100007569 Sim et al. Jan 2010 A1
20100010803 Ishikawa Jan 2010 A1
20100010814 Patel Jan 2010 A1
20100010948 Ito et al. Jan 2010 A1
20100013760 Hirai Jan 2010 A1
20100013796 Abileah Jan 2010 A1
20100017212 Attwater Jan 2010 A1
20100017382 Katragadda Jan 2010 A1
20100017741 Karp et al. Jan 2010 A1
20100019834 Zerbe Jan 2010 A1
20100020035 Ryu et al. Jan 2010 A1
20100023318 Lemoine Jan 2010 A1
20100023320 Di Cristo Jan 2010 A1
20100023331 Duta et al. Jan 2010 A1
20100026526 Yokota Feb 2010 A1
20100030549 Lee Feb 2010 A1
20100030562 Yoshizawa et al. Feb 2010 A1
20100030928 Conroy Feb 2010 A1
20100031143 Rao Feb 2010 A1
20100031150 Andrew Feb 2010 A1
20100036653 Kim Feb 2010 A1
20100036655 Cecil Feb 2010 A1
20100036660 Bennett Feb 2010 A1
20100036829 Leyba Feb 2010 A1
20100036928 Granito et al. Feb 2010 A1
20100037183 Miyashita Feb 2010 A1
20100037187 Kondziela Feb 2010 A1
20100039495 Rahman et al. Feb 2010 A1
20100042400 Block Feb 2010 A1
20100042576 Roettger Feb 2010 A1
20100046842 Conwell Feb 2010 A1
20100049498 Cao Feb 2010 A1
20100049514 Kennewick Feb 2010 A1
20100050064 Liu Feb 2010 A1
20100050074 Nachmani et al. Feb 2010 A1
20100054512 Solum Mar 2010 A1
20100054601 Anbalagan et al. Mar 2010 A1
20100057435 Kent et al. Mar 2010 A1
20100057443 Di Cristo et al. Mar 2010 A1
20100057457 Ogata Mar 2010 A1
20100057461 Neubacher Mar 2010 A1
20100057643 Yang Mar 2010 A1
20100058200 Jablokov et al. Mar 2010 A1
20100060646 Unsal Mar 2010 A1
20100063804 Sato Mar 2010 A1
20100063825 Williams Mar 2010 A1
20100063961 Guiheneuf Mar 2010 A1
20100064113 Lindahl Mar 2010 A1
20100064218 Bull Mar 2010 A1
20100064226 Stefaniak et al. Mar 2010 A1
20100066546 Aaron Mar 2010 A1
20100066684 Shahraray et al. Mar 2010 A1
20100067723 Bergmann Mar 2010 A1
20100067867 Lin Mar 2010 A1
20100070281 Conkie Mar 2010 A1
20100070517 Ghosh et al. Mar 2010 A1
20100070521 Clinchant et al. Mar 2010 A1
20100070899 Hunt Mar 2010 A1
20100071003 Bychkov Mar 2010 A1
20100073201 Holcomb et al. Mar 2010 A1
20100076760 Kraenzel Mar 2010 A1
20100076968 Boyns et al. Mar 2010 A1
20100076993 Klawitter Mar 2010 A1
20100077350 Lim Mar 2010 A1
20100077469 Furman et al. Mar 2010 A1
20100079501 Ikeda Apr 2010 A1
20100079508 Hodge et al. Apr 2010 A1
20100080398 Waldmann Apr 2010 A1
20100080470 Deluca Apr 2010 A1
20100081456 Singh Apr 2010 A1
20100081487 Chen Apr 2010 A1
20100082239 Hardy et al. Apr 2010 A1
20100082286 Leung Apr 2010 A1
20100082327 Rogers Apr 2010 A1
20100082328 Rogers Apr 2010 A1
20100082329 Silverman Apr 2010 A1
20100082333 Al-Shammari Apr 2010 A1
20100082343 Levit et al. Apr 2010 A1
20100082345 Wang et al. Apr 2010 A1
20100082346 Rogers Apr 2010 A1
20100082347 Rogers Apr 2010 A1
20100082348 Silverman Apr 2010 A1
20100082349 Bellegarda Apr 2010 A1
20100082376 Levitt Apr 2010 A1
20100082567 Rosenblatt et al. Apr 2010 A1
20100082653 Nair Apr 2010 A1
20100082970 Lindahl Apr 2010 A1
20100086152 Rank Apr 2010 A1
20100086153 Hagen Apr 2010 A1
20100086156 Rank Apr 2010 A1
20100088020 Sano Apr 2010 A1
20100088093 Lee Apr 2010 A1
20100088100 Lindahl Apr 2010 A1
20100094632 Davis et al. Apr 2010 A1
20100098231 Wohlert Apr 2010 A1
20100099354 Johnson Apr 2010 A1
20100100080 Huculak et al. Apr 2010 A1
20100100212 Lindahl Apr 2010 A1
20100100371 Yuezhong et al. Apr 2010 A1
20100100384 Ju Apr 2010 A1
20100100385 Davis et al. Apr 2010 A1
20100100515 Bangalore et al. Apr 2010 A1
20100100816 McCloskey Apr 2010 A1
20100103776 Chan Apr 2010 A1
20100106486 Hua Apr 2010 A1
20100106498 Morrison Apr 2010 A1
20100106500 McKee Apr 2010 A1
20100106503 Farrell Apr 2010 A1
20100106975 Vandervort Apr 2010 A1
20100114856 Kuboyama May 2010 A1
20100114887 Conway et al. May 2010 A1
20100121637 Roy May 2010 A1
20100122306 Pratt et al. May 2010 A1
20100125456 Weng May 2010 A1
20100125458 Franco May 2010 A1
20100125460 Mellott May 2010 A1
20100125811 Moore May 2010 A1
20100127854 Helvick et al. May 2010 A1
20100128701 Nagaraja May 2010 A1
20100131265 Liu et al. May 2010 A1
20100131269 Park May 2010 A1
20100131273 Aley-Raz May 2010 A1
20100131498 Linthicum May 2010 A1
20100131899 Hubert May 2010 A1
20100138215 Williams Jun 2010 A1
20100138224 Bedingfield, Sr. Jun 2010 A1
20100138416 Bellotti Jun 2010 A1
20100138680 Brisebois Jun 2010 A1
20100138759 Roy Jun 2010 A1
20100138798 Wilson et al. Jun 2010 A1
20100142740 Roerup Jun 2010 A1
20100145694 Ju Jun 2010 A1
20100145700 Kennewick Jun 2010 A1
20100145707 Ljolje et al. Jun 2010 A1
20100146442 Nagasaka Jun 2010 A1
20100150321 Harris Jun 2010 A1
20100153114 Shih et al. Jun 2010 A1
20100153115 Klee Jun 2010 A1
20100153448 Harpur Jun 2010 A1
20100153576 Wohlert et al. Jun 2010 A1
20100153968 Engel Jun 2010 A1
20100158207 Dhawan et al. Jun 2010 A1
20100161311 Massuh Jun 2010 A1
20100161313 Karttunen Jun 2010 A1
20100161337 Pulz et al. Jun 2010 A1
20100161554 Datuashvili Jun 2010 A1
20100164897 Morin Jul 2010 A1
20100169075 Raffa Jul 2010 A1
20100169093 Washio Jul 2010 A1
20100169097 Nachman Jul 2010 A1
20100169098 Patch Jul 2010 A1
20100171713 Kwok Jul 2010 A1
20100174544 Heifets Jul 2010 A1
20100175066 Paik Jul 2010 A1
20100179932 Yoon Jul 2010 A1
20100179991 Lorch Jul 2010 A1
20100180218 Boston Jul 2010 A1
20100185434 Burvall et al. Jul 2010 A1
20100185448 Meisel Jul 2010 A1
20100185949 Jaeger Jul 2010 A1
20100191466 Deluca et al. Jul 2010 A1
20100191520 Gruhn Jul 2010 A1
20100192221 Waggoner Jul 2010 A1
20100195865 Luff Aug 2010 A1
20100197359 Harris Aug 2010 A1
20100198821 Loritz et al. Aug 2010 A1
20100199180 Brichter Aug 2010 A1
20100199215 Seymour Aug 2010 A1
20100199340 Jonas et al. Aug 2010 A1
20100204986 Kennewick Aug 2010 A1
20100211199 Naik Aug 2010 A1
20100211379 Gorman et al. Aug 2010 A1
20100211644 Lavoie et al. Aug 2010 A1
20100215195 Harma et al. Aug 2010 A1
20100216509 Riemer Aug 2010 A1
20100217581 Hong Aug 2010 A1
20100217604 Baldwin Aug 2010 A1
20100222033 Scott Sep 2010 A1
20100222098 Garg Sep 2010 A1
20100223055 McLean Sep 2010 A1
20100223056 Kadirkamanathan Sep 2010 A1
20100223131 Scott Sep 2010 A1
20100225599 Danielsson et al. Sep 2010 A1
20100225809 Connors Sep 2010 A1
20100227642 Kim et al. Sep 2010 A1
20100228540 Bennett Sep 2010 A1
20100228549 Herman Sep 2010 A1
20100228691 Yang Sep 2010 A1
20100229082 Karmarkar Sep 2010 A1
20100229100 Miller Sep 2010 A1
20100231474 Yamagajo Sep 2010 A1
20100235167 Bourdon Sep 2010 A1
20100235341 Bennett Sep 2010 A1
20100235729 Kocienda Sep 2010 A1
20100235732 Bergman Sep 2010 A1
20100235770 Ording Sep 2010 A1
20100235780 Westerman et al. Sep 2010 A1
20100235793 Ording et al. Sep 2010 A1
20100241418 Maeda Sep 2010 A1
20100246784 Frazier et al. Sep 2010 A1
20100250542 Fujimaki Sep 2010 A1
20100250599 Schmidt Sep 2010 A1
20100255858 Juhasz Oct 2010 A1
20100257160 Cao Oct 2010 A1
20100257478 Longe Oct 2010 A1
20100257490 Lyon et al. Oct 2010 A1
20100262599 Nitz Oct 2010 A1
20100263015 Pandey et al. Oct 2010 A1
20100268537 Al-Telmissani Oct 2010 A1
20100268539 Xu Oct 2010 A1
20100269040 Lee Oct 2010 A1
20100274482 Feng Oct 2010 A1
20100274753 Liberty Oct 2010 A1
20100277579 Cho Nov 2010 A1
20100278320 Arsenault Nov 2010 A1
20100278391 Hsu et al. Nov 2010 A1
20100278453 King Nov 2010 A1
20100280983 Cho Nov 2010 A1
20100281034 Petrou Nov 2010 A1
20100286984 Wandinger et al. Nov 2010 A1
20100286985 Kennewick Nov 2010 A1
20100287241 Swanburg et al. Nov 2010 A1
20100287514 Cragun Nov 2010 A1
20100290632 Lin Nov 2010 A1
20100293460 Budelli Nov 2010 A1
20100295645 Falldin Nov 2010 A1
20100299133 Kopparapu Nov 2010 A1
20100299138 Kim Nov 2010 A1
20100299142 Freeman Nov 2010 A1
20100299444 Nilo et al. Nov 2010 A1
20100302056 Dutton Dec 2010 A1
20100303254 Yoshizawa et al. Dec 2010 A1
20100304342 Zilber Dec 2010 A1
20100304705 Hursey Dec 2010 A1
20100305807 Basir Dec 2010 A1
20100305947 Schwarz Dec 2010 A1
20100311395 Zheng et al. Dec 2010 A1
20100312547 Van Os Dec 2010 A1
20100312566 Odinak Dec 2010 A1
20100318293 Brush et al. Dec 2010 A1
20100318357 Istvan et al. Dec 2010 A1
20100318366 Sullivan et al. Dec 2010 A1
20100318570 Narasinghanallur et al. Dec 2010 A1
20100318576 Kim Dec 2010 A1
20100322438 Siotis Dec 2010 A1
20100324709 Starmen Dec 2010 A1
20100324895 Kurzweil Dec 2010 A1
20100324896 Attwater Dec 2010 A1
20100324905 Kurzweil Dec 2010 A1
20100325131 Dumais et al. Dec 2010 A1
20100325158 Oral Dec 2010 A1
20100325573 Estrada Dec 2010 A1
20100325588 Reddy Dec 2010 A1
20100330908 Maddern et al. Dec 2010 A1
20100332003 Yaguez Dec 2010 A1
20100332220 Hursey Dec 2010 A1
20100332224 Makela Dec 2010 A1
20100332235 David Dec 2010 A1
20100332236 Tan Dec 2010 A1
20100332280 Bradley Dec 2010 A1
20100332348 Cao Dec 2010 A1
20100332428 McHenry Dec 2010 A1
20100332976 Fux Dec 2010 A1
20100333030 Johns Dec 2010 A1
20100333163 Daly Dec 2010 A1
20110002487 Panther Jan 2011 A1
20110004475 Bellegarda Jan 2011 A1
20110006876 Moberg et al. Jan 2011 A1
20110009107 Guba et al. Jan 2011 A1
20110010178 Lee Jan 2011 A1
20110010644 Merrill Jan 2011 A1
20110015928 Odell et al. Jan 2011 A1
20110016150 Engstrom Jan 2011 A1
20110016421 Krupka et al. Jan 2011 A1
20110018695 Bells Jan 2011 A1
20110021211 Ohki Jan 2011 A1
20110021213 Carr Jan 2011 A1
20110022292 Shen Jan 2011 A1
20110022388 Wu Jan 2011 A1
20110022393 Waller Jan 2011 A1
20110022394 Wide Jan 2011 A1
20110022472 Zon Jan 2011 A1
20110022952 Wu Jan 2011 A1
20110028083 Soitis Feb 2011 A1
20110029616 Wang Feb 2011 A1
20110029637 Morse Feb 2011 A1
20110030067 Wilson Feb 2011 A1
20110033064 Johnson Feb 2011 A1
20110034183 Haag et al. Feb 2011 A1
20110035144 Okamoto Feb 2011 A1
20110035434 Lockwood Feb 2011 A1
20110038489 Visser Feb 2011 A1
20110039584 Merrett Feb 2011 A1
20110040707 Theisen et al. Feb 2011 A1
20110045841 Kuhlke Feb 2011 A1
20110047072 Ciurea Feb 2011 A1
20110047149 Vaananen Feb 2011 A1
20110047161 Myaeng Feb 2011 A1
20110047246 Frissora et al. Feb 2011 A1
20110047266 Yu et al. Feb 2011 A1
20110047605 Sontag et al. Feb 2011 A1
20110050591 Kim Mar 2011 A1
20110050592 Kim Mar 2011 A1
20110054647 Chipchase Mar 2011 A1
20110054894 Phillips Mar 2011 A1
20110054901 Qin Mar 2011 A1
20110055244 Donelli Mar 2011 A1
20110055256 Phillips Mar 2011 A1
20110060584 Ferrucci Mar 2011 A1
20110060587 Phillips Mar 2011 A1
20110060589 Weinberg Mar 2011 A1
20110060807 Martin Mar 2011 A1
20110060812 Middleton Mar 2011 A1
20110064378 Gharaat et al. Mar 2011 A1
20110064387 Mendeloff et al. Mar 2011 A1
20110065456 Brennan Mar 2011 A1
20110066366 Ellanti Mar 2011 A1
20110066436 Bezar Mar 2011 A1
20110066468 Huang Mar 2011 A1
20110066602 Studer et al. Mar 2011 A1
20110066634 Phillips Mar 2011 A1
20110072033 White et al. Mar 2011 A1
20110072114 Hoffert et al. Mar 2011 A1
20110072492 Mohler Mar 2011 A1
20110075818 Vance et al. Mar 2011 A1
20110076994 Kim Mar 2011 A1
20110077943 Miki et al. Mar 2011 A1
20110080260 Wang et al. Apr 2011 A1
20110081889 Gao et al. Apr 2011 A1
20110082688 Kim Apr 2011 A1
20110083079 Farrell Apr 2011 A1
20110087491 Wittenstein Apr 2011 A1
20110087685 Lin et al. Apr 2011 A1
20110090078 Kim Apr 2011 A1
20110092187 Miller Apr 2011 A1
20110093261 Angott Apr 2011 A1
20110093265 Stent Apr 2011 A1
20110093271 Bernard Apr 2011 A1
20110093272 Isobe et al. Apr 2011 A1
20110099000 Rai Apr 2011 A1
20110099157 LeBeau et al. Apr 2011 A1
20110102161 Heubel et al. May 2011 A1
20110103682 Chidlovskii May 2011 A1
20110105097 Tadayon et al. May 2011 A1
20110106534 Lebeau et al. May 2011 A1
20110106536 Klappert May 2011 A1
20110106736 Aharonson May 2011 A1
20110106878 Cho et al. May 2011 A1
20110106892 Nelson May 2011 A1
20110110502 Daye May 2011 A1
20110111724 Baptiste May 2011 A1
20110112825 Bellegarda May 2011 A1
20110112827 Kennewick May 2011 A1
20110112837 Kurki-Suonio May 2011 A1
20110112838 Adibi May 2011 A1
20110112921 Kennewick May 2011 A1
20110116480 Li et al. May 2011 A1
20110116610 Shaw May 2011 A1
20110119049 Ylonen May 2011 A1
20110119051 Li May 2011 A1
20110119623 Kim May 2011 A1
20110119713 Chang et al. May 2011 A1
20110119715 Chang May 2011 A1
20110123004 Chang May 2011 A1
20110125498 Pickering May 2011 A1
20110125540 Jang May 2011 A1
20110125701 Nair et al. May 2011 A1
20110130958 Stahl Jun 2011 A1
20110131036 DiCristo Jun 2011 A1
20110131038 Oyaizu Jun 2011 A1
20110131045 Cristo Jun 2011 A1
20110137636 Srihari Jun 2011 A1
20110137664 Kho et al. Jun 2011 A1
20110141141 Kankainen Jun 2011 A1
20110143718 Engelhart, Sr. Jun 2011 A1
20110143726 de Silva Jun 2011 A1
20110143811 Rodriguez Jun 2011 A1
20110144857 Wingrove Jun 2011 A1
20110144901 Wang Jun 2011 A1
20110144973 Bocchieri Jun 2011 A1
20110144999 Jang Jun 2011 A1
20110145718 Ketola Jun 2011 A1
20110151415 Darling et al. Jun 2011 A1
20110151830 Blanda, Jr. Jun 2011 A1
20110153209 Geelen Jun 2011 A1
20110153322 Kwak Jun 2011 A1
20110153324 Ballinger Jun 2011 A1
20110153325 Ballinger et al. Jun 2011 A1
20110153329 Moorer Jun 2011 A1
20110153330 Yazdani Jun 2011 A1
20110153373 Dantzig Jun 2011 A1
20110154193 Creutz et al. Jun 2011 A1
20110157029 Tseng Jun 2011 A1
20110161072 Terao et al. Jun 2011 A1
20110161076 Davis Jun 2011 A1
20110161079 Gruhn Jun 2011 A1
20110161309 Lung Jun 2011 A1
20110161852 Vainio Jun 2011 A1
20110166851 LeBeau et al. Jul 2011 A1
20110166855 Vermeulen et al. Jul 2011 A1
20110166862 Eshed et al. Jul 2011 A1
20110167350 Hoellwarth Jul 2011 A1
20110173003 Levanon et al. Jul 2011 A1
20110173537 Hemphill Jul 2011 A1
20110175810 Markovic Jul 2011 A1
20110178804 Inoue et al. Jul 2011 A1
20110179002 Dumitru Jul 2011 A1
20110179372 Moore Jul 2011 A1
20110183627 Ueda et al. Jul 2011 A1
20110183650 McKee Jul 2011 A1
20110184721 Subramanian Jul 2011 A1
20110184730 LeBeau Jul 2011 A1
20110184736 Slotznick Jul 2011 A1
20110184737 Nakano et al. Jul 2011 A1
20110184768 Norton et al. Jul 2011 A1
20110184789 Kirsch Jul 2011 A1
20110185288 Gupta et al. Jul 2011 A1
20110191108 Friedlander Aug 2011 A1
20110191271 Baker Aug 2011 A1
20110191344 Jin Aug 2011 A1
20110195758 Damale Aug 2011 A1
20110196670 Dang et al. Aug 2011 A1
20110197128 Assadollahi Aug 2011 A1
20110199312 Okuta Aug 2011 A1
20110201385 Higginbotham Aug 2011 A1
20110201387 Paek Aug 2011 A1
20110202526 Lee Aug 2011 A1
20110202594 Ricci Aug 2011 A1
20110202874 Ramer et al. Aug 2011 A1
20110205149 Tom Aug 2011 A1
20110208511 Sikstrom Aug 2011 A1
20110208524 Haughay Aug 2011 A1
20110209088 Hinckley Aug 2011 A1
20110212717 Rhoads Sep 2011 A1
20110216093 Griffin Sep 2011 A1
20110218806 Alewine Sep 2011 A1
20110218855 Cao Sep 2011 A1
20110219018 Bailey Sep 2011 A1
20110223893 Lau Sep 2011 A1
20110224972 Millett Sep 2011 A1
20110228913 Cochinwala Sep 2011 A1
20110231182 Weider Sep 2011 A1
20110231184 Kerr Sep 2011 A1
20110231188 Kennewick Sep 2011 A1
20110231218 Tovar Sep 2011 A1
20110231432 Sata Sep 2011 A1
20110231474 Locker Sep 2011 A1
20110238191 Kristjansson et al. Sep 2011 A1
20110238407 Kent Sep 2011 A1
20110238408 Larcheveque Sep 2011 A1
20110238676 Liu Sep 2011 A1
20110239111 Grover Sep 2011 A1
20110242007 Gray Oct 2011 A1
20110244888 Ohki Oct 2011 A1
20110246471 Rakib Oct 2011 A1
20110249144 Chang Oct 2011 A1
20110250570 Mack Oct 2011 A1
20110252108 Morris et al. Oct 2011 A1
20110257966 Rychlik Oct 2011 A1
20110258188 AbdAlmageed Oct 2011 A1
20110260829 Lee Oct 2011 A1
20110260861 Singh Oct 2011 A1
20110264530 Santangelo et al. Oct 2011 A1
20110264643 Cao Oct 2011 A1
20110264999 Bells et al. Oct 2011 A1
20110270604 Qi et al. Nov 2011 A1
20110274303 Filson Nov 2011 A1
20110276595 Kirkland et al. Nov 2011 A1
20110276598 Kozempel Nov 2011 A1
20110276944 Bergman Nov 2011 A1
20110279368 Klein Nov 2011 A1
20110280143 Li et al. Nov 2011 A1
20110282663 Talwar et al. Nov 2011 A1
20110282888 Koperski Nov 2011 A1
20110282903 Zhang Nov 2011 A1
20110282906 Wong Nov 2011 A1
20110283189 McCarty Nov 2011 A1
20110283190 Poltorak Nov 2011 A1
20110288852 Dymetman et al. Nov 2011 A1
20110288855 Roy Nov 2011 A1
20110288861 Kurzweil Nov 2011 A1
20110288863 Rasmussen Nov 2011 A1
20110288866 Rasmussen Nov 2011 A1
20110288917 Wanek et al. Nov 2011 A1
20110289530 Dureau et al. Nov 2011 A1
20110298585 Barry Dec 2011 A1
20110301943 Patch Dec 2011 A1
20110302162 Xiao Dec 2011 A1
20110302645 Headley Dec 2011 A1
20110306426 Novak Dec 2011 A1
20110307241 Waibel Dec 2011 A1
20110307254 Hunt et al. Dec 2011 A1
20110307491 Fisk Dec 2011 A1
20110307810 Hilerio Dec 2011 A1
20110313775 Laligand Dec 2011 A1
20110313803 Friend et al. Dec 2011 A1
20110314003 Ju et al. Dec 2011 A1
20110314032 Bennett Dec 2011 A1
20110314404 Kotler Dec 2011 A1
20110314539 Horton Dec 2011 A1
20110320187 Motik Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120005602 Anttila Jan 2012 A1
20120008754 Mukherjee Jan 2012 A1
20120010886 Razavilar Jan 2012 A1
20120011138 Dunning Jan 2012 A1
20120013609 Reponen Jan 2012 A1
20120015629 Olsen Jan 2012 A1
20120016658 Wu et al. Jan 2012 A1
20120016678 Gruber Jan 2012 A1
20120019400 Patel Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120020503 Endo et al. Jan 2012 A1
20120022787 LeBeau Jan 2012 A1
20120022857 Baldwin Jan 2012 A1
20120022860 Lloyd Jan 2012 A1
20120022868 LeBeau Jan 2012 A1
20120022869 Lloyd Jan 2012 A1
20120022870 Kristjansson Jan 2012 A1
20120022872 Gruber Jan 2012 A1
20120022874 Lloyd Jan 2012 A1
20120022876 LeBeau Jan 2012 A1
20120022967 Bachman Jan 2012 A1
20120023088 Cheng Jan 2012 A1
20120023095 Wadycki Jan 2012 A1
20120023462 Rosing Jan 2012 A1
20120026395 Jin et al. Feb 2012 A1
20120029661 Jones Feb 2012 A1
20120029910 Medlock Feb 2012 A1
20120034904 LeBeau Feb 2012 A1
20120035907 Lebeau Feb 2012 A1
20120035908 Lebeau Feb 2012 A1
20120035924 Jitkoff Feb 2012 A1
20120035925 Friend Feb 2012 A1
20120035926 Ambler Feb 2012 A1
20120035931 LeBeau Feb 2012 A1
20120035932 Jitkoff Feb 2012 A1
20120035935 Park et al. Feb 2012 A1
20120036556 LeBeau Feb 2012 A1
20120039539 Boiman Feb 2012 A1
20120039578 Issa et al. Feb 2012 A1
20120041752 Wang Feb 2012 A1
20120041756 Hanazawa et al. Feb 2012 A1
20120041759 Barker et al. Feb 2012 A1
20120042014 Desai Feb 2012 A1
20120042343 Laligand Feb 2012 A1
20120052945 Miyamoto et al. Mar 2012 A1
20120053815 Montanari Mar 2012 A1
20120053829 Agarwal et al. Mar 2012 A1
20120053945 Gupta Mar 2012 A1
20120056815 Mehra Mar 2012 A1
20120059655 Cartales Mar 2012 A1
20120059813 Sejnoha et al. Mar 2012 A1
20120060052 White et al. Mar 2012 A1
20120062473 Xiao et al. Mar 2012 A1
20120064975 Gault et al. Mar 2012 A1
20120066212 Jennings Mar 2012 A1
20120066581 Spalink Mar 2012 A1
20120075054 Ge et al. Mar 2012 A1
20120075184 Madhvanath Mar 2012 A1
20120077479 Sabotta et al. Mar 2012 A1
20120078611 Soltani et al. Mar 2012 A1
20120078624 Yook Mar 2012 A1
20120078627 Wagner Mar 2012 A1
20120078635 Rothkopf et al. Mar 2012 A1
20120078747 Chakrabarti et al. Mar 2012 A1
20120082317 Pance Apr 2012 A1
20120083286 Kim Apr 2012 A1
20120084086 Gilbert Apr 2012 A1
20120084087 Yang et al. Apr 2012 A1
20120084089 Lloyd et al. Apr 2012 A1
20120084634 Wong Apr 2012 A1
20120088219 Briscoe Apr 2012 A1
20120089331 Schmidt et al. Apr 2012 A1
20120089659 Halevi et al. Apr 2012 A1
20120101823 Weng et al. Apr 2012 A1
20120105257 Murillo et al. May 2012 A1
20120108166 Hymel May 2012 A1
20120108221 Thomas May 2012 A1
20120109632 Sugiura et al. May 2012 A1
20120109753 Kennewick et al. May 2012 A1
20120109997 Sparks et al. May 2012 A1
20120110456 Larco et al. May 2012 A1
20120114108 Katis et al. May 2012 A1
20120116770 Chen May 2012 A1
20120117499 Mori May 2012 A1
20120117590 Agnihotri et al. May 2012 A1
20120124126 Alcazar May 2012 A1
20120124177 Sparks May 2012 A1
20120124178 Sparks May 2012 A1
20120128322 Shaffer May 2012 A1
20120130709 Bocchieri et al. May 2012 A1
20120130995 Risvik et al. May 2012 A1
20120135714 King, II May 2012 A1
20120136529 Curtis et al. May 2012 A1
20120136572 Norton May 2012 A1
20120136649 Freising et al. May 2012 A1
20120136855 Ni et al. May 2012 A1
20120136985 Popescu May 2012 A1
20120137367 Dupont May 2012 A1
20120149342 Cohen et al. Jun 2012 A1
20120149394 Singh Jun 2012 A1
20120150532 Mirowski et al. Jun 2012 A1
20120150544 McLoughlin et al. Jun 2012 A1
20120150580 Norton Jun 2012 A1
20120158293 Burnham Jun 2012 A1
20120158399 Tremblay et al. Jun 2012 A1
20120158422 Burnham Jun 2012 A1
20120159380 Kocienda Jun 2012 A1
20120163710 Skaff Jun 2012 A1
20120166177 Beld et al. Jun 2012 A1
20120166196 Ju Jun 2012 A1
20120166429 Moore et al. Jun 2012 A1
20120166942 Ramerth et al. Jun 2012 A1
20120166959 Hilerio et al. Jun 2012 A1
20120166998 Cotterill et al. Jun 2012 A1
20120173222 Wang et al. Jul 2012 A1
20120173244 Kwak et al. Jul 2012 A1
20120173464 Tur Jul 2012 A1
20120174121 Treat Jul 2012 A1
20120176255 Choi et al. Jul 2012 A1
20120179457 Newman Jul 2012 A1
20120179467 Williams et al. Jul 2012 A1
20120179471 Newman et al. Jul 2012 A1
20120185237 Gajic Jul 2012 A1
20120185480 Ni et al. Jul 2012 A1
20120185781 Guzman Jul 2012 A1
20120191461 Lin Jul 2012 A1
20120192096 Bowman Jul 2012 A1
20120197743 Grigg Aug 2012 A1
20120197995 Caruso Aug 2012 A1
20120197998 Kessel Aug 2012 A1
20120201362 Crossan Aug 2012 A1
20120203767 Williams et al. Aug 2012 A1
20120209454 Miller et al. Aug 2012 A1
20120209654 Romagnino et al. Aug 2012 A1
20120209853 Desai Aug 2012 A1
20120209874 Wong Aug 2012 A1
20120210266 Jiang et al. Aug 2012 A1
20120210378 Mccoy et al. Aug 2012 A1
20120214141 Raya Aug 2012 A1
20120214517 Singh Aug 2012 A1
20120215640 Ramer et al. Aug 2012 A1
20120215762 Hall Aug 2012 A1
20120221339 Wang Aug 2012 A1
20120221552 Reponen Aug 2012 A1
20120223889 Medlock Sep 2012 A1
20120223936 Aughey Sep 2012 A1
20120232885 Barbosa Sep 2012 A1
20120232886 Capuozzo Sep 2012 A1
20120232906 Lindahl Sep 2012 A1
20120233207 Mohajer Sep 2012 A1
20120233266 Hassan et al. Sep 2012 A1
20120233280 Ebara Sep 2012 A1
20120239403 Cano et al. Sep 2012 A1
20120239661 Giblin Sep 2012 A1
20120239761 Linner et al. Sep 2012 A1
20120242482 Elumalai Sep 2012 A1
20120245719 Story, Jr. Sep 2012 A1
20120245939 Braho et al. Sep 2012 A1
20120245941 Cheyer Sep 2012 A1
20120245944 Gruber Sep 2012 A1
20120246064 Balkow Sep 2012 A1
20120250858 Iqbal Oct 2012 A1
20120252367 Gaglio Oct 2012 A1
20120252540 Kirigaya Oct 2012 A1
20120253785 Hamid et al. Oct 2012 A1
20120253791 Heck et al. Oct 2012 A1
20120254143 Varma Oct 2012 A1
20120254152 Park Oct 2012 A1
20120254290 Naaman Oct 2012 A1
20120259615 Morin et al. Oct 2012 A1
20120262296 Bezar Oct 2012 A1
20120265482 Grokop et al. Oct 2012 A1
20120265528 Gruber Oct 2012 A1
20120265535 Bryant-Rich et al. Oct 2012 A1
20120265787 Hsu et al. Oct 2012 A1
20120265806 Blanchflower et al. Oct 2012 A1
20120271625 Bernard Oct 2012 A1
20120271634 Lenke Oct 2012 A1
20120271635 Ljolje Oct 2012 A1
20120271640 Basir Oct 2012 A1
20120271676 Aravamudan et al. Oct 2012 A1
20120275377 Lehane et al. Nov 2012 A1
20120278744 Kozitsyn et al. Nov 2012 A1
20120278812 Wang Nov 2012 A1
20120284015 Drewes Nov 2012 A1
20120284027 Mallett et al. Nov 2012 A1
20120290291 Shelley et al. Nov 2012 A1
20120290300 Lee Nov 2012 A1
20120290657 Parks et al. Nov 2012 A1
20120295708 Hernandez-Abrego Nov 2012 A1
20120296638 Patwa Nov 2012 A1
20120296649 Bansal Nov 2012 A1
20120296654 Hendrickson Nov 2012 A1
20120296891 Rangan Nov 2012 A1
20120297341 Glazer et al. Nov 2012 A1
20120297348 Santoro Nov 2012 A1
20120303369 Brush Nov 2012 A1
20120303371 Labsky et al. Nov 2012 A1
20120304124 Chen Nov 2012 A1
20120304239 Shahraray et al. Nov 2012 A1
20120309363 Gruber Dec 2012 A1
20120310642 Cao Dec 2012 A1
20120310649 Cannistraro Dec 2012 A1
20120310652 O'Sullivan Dec 2012 A1
20120310922 Johnson et al. Dec 2012 A1
20120311478 van Os Dec 2012 A1
20120311583 Gruber et al. Dec 2012 A1
20120311584 Gruber Dec 2012 A1
20120311585 Gruber Dec 2012 A1
20120316774 Yariv et al. Dec 2012 A1
20120316862 Sultan et al. Dec 2012 A1
20120316875 Nyquist et al. Dec 2012 A1
20120316878 Singleton Dec 2012 A1
20120316955 Panguluri et al. Dec 2012 A1
20120317194 Tian Dec 2012 A1
20120317498 Logan Dec 2012 A1
20120321112 Schubert Dec 2012 A1
20120323560 Perez Cortes et al. Dec 2012 A1
20120324391 Tocci Dec 2012 A1
20120327009 Fleizach Dec 2012 A1
20120329529 van der Raadt Dec 2012 A1
20120330660 Jaiswal Dec 2012 A1
20120330661 Lindahl Dec 2012 A1
20120330990 Chen Dec 2012 A1
20130002716 Walker et al. Jan 2013 A1
20130005405 Prociw Jan 2013 A1
20130006633 Grokop Jan 2013 A1
20130006637 Kanevsky Jan 2013 A1
20130006638 Lindahl Jan 2013 A1
20130007240 Qiu et al. Jan 2013 A1
20130007648 Gamon Jan 2013 A1
20130009858 Lacey Jan 2013 A1
20130010575 He et al. Jan 2013 A1
20130013313 Shechtman Jan 2013 A1
20130013319 Grant et al. Jan 2013 A1
20130014026 Beringer et al. Jan 2013 A1
20130018659 Chi Jan 2013 A1
20130018863 Regan et al. Jan 2013 A1
20130024277 Tuchman et al. Jan 2013 A1
20130024576 Dishneau et al. Jan 2013 A1
20130027875 Zhu Jan 2013 A1
20130028404 Omalley et al. Jan 2013 A1
20130030787 Cancedda et al. Jan 2013 A1
20130030789 Dalce Jan 2013 A1
20130030804 Zavaliagkos Jan 2013 A1
20130030815 Madhvanath Jan 2013 A1
20130030904 Aidasani et al. Jan 2013 A1
20130030913 Zhu et al. Jan 2013 A1
20130030955 David Jan 2013 A1
20130031162 Willis et al. Jan 2013 A1
20130031476 Coin et al. Jan 2013 A1
20130033643 Kim et al. Feb 2013 A1
20130035086 Chardon et al. Feb 2013 A1
20130035942 Kim Feb 2013 A1
20130035961 Yegnanarayanan Feb 2013 A1
20130041647 Ramerth Feb 2013 A1
20130041654 Walker Feb 2013 A1
20130041661 Lee Feb 2013 A1
20130041665 Jang et al. Feb 2013 A1
20130041667 Longe et al. Feb 2013 A1
20130041968 Cohen Feb 2013 A1
20130046544 Kay et al. Feb 2013 A1
20130047178 Moon et al. Feb 2013 A1
20130050089 Neels et al. Feb 2013 A1
20130054550 Bolohan Feb 2013 A1
20130054609 Rajput Feb 2013 A1
20130054613 Bishop Feb 2013 A1
20130054631 Govani et al. Feb 2013 A1
20130054675 Jenkins et al. Feb 2013 A1
20130054706 Graham Feb 2013 A1
20130055099 Yao Feb 2013 A1
20130055147 Vasudev Feb 2013 A1
20130060571 Soemo et al. Mar 2013 A1
20130061139 Mahkovec et al. Mar 2013 A1
20130063611 Papakipos et al. Mar 2013 A1
20130066832 Sheehan et al. Mar 2013 A1
20130067307 Tian Mar 2013 A1
20130067312 Rose Mar 2013 A1
20130067421 Osman et al. Mar 2013 A1
20130069769 Pennington et al. Mar 2013 A1
20130073286 Bastea-Forte Mar 2013 A1
20130073293 Jang et al. Mar 2013 A1
20130073346 Chun et al. Mar 2013 A1
20130073580 Mehanna et al. Mar 2013 A1
20130073676 Cockcroft Mar 2013 A1
20130078930 Chen et al. Mar 2013 A1
20130080152 Brun Mar 2013 A1
20130080162 Chang Mar 2013 A1
20130080167 Mozer Mar 2013 A1
20130080177 Chen Mar 2013 A1
20130080178 Kang et al. Mar 2013 A1
20130080251 Dempski Mar 2013 A1
20130082967 Hillis et al. Apr 2013 A1
20130085755 Bringert Apr 2013 A1
20130085761 Bringert Apr 2013 A1
20130086609 Levy et al. Apr 2013 A1
20130090921 Liu Apr 2013 A1
20130091090 Spivack Apr 2013 A1
20130095805 LeBeau Apr 2013 A1
20130096909 Brun et al. Apr 2013 A1
20130096911 Beaufort et al. Apr 2013 A1
20130096917 Edgar et al. Apr 2013 A1
20130097566 Berglund Apr 2013 A1
20130097682 Zeljkovic et al. Apr 2013 A1
20130100017 Papakipos et al. Apr 2013 A1
20130100268 Mihailidis et al. Apr 2013 A1
20130103391 Millmore Apr 2013 A1
20130103405 Namba et al. Apr 2013 A1
20130106742 Lee May 2013 A1
20130107053 Ozaki May 2013 A1
20130110505 Gruber May 2013 A1
20130110515 Guzzoni May 2013 A1
20130110518 Gruber May 2013 A1
20130110519 Cheyer May 2013 A1
20130110520 Cheyer May 2013 A1
20130110943 Menon et al. May 2013 A1
20130111330 Staikos et al. May 2013 A1
20130111348 Gruber May 2013 A1
20130111365 Chen et al. May 2013 A1
20130111487 Cheyer May 2013 A1
20130111581 Griffin et al. May 2013 A1
20130115927 Gruber May 2013 A1
20130117022 Chen May 2013 A1
20130124189 Baldwin May 2013 A1
20130124672 Pan May 2013 A1
20130125168 Agnihotri et al. May 2013 A1
20130132081 Ryu et al. May 2013 A1
20130132084 Stonehocker et al. May 2013 A1
20130132089 Fanty et al. May 2013 A1
20130132871 Zeng May 2013 A1
20130138440 Strope et al. May 2013 A1
20130141551 Kim Jun 2013 A1
20130142317 Reynolds Jun 2013 A1
20130142345 Waldmann Jun 2013 A1
20130144594 Bangalore Jun 2013 A1
20130144616 Bangalore Jun 2013 A1
20130151339 Kim Jun 2013 A1
20130152092 Yadgar Jun 2013 A1
20130154811 Ferren et al. Jun 2013 A1
20130155948 Pinheiro et al. Jun 2013 A1
20130156198 Kim et al. Jun 2013 A1
20130157629 Lee et al. Jun 2013 A1
20130158977 Senior Jun 2013 A1
20130159847 Banke et al. Jun 2013 A1
20130159861 Rottler et al. Jun 2013 A1
20130165232 Nelson Jun 2013 A1
20130166278 James et al. Jun 2013 A1
20130166303 Chang et al. Jun 2013 A1
20130166332 Hammad Jun 2013 A1
20130166442 Nakajima Jun 2013 A1
20130167242 Paliwal Jun 2013 A1
20130170738 Capuozzo Jul 2013 A1
20130172022 Seymour Jul 2013 A1
20130173258 Liu et al. Jul 2013 A1
20130173268 Weng et al. Jul 2013 A1
20130173513 Chu et al. Jul 2013 A1
20130174034 Brown et al. Jul 2013 A1
20130176147 Anderson et al. Jul 2013 A1
20130176244 Yamamoto et al. Jul 2013 A1
20130176592 Sasaki Jul 2013 A1
20130179168 Bae et al. Jul 2013 A1
20130179172 Nakamura et al. Jul 2013 A1
20130179440 Gordon Jul 2013 A1
20130183942 Novick et al. Jul 2013 A1
20130183944 Mozer et al. Jul 2013 A1
20130185059 Riccardi Jul 2013 A1
20130185066 Tzirkel-hancock et al. Jul 2013 A1
20130185074 Gruber Jul 2013 A1
20130185081 Cheyer Jul 2013 A1
20130185336 Singh Jul 2013 A1
20130187850 Schulz et al. Jul 2013 A1
20130187857 Griffin et al. Jul 2013 A1
20130190021 Vieri et al. Jul 2013 A1
20130191117 Atti Jul 2013 A1
20130191408 Volkert Jul 2013 A1
20130197911 Wei Aug 2013 A1
20130197914 Yelvington et al. Aug 2013 A1
20130198159 Hendry Aug 2013 A1
20130198841 Poulson Aug 2013 A1
20130204813 Master et al. Aug 2013 A1
20130204897 McDougall Aug 2013 A1
20130204967 Seo et al. Aug 2013 A1
20130207898 Sullivan et al. Aug 2013 A1
20130210410 Xu Aug 2013 A1
20130210492 You et al. Aug 2013 A1
20130218553 Fujii Aug 2013 A1
20130218560 Hsiao Aug 2013 A1
20130218574 Falcon et al. Aug 2013 A1
20130218899 Raghavan et al. Aug 2013 A1
20130219333 Palwe et al. Aug 2013 A1
20130222249 Pasquero et al. Aug 2013 A1
20130225128 Gomar Aug 2013 A1
20130226935 Bai et al. Aug 2013 A1
20130231917 Naik Sep 2013 A1
20130234947 Kristensson et al. Sep 2013 A1
20130235987 Arroniz-Escobar Sep 2013 A1
20130238326 Kim et al. Sep 2013 A1
20130238647 Thompson Sep 2013 A1
20130238729 Holzman et al. Sep 2013 A1
20130244615 Miller Sep 2013 A1
20130246048 Nagase Sep 2013 A1
20130246050 Yu et al. Sep 2013 A1
20130246329 Pasquero et al. Sep 2013 A1
20130253911 Petri Sep 2013 A1
20130253912 Medlock Sep 2013 A1
20130262168 Makanawala et al. Oct 2013 A1
20130268263 Park et al. Oct 2013 A1
20130268956 Recco Oct 2013 A1
20130275117 Winer Oct 2013 A1
20130275138 Gruber et al. Oct 2013 A1
20130275164 Gruber Oct 2013 A1
20130275199 Proctor, Jr. et al. Oct 2013 A1
20130275625 Taivalsaari et al. Oct 2013 A1
20130275875 Gruber Oct 2013 A1
20130275899 Schubert Oct 2013 A1
20130279724 Stafford et al. Oct 2013 A1
20130282709 Zhu et al. Oct 2013 A1
20130283168 Brown Oct 2013 A1
20130283199 Selig et al. Oct 2013 A1
20130283283 Wang et al. Oct 2013 A1
20130285913 Griffin et al. Oct 2013 A1
20130289991 Eshwar Oct 2013 A1
20130289993 Rao Oct 2013 A1
20130289994 Newman Oct 2013 A1
20130291015 Pan Oct 2013 A1
20130297198 Velde et al. Nov 2013 A1
20130297317 Lee et al. Nov 2013 A1
20130297319 Kim Nov 2013 A1
20130297348 Cardoza Nov 2013 A1
20130300645 Fedorov Nov 2013 A1
20130300648 Kim et al. Nov 2013 A1
20130303106 Martin Nov 2013 A1
20130304479 Teller Nov 2013 A1
20130304758 Gruber Nov 2013 A1
20130304815 Puente Nov 2013 A1
20130305119 Kern et al. Nov 2013 A1
20130307855 Lamb Nov 2013 A1
20130307997 O'Keefe Nov 2013 A1
20130308922 Sano Nov 2013 A1
20130311179 Wagner Nov 2013 A1
20130311184 Badavne et al. Nov 2013 A1
20130311487 Moore et al. Nov 2013 A1
20130311997 Gruber et al. Nov 2013 A1
20130315038 Ferren et al. Nov 2013 A1
20130316679 Miller et al. Nov 2013 A1
20130316746 Miller et al. Nov 2013 A1
20130317921 Havas Nov 2013 A1
20130321267 Bhatti et al. Dec 2013 A1
20130322634 Bennett Dec 2013 A1
20130322665 Bennett et al. Dec 2013 A1
20130325340 Forstall et al. Dec 2013 A1
20130325436 Wang et al. Dec 2013 A1
20130325443 Begeja Dec 2013 A1
20130325447 Levien et al. Dec 2013 A1
20130325448 Levien Dec 2013 A1
20130325480 Lee et al. Dec 2013 A1
20130325481 van Os Dec 2013 A1
20130325484 Chakladar Dec 2013 A1
20130325967 Parks et al. Dec 2013 A1
20130325970 Roberts et al. Dec 2013 A1
20130325979 Mansfield Dec 2013 A1
20130328809 Smith Dec 2013 A1
20130329023 Suplee, III Dec 2013 A1
20130331127 Sabatelli et al. Dec 2013 A1
20130332159 Federighi et al. Dec 2013 A1
20130332162 Keen Dec 2013 A1
20130332164 Nalk Dec 2013 A1
20130332168 Kim Dec 2013 A1
20130332172 Prakash et al. Dec 2013 A1
20130332400 Gonzalez Dec 2013 A1
20130332538 Clark et al. Dec 2013 A1
20130339256 Shroff Dec 2013 A1
20130339991 Ricci Dec 2013 A1
20130342672 Gray et al. Dec 2013 A1
20130343584 Bennett et al. Dec 2013 A1
20130343721 Abecassis Dec 2013 A1
20130346065 Davidson et al. Dec 2013 A1
20130346068 Solem Dec 2013 A1
20130346347 Patterson et al. Dec 2013 A1
20130347018 Limp et al. Dec 2013 A1
20130347029 Tang et al. Dec 2013 A1
20130347102 Shi Dec 2013 A1
20130347117 Parks et al. Dec 2013 A1
20140001255 Anthoine Jan 2014 A1
20140006012 Zhou Jan 2014 A1
20140006025 Krishnan Jan 2014 A1
20140006027 Kim Jan 2014 A1
20140006030 Fleizach et al. Jan 2014 A1
20140006153 Thangam Jan 2014 A1
20140006483 Garmark et al. Jan 2014 A1
20140006496 Dearman et al. Jan 2014 A1
20140006562 Handa et al. Jan 2014 A1
20140006947 Garmark et al. Jan 2014 A1
20140006955 Greenzeiger et al. Jan 2014 A1
20140008163 Mikonaho et al. Jan 2014 A1
20140012574 Pasupalak et al. Jan 2014 A1
20140012580 Ganong, III Jan 2014 A1
20140012586 Rubin et al. Jan 2014 A1
20140012587 Park Jan 2014 A1
20140019116 Lundberg Jan 2014 A1
20140019133 Bao Jan 2014 A1
20140019460 Sambrani et al. Jan 2014 A1
20140028029 Jochman Jan 2014 A1
20140028477 Michalske Jan 2014 A1
20140028735 Williams Jan 2014 A1
20140032453 Eustice et al. Jan 2014 A1
20140033071 Gruber Jan 2014 A1
20140035823 Khoe et al. Feb 2014 A1
20140037075 Bouzid et al. Feb 2014 A1
20140039888 Taubman et al. Feb 2014 A1
20140039893 Weiner et al. Feb 2014 A1
20140039894 Shostak Feb 2014 A1
20140040274 Aravamudan Feb 2014 A1
20140040748 Lemay Feb 2014 A1
20140040754 Donelli Feb 2014 A1
20140040801 Patel et al. Feb 2014 A1
20140040918 Li Feb 2014 A1
20140040961 Green et al. Feb 2014 A1
20140046934 Zhou et al. Feb 2014 A1
20140047001 Phillips et al. Feb 2014 A1
20140052451 Cheong et al. Feb 2014 A1
20140052680 Nitz et al. Feb 2014 A1
20140052791 Chakra Feb 2014 A1
20140053082 Park Feb 2014 A1
20140053101 Buehler et al. Feb 2014 A1
20140053210 Cheong et al. Feb 2014 A1
20140057610 Olincy et al. Feb 2014 A1
20140059030 Hakkani-Tur Feb 2014 A1
20140067361 Nikoulina et al. Mar 2014 A1
20140067371 Liensberger Mar 2014 A1
20140067402 Kim Mar 2014 A1
20140067738 Kingsbury Mar 2014 A1
20140068751 Last Mar 2014 A1
20140074454 Brown et al. Mar 2014 A1
20140074466 Sharifi et al. Mar 2014 A1
20140074470 Jansche Mar 2014 A1
20140074472 Lin Mar 2014 A1
20140074483 Van Os Mar 2014 A1
20140074589 Nielsen et al. Mar 2014 A1
20140074815 Plimton Mar 2014 A1
20140075453 Bellessort et al. Mar 2014 A1
20140078065 Akkok Mar 2014 A1
20140079195 Srivastava et al. Mar 2014 A1
20140080410 Jung et al. Mar 2014 A1
20140080428 Rhoads Mar 2014 A1
20140081619 Solntseva Mar 2014 A1
20140081633 Badaskar Mar 2014 A1
20140081635 Yanagihara Mar 2014 A1
20140081829 Milne Mar 2014 A1
20140081941 Bai et al. Mar 2014 A1
20140082500 Wilensky et al. Mar 2014 A1
20140082501 Bae Mar 2014 A1
20140082715 Grajek et al. Mar 2014 A1
20140086458 Rogers Mar 2014 A1
20140087711 Geyer Mar 2014 A1
20140088952 Fife et al. Mar 2014 A1
20140088961 Woodward et al. Mar 2014 A1
20140088964 Bellegarda Mar 2014 A1
20140088970 Kang Mar 2014 A1
20140095171 Lynch Apr 2014 A1
20140095172 Cabaco et al. Apr 2014 A1
20140095173 Lynch et al. Apr 2014 A1
20140095601 Abuelsaad et al. Apr 2014 A1
20140095965 Li Apr 2014 A1
20140096209 Saraf et al. Apr 2014 A1
20140098247 Rao Apr 2014 A1
20140100847 Ishii et al. Apr 2014 A1
20140101127 Simhon et al. Apr 2014 A1
20140104175 Ouyang et al. Apr 2014 A1
20140108017 Mason Apr 2014 A1
20140108391 Volkert Apr 2014 A1
20140112556 Kalinli-akbacak Apr 2014 A1
20140114554 Lagassey Apr 2014 A1
20140115062 Liu et al. Apr 2014 A1
20140115114 Garmark et al. Apr 2014 A1
20140118155 Bowers May 2014 A1
20140118624 Jang et al. May 2014 A1
20140122059 Patel et al. May 2014 A1
20140122085 Piety et al. May 2014 A1
20140122086 Kapur May 2014 A1
20140122136 Jayanthi May 2014 A1
20140122153 Truitt May 2014 A1
20140129226 Lee et al. May 2014 A1
20140132935 Kim et al. May 2014 A1
20140134983 Jung et al. May 2014 A1
20140135036 Bonanni May 2014 A1
20140136013 Wolverton et al. May 2014 A1
20140136187 Wolverton May 2014 A1
20140136195 Abdossalami May 2014 A1
20140136212 Kwon May 2014 A1
20140136946 Matas May 2014 A1
20140136987 Rodriguez May 2014 A1
20140142922 Liang et al. May 2014 A1
20140142923 Jones May 2014 A1
20140142935 Lindahl et al. May 2014 A1
20140142953 Kim et al. May 2014 A1
20140143550 Ganong, III et al. May 2014 A1
20140143721 Suzuki May 2014 A1
20140146200 Scott May 2014 A1
20140149118 Lee et al. May 2014 A1
20140152577 Yuen Jun 2014 A1
20140153709 Byrd et al. Jun 2014 A1
20140155031 Lee Jun 2014 A1
20140156262 Yuen et al. Jun 2014 A1
20140156279 Okamoto et al. Jun 2014 A1
20140157319 Kimura et al. Jun 2014 A1
20140157422 Livshits Jun 2014 A1
20140163951 Nikoulina Jun 2014 A1
20140163953 Parikh Jun 2014 A1
20140163954 Joshi et al. Jun 2014 A1
20140163962 Castelli et al. Jun 2014 A1
20140163976 Park et al. Jun 2014 A1
20140163977 Hoffmeister et al. Jun 2014 A1
20140163981 Cook et al. Jun 2014 A1
20140163995 Burns et al. Jun 2014 A1
20140164305 Lynch et al. Jun 2014 A1
20140164312 Lynch et al. Jun 2014 A1
20140164476 Thomson Jun 2014 A1
20140164508 Lynch Jun 2014 A1
20140164532 Lynch Jun 2014 A1
20140164533 Lynch et al. Jun 2014 A1
20140164953 Lynch et al. Jun 2014 A1
20140169795 Clough Jun 2014 A1
20140171064 Das Jun 2014 A1
20140172878 Clark et al. Jun 2014 A1
20140173460 Kim Jun 2014 A1
20140176814 Ahn Jun 2014 A1
20140179295 Luebbers et al. Jun 2014 A1
20140180499 Cooper et al. Jun 2014 A1
20140180689 Kim Jun 2014 A1
20140180697 Torok et al. Jun 2014 A1
20140181865 Koganei Jun 2014 A1
20140188460 Ouyang et al. Jul 2014 A1
20140188477 Zhang Jul 2014 A1
20140188478 Zhang Jul 2014 A1
20140188485 Kim et al. Jul 2014 A1
20140188835 Zhang et al. Jul 2014 A1
20140195226 Yun et al. Jul 2014 A1
20140195230 Han et al. Jul 2014 A1
20140195233 Bapat et al. Jul 2014 A1
20140195244 Cha et al. Jul 2014 A1
20140195251 Zeinstra Jul 2014 A1
20140195252 Gruber Jul 2014 A1
20140198048 Unruh et al. Jul 2014 A1
20140203939 Harrington Jul 2014 A1
20140205076 Kumar et al. Jul 2014 A1
20140207439 Venkatapathy et al. Jul 2014 A1
20140207446 Klein et al. Jul 2014 A1
20140207447 Jiang et al. Jul 2014 A1
20140207466 Smadi Jul 2014 A1
20140207468 Bartnik Jul 2014 A1
20140207582 Flinn Jul 2014 A1
20140211944 Hayward et al. Jul 2014 A1
20140214429 Pantel Jul 2014 A1
20140214537 Yoo et al. Jul 2014 A1
20140215513 Ramer et al. Jul 2014 A1
20140218372 Missig Aug 2014 A1
20140222435 Li et al. Aug 2014 A1
20140222436 Binder Aug 2014 A1
20140222678 Sheets et al. Aug 2014 A1
20140222967 Harrang et al. Aug 2014 A1
20140223377 Shaw Aug 2014 A1
20140223481 Fundament Aug 2014 A1
20140226503 Cooper et al. Aug 2014 A1
20140229184 Shires Aug 2014 A1
20140230055 Boehl Aug 2014 A1
20140232570 Skinder et al. Aug 2014 A1
20140232656 Pasquero Aug 2014 A1
20140236595 Gray Aug 2014 A1
20140236986 Guzman Aug 2014 A1
20140237042 Ahmed Aug 2014 A1
20140237366 Poulos et al. Aug 2014 A1
20140244248 Arisoy et al. Aug 2014 A1
20140244249 Mohamed et al. Aug 2014 A1
20140244254 Ju et al. Aug 2014 A1
20140244257 Colibro Aug 2014 A1
20140244258 Song Aug 2014 A1
20140244263 Pontual et al. Aug 2014 A1
20140244266 Brown et al. Aug 2014 A1
20140244268 Abdelsamie et al. Aug 2014 A1
20140244270 Han et al. Aug 2014 A1
20140244271 Lindahl Aug 2014 A1
20140244712 Walters et al. Aug 2014 A1
20140245140 Brown et al. Aug 2014 A1
20140247383 Dave Sep 2014 A1
20140247926 Gainsboro Sep 2014 A1
20140249812 Bou-Ghazale et al. Sep 2014 A1
20140249816 Pickering et al. Sep 2014 A1
20140249817 Hart Sep 2014 A1
20140249820 Hsu et al. Sep 2014 A1
20140249821 Kennewick et al. Sep 2014 A1
20140250046 Winn Sep 2014 A1
20140257809 Goel et al. Sep 2014 A1
20140257815 Zhao et al. Sep 2014 A1
20140257902 Moore et al. Sep 2014 A1
20140258324 Mauro et al. Sep 2014 A1
20140258357 Singh et al. Sep 2014 A1
20140258857 Dykstra-Erickson et al. Sep 2014 A1
20140258905 Lee et al. Sep 2014 A1
20140267022 Kim Sep 2014 A1
20140267599 Drouin Sep 2014 A1
20140267933 Young Sep 2014 A1
20140272821 Pitschel et al. Sep 2014 A1
20140273979 Van Os et al. Sep 2014 A1
20140274005 Luna et al. Sep 2014 A1
20140274203 Ganong, III Sep 2014 A1
20140274211 Sejnoha Sep 2014 A1
20140278051 Mcgavran et al. Sep 2014 A1
20140278343 Tran Sep 2014 A1
20140278349 Grieves et al. Sep 2014 A1
20140278379 Coccaro et al. Sep 2014 A1
20140278390 Kingsbury et al. Sep 2014 A1
20140278391 Braho Sep 2014 A1
20140278394 Bastyr et al. Sep 2014 A1
20140278406 Tsumura Sep 2014 A1
20140278413 Pitschel Sep 2014 A1
20140278426 Jost et al. Sep 2014 A1
20140278429 Ganong, III Sep 2014 A1
20140278435 Ganong, III Sep 2014 A1
20140278436 Khanna et al. Sep 2014 A1
20140278438 Hart et al. Sep 2014 A1
20140278443 Gunn Sep 2014 A1
20140278444 Larson et al. Sep 2014 A1
20140278513 Prakash Sep 2014 A1
20140279622 Lamoureux et al. Sep 2014 A1
20140279739 Elkington et al. Sep 2014 A1
20140279787 Cheng et al. Sep 2014 A1
20140280072 Coleman Sep 2014 A1
20140280107 Heymans et al. Sep 2014 A1
20140280138 Li Sep 2014 A1
20140280292 Skinder Sep 2014 A1
20140280353 Delaney Sep 2014 A1
20140280450 Luna Sep 2014 A1
20140281944 Winer Sep 2014 A1
20140281983 Xian Sep 2014 A1
20140281997 Fleizach et al. Sep 2014 A1
20140282003 Gruber et al. Sep 2014 A1
20140282007 Fleizach Sep 2014 A1
20140282045 Ayanam et al. Sep 2014 A1
20140282178 Borzello et al. Sep 2014 A1
20140282201 Pasquero et al. Sep 2014 A1
20140282203 Pasquero et al. Sep 2014 A1
20140282586 Shear Sep 2014 A1
20140282743 Howard Sep 2014 A1
20140288990 Moore Sep 2014 A1
20140289508 Wang Sep 2014 A1
20140297267 Spencer et al. Oct 2014 A1
20140297281 Togawa Oct 2014 A1
20140297284 Gruber Oct 2014 A1
20140297288 Yu et al. Oct 2014 A1
20140298395 Yang Oct 2014 A1
20140304086 Dasdan et al. Oct 2014 A1
20140304605 Ohmura Oct 2014 A1
20140309990 Gandrabur et al. Oct 2014 A1
20140309996 Zhang Oct 2014 A1
20140310001 Kalns et al. Oct 2014 A1
20140310002 Nitz et al. Oct 2014 A1
20140310348 Keskitalo et al. Oct 2014 A1
20140310365 Sample et al. Oct 2014 A1
20140310595 Acharya et al. Oct 2014 A1
20140313007 Harding Oct 2014 A1
20140315492 Woods Oct 2014 A1
20140316585 Boesveld Oct 2014 A1
20140317030 Shen et al. Oct 2014 A1
20140317502 Brown Oct 2014 A1
20140324429 Weilhammer et al. Oct 2014 A1
20140324884 Lindahl et al. Oct 2014 A1
20140330569 Kolavennu et al. Nov 2014 A1
20140330951 Sukoff et al. Nov 2014 A1
20140335823 Heredia et al. Nov 2014 A1
20140337037 Chi Nov 2014 A1
20140337048 Brown Nov 2014 A1
20140337266 Kalns Nov 2014 A1
20140337370 Aravamudan et al. Nov 2014 A1
20140337371 Li Nov 2014 A1
20140337438 Govande et al. Nov 2014 A1
20140337621 Nakhimov Nov 2014 A1
20140337751 Lim et al. Nov 2014 A1
20140337814 Kalns Nov 2014 A1
20140342762 Hajdu et al. Nov 2014 A1
20140343834 Demerchant et al. Nov 2014 A1
20140343943 Al-telmissani Nov 2014 A1
20140343946 Torok et al. Nov 2014 A1
20140344205 Luna et al. Nov 2014 A1
20140344627 Schaub et al. Nov 2014 A1
20140344687 Durham et al. Nov 2014 A1
20140347181 Luna et al. Nov 2014 A1
20140350847 Ichinokawa Nov 2014 A1
20140350924 Zurek et al. Nov 2014 A1
20140350933 Bak et al. Nov 2014 A1
20140351741 Medlock et al. Nov 2014 A1
20140351760 Skory Nov 2014 A1
20140358519 Mirkin Dec 2014 A1
20140358523 Sheth et al. Dec 2014 A1
20140358549 O'Connor et al. Dec 2014 A1
20140359637 Yan Dec 2014 A1
20140359709 Nassar et al. Dec 2014 A1
20140361973 Raux et al. Dec 2014 A1
20140363074 Dolfing et al. Dec 2014 A1
20140364149 Marti et al. Dec 2014 A1
20140365209 Evermann Dec 2014 A1
20140365214 Bayley Dec 2014 A1
20140365216 Gruber et al. Dec 2014 A1
20140365226 Sinha Dec 2014 A1
20140365227 Cash Dec 2014 A1
20140365407 Brown et al. Dec 2014 A1
20140365505 Clark et al. Dec 2014 A1
20140365880 Bellegarda Dec 2014 A1
20140365885 Carson Dec 2014 A1
20140365895 Magahern Dec 2014 A1
20140365922 Yang Dec 2014 A1
20140365945 Karunamuni et al. Dec 2014 A1
20140370817 Luna Dec 2014 A1
20140370841 Roberts et al. Dec 2014 A1
20140372112 Xue et al. Dec 2014 A1
20140372356 Bilal et al. Dec 2014 A1
20140372468 Collins et al. Dec 2014 A1
20140372931 Zhai et al. Dec 2014 A1
20140379334 Fry Dec 2014 A1
20140379341 Seo et al. Dec 2014 A1
20140379798 Bunner et al. Dec 2014 A1
20140380285 Gabel et al. Dec 2014 A1
20150003797 Schmidt Jan 2015 A1
20150004958 Wang et al. Jan 2015 A1
20150006148 Goldszmit et al. Jan 2015 A1
20150006157 Silva et al. Jan 2015 A1
20150006167 Kato et al. Jan 2015 A1
20150006176 Pogue et al. Jan 2015 A1
20150006178 Peng Jan 2015 A1
20150006184 Marti et al. Jan 2015 A1
20150006199 Snider Jan 2015 A1
20150012271 Peng Jan 2015 A1
20150019219 Tzirkel-Hancock et al. Jan 2015 A1
20150019221 Lee et al. Jan 2015 A1
20150019944 Kalgi Jan 2015 A1
20150019974 Doi Jan 2015 A1
20150025405 Vairavan et al. Jan 2015 A1
20150026620 Kwon et al. Jan 2015 A1
20150027178 Scalisi Jan 2015 A1
20150031416 Wells et al. Jan 2015 A1
20150032443 Karov et al. Jan 2015 A1
20150033219 Breiner et al. Jan 2015 A1
20150033275 Natani et al. Jan 2015 A1
20150034855 Shen Feb 2015 A1
20150038161 Jakobson et al. Feb 2015 A1
20150039292 Suleman Feb 2015 A1
20150039295 Soschen Feb 2015 A1
20150039299 Weinstein et al. Feb 2015 A1
20150039305 Huang Feb 2015 A1
20150039606 Salaka et al. Feb 2015 A1
20150040012 Faaborg et al. Feb 2015 A1
20150045003 Vora Feb 2015 A1
20150045007 Cash Feb 2015 A1
20150045068 Soifer et al. Feb 2015 A1
20150046434 Lim et al. Feb 2015 A1
20150046537 Rakib Feb 2015 A1
20150046828 Desai et al. Feb 2015 A1
20150050633 Christmas Feb 2015 A1
20150050923 Tu et al. Feb 2015 A1
20150051754 Kwon et al. Feb 2015 A1
20150053779 Adamek et al. Feb 2015 A1
20150053781 Nelson et al. Feb 2015 A1
20150055879 Yang Feb 2015 A1
20150058013 Pakhomov Feb 2015 A1
20150058018 Georges et al. Feb 2015 A1
20150058720 Smadja et al. Feb 2015 A1
20150058785 Ookawara Feb 2015 A1
20150065149 Russell et al. Mar 2015 A1
20150065200 Namgung Mar 2015 A1
20150066494 Salvador et al. Mar 2015 A1
20150066496 Deoras et al. Mar 2015 A1
20150066506 Romano Mar 2015 A1
20150066516 Nishikawa Mar 2015 A1
20150066817 Slayton et al. Mar 2015 A1
20150067485 Kim Mar 2015 A1
20150067822 Randall Mar 2015 A1
20150071121 Patil et al. Mar 2015 A1
20150073788 Sak et al. Mar 2015 A1
20150073804 Senior Mar 2015 A1
20150074524 Nicholson et al. Mar 2015 A1
20150074615 Han et al. Mar 2015 A1
20150081295 Yun et al. Mar 2015 A1
20150082229 Ouyang et al. Mar 2015 A1
20150086174 Abecassis et al. Mar 2015 A1
20150088511 Bharadwaj Mar 2015 A1
20150088514 Typrin Mar 2015 A1
20150088518 Kim et al. Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150088523 Schuster Mar 2015 A1
20150088998 Isensee et al. Mar 2015 A1
20150092520 Robison et al. Apr 2015 A1
20150094834 Vega et al. Apr 2015 A1
20150095031 Conkie Apr 2015 A1
20150095268 Greenzeiger et al. Apr 2015 A1
20150095278 Flinn et al. Apr 2015 A1
20150100144 Lee et al. Apr 2015 A1
20150100313 Sharma Apr 2015 A1
20150100316 Williams Apr 2015 A1
20150100537 Grieves et al. Apr 2015 A1
20150100983 Pan Apr 2015 A1
20150106093 Weeks et al. Apr 2015 A1
20150106737 Montoy-Wilson et al. Apr 2015 A1
20150113407 Hoffert Apr 2015 A1
20150113435 Phillips Apr 2015 A1
20150120296 Stern et al. Apr 2015 A1
20150120641 Soon-Shiong et al. Apr 2015 A1
20150120723 Deshmukh et al. Apr 2015 A1
20150121216 Brown et al. Apr 2015 A1
20150123898 Kim et al. May 2015 A1
20150127337 Heigold et al. May 2015 A1
20150127348 Follis May 2015 A1
20150127350 Agiomyrgiannakis May 2015 A1
20150133049 Lee et al. May 2015 A1
20150133109 Freeman May 2015 A1
20150134318 Cuthbert et al. May 2015 A1
20150134322 Cuthbert et al. May 2015 A1
20150134334 Sachidanandam et al. May 2015 A1
20150135085 Shoham et al. May 2015 A1
20150135123 Carr et al. May 2015 A1
20150140934 Abdurrahman et al. May 2015 A1
20150142420 Sarikaya May 2015 A1
20150142438 Dai et al. May 2015 A1
20150142447 Kennewick et al. May 2015 A1
20150142851 Gupta et al. May 2015 A1
20150143419 Bhagwat et al. May 2015 A1
20150148013 Baldwin May 2015 A1
20150149177 Kalns et al. May 2015 A1
20150149182 Kalns et al. May 2015 A1
20150149354 McCoy May 2015 A1
20150149469 Xu May 2015 A1
20150149899 Bernstein et al. May 2015 A1
20150149964 Bernstein et al. May 2015 A1
20150154001 Knox et al. Jun 2015 A1
20150154185 Waibel Jun 2015 A1
20150154976 Mutagi Jun 2015 A1
20150160855 Bi Jun 2015 A1
20150161291 Gur et al. Jun 2015 A1
20150161370 North Jun 2015 A1
20150161521 Shah et al. Jun 2015 A1
20150161989 Hsu et al. Jun 2015 A1
20150162001 Kar et al. Jun 2015 A1
20150162006 Kummer Jun 2015 A1
20150163558 Wheatley Jun 2015 A1
20150169081 Neels et al. Jun 2015 A1
20150169284 Quast et al. Jun 2015 A1
20150169336 Harper et al. Jun 2015 A1
20150169696 Krishnappa et al. Jun 2015 A1
20150170073 Baker Jun 2015 A1
20150170664 Doherty Jun 2015 A1
20150172262 Ortiz, Jr. et al. Jun 2015 A1
20150172463 Quast Jun 2015 A1
20150178388 Winnemoeller Jun 2015 A1
20150178785 Salonen Jun 2015 A1
20150179176 Ryu et al. Jun 2015 A1
20150181285 Zhang et al. Jun 2015 A1
20150185964 Stout Jul 2015 A1
20150185996 Brown et al. Jul 2015 A1
20150186012 Coleman Jul 2015 A1
20150186110 Kannan Jul 2015 A1
20150186154 Brown et al. Jul 2015 A1
20150186155 Brown et al. Jul 2015 A1
20150186156 Brown Jul 2015 A1
20150186351 Hicks et al. Jul 2015 A1
20150186538 Yan et al. Jul 2015 A1
20150186783 Byrne et al. Jul 2015 A1
20150187355 Parkinson et al. Jul 2015 A1
20150187369 Dadu et al. Jul 2015 A1
20150189362 Lee et al. Jul 2015 A1
20150193379 Mehta Jul 2015 A1
20150193391 Khvostichenko Jul 2015 A1
20150193392 Greenblatt Jul 2015 A1
20150194152 Katuri Jul 2015 A1
20150194165 Faaborg et al. Jul 2015 A1
20150195379 Zhang Jul 2015 A1
20150195606 McDevitt Jul 2015 A1
20150199077 Zuger et al. Jul 2015 A1
20150199960 Huo Jul 2015 A1
20150199965 Leak et al. Jul 2015 A1
20150199967 Reddy et al. Jul 2015 A1
20150201064 Bells et al. Jul 2015 A1
20150201077 Konig et al. Jul 2015 A1
20150205425 Kuscher et al. Jul 2015 A1
20150205568 Matsuoka Jul 2015 A1
20150205858 Xie Jul 2015 A1
20150206529 Kwon et al. Jul 2015 A1
20150208226 Kuusilinna et al. Jul 2015 A1
20150212791 Kumar et al. Jul 2015 A1
20150213140 Volkert Jul 2015 A1
20150213796 Waltermann et al. Jul 2015 A1
20150215258 Nowakowski et al. Jul 2015 A1
20150215350 Slayton et al. Jul 2015 A1
20150220264 Lewis et al. Aug 2015 A1
20150220507 Mohajer et al. Aug 2015 A1
20150220715 Kim et al. Aug 2015 A1
20150220972 Subramanya et al. Aug 2015 A1
20150221304 Stewart Aug 2015 A1
20150221307 Shah et al. Aug 2015 A1
20150227505 Morimoto Aug 2015 A1
20150227633 Shapira Aug 2015 A1
20150228274 Leppanen et al. Aug 2015 A1
20150228275 Watanabe et al. Aug 2015 A1
20150228281 Raniere Aug 2015 A1
20150228283 Ehsani et al. Aug 2015 A1
20150228292 Goldstein et al. Aug 2015 A1
20150230095 Smith et al. Aug 2015 A1
20150234636 Barnes, Jr. Aug 2015 A1
20150234800 Ehlen Aug 2015 A1
20150237301 Shi et al. Aug 2015 A1
20150242091 Lu et al. Aug 2015 A1
20150242385 Bao et al. Aug 2015 A1
20150243278 Kibre Aug 2015 A1
20150243279 Morse et al. Aug 2015 A1
20150243283 Halash et al. Aug 2015 A1
20150244665 Choi et al. Aug 2015 A1
20150245154 Dadu Aug 2015 A1
20150248651 Akutagawa et al. Sep 2015 A1
20150248886 Sarikaya et al. Sep 2015 A1
20150253146 Annapureddy et al. Sep 2015 A1
20150254057 Klein et al. Sep 2015 A1
20150254058 Klein Sep 2015 A1
20150254333 Fife et al. Sep 2015 A1
20150255071 Chiba Sep 2015 A1
20150256873 Klein Sep 2015 A1
20150261298 Li Sep 2015 A1
20150261496 Faaborg Sep 2015 A1
20150261850 Mittal Sep 2015 A1
20150269139 McAteer et al. Sep 2015 A1
20150269617 Mikurak Sep 2015 A1
20150269677 Milne Sep 2015 A1
20150269943 VanBlon et al. Sep 2015 A1
20150277574 Jain et al. Oct 2015 A1
20150278348 Paruchuri et al. Oct 2015 A1
20150278370 Stratvert et al. Oct 2015 A1
20150278737 Chen Huebscher et al. Oct 2015 A1
20150279358 Kingsbury et al. Oct 2015 A1
20150279360 Mengibar Oct 2015 A1
20150279366 Krestnikov et al. Oct 2015 A1
20150281380 Wang et al. Oct 2015 A1
20150281401 Le et al. Oct 2015 A1
20150286627 Chang et al. Oct 2015 A1
20150286716 Snibbe et al. Oct 2015 A1
20150286937 Hildebrand Oct 2015 A1
20150287401 Lee et al. Oct 2015 A1
20150287409 Jang Oct 2015 A1
20150287411 Kojima et al. Oct 2015 A1
20150288629 Choi et al. Oct 2015 A1
20150294086 Kare et al. Oct 2015 A1
20150294377 Chow Oct 2015 A1
20150294516 Chiang Oct 2015 A1
20150295915 Xiu Oct 2015 A1
20150301796 Visser et al. Oct 2015 A1
20150302855 Kim et al. Oct 2015 A1
20150302856 Kim et al. Oct 2015 A1
20150302857 Yamada Oct 2015 A1
20150302870 Burke Oct 2015 A1
20150309997 Lee Oct 2015 A1
20150310114 Ryger et al. Oct 2015 A1
20150310858 Li et al. Oct 2015 A1
20150310862 Dauphin et al. Oct 2015 A1
20150310879 Buchanan et al. Oct 2015 A1
20150310888 Chen Oct 2015 A1
20150312182 Langholz Oct 2015 A1
20150312409 Czarnecki et al. Oct 2015 A1
20150314454 Breazeal et al. Nov 2015 A1
20150317069 Clements et al. Nov 2015 A1
20150317310 Eiche et al. Nov 2015 A1
20150319411 Kasmir et al. Nov 2015 A1
20150324041 Varley Nov 2015 A1
20150324334 Lee et al. Nov 2015 A1
20150331664 Osawa et al. Nov 2015 A1
20150331711 Huang Nov 2015 A1
20150332667 Mason Nov 2015 A1
20150334346 Cheatham, III et al. Nov 2015 A1
20150339049 Kasemset Nov 2015 A1
20150339391 Kang Nov 2015 A1
20150340033 Di Fabbrizio et al. Nov 2015 A1
20150340040 Mun Nov 2015 A1
20150340042 Sejnoha Nov 2015 A1
20150341717 Song et al. Nov 2015 A1
20150346845 Di Censo et al. Dec 2015 A1
20150347086 Liedholm et al. Dec 2015 A1
20150347381 Bellegarda Dec 2015 A1
20150347382 Dolfing Dec 2015 A1
20150347383 Willmore et al. Dec 2015 A1
20150347385 Flor et al. Dec 2015 A1
20150347393 Futrell Dec 2015 A1
20150347552 Habouzit et al. Dec 2015 A1
20150347733 Tsou et al. Dec 2015 A1
20150347985 Gross et al. Dec 2015 A1
20150348533 Saddler et al. Dec 2015 A1
20150348547 Paulik Dec 2015 A1
20150348548 Piernot Dec 2015 A1
20150348549 Giuli Dec 2015 A1
20150348551 Gruber Dec 2015 A1
20150348554 Orr et al. Dec 2015 A1
20150348555 Sugita Dec 2015 A1
20150348565 Rhoten et al. Dec 2015 A1
20150349934 Pollack et al. Dec 2015 A1
20150350031 Burks Dec 2015 A1
20150350342 Thorpe et al. Dec 2015 A1
20150350594 Mate et al. Dec 2015 A1
20150352999 Bando et al. Dec 2015 A1
20150355879 Beckhardt et al. Dec 2015 A1
20150356410 Faith et al. Dec 2015 A1
20150363587 Ahn et al. Dec 2015 A1
20150364128 Zhao et al. Dec 2015 A1
20150364140 Thörn Dec 2015 A1
20150370531 Faaborg Dec 2015 A1
20150370780 Wang Dec 2015 A1
20150370787 Akbacak et al. Dec 2015 A1
20150370884 Hurley et al. Dec 2015 A1
20150371215 Zhou et al. Dec 2015 A1
20150371529 Dolecki Dec 2015 A1
20150371639 Foerster et al. Dec 2015 A1
20150371663 Gustafson et al. Dec 2015 A1
20150371665 Naik et al. Dec 2015 A1
20150373183 Woolsey et al. Dec 2015 A1
20150379118 Wickenkamp et al. Dec 2015 A1
20150379414 Yeh et al. Dec 2015 A1
20150379993 Subhojit Dec 2015 A1
20150381923 Wickenkamp et al. Dec 2015 A1
20150382047 Van Os Dec 2015 A1
20150382079 Lister et al. Dec 2015 A1
20150382147 Clark et al. Dec 2015 A1
20160004690 Bangalore et al. Jan 2016 A1
20160005320 deCharms et al. Jan 2016 A1
20160012038 Edwards et al. Jan 2016 A1
20160014476 Caliendo, Jr. et al. Jan 2016 A1
20160018872 Tu et al. Jan 2016 A1
20160018900 Tu et al. Jan 2016 A1
20160018959 Yamashita et al. Jan 2016 A1
20160019886 Hong Jan 2016 A1
20160021414 Padi et al. Jan 2016 A1
20160026258 Ou et al. Jan 2016 A1
20160027431 Kurzweil Jan 2016 A1
20160028666 Li Jan 2016 A1
20160029316 Mohan et al. Jan 2016 A1
20160034042 Joo Feb 2016 A1
20160034811 Paulik et al. Feb 2016 A1
20160036953 Lee et al. Feb 2016 A1
20160041809 Clayton et al. Feb 2016 A1
20160042735 Vibbert et al. Feb 2016 A1
20160042748 Jain et al. Feb 2016 A1
20160043905 Fiedler Feb 2016 A1
20160048666 Dey et al. Feb 2016 A1
20160050254 Rao et al. Feb 2016 A1
20160055422 Li Feb 2016 A1
20160062605 Agarwal et al. Mar 2016 A1
20160063094 Udupa et al. Mar 2016 A1
20160063998 Krishnamoorthy et al. Mar 2016 A1
20160070581 Soon-Shiong Mar 2016 A1
20160071516 Lee et al. Mar 2016 A1
20160071517 Beaver et al. Mar 2016 A1
20160071521 Haughay Mar 2016 A1
20160072940 Cronin Mar 2016 A1
20160077794 Kim et al. Mar 2016 A1
20160078860 Paulik et al. Mar 2016 A1
20160080165 Ehsani et al. Mar 2016 A1
20160080475 Singh et al. Mar 2016 A1
20160085295 Shimy et al. Mar 2016 A1
20160085827 Chadha et al. Mar 2016 A1
20160086116 Rao et al. Mar 2016 A1
20160086599 Kurata et al. Mar 2016 A1
20160088335 Zucchetta Mar 2016 A1
20160091967 Prokofieva Mar 2016 A1
20160092434 Bellegarda Mar 2016 A1
20160092447 Pathurudeen et al. Mar 2016 A1
20160092766 Sainath et al. Mar 2016 A1
20160093291 Kim Mar 2016 A1
20160093298 Naik et al. Mar 2016 A1
20160093301 Bellegarda et al. Mar 2016 A1
20160093304 Kim Mar 2016 A1
20160094700 Lee et al. Mar 2016 A1
20160094889 Venkataraman et al. Mar 2016 A1
20160094979 Naik Mar 2016 A1
20160098991 Luo et al. Apr 2016 A1
20160098992 Renard et al. Apr 2016 A1
20160099892 Palakovich et al. Apr 2016 A1
20160099984 Karagiannis et al. Apr 2016 A1
20160104480 Sharifi Apr 2016 A1
20160104486 Penilla et al. Apr 2016 A1
20160111091 Bakish Apr 2016 A1
20160112746 Zhang et al. Apr 2016 A1
20160117386 Ajmera et al. Apr 2016 A1
20160118048 Heide Apr 2016 A1
20160119338 Cheyer Apr 2016 A1
20160125048 Hamada May 2016 A1
20160125071 Gabbai May 2016 A1
20160132046 Beoughter et al. May 2016 A1
20160132484 Nauze et al. May 2016 A1
20160132488 Clark et al. May 2016 A1
20160133254 Vogel et al. May 2016 A1
20160139662 Dabhade May 2016 A1
20160140951 Agiomyrgiannakis et al. May 2016 A1
20160140962 Sharifi May 2016 A1
20160147725 Patten May 2016 A1
20160148610 Kennewick, Jr. et al. May 2016 A1
20160150020 Farmer et al. May 2016 A1
20160154624 Son et al. Jun 2016 A1
20160154880 Hoarty Jun 2016 A1
20160155442 Kannan et al. Jun 2016 A1
20160155443 Khan et al. Jun 2016 A1
20160156574 Hum et al. Jun 2016 A1
20160162456 Munro et al. Jun 2016 A1
20160163311 Crook et al. Jun 2016 A1
20160163312 Naik et al. Jun 2016 A1
20160170966 Kolo Jun 2016 A1
20160173578 Sharma et al. Jun 2016 A1
20160173617 Allinson Jun 2016 A1
20160173960 Snibbe et al. Jun 2016 A1
20160179462 Bjorkengren Jun 2016 A1
20160179464 Reddy et al. Jun 2016 A1
20160179787 Deleeuw Jun 2016 A1
20160180840 Siddiq et al. Jun 2016 A1
20160180844 VanBlon Jun 2016 A1
20160182410 Janakiraman et al. Jun 2016 A1
20160182709 Kim et al. Jun 2016 A1
20160188181 Smith Jun 2016 A1
20160188738 Gruber et al. Jun 2016 A1
20160189717 Kannan Jun 2016 A1
20160196110 Yehoshua et al. Jul 2016 A1
20160198319 Huang et al. Jul 2016 A1
20160203002 Kannan et al. Jul 2016 A1
20160210551 Lee et al. Jul 2016 A1
20160210981 Lee Jul 2016 A1
20160212488 Os Jul 2016 A1
20160217784 Gelfenbeyn et al. Jul 2016 A1
20160224540 Stewart et al. Aug 2016 A1
20160224774 Pender Aug 2016 A1
20160225372 Cheung et al. Aug 2016 A1
20160227107 Beaumont Aug 2016 A1
20160232500 Wang et al. Aug 2016 A1
20160239645 Heo et al. Aug 2016 A1
20160240187 Fleizach et al. Aug 2016 A1
20160240189 Lee et al. Aug 2016 A1
20160240192 Raghuvir Aug 2016 A1
20160247061 Trask et al. Aug 2016 A1
20160249319 Dotan-Cohen et al. Aug 2016 A1
20160253312 Rhodes Sep 2016 A1
20160253528 Gao et al. Sep 2016 A1
20160259623 Sumner et al. Sep 2016 A1
20160259656 Sumner et al. Sep 2016 A1
20160259779 Labský et al. Sep 2016 A1
20160260431 Newendorp et al. Sep 2016 A1
20160260433 Sumner et al. Sep 2016 A1
20160260434 Gelfenbeyn et al. Sep 2016 A1
20160260436 Lemay Sep 2016 A1
20160266871 Schmid et al. Sep 2016 A1
20160267904 Biadsy et al. Sep 2016 A1
20160274938 Strinati et al. Sep 2016 A1
20160275941 Bellegarda et al. Sep 2016 A1
20160275947 Li et al. Sep 2016 A1
20160282824 Smallwood et al. Sep 2016 A1
20160282956 Ouyang et al. Sep 2016 A1
20160283185 Mclaren et al. Sep 2016 A1
20160284005 Daniel et al. Sep 2016 A1
20160284199 Dotan-Cohen et al. Sep 2016 A1
20160285808 Franklin et al. Sep 2016 A1
20160286045 Shaltiel et al. Sep 2016 A1
20160293157 Chen et al. Oct 2016 A1
20160293168 Chen Oct 2016 A1
20160294755 Prabhu Oct 2016 A1
20160299685 Zhai et al. Oct 2016 A1
20160299882 Hegerty et al. Oct 2016 A1
20160299883 Zhu et al. Oct 2016 A1
20160299977 Hreha Oct 2016 A1
20160300571 Foerster et al. Oct 2016 A1
20160301639 Liu et al. Oct 2016 A1
20160307566 Bellegarda Oct 2016 A1
20160308799 Schubert et al. Oct 2016 A1
20160313906 Kilchenko et al. Oct 2016 A1
20160314788 Jitkoff et al. Oct 2016 A1
20160314792 Alvarez et al. Oct 2016 A1
20160315996 Ha et al. Oct 2016 A1
20160317924 Tanaka et al. Nov 2016 A1
20160321239 Iso-Sipilä et al. Nov 2016 A1
20160321261 Spasojevic et al. Nov 2016 A1
20160321358 Kanani et al. Nov 2016 A1
20160322043 Bellegarda Nov 2016 A1
20160322044 Jung et al. Nov 2016 A1
20160322045 Hatfield et al. Nov 2016 A1
20160322048 Amano et al. Nov 2016 A1
20160322050 Wang et al. Nov 2016 A1
20160328147 Zhang et al. Nov 2016 A1
20160328205 Agrawal et al. Nov 2016 A1
20160328893 Cordova et al. Nov 2016 A1
20160329060 Ito et al. Nov 2016 A1
20160334973 Reckhow et al. Nov 2016 A1
20160335532 Sanghavi et al. Nov 2016 A1
20160336007 Hanazawa et al. Nov 2016 A1
20160336010 Lindahl Nov 2016 A1
20160336011 Koll et al. Nov 2016 A1
20160336024 Choi et al. Nov 2016 A1
20160337299 Lane et al. Nov 2016 A1
20160337301 Rollins et al. Nov 2016 A1
20160342317 Lim et al. Nov 2016 A1
20160342685 Basu et al. Nov 2016 A1
20160342781 Jeon Nov 2016 A1
20160350650 Leeman-Munk et al. Dec 2016 A1
20160351190 Piernot et al. Dec 2016 A1
20160352567 Robbins et al. Dec 2016 A1
20160357304 Hatori et al. Dec 2016 A1
20160357728 Bellegarda et al. Dec 2016 A1
20160357790 Elkington et al. Dec 2016 A1
20160357861 Carlhian et al. Dec 2016 A1
20160357870 Hentschel et al. Dec 2016 A1
20160358598 Williams et al. Dec 2016 A1
20160358600 Nallasamy et al. Dec 2016 A1
20160358619 Ramprashad et al. Dec 2016 A1
20160359771 Sridhar Dec 2016 A1
20160360039 Sanghavi et al. Dec 2016 A1
20160360336 Gross et al. Dec 2016 A1
20160360382 Gross et al. Dec 2016 A1
20160364378 Futrell et al. Dec 2016 A1
20160365101 Foy et al. Dec 2016 A1
20160371250 Rhodes Dec 2016 A1
20160372112 Miller et al. Dec 2016 A1
20160372119 Sak et al. Dec 2016 A1
20160378747 Orr et al. Dec 2016 A1
20160379091 Lin et al. Dec 2016 A1
20160379626 Deisher et al. Dec 2016 A1
20160379632 Hoffmeister et al. Dec 2016 A1
20160379633 Lehman et al. Dec 2016 A1
20160379639 Weinstein et al. Dec 2016 A1
20160379641 Liu et al. Dec 2016 A1
20170003931 Dvortsov et al. Jan 2017 A1
20170004824 Yoo et al. Jan 2017 A1
20170005818 Gould Jan 2017 A1
20170011091 Chehreghani Jan 2017 A1
20170011303 Annapureddy et al. Jan 2017 A1
20170011742 Jing et al. Jan 2017 A1
20170013124 Havelka et al. Jan 2017 A1
20170013331 Watanabe et al. Jan 2017 A1
20170018271 Khan et al. Jan 2017 A1
20170019987 Dragone et al. Jan 2017 A1
20170023963 Davis et al. Jan 2017 A1
20170025124 Mixter et al. Jan 2017 A1
20170026318 Daniel et al. Jan 2017 A1
20170026509 Rand Jan 2017 A1
20170031576 Saoji et al. Feb 2017 A1
20170032783 Lord et al. Feb 2017 A1
20170032787 Dayal Feb 2017 A1
20170032791 Elson et al. Feb 2017 A1
20170039283 Bennett et al. Feb 2017 A1
20170039475 Cheyer et al. Feb 2017 A1
20170040002 Basson et al. Feb 2017 A1
20170047063 Ohmura et al. Feb 2017 A1
20170053652 Choi et al. Feb 2017 A1
20170055895 Jardins et al. Mar 2017 A1
20170060853 Lee et al. Mar 2017 A1
20170061423 Bryant et al. Mar 2017 A1
20170068423 Napolitano et al. Mar 2017 A1
20170068513 Stasior et al. Mar 2017 A1
20170068550 Zeitlin Mar 2017 A1
20170068670 Orr et al. Mar 2017 A1
20170069308 Aleksic et al. Mar 2017 A1
20170075653 Dawidowsky et al. Mar 2017 A1
20170076720 Gopalan et al. Mar 2017 A1
20170076721 Bargetzi et al. Mar 2017 A1
20170078490 Kaminsky et al. Mar 2017 A1
20170083179 Gruber et al. Mar 2017 A1
20170083285 Meyers et al. Mar 2017 A1
20170083504 Huang Mar 2017 A1
20170084277 Sharifi Mar 2017 A1
20170085547 De Aguiar et al. Mar 2017 A1
20170090569 Levesque Mar 2017 A1
20170091168 Bellegarda et al. Mar 2017 A1
20170091169 Bellegarda et al. Mar 2017 A1
20170091612 Gruber et al. Mar 2017 A1
20170092259 Jeon Mar 2017 A1
20170092270 Newendorp et al. Mar 2017 A1
20170092278 Evermann et al. Mar 2017 A1
20170093356 Cudak et al. Mar 2017 A1
20170102837 Toumpelis Apr 2017 A1
20170102915 Kuscher et al. Apr 2017 A1
20170103749 Zhao et al. Apr 2017 A1
20170105190 Logan et al. Apr 2017 A1
20170110117 Chakladar et al. Apr 2017 A1
20170116177 Walla Anmol Apr 2017 A1
20170116982 Gelfenbeyn et al. Apr 2017 A1
20170116989 Yadgar et al. Apr 2017 A1
20170124190 Wang et al. May 2017 A1
20170125016 Wang May 2017 A1
20170127124 Wilson et al. May 2017 A9
20170131778 Iyer May 2017 A1
20170132019 Karashchuk et al. May 2017 A1
20170132199 Vescovi et al. May 2017 A1
20170133007 Drewes May 2017 A1
20170140041 Dotan-Cohen et al. May 2017 A1
20170140644 Hwang et al. May 2017 A1
20170140760 Sachdev May 2017 A1
20170147841 Stagg et al. May 2017 A1
20170148044 Fukuda et al. May 2017 A1
20170154033 Lee Jun 2017 A1
20170154055 Dimson et al. Jun 2017 A1
20170155940 Jin et al. Jun 2017 A1
20170161018 Lemay et al. Jun 2017 A1
20170161268 Badaskar Jun 2017 A1
20170161293 Ionescu et al. Jun 2017 A1
20170161393 Oh et al. Jun 2017 A1
20170162191 Grost et al. Jun 2017 A1
20170162203 Huang et al. Jun 2017 A1
20170169818 Vanblon et al. Jun 2017 A1
20170169819 Mese et al. Jun 2017 A1
20170177547 Ciereszko et al. Jun 2017 A1
20170178619 Naik et al. Jun 2017 A1
20170178620 Fleizach et al. Jun 2017 A1
20170178626 Gruber et al. Jun 2017 A1
20170180499 Gelfenbeyn et al. Jun 2017 A1
20170185375 Martel et al. Jun 2017 A1
20170185581 Bojja et al. Jun 2017 A1
20170186429 Giuli et al. Jun 2017 A1
20170187711 Joo et al. Jun 2017 A1
20170193083 Bhatt et al. Jul 2017 A1
20170195493 Sudarsan et al. Jul 2017 A1
20170195636 Child et al. Jul 2017 A1
20170199870 Zheng et al. Jul 2017 A1
20170199874 Patel et al. Jul 2017 A1
20170200066 Wang et al. Jul 2017 A1
20170201609 Salmenkaita et al. Jul 2017 A1
20170201613 Engelke et al. Jul 2017 A1
20170206899 Bryant et al. Jul 2017 A1
20170215052 Koum et al. Jul 2017 A1
20170221486 Kurata et al. Aug 2017 A1
20170223189 Meredith et al. Aug 2017 A1
20170227935 Su et al. Aug 2017 A1
20170228367 Pasupalak et al. Aug 2017 A1
20170228382 Haviv et al. Aug 2017 A1
20170230429 Garmark et al. Aug 2017 A1
20170230497 Kim et al. Aug 2017 A1
20170230709 Van Os et al. Aug 2017 A1
20170235361 Rigazio et al. Aug 2017 A1
20170235618 Lin et al. Aug 2017 A1
20170235721 Almosallam et al. Aug 2017 A1
20170236512 Williams et al. Aug 2017 A1
20170236514 Nelson Aug 2017 A1
20170238039 Sabattini Aug 2017 A1
20170242653 Lang et al. Aug 2017 A1
20170242657 Jarvis et al. Aug 2017 A1
20170243468 Dotan-Cohen et al. Aug 2017 A1
20170243576 Millington et al. Aug 2017 A1
20170243586 Civelli et al. Aug 2017 A1
20170256256 Wang et al. Sep 2017 A1
20170263247 Kang et al. Sep 2017 A1
20170263248 Gruber et al. Sep 2017 A1
20170263249 Akbacak et al. Sep 2017 A1
20170264451 Yu et al. Sep 2017 A1
20170264711 Natarajan et al. Sep 2017 A1
20170270912 Levit et al. Sep 2017 A1
20170278514 Mathias et al. Sep 2017 A1
20170285915 Napolitano et al. Oct 2017 A1
20170286397 Gonzalez Oct 2017 A1
20170287472 Ogawa et al. Oct 2017 A1
20170289305 Liensberger et al. Oct 2017 A1
20170295446 Shivappa Oct 2017 A1
20170308609 Berkhin et al. Oct 2017 A1
20170311005 Lin Oct 2017 A1
20170316775 Le et al. Nov 2017 A1
20170316782 Haughay Nov 2017 A1
20170319123 Voss et al. Nov 2017 A1
20170323637 Naik Nov 2017 A1
20170329466 Krenkler et al. Nov 2017 A1
20170329490 Esinovskaya et al. Nov 2017 A1
20170329572 Shah et al. Nov 2017 A1
20170329630 Jann et al. Nov 2017 A1
20170337035 Choudhary et al. Nov 2017 A1
20170337478 Sarikaya et al. Nov 2017 A1
20170345411 Raitio et al. Nov 2017 A1
20170345420 Barnett, Jr. Nov 2017 A1
20170345429 Hardee et al. Nov 2017 A1
20170346949 Sanghavi et al. Nov 2017 A1
20170351487 Avilés-Casco et al. Dec 2017 A1
20170352346 Paulik et al. Dec 2017 A1
20170352350 Booker et al. Dec 2017 A1
20170357478 Piersol et al. Dec 2017 A1
20170357632 Pagallo et al. Dec 2017 A1
20170357633 Wang et al. Dec 2017 A1
20170357637 Nell et al. Dec 2017 A1
20170357640 Bellegarda et al. Dec 2017 A1
20170357716 Bellegarda et al. Dec 2017 A1
20170358300 Laurens et al. Dec 2017 A1
20170358301 Raitio et al. Dec 2017 A1
20170358302 Orr et al. Dec 2017 A1
20170358303 Walker, II et al. Dec 2017 A1
20170358304 Castillo et al. Dec 2017 A1
20170358305 Kudurshian et al. Dec 2017 A1
20170358317 James Dec 2017 A1
20170365251 Park et al. Dec 2017 A1
20170371509 Jung et al. Dec 2017 A1
20170371885 Aggarwal et al. Dec 2017 A1
20170374093 Dhar et al. Dec 2017 A1
20170374176 Agrawal et al. Dec 2017 A1
20180005112 Iso-Sipila et al. Jan 2018 A1
20180007060 Leblang et al. Jan 2018 A1
20180007096 Levin et al. Jan 2018 A1
20180007538 Naik et al. Jan 2018 A1
20180012596 Piernot et al. Jan 2018 A1
20180018248 Bhargava et al. Jan 2018 A1
20180024985 Asano Jan 2018 A1
20180033431 Newendorp et al. Feb 2018 A1
20180033436 Zhou Feb 2018 A1
20180047201 Filev et al. Feb 2018 A1
20180047406 Park Feb 2018 A1
20180052909 Sharifi et al. Feb 2018 A1
20180054505 Hart et al. Feb 2018 A1
20180060032 Boesen Mar 2018 A1
20180060301 Li et al. Mar 2018 A1
20180060312 Won Mar 2018 A1
20180061400 Carbune et al. Mar 2018 A1
20180061401 Sarikaya et al. Mar 2018 A1
20180062691 Barnett, Jr. Mar 2018 A1
20180063308 Crystal et al. Mar 2018 A1
20180063324 Van Meter, II Mar 2018 A1
20180063624 Boesen Mar 2018 A1
20180067904 Li Mar 2018 A1
20180067914 Chen et al. Mar 2018 A1
20180067918 Bellegarda et al. Mar 2018 A1
20180069743 Bakken et al. Mar 2018 A1
20180075847 Lee et al. Mar 2018 A1
20180088969 Vanblon et al. Mar 2018 A1
20180089166 Meyer et al. Mar 2018 A1
20180089588 Ravi et al. Mar 2018 A1
20180090143 Saddler et al. Mar 2018 A1
20180091847 Wu et al. Mar 2018 A1
20180096683 James et al. Apr 2018 A1
20180096690 Mixter et al. Apr 2018 A1
20180102914 Kawachi et al. Apr 2018 A1
20180107917 Hewavitharana et al. Apr 2018 A1
20180107945 Gao et al. Apr 2018 A1
20180108346 Paulik et al. Apr 2018 A1
20180113673 Sheynblat Apr 2018 A1
20180121432 Parson et al. May 2018 A1
20180122376 Kojima May 2018 A1
20180122378 Mixter et al. May 2018 A1
20180129967 Herreshoff May 2018 A1
20180130470 Lemay et al. May 2018 A1
20180130471 Trufinescu et al. May 2018 A1
20180137856 Gilbert May 2018 A1
20180137857 Zhou et al. May 2018 A1
20180137865 Ling May 2018 A1
20180143967 Anbazhagan et al. May 2018 A1
20180144615 Kinney et al. May 2018 A1
20180144746 Mishra et al. May 2018 A1
20180144748 Leong May 2018 A1
20180146089 Rauenbuehler et al. May 2018 A1
20180150744 Orr et al. May 2018 A1
20180157372 Kurabayashi Jun 2018 A1
20180157992 Susskind et al. Jun 2018 A1
20180158548 Taheri et al. Jun 2018 A1
20180166076 Higuchi et al. Jun 2018 A1
20180167884 Dawid et al. Jun 2018 A1
20180173403 Carbune et al. Jun 2018 A1
20180173542 Chan et al. Jun 2018 A1
20180174406 Arashi et al. Jun 2018 A1
20180174576 Soltau et al. Jun 2018 A1
20180174597 Lee et al. Jun 2018 A1
20180182376 Gysel et al. Jun 2018 A1
20180188840 Tamura et al. Jul 2018 A1
20180190273 Karimli et al. Jul 2018 A1
20180190279 Anderson et al. Jul 2018 A1
20180191670 Suyama Jul 2018 A1
20180196683 Radebaugh et al. Jul 2018 A1
20180210874 Fuxman et al. Jul 2018 A1
20180213448 Segal et al. Jul 2018 A1
20180218735 Hunt et al. Aug 2018 A1
20180225274 Tommy et al. Aug 2018 A1
20180232203 Gelfenbeyn et al. Aug 2018 A1
20180233140 Koishida et al. Aug 2018 A1
20180247065 Rhee et al. Aug 2018 A1
20180253209 Jaygarl et al. Sep 2018 A1
20180253652 Palzer et al. Sep 2018 A1
20180260680 Finkelstein et al. Sep 2018 A1
20180268106 Velaga Sep 2018 A1
20180270343 Rout et al. Sep 2018 A1
20180275839 Kocienda et al. Sep 2018 A1
20180276197 Nell et al. Sep 2018 A1
20180277113 Hartung et al. Sep 2018 A1
20180278740 Choi et al. Sep 2018 A1
20180285056 Cutler et al. Oct 2018 A1
20180293984 Lindahl Oct 2018 A1
20180293988 Huang et al. Oct 2018 A1
20180308477 Nagasaka Oct 2018 A1
20180308480 Jang et al. Oct 2018 A1
20180308485 Kudurshian Oct 2018 A1
20180308486 Saddler et al. Oct 2018 A1
20180314552 Kim et al. Nov 2018 A1
20180315416 Berthelsen et al. Nov 2018 A1
20180322112 Bellegarda et al. Nov 2018 A1
20180322881 Min et al. Nov 2018 A1
20180329677 Gruber et al. Nov 2018 A1
20180329957 Frazzingaro et al. Nov 2018 A1
20180329982 Patel et al. Nov 2018 A1
20180329998 Thomson et al. Nov 2018 A1
20180330714 Paulik et al. Nov 2018 A1
20180330721 Thomson et al. Nov 2018 A1
20180330722 Newendorp et al. Nov 2018 A1
20180330723 Acero et al. Nov 2018 A1
20180330729 Golipour et al. Nov 2018 A1
20180330730 Garg et al. Nov 2018 A1
20180330731 Zeitlin et al. Nov 2018 A1
20180330733 Orr et al. Nov 2018 A1
20180330737 Paulik et al. Nov 2018 A1
20180332118 Phipps et al. Nov 2018 A1
20180336184 Bellegarda et al. Nov 2018 A1
20180336197 Skilling et al. Nov 2018 A1
20180336275 Graham et al. Nov 2018 A1
20180336439 Kliger et al. Nov 2018 A1
20180336449 Adan et al. Nov 2018 A1
20180336892 Kim et al. Nov 2018 A1
20180336894 Graham et al. Nov 2018 A1
20180336904 Piercy et al. Nov 2018 A1
20180336905 Kim et al. Nov 2018 A1
20180336920 Bastian et al. Nov 2018 A1
20180341643 Alders et al. Nov 2018 A1
20180343557 Naik et al. Nov 2018 A1
20180349084 Nagasaka et al. Dec 2018 A1
20180349346 Hatori et al. Dec 2018 A1
20180349349 Bellegarda et al. Dec 2018 A1
20180349447 Maccartney et al. Dec 2018 A1
20180349472 Kohlschuetter et al. Dec 2018 A1
20180350345 Naik Dec 2018 A1
20180350353 Gruber et al. Dec 2018 A1
20180357073 Johnson et al. Dec 2018 A1
20180357308 Cheyer Dec 2018 A1
20180358015 Cash et al. Dec 2018 A1
20180358019 Mont-Reynaud Dec 2018 A1
20180365653 Cleaver et al. Dec 2018 A1
20180366105 Kim Dec 2018 A1
20180373487 Gruber et al. Dec 2018 A1
20180374484 Huang et al. Dec 2018 A1
20190012141 Piersol et al. Jan 2019 A1
20190012449 Cheyer Jan 2019 A1
20190013018 Rekstad Jan 2019 A1
20190013025 Alcorn et al. Jan 2019 A1
20190014450 Gruber et al. Jan 2019 A1
20190019077 Griffin et al. Jan 2019 A1
20190027152 Huang et al. Jan 2019 A1
20190034040 Shah et al. Jan 2019 A1
20190034826 Ahmad et al. Jan 2019 A1
20190035405 Haughay Jan 2019 A1
20190042059 Baer Feb 2019 A1
20190042627 Osotio et al. Feb 2019 A1
20190043507 Huang et al. Feb 2019 A1
20190045040 Lee et al. Feb 2019 A1
20190051309 Kim et al. Feb 2019 A1
20190057697 Giuli et al. Feb 2019 A1
20190065144 Sumner et al. Feb 2019 A1
20190065993 Srinivasan et al. Feb 2019 A1
20190066674 Jaygarl et al. Feb 2019 A1
20190068810 Okamoto et al. Feb 2019 A1
20190073998 Leblang et al. Mar 2019 A1
20190074009 Kim et al. Mar 2019 A1
20190074015 Orr et al. Mar 2019 A1
20190074016 Orr et al. Mar 2019 A1
20190079476 Funes Mar 2019 A1
20190080685 Johnson, Jr. Mar 2019 A1
20190080698 Miller Mar 2019 A1
20190087412 Seyed Ibrahim et al. Mar 2019 A1
20190087455 He et al. Mar 2019 A1
20190095050 Gruber et al. Mar 2019 A1
20190095171 Carson et al. Mar 2019 A1
20190102378 Piernot et al. Apr 2019 A1
20190102381 Futrell et al. Apr 2019 A1
20190103103 Ni et al. Apr 2019 A1
20190103112 Walker et al. Apr 2019 A1
20190116264 Sanghavi et al. Apr 2019 A1
20190122666 Raitio et al. Apr 2019 A1
20190122692 Binder et al. Apr 2019 A1
20190124019 Leon et al. Apr 2019 A1
20190129615 Sundar et al. May 2019 A1
20190132694 Hanes et al. May 2019 A1
20190139541 Andersen et al. May 2019 A1
20190141494 Gross et al. May 2019 A1
20190147880 Booker et al. May 2019 A1
20190149972 Parks et al. May 2019 A1
20190156830 Devaraj et al. May 2019 A1
20190158994 Gross et al. May 2019 A1
20190164546 Piernot et al. May 2019 A1
20190172467 Kim et al. Jun 2019 A1
20190179607 Thangarathnam et al. Jun 2019 A1
20190179890 Evermann Jun 2019 A1
20190180770 Kothari et al. Jun 2019 A1
20190182176 Niewczas Jun 2019 A1
20190187787 White et al. Jun 2019 A1
20190188326 Daianu et al. Jun 2019 A1
20190188328 Oyenan et al. Jun 2019 A1
20190189118 Piernot et al. Jun 2019 A1
20190189125 Van Os et al. Jun 2019 A1
20190197053 Graham et al. Jun 2019 A1
20190213999 Grupen et al. Jul 2019 A1
20190214024 Gruber et al. Jul 2019 A1
20190220245 Martel et al. Jul 2019 A1
20190220246 Orr et al. Jul 2019 A1
20190220247 Lemay et al. Jul 2019 A1
20190236130 Li et al. Aug 2019 A1
20190236459 Cheyer et al. Aug 2019 A1
20190244618 Newendorp et al. Aug 2019 A1
20190251339 Hawker Aug 2019 A1
20190251960 Maker et al. Aug 2019 A1
20190259386 Kudurshian et al. Aug 2019 A1
20190272825 O'Malley et al. Sep 2019 A1
20190272831 Kajarekar Sep 2019 A1
20190273963 Jobanputra et al. Sep 2019 A1
20190278841 Pusateri et al. Sep 2019 A1
20190287522 Lambourne et al. Sep 2019 A1
20190295544 Garcia et al. Sep 2019 A1
20190303442 Peitz et al. Oct 2019 A1
20190310765 Napolitano et al. Oct 2019 A1
20190318739 Garg et al. Oct 2019 A1
20190339784 Lemay et al. Nov 2019 A1
20190341027 Vescovi et al. Nov 2019 A1
20190341056 Paulik et al. Nov 2019 A1
20190347063 Liu et al. Nov 2019 A1
20190348022 Park et al. Nov 2019 A1
20190354548 Orr et al. Nov 2019 A1
20190355346 Bellegarda Nov 2019 A1
20190361729 Gruber et al. Nov 2019 A1
20190369748 Hindi et al. Dec 2019 A1
20190369842 Dolbakian et al. Dec 2019 A1
20190370292 Irani et al. Dec 2019 A1
20190370323 Davidson et al. Dec 2019 A1
20190371315 Newendorp et al. Dec 2019 A1
20190371316 Weinstein et al. Dec 2019 A1
20190371317 Irani et al. Dec 2019 A1
20190371331 Schramm et al. Dec 2019 A1
20190372902 Piersol Dec 2019 A1
20190373102 Weinstein et al. Dec 2019 A1
20200019609 Yu et al. Jan 2020 A1
20200042334 Radebaugh et al. Feb 2020 A1
20200043482 Gruber et al. Feb 2020 A1
20200043489 Bradley et al. Feb 2020 A1
20200044485 Smith et al. Feb 2020 A1
20200053218 Gray Feb 2020 A1
20200058299 Lee et al. Feb 2020 A1
20200075018 Chen Mar 2020 A1
20200091958 Curtis et al. Mar 2020 A1
20200092625 Raffle Mar 2020 A1
20200098362 Piernot et al. Mar 2020 A1
20200098368 Lemay et al. Mar 2020 A1
20200104357 Bellegarda et al. Apr 2020 A1
20200104362 Yang et al. Apr 2020 A1
20200104369 Bellegarda Apr 2020 A1
20200104668 Sanghavi et al. Apr 2020 A1
20200105260 Piernot et al. Apr 2020 A1
20200125820 Kim et al. Apr 2020 A1
20200127988 Bradley et al. Apr 2020 A1
20200135209 Delfarah et al. Apr 2020 A1
20200137230 Spohrer Apr 2020 A1
20200143812 Walker, II et al. May 2020 A1
20200159579 Shear et al. May 2020 A1
20200160179 Chien et al. May 2020 A1
20200169637 Sanghavi et al. May 2020 A1
20200175566 Bender et al. Jun 2020 A1
20200184964 Myers et al. Jun 2020 A1
20200193997 Piernot et al. Jun 2020 A1
20200221155 Hansen et al. Jul 2020 A1
20200227034 Summa et al. Jul 2020 A1
20200227044 Lindahl Jul 2020 A1
20200249985 Zeitlin Aug 2020 A1
20200252508 Gray Aug 2020 A1
20200267222 Phipps et al. Aug 2020 A1
20200272485 Karashchuk et al. Aug 2020 A1
20200279556 Gruber et al. Sep 2020 A1
20200279576 Binder et al. Sep 2020 A1
20200279627 Nida et al. Sep 2020 A1
20200285327 Hindi et al. Sep 2020 A1
20200286472 Newendorp et al. Sep 2020 A1
20200286493 Orr et al. Sep 2020 A1
20200302356 Gruber et al. Sep 2020 A1
20200302919 Greborio et al. Sep 2020 A1
20200302925 Shah et al. Sep 2020 A1
20200302932 Schramm et al. Sep 2020 A1
20200304955 Gross et al. Sep 2020 A1
20200304972 Gross et al. Sep 2020 A1
20200305084 Freeman et al. Sep 2020 A1
20200312317 Kothari et al. Oct 2020 A1
20200314191 Madhavan et al. Oct 2020 A1
20200319850 Stasior et al. Oct 2020 A1
20200327895 Gruber et al. Oct 2020 A1
20200356243 Meyer et al. Nov 2020 A1
20200357391 Ghoshal et al. Nov 2020 A1
20200357406 York et al. Nov 2020 A1
20200357409 Sun et al. Nov 2020 A1
20200364411 Evermann Nov 2020 A1
20200365155 Milden Nov 2020 A1
20200372904 Vescovi et al. Nov 2020 A1
20200374243 Jina et al. Nov 2020 A1
20200379610 Ford et al. Dec 2020 A1
20200379640 Bellegarda et al. Dec 2020 A1
20200379726 Blatz et al. Dec 2020 A1
20200379727 Blatz et al. Dec 2020 A1
20200379728 Gada et al. Dec 2020 A1
20200380389 Eldeeb et al. Dec 2020 A1
20200380956 Rossi et al. Dec 2020 A1
20200380963 Chappidi et al. Dec 2020 A1
20200380966 Acero et al. Dec 2020 A1
20200380973 Novitchenko et al. Dec 2020 A1
20200380980 Shum et al. Dec 2020 A1
20200380985 Gada et al. Dec 2020 A1
20200382616 Vaishampayan et al. Dec 2020 A1
20200382635 Vora et al. Dec 2020 A1
Foreign Referenced Citations (1473)
Number Date Country
2014100581 Sep 2014 AU
2015203483 Jul 2015 AU
2015101171 Oct 2015 AU
2018100187 Mar 2018 AU
2017222436 Oct 2018 AU
2670562 Jan 2010 CA
2694314 Aug 2010 CA
2792412 Jul 2011 CA
2666438 Jun 2013 CA
2666438 Jun 2013 CA
681573 Apr 1993 CH
681573 Apr 1993 CH
1263385 Aug 2000 CN
1263385 Aug 2000 CN
1274440 Nov 2000 CN
1274440 Nov 2000 CN
1369858 Sep 2002 CN
1369858 Sep 2002 CN
1378156 Nov 2002 CN
1378156 Nov 2002 CN
1383109 Dec 2002 CN
1383109 Dec 2002 CN
1407795 Apr 2003 CN
1407795 Apr 2003 CN
1125436 Oct 2003 CN
1125436 Oct 2003 CN
1471098 Jan 2004 CN
1471098 Jan 2004 CN
1494695 May 2004 CN
1494695 May 2004 CN
1535519 Oct 2004 CN
1535519 Oct 2004 CN
1640191 Jul 2005 CN
1640191 Jul 2005 CN
1641563 Jul 2005 CN
1673939 Sep 2005 CN
1673939 Sep 2005 CN
1864204 Nov 2006 CN
1864204 Nov 2006 CN
1898721 Jan 2007 CN
1898721 Jan 2007 CN
2865153 Jan 2007 CN
2865153 Jan 2007 CN
1959628 May 2007 CN
1959628 May 2007 CN
1975715 Jun 2007 CN
1975715 Jun 2007 CN
1995917 Jul 2007 CN
1995917 Jul 2007 CN
101008942 Aug 2007 CN
101008942 Aug 2007 CN
101162153 Apr 2008 CN
101162153 Apr 2008 CN
101179754 May 2008 CN
101179754 May 2008 CN
101183525 May 2008 CN
101183525 May 2008 CN
101188644 May 2008 CN
101188644 May 2008 CN
101228503 Jul 2008 CN
101228503 Jul 2008 CN
101233741 Jul 2008 CN
101233741 Jul 2008 CN
101246020 Aug 2008 CN
101246020 Aug 2008 CN
101297541 Oct 2008 CN
101297541 Oct 2008 CN
101427244 May 2009 CN
101427244 May 2009 CN
101535983 Sep 2009 CN
101535983 Sep 2009 CN
101632316 Jan 2010 CN
101632316 Jan 2010 CN
101636736 Jan 2010 CN
101636736 Jan 2010 CN
101667424 Mar 2010 CN
101673544 Mar 2010 CN
101673544 Mar 2010 CN
101751387 Jun 2010 CN
101833286 Sep 2010 CN
101847405 Sep 2010 CN
101847405 Sep 2010 CN
101855521 Oct 2010 CN
101894547 Nov 2010 CN
101894547 Nov 2010 CN
101910960 Dec 2010 CN
101923853 Dec 2010 CN
101930789 Dec 2010 CN
101939740 Jan 2011 CN
101939740 Jan 2011 CN
101951553 Jan 2011 CN
101951553 Jan 2011 CN
101958958 Jan 2011 CN
101971250 Feb 2011 CN
101992779 Mar 2011 CN
102056026 May 2011 CN
102122506 Jul 2011 CN
102124515 Jul 2011 CN
102137085 Jul 2011 CN
102137193 Jul 2011 CN
102160043 Aug 2011 CN
102160043 Aug 2011 CN
102201235 Sep 2011 CN
102214187 Oct 2011 CN
102237088 Nov 2011 CN
102246136 Nov 2011 CN
102246136 Nov 2011 CN
202035047 Nov 2011 CN
202035047 Nov 2011 CN
102282609 Dec 2011 CN
202092650 Dec 2011 CN
202092650 Dec 2011 CN
102340590 Feb 2012 CN
102346557 Feb 2012 CN
102368256 Mar 2012 CN
102402985 Apr 2012 CN
102405463 Apr 2012 CN
102498457 Jun 2012 CN
102510426 Jun 2012 CN
102629246 Aug 2012 CN
102651217 Aug 2012 CN
102681896 Sep 2012 CN
102682769 Sep 2012 CN
102682771 Sep 2012 CN
102685295 Sep 2012 CN
102693725 Sep 2012 CN
102694909 Sep 2012 CN
202453859 Sep 2012 CN
102722478 Oct 2012 CN
102737104 Oct 2012 CN
102750087 Oct 2012 CN
102792320 Nov 2012 CN
102801853 Nov 2012 CN
102820033 Dec 2012 CN
102844738 Dec 2012 CN
102866828 Jan 2013 CN
102870065 Jan 2013 CN
102882752 Jan 2013 CN
102917004 Feb 2013 CN
102917271 Feb 2013 CN
102918493 Feb 2013 CN
102955652 Mar 2013 CN
103035240 Apr 2013 CN
103035251 Apr 2013 CN
103038728 Apr 2013 CN
103093334 May 2013 CN
103135916 Jun 2013 CN
103198831 Jul 2013 CN
103209369 Jul 2013 CN
103226949 Jul 2013 CN
103236260 Aug 2013 CN
103246638 Aug 2013 CN
103268315 Aug 2013 CN
103280218 Sep 2013 CN
103292437 Sep 2013 CN
103327063 Sep 2013 CN
103365279 Oct 2013 CN
103366741 Oct 2013 CN
103390016 Nov 2013 CN
103412789 Nov 2013 CN
103426428 Dec 2013 CN
103455234 Dec 2013 CN
103456306 Dec 2013 CN
103533143 Jan 2014 CN
103533154 Jan 2014 CN
103543902 Jan 2014 CN
103562863 Feb 2014 CN
103608859 Feb 2014 CN
103645876 Mar 2014 CN
103716454 Apr 2014 CN
103727948 Apr 2014 CN
103744761 Apr 2014 CN
103760984 Apr 2014 CN
103765385 Apr 2014 CN
103792985 May 2014 CN
103794212 May 2014 CN
103795850 May 2014 CN
103841268 Jun 2014 CN
103902373 Jul 2014 CN
103930945 Jul 2014 CN
103959751 Jul 2014 CN
203721183 Jul 2014 CN
103971680 Aug 2014 CN
104007832 Aug 2014 CN
104038621 Sep 2014 CN
104090652 Oct 2014 CN
104113471 Oct 2014 CN
104125322 Oct 2014 CN
104144377 Nov 2014 CN
104169837 Nov 2014 CN
104180815 Dec 2014 CN
104243699 Dec 2014 CN
104281259 Jan 2015 CN
104284257 Jan 2015 CN
104335207 Feb 2015 CN
104335234 Feb 2015 CN
104374399 Feb 2015 CN
104423625 Mar 2015 CN
104427104 Mar 2015 CN
104463552 Mar 2015 CN
104487929 Apr 2015 CN
104516522 Apr 2015 CN
104573472 Apr 2015 CN
104575501 Apr 2015 CN
104584010 Apr 2015 CN
104604274 May 2015 CN
104679472 Jun 2015 CN
104769584 Jul 2015 CN
104854583 Aug 2015 CN
104869342 Aug 2015 CN
104951077 Sep 2015 CN
104967748 Oct 2015 CN
104969289 Oct 2015 CN
104978963 Oct 2015 CN
105025051 Nov 2015 CN
105027197 Nov 2015 CN
105093526 Nov 2015 CN
105100356 Nov 2015 CN
105190607 Dec 2015 CN
105247511 Jan 2016 CN
105264524 Jan 2016 CN
105278681 Jan 2016 CN
105320251 Feb 2016 CN
105320726 Feb 2016 CN
105379234 Mar 2016 CN
105430186 Mar 2016 CN
105471705 Apr 2016 CN
105472587 Apr 2016 CN
105556592 May 2016 CN
105808200 Jul 2016 CN
105830048 Aug 2016 CN
105869641 Aug 2016 CN
106030699 Oct 2016 CN
106062734 Oct 2016 CN
106415412 Feb 2017 CN
106462383 Feb 2017 CN
106463114 Feb 2017 CN
106465074 Feb 2017 CN
106534469 Mar 2017 CN
106776581 May 2017 CN
107450800 Dec 2017 CN
107480161 Dec 2017 CN
107491468 Dec 2017 CN
107545262 Jan 2018 CN
107608998 Jan 2018 CN
107615378 Jan 2018 CN
107919123 Apr 2018 CN
107924313 Apr 2018 CN
107978313 May 2018 CN
108647681 Oct 2018 CN
109447234 Mar 2019 CN
109657629 Apr 2019 CN
110135411 Aug 2019 CN
110531860 Dec 2019 CN
110598671 Dec 2019 CN
110647274 Jan 2020 CN
110825469 Feb 2020 CN
3837590 May 1990 DE
3837590 May 1990 DE
4126902 Feb 1992 DE
4126902 Feb 1992 DE
4334773 Apr 1994 DE
4334773 Apr 1994 DE
4445023 Jun 1996 DE
4445023 Jun 1996 DE
002004029203 Dec 2005 DE
10200402920 3 Dec 2005 DE
19841541 Dec 2007 DE
19841541 Dec 2007 DE
10200802425 8 Nov 2009 DE
102008024258 Nov 2009 DE
202016008226 May 2017 DE
30390 Jun 1981 EP
30390 Jun 1981 EP
57514 Aug 1982 EP
57514 Aug 1982 EP
59880 Sep 1982 EP
59880 Sep 1982 EP
138061 Apr 1985 EP
138061 Apr 1985 EP
140777 May 1985 EP
140777 May 1985 EP
218859 Apr 1987 EP
218859 Apr 1987 EP
262938 Apr 1988 EP
262938 Apr 1988 EP
138061 Jun 1988 EP
138061 Jun 1988 EP
283995 Sep 1988 EP
283995 Sep 1988 EP
293259 Nov 1988 EP
293259 Nov 1988 EP
299572 Jan 1989 EP
299572 Jan 1989 EP
313975 May 1989 EP
313975 May 1989 EP
314908 May 1989 EP
314908 May 1989 EP
327408 Aug 1989 EP
327408 Aug 1989 EP
389271 Sep 1990 EP
389271 Sep 1990 EP
411675 Feb 1991 EP
411675 Feb 1991 EP
441089 Aug 1991 EP
441089 Aug 1991 EP
464712 Jan 1992 EP
464712 Jan 1992 EP
476972 Mar 1992 EP
476972 Mar 1992 EP
534410 Mar 1993 EP
534410 Mar 1993 EP
558312 Sep 1993 EP
558312 Sep 1993 EP
559349 Sep 1993 EP
559349 Sep 1993 EP
570660 Nov 1993 EP
570660 Nov 1993 EP
575146 Dec 1993 EP
575146 Dec 1993 EP
578604 Jan 1994 EP
578604 Jan 1994 EP
586996 Mar 1994 EP
586996 Mar 1994 EP
609030 Aug 1994 EP
609030 Aug 1994 EP
651543 May 1995 EP
651543 May 1995 EP
679005 Oct 1995 EP
679005 Oct 1995 EP
795811 Sep 1997 EP
795811 Sep 1997 EP
476972 May 1998 EP
476972 May 1998 EP
845894 Jun 1998 EP
845894 Jun 1998 EP
852052 Jul 1998 EP
852052 Jul 1998 EP
863453 Sep 1998 EP
863453 Sep 1998 EP
863469 Sep 1998 EP
863469 Sep 1998 EP
867860 Sep 1998 EP
867860 Sep 1998 EP
869697 Oct 1998 EP
869697 Oct 1998 EP
559349 Jan 1999 EP
559349 Jan 1999 EP
889626 Jan 1999 EP
889626 Jan 1999 EP
917077 May 1999 EP
917077 May 1999 EP
691023 Sep 1999 EP
691023 Sep 1999 EP
946032 Sep 1999 EP
946032 Sep 1999 EP
981236 Feb 2000 EP
981236 Feb 2000 EP
982732 Mar 2000 EP
982732 Mar 2000 EP
984430 Mar 2000 EP
984430 Mar 2000 EP
1001588 May 2000 EP
1001588 May 2000 EP
1014277 Jun 2000 EP
1014277 Jun 2000 EP
1028425 Aug 2000 EP
1028425 Aug 2000 EP
1028426 Aug 2000 EP
1028426 Aug 2000 EP
1047251 Oct 2000 EP
1047251 Oct 2000 EP
1052566 Nov 2000 EP
1052566 Nov 2000 EP
1076302 Feb 2001 EP
1076302 Feb 2001 EP
1091615 Apr 2001 EP
1091615 Apr 2001 EP
1094406 Apr 2001 EP
1094406 Apr 2001 EP
1107229 Jun 2001 EP
1107229 Jun 2001 EP
1229496 Aug 2002 EP
1229496 Aug 2002 EP
1233600 Aug 2002 EP
1233600 Aug 2002 EP
1245023 Oct 2002 EP
1245023 Oct 2002 EP
1246075 Oct 2002 EP
1246075 Oct 2002 EP
1280326 Jan 2003 EP
1280326 Jan 2003 EP
1291848 Mar 2003 EP
1291848 Mar 2003 EP
1311102 May 2003 EP
1311102 May 2003 EP
1315084 May 2003 EP
1315084 May 2003 EP
1315086 May 2003 EP
1315086 May 2003 EP
1347361 Sep 2003 EP
1347361 Sep 2003 EP
1368961 Dec 2003 EP
1368961 Dec 2003 EP
1379061 Jan 2004 EP
1379061 Jan 2004 EP
1432219 Jun 2004 EP
1432219 Jun 2004 EP
1435620 Jul 2004 EP
1435620 Jul 2004 EP
1480421 Nov 2004 EP
1480421 Nov 2004 EP
1517228 Mar 2005 EP
1517228 Mar 2005 EP
1536612 Jun 2005 EP
1536612 Jun 2005 EP
1566948 Aug 2005 EP
1566948 Aug 2005 EP
1650938 Apr 2006 EP
1650938 Apr 2006 EP
1675025 Jun 2006 EP
1675025 Jun 2006 EP
1693829 Aug 2006 EP
1693829 Aug 2006 EP
1699042 Sep 2006 EP
1699042 Sep 2006 EP
1739546 Jan 2007 EP
1739546 Jan 2007 EP
1181802 Feb 2007 EP
1181802 Feb 2007 EP
1818786 Aug 2007 EP
1818786 Aug 2007 EP
1892700 Feb 2008 EP
1892700 Feb 2008 EP
1912205 Apr 2008 EP
1912205 Apr 2008 EP
1939860 Jul 2008 EP
1939860 Jul 2008 EP
651543 Sep 2008 EP
651543 Sep 2008 EP
1909263 Jan 2009 EP
1909263 Jan 2009 EP
1335620 Mar 2009 EP
1335620 Mar 2009 EP
2069895 Jun 2009 EP
2069895 Jun 2009 EP
2094032 Aug 2009 EP
2094032 Aug 2009 EP
2107553 Oct 2009 EP
2107553 Oct 2009 EP
2109295 Oct 2009 EP
2109295 Oct 2009 EP
2144226 Jan 2010 EP
2168399 Mar 2010 EP
1720375 Jul 2010 EP
1720375 Jul 2010 EP
2205010 Jul 2010 EP
2205010 Jul 2010 EP
2250640 Nov 2010 EP
2309491 Apr 2011 EP
2309491 Apr 2011 EP
2329348 Jun 2011 EP
2339576 Jun 2011 EP
2355093 Aug 2011 EP
2393056 Dec 2011 EP
2400373 Dec 2011 EP
2400373 Dec 2011 EP
2431842 Mar 2012 EP
2431842 Mar 2012 EP
2523109 Nov 2012 EP
2523188 Nov 2012 EP
2551784 Jan 2013 EP
2551784 Jan 2013 EP
2555536 Feb 2013 EP
2555536 Feb 2013 EP
2575128 Apr 2013 EP
2575128 Apr 2013 EP
2632129 Aug 2013 EP
2639792 Sep 2013 EP
2669889 Dec 2013 EP
2672229 Dec 2013 EP
2672231 Dec 2013 EP
2675147 Dec 2013 EP
2680257 Jan 2014 EP
2683147 Jan 2014 EP
2683175 Jan 2014 EP
2717259 Apr 2014 EP
2725577 Apr 2014 EP
2733598 May 2014 EP
2733598 May 2014 EP
2733896 May 2014 EP
2743846 Jun 2014 EP
2760015 Jul 2014 EP
2781883 Sep 2014 EP
2801890 Nov 2014 EP
2801890 Nov 2014 EP
2801972 Nov 2014 EP
2801972 Nov 2014 EP
2801974 Nov 2014 EP
2824564 Jan 2015 EP
2849177 Mar 2015 EP
2879402 Jun 2015 EP
2881939 Jun 2015 EP
2891049 Jul 2015 EP
2930715 Oct 2015 EP
2938022 Oct 2015 EP
2940556 Nov 2015 EP
2940556 Nov 2015 EP
2947859 Nov 2015 EP
2950307 Dec 2015 EP
2957986 Dec 2015 EP
2985984 Feb 2016 EP
2891049 Mar 2016 EP
3032532 Jun 2016 EP
3035329 Jun 2016 EP
3038333 Jun 2016 EP
3115905 Jan 2017 EP
3125097 Feb 2017 EP
3224708 Oct 2017 EP
3246916 Nov 2017 EP
3300074 Mar 2018 EP
2983065 Aug 2018 EP
3392876 Oct 2018 EP
3401773 Nov 2018 EP
3506151 Jul 2019 EP
2911201 Jul 2008 FR
2911201 Jul 2008 FR
2293667 Apr 1996 GB
2293667 Apr 1996 GB
2310559 Aug 1997 GB
2310559 Aug 1997 GB
2323694 Sep 1998 GB
2323694 Sep 1998 GB
2342802 Apr 2000 GB
2342802 Apr 2000 GB
2343285 May 2000 GB
2343285 May 2000 GB
-2343285 May 2000 GB
2346500 Aug 2000 GB
2346500 Aug 2000 GB
2352377 Jan 2001 GB
2352377 Jan 2001 GB
2384399 Jul 2003 GB
2384399 Jul 2003 GB
2402855 Dec 2004 GB
2402855 Dec 2004 GB
2445436 Jul 2008 GB
2445436 Jul 2008 GB
2470585 Dec 2010 GB
FI20010199 Apr 2003 IT
FI20010199 Apr 2003 IT
55-80084 Jun 1980 JP
55-80084 Jun 1980 JP
57-41731 Mar 1982 JP
57-41731 Mar 1982 JP
59-57336 Apr 1984 JP
59-57336 Apr 1984 JP
62-153326 Jul 1987 JP
62-153326 Jul 1987 JP
1-500631 Mar 1989 JP
1-500631 Mar 1989 JP
1-254742 Oct 1989 JP
1-254742 Oct 1989 JP
2-86397 Mar 1990 JP
2-86397 Mar 1990 JP
2-153415 Jun 1990 JP
2-153415 Jun 1990 JP
3-113578 May 1991 JP
3-113578 May 1991 JP
4-236624 Aug 1992 JP
4-236624 Aug 1992 JP
5-79951 Mar 1993 JP
5-79951 Mar 1993 JP
5-165459 Jul 1993 JP
5-165459 Jul 1993 JP
5-293126 Nov 1993 JP
5-293126 Nov 1993 JP
6-19965 Jan 1994 JP
6-19965 Jan 1994 JP
6-69954 Mar 1994 JP
6-69954 Mar 1994 JP
6-274586 Sep 1994 JP
6-274586 Sep 1994 JP
6-332617 Dec 1994 JP
6-332617 Dec 1994 JP
7-199379 Aug 1995 JP
7-199379 Aug 1995 JP
7-219961 Aug 1995 JP
7-219961 Aug 1995 JP
7-320051 Dec 1995 JP
7-320051 Dec 1995 JP
7-320079 Dec 1995 JP
7-320079 Dec 1995 JP
8-63330 Mar 1996 JP
8-63330 Mar 1996 JP
8-185265 Jul 1996 JP
8-185265 Jul 1996 JP
8-223281 Aug 1996 JP
8-223281 Aug 1996 JP
8-227341 Sep 1996 JP
8-227341 Sep 1996 JP
9-18585 Jan 1997 JP
9-18585 Jan 1997 JP
9-27000 Jan 1997 JP
9-27000 Jan 1997 JP
9-55792 Feb 1997 JP
9-55792 Feb 1997 JP
9-259063 Oct 1997 JP
9-259063 Oct 1997 JP
9-265457 Oct 1997 JP
9-265457 Oct 1997 JP
10-31497 Feb 1998 JP
10-31497 Feb 1998 JP
10-78952 Mar 1998 JP
10-78952 Mar 1998 JP
10-105324 Apr 1998 JP
10-105324 Apr 1998 JP
10-274997 Oct 1998 JP
10-274997 Oct 1998 JP
10-320169 Dec 1998 JP
10-320169 Dec 1998 JP
11-06743 Jan 1999 JP
11-06743 Jan 1999 JP
11-45241 Feb 1999 JP
11-45241 Feb 1999 JP
11-136278 May 1999 JP
11-136278 May 1999 JP
11-231886 Aug 1999 JP
11-231886 Aug 1999 JP
11-265400 Sep 1999 JP
11-265400 Sep 1999 JP
2000-32140 Jan 2000 JP
2000-32140 Jan 2000 JP
2000-90119 Mar 2000 JP
2000-90119 Mar 2000 JP
2000-99225 Apr 2000 JP
2000-99225 Apr 2000 JP
2000-134407 May 2000 JP
2000-134407 May 2000 JP
2000-163031 Jun 2000 JP
2000-163031 Jun 2000 JP
2000-207167 Jul 2000 JP
2000-207167 Jul 2000 JP
2000-216910 Aug 2000 JP
2000-216910 Aug 2000 JP
2000-224663 Aug 2000 JP
2000-224663 Aug 2000 JP
2000-272349 Oct 2000 JP
2000-272349 Oct 2000 JP
2000-331004 Nov 2000 JP
2000-331004 Nov 2000 JP
2000-339137 Dec 2000 JP
2000-339137 Dec 2000 JP
2000-352988 Dec 2000 JP
2000-352988 Dec 2000 JP
2000-352989 Dec 2000 JP
2000-352989 Dec 2000 JP
2001-13978 Jan 2001 JP
2001-13978 Jan 2001 JP
2001-14319 Jan 2001 JP
2001-14319 Jan 2001 JP
2001-22498 Jan 2001 JP
2001-22498 Jan 2001 JP
2001-34289 Feb 2001 JP
2001-34289 Feb 2001 JP
2001-34290 Feb 2001 JP
2001-34290 Feb 2001 JP
2001-56233 Feb 2001 JP
2001-56233 Feb 2001 JP
2001-109493 Apr 2001 JP
2001-109493 Apr 2001 JP
2001-125896 May 2001 JP
2001-125896 May 2001 JP
2001-148899 May 2001 JP
2001-148899 May 2001 JP
2001-273283 Oct 2001 JP
2001-273283 Oct 2001 JP
2001-282813 Oct 2001 JP
2001-282813 Oct 2001 JP
2001-296880 Oct 2001 JP
2001-296880 Oct 2001 JP
2002-14954 Jan 2002 JP
2002-14954 Jan 2002 JP
2002-24212 Jan 2002 JP
2002-24212 Jan 2002 JP
2002-30676 Jan 2002 JP
2002-30676 Jan 2002 JP
2002-41276 Feb 2002 JP
2002-41276 Feb 2002 JP
2002-41624 Feb 2002 JP
2002-41624 Feb 2002 JP
2002-82748 Mar 2002 JP
2002-82748 Mar 2002 JP
2002-82893 Mar 2002 JP
2002-82893 Mar 2002 JP
2002-132804 May 2002 JP
2002-132804 May 2002 JP
2002-169588 Jun 2002 JP
2002-169588 Jun 2002 JP
2002-230021 Aug 2002 JP
2002-230021 Aug 2002 JP
2002-524806 Aug 2002 JP
2002-524806 Aug 2002 JP
2002-281562 Sep 2002 JP
2002-281562 Sep 2002 JP
2002-342033 Nov 2002 JP
2002-342033 Nov 2002 JP
2002-342212 Nov 2002 JP
2002-342212 Nov 2002 JP
2002-344880 Nov 2002 JP
2002-344880 Nov 2002 JP
2002-542501 Dec 2002 JP
2002-542501 Dec 2002 JP
2003-15682 Jan 2003 JP
2003-15682 Jan 2003 JP
2003-44091 Feb 2003 JP
2003-44091 Feb 2003 JP
2003-84877 Mar 2003 JP
2003-84877 Mar 2003 JP
2003-517158 May 2003 JP
2003-517158 May 2003 JP
2003-233568 Aug 2003 JP
2003-233568 Aug 2003 JP
2003-244317 Aug 2003 JP
2003-244317 Aug 2003 JP
2003-527656 Sep 2003 JP
2003-527656 Sep 2003 JP
2003-288356 Oct 2003 JP
2003-288356 Oct 2003 JP
2003-533909 Nov 2003 JP
2003-533909 Nov 2003 JP
2004-48804 Feb 2004 JP
2004-48804 Feb 2004 JP
2004-54080 Feb 2004 JP
2004-54080 Feb 2004 JP
2004-505322 Feb 2004 JP
2004-505322 Feb 2004 JP
2004-505525 Feb 2004 JP
2004-505525 Feb 2004 JP
2004-86356 Mar 2004 JP
2004-86356 Mar 2004 JP
2004-94936 Mar 2004 JP
2004-94936 Mar 2004 JP
2004-117905 Apr 2004 JP
2004-117905 Apr 2004 JP
2004-152063 May 2004 JP
2004-152063 May 2004 JP
2004-523004 Jul 2004 JP
2004-523004 Jul 2004 JP
2004-295837 Oct 2004 JP
2004-295837 Oct 2004 JP
2004-534268 Nov 2004 JP
2004-534268 Nov 2004 JP
2004-347786 Dec 2004 JP
2004-347786 Dec 2004 JP
2005-55782 Mar 2005 JP
2005-55782 Mar 2005 JP
2005-63257 Mar 2005 JP
2005-63257 Mar 2005 JP
2005-70645 Mar 2005 JP
2005-70645 Mar 2005 JP
2005-80094 Mar 2005 JP
2005-80094 Mar 2005 JP
2005-86624 Mar 2005 JP
2005-86624 Mar 2005 JP
2005-506602 Mar 2005 JP
2005-506602 Mar 2005 JP
2005-92441 Apr 2005 JP
2005-92441 Apr 2005 JP
2005-149481 Jun 2005 JP
2005-149481 Jun 2005 JP
2005-181386 Jul 2005 JP
2005-181386 Jul 2005 JP
2005-189454 Jul 2005 JP
2005-189454 Jul 2005 JP
2005-221678 Aug 2005 JP
2005-221678 Aug 2005 JP
2005-283843 Oct 2005 JP
2005-283843 Oct 2005 JP
2005-311864 Nov 2005 JP
2005-311864 Nov 2005 JP
2005-332212 Dec 2005 JP
2005-332212 Dec 2005 JP
2006-4274 Jan 2006 JP
2006-4274 Jan 2006 JP
2006-23860 Jan 2006 JP
2006-23860 Jan 2006 JP
2006-30447 Feb 2006 JP
2006-30447 Feb 2006 JP
2006-31092 Feb 2006 JP
2006-31092 Feb 2006 JP
2006-59094 Mar 2006 JP
2006-59094 Mar 2006 JP
2006-80617 Mar 2006 JP
2006-80617 Mar 2006 JP
2006-107438 Apr 2006 JP
2006-107438 Apr 2006 JP
2006-146008 Jun 2006 JP
2006-146008 Jun 2006 JP
2006-146182 Jun 2006 JP
2006-146182 Jun 2006 JP
2006-155368 Jun 2006 JP
2006-155368 Jun 2006 JP
2006-189394 Jul 2006 JP
2006-189394 Jul 2006 JP
2006-195637 Jul 2006 JP
2006-195637 Jul 2006 JP
2006-201870 Aug 2006 JP
2006-201870 Aug 2006 JP
2006-208696 Aug 2006 JP
2006-208696 Aug 2006 JP
2006-244296 Sep 2006 JP
2006-244296 Sep 2006 JP
2006-267328 Oct 2006 JP
2006-267328 Oct 2006 JP
2006-302091 Nov 2006 JP
2006-302091 Nov 2006 JP
2006-526185 Nov 2006 JP
2006-526185 Nov 2006 JP
2007-4633 Jan 2007 JP
2007-4633 Jan 2007 JP
2007-17990 Jan 2007 JP
2007-17990 Jan 2007 JP
2007-500903 Jan 2007 JP
2007-500903 Jan 2007 JP
2007-53796 Mar 2007 JP
2007-53796 Mar 2007 JP
2007-79690 Mar 2007 JP
2007-79690 Mar 2007 JP
2007-171534 Jul 2007 JP
2007-171534 Jul 2007 JP
007-193794 Aug 2007 JP
2007-193794 Aug 2007 JP
2007-193794 Aug 2007 JP
2007-206317 Aug 2007 JP
2007-206317 Aug 2007 JP
2007-264471 Oct 2007 JP
2007-264471 Oct 2007 JP
2007-264792 Oct 2007 JP
2007-264792 Oct 2007 JP
2007-264892 Oct 2007 JP
2007-264892 Oct 2007 JP
2007-299352 Nov 2007 JP
2007-299352 Nov 2007 JP
2007-325089 Dec 2007 JP
2007-325089 Dec 2007 JP
2008-21002 Jan 2008 JP
2008-21002 Jan 2008 JP
2008-26381 Feb 2008 JP
2008-26381 Feb 2008 JP
2008-39928 Feb 2008 JP
2008-39928 Feb 2008 JP
2008-58813 Mar 2008 JP
2008-58813 Mar 2008 JP
2008-90545 Apr 2008 JP
2008-90545 Apr 2008 JP
2008-97003 Apr 2008 JP
2008-97003 Apr 2008 JP
2008-134949 Jun 2008 JP
2008-134949 Jun 2008 JP
2008-526101 Jul 2008 JP
2008-526101 Jul 2008 JP
2008-185693 Aug 2008 JP
2008-185693 Aug 2008 JP
2008-198022 Aug 2008 JP
2008-198022 Aug 2008 JP
2008-217468 Sep 2008 JP
2008-217468 Sep 2008 JP
2008-228129 Sep 2008 JP
2008-228129 Sep 2008 JP
2008-233678 Oct 2008 JP
2008-233678 Oct 2008 JP
2008-236448 Oct 2008 JP
2008-236448 Oct 2008 JP
2008-252161 Oct 2008 JP
2008-252161 Oct 2008 JP
2008-268684 Nov 2008 JP
2008-268684 Nov 2008 JP
2008-271481 Nov 2008 JP
2008-271481 Nov 2008 JP
2009-503623 Jan 2009 JP
2009-503623 Jan 2009 JP
2009-36999 Feb 2009 JP
2009-36999 Feb 2009 JP
2009-47920 Mar 2009 JP
2009-47920 Mar 2009 JP
2009-98490 May 2009 JP
2009-98490 May 2009 JP
2009-140444 Jun 2009 JP
2009-140444 Jun 2009 JP
2009-186989 Aug 2009 JP
2009-186989 Aug 2009 JP
2009-193448 Aug 2009 JP
2009-193448 Aug 2009 JP
2009-193457 Aug 2009 JP
2009-193457 Aug 2009 JP
2009-193532 Aug 2009 JP
2009-193532 Aug 2009 JP
2009-205367 Sep 2009 JP
2009-205367 Sep 2009 JP
2009-294913 Dec 2009 JP
2009-294913 Dec 2009 JP
2009-294946 Dec 2009 JP
2009-294946 Dec 2009 JP
2010-66519 Mar 2010 JP
2010-66519 Mar 2010 JP
2010-78602 Apr 2010 JP
2010-78979 Apr 2010 JP
2010-78979 Apr 2010 JP
2010-108378 May 2010 JP
2010-108378 May 2010 JP
2010-109789 May 2010 JP
2010-518475 May 2010 JP
2010-518526 May 2010 JP
2010-518526 May 2010 JP
2010-122928 Jun 2010 JP
2010-135976 Jun 2010 JP
2010-146347 Jul 2010 JP
2010-157207 Jul 2010 JP
2010-157207 Jul 2010 JP
2010-166478 Jul 2010 JP
2010-205111 Sep 2010 JP
2010-224236 Oct 2010 JP
2010-224236 Oct 2010 JP
2010-236858 Oct 2010 JP
4563106 Oct 2010 JP
4563106 Oct 2010 JP
2010-256392 Nov 2010 JP
2010-535377 Nov 2010 JP
2010-535377 Nov 2010 JP
2010-287063 Dec 2010 JP
2010-287063 Dec 2010 JP
2011-33874 Feb 2011 JP
2011-41026 Feb 2011 JP
2011-41026 Feb 2011 JP
2011-45005 Mar 2011 JP
2011-45005 Mar 2011 JP
2011-59659 Mar 2011 JP
2011-59659 Mar 2011 JP
2011-81541 Apr 2011 JP
2011-81541 Apr 2011 JP
2011-525045 Sep 2011 JP
2011-525045 Sep 2011 JP
2011-237621 Nov 2011 JP
2011-238022 Nov 2011 JP
2011-250027 Dec 2011 JP
2012-014394 Jan 2012 JP
2012-502377 Jan 2012 JP
2012-22478 Feb 2012 JP
2012-33997 Feb 2012 JP
2012-37619 Feb 2012 JP
2012-63536 Mar 2012 JP
2012-508530 Apr 2012 JP
2012-89020 May 2012 JP
2012-116442 Jun 2012 JP
2012-142744 Jul 2012 JP
2012-147063 Aug 2012 JP
2012-150804 Aug 2012 JP
2012-518847 Aug 2012 JP
2012-211932 Nov 2012 JP
2013-37688 Feb 2013 JP
2013-46171 Mar 2013 JP
2013-511214 Mar 2013 JP
2013-511214 Mar 2013 JP
2013-65284 Apr 2013 JP
2013-73240 Apr 2013 JP
2013-513315 Apr 2013 JP
2013-80476 May 2013 JP
2013-517566 May 2013 JP
2013-517566 May 2013 JP
2013-134430 Jul 2013 JP
2013-134729 Jul 2013 JP
2013-140520 Jul 2013 JP
2013-527947 Jul 2013 JP
2013-527947 Jul 2013 JP
2013-528012 Jul 2013 JP
2013-148419 Aug 2013 JP
2013-156349 Aug 2013 JP
2013-200423 Oct 2013 JP
2013-205999 Oct 2013 JP
2013-238936 Nov 2013 JP
2013-258600 Dec 2013 JP
2014-2586 Jan 2014 JP
2014-10688 Jan 2014 JP
2014-26629 Feb 2014 JP
2014-45449 Mar 2014 JP
2014-507903 Mar 2014 JP
2014-60600 Apr 2014 JP
2014-72586 Apr 2014 JP
2014-77969 May 2014 JP
2014-89711 May 2014 JP
2014-109889 Jun 2014 JP
2014-124332 Jul 2014 JP
2014-126600 Jul 2014 JP
2014-140121 Jul 2014 JP
2014-518409 Jul 2014 JP
2014-142566 Aug 2014 JP
2014-145842 Aug 2014 JP
2014-146940 Aug 2014 JP
2014-150323 Aug 2014 JP
2014-191272 Oct 2014 JP
2014-219614 Nov 2014 JP
2014-222514 Nov 2014 JP
2015-4928 Jan 2015 JP
2015-8001 Jan 2015 JP
2015-12301 Jan 2015 JP
2015-18365 Jan 2015 JP
2015-501022 Jan 2015 JP
2015-504619 Feb 2015 JP
2015-41845 Mar 2015 JP
2015-52500 Mar 2015 JP
2015-60423 Mar 2015 JP
2015-81971 Apr 2015 JP
2015-83938 Apr 2015 JP
2015-94848 May 2015 JP
2015-514254 May 2015 JP
2015-519675 Jul 2015 JP
2015-524974 Aug 2015 JP
2015-526776 Sep 2015 JP
2015-527683 Sep 2015 JP
2015-528140 Sep 2015 JP
2015-528918 Oct 2015 JP
2015-531909 Nov 2015 JP
2016-504651 Feb 2016 JP
2016-508007 Mar 2016 JP
2016-71247 May 2016 JP
2016-119615 Jun 2016 JP
2016-151928 Aug 2016 JP
2016-524193 Aug 2016 JP
2016-536648 Nov 2016 JP
2017-19331 Jan 2017 JP
2017-537361 Dec 2017 JP
6291147 Feb 2018 JP
2018-525950 Sep 2018 JP
10-1999-0073234 Oct 1999 KR
10-1999-0073234 Oct 1999 KR
2001-0093654 Oct 2001 KR
2001-0093654 Oct 2001 KR
10-2001-0102132 Nov 2001 KR
10-2001-0102132 Nov 2001 KR
2002-0013984 Feb 2002 KR
2002-0013984 Feb 2002 KR
2002-0057262 Jul 2002 KR
2002-0057262 Jul 2002 KR
2002-004149 Aug 2002 KR
2002-0064149 Aug 2002 KR
2002-0069952 Sep 2002 KR
2002-0069952 Sep 2002 KR
2003-0016993 Mar 2003 KR
2003-0016993 Mar 2003 KR
10-2004-0014835 Feb 2004 KR
10-2004-0014835 Feb 2004 KR
10-2004-0044632 May 2004 KR
10-2004-0044632 May 2004 KR
10-2005-0083561 Aug 2005 KR
10-2005-0083561 Aug 2005 KR
10-2005-0090568 Sep 2005 KR
10-2005-0090568 Sep 2005 KR
10-206-0011603 Feb 2006 KR
10-2006-0011603 Feb 2006 KR
10-2006-0011603 Feb 2006 KR
10-2006-0012730 Feb 2006 KR
10-2006-0012730 Feb 2006 KR
10-2006-0055313 May 2006 KR
10-2006-0055313 May 2006 KR
10-2006-0073574 Jun 2006 KR
10-2006-0073574 Jun 2006 KR
10-2006-0091469 Aug 2006 KR
10-2006-0091469 Aug 2006 KR
10-2007-0024262 Mar 2007 KR
10-2007-0024262 Mar 2007 KR
10-2007-0071675 Jul 2007 KR
10-2007-0071675 Jul 2007 KR
10-2007-0071675 Jul 2007 KR
10-2007-0094767 Sep 2007 KR
10-2007-0094767 Sep 2007 KR
10-0757496 Sep 2007 KR
10-0757496 Sep 2007 KR
10-2007-0100837 Oct 2007 KR
10-2007-0100837 Oct 2007 KR
10-0776800 Nov 2007 KR
10-0776800 Nov 2007 KR
10-0801227 Feb 2008 KR
10-0801227 Feb 2008 KR
10-0810500 Mar 2008 KR
10-0810500 Mar 2008 KR
10-2008-0033070 Apr 2008 KR
10-2008-0033070 Apr 2008 KR
10-2009-0033070 Apr 2008 KR
10-2008-0049647 Jun 2008 KR
10-2008-0049647 Jun 2008 KR
10-2008-0059332 Jun 2008 KR
10-2008-0059332 Jun 2008 KR
10-2008-0109322 Dec 2008 KR
10-2008-0109322 Dec 2008 KR
10-2009-0001716 Jan 2009 KR
10-2009-0001716 Jan 2009 KR
10-2009-0028464 Mar 2009 KR
10-2009-0028464 Mar 2009 KR
10-2009-0030117 Mar 2009 KR
10-2009-0030117 Mar 2009 KR
10-2009-0086805 Aug 2009 KR
10-2009-0086805 Aug 2009 KR
10-0920267 Oct 2009 KR
10-0920267 Oct 2009 KR
10-2009-0122944 Dec 2009 KR
10-2009-0122944 Dec 2009 KR
10-2009-0127961 Dec 2009 KR
10-2009-0127961 Dec 2009 KR
10-2010-0015958 Feb 2010 KR
10-2010-0015958 Feb 2010 KR
10-2010-0048571 May 2010 KR
10-2010-0048571 May 2010 KR
10-2010-0053149 May 2010 KR
10-2010-0119519 Nov 2010 KR
10-2010-0119519 Nov 2010 KR
10-2011-0005937 Jan 2011 KR
10-2011-0013625 Feb 2011 KR
10-2011-0043644 Apr 2011 KR
10-2011-0043644 Apr 2011 KR
10-1032792 May 2011 KR
10-1032792 May 2011 KR
10-2011-0068490 Jun 2011 KR
10-2011-0068490 Jun 2011 KR
10-2011-0072847 Jun 2011 KR
10-2011-0072847 Jun 2011 KR
10-2011-0086492 Jul 2011 KR
10-2011-0104620 Sep 2011 KR
10-2011-0113414 Oct 2011 KR
10-2011-0113414 Oct 2011 KR
10-2011-0115134 Oct 2011 KR
10-2011-0115134 Oct 2011 KR
10-2012-0020164 Mar 2012 KR
10-2012-0031722 Apr 2012 KR
10-2012-0031722 Apr 2012 KR
10-2012-0066523 Jun 2012 KR
10-2012-0082371 Jul 2012 KR
10-2012-0084472 Jul 2012 KR
10-1178310 Aug 2012 KR
10-2012-0120316 Nov 2012 KR
10-2012-0120316 Nov 2012 KR
10-2012-0137424 Dec 2012 KR
10-2012-0137435 Dec 2012 KR
10-2012-0137435 Dec 2012 KR
10-2012-0137440 Dec 2012 KR
10-2012-0138826 Dec 2012 KR
10-2012-0138826 Dec 2012 KR
10-2012-0139827 Dec 2012 KR
10-1193668 Dec 2012 KR
10-1193668 Dec 2012 KR
10-2013-0035983 Apr 2013 KR
10-2013-0090947 Aug 2013 KR
10-2013-0108563 Oct 2013 KR
10-2013-0131252 Oct 2013 KR
10-1334342 Nov 2013 KR
10-2013-0133629 Dec 2013 KR
10-2014-0024271 Feb 2014 KR
10-2014-0031283 Mar 2014 KR
10-2014-0033574 Mar 2014 KR
10-2014-0055204 May 2014 KR
10-2014-0068752 Jun 2014 KR
10-2014-0088449 Jul 2014 KR
10-2014-0106715 Sep 2014 KR
10-2014-0147557 Dec 2014 KR
10-2015-0013631 Feb 2015 KR
10-1506510 Mar 2015 KR
10-2015-0038375 Apr 2015 KR
10-2015-0039380 Apr 2015 KR
10-2015-0041974 Apr 2015 KR
10-2015-0043512 Apr 2015 KR
10-2015-0095624 Aug 2015 KR
10-2015-0095624 Aug 2015 KR
10-1555742 Sep 2015 KR
10-2015-0113127 Oct 2015 KR
10-2015-0138109 Dec 2015 KR
10-2016-0004351 Jan 2016 KR
10-2016-0004351 Jan 2016 KR
10-2016-0010523 Jan 2016 KR
10-2016-0040279 Apr 2016 KR
10-2016-0040279 Apr 2016 KR
10-2016-0055839 May 2016 KR
10-2016-0065503 Jun 2016 KR
10-2016-0101198 Aug 2016 KR
10-2016-0140694 Dec 2016 KR
10-2017-0036805 Apr 2017 KR
10-2017-0107058 Sep 2017 KR
1014847 Oct 2001 NL
1014847 Oct 2001 NL
2273106 Mar 2006 RU
2273106 Mar 2006 RU
2349970 Mar 2009 RU
2349970 Mar 2009 RU
2353068 Apr 2009 RU
2353068 Apr 2009 RU
2364917 Aug 2009 RU
2364917 Aug 2009 RU
468323 Dec 2001 TW
468323 Dec 2001 TW
200601264 Jan 2006 TW
200601264 Jan 2006 TW
200638337 Nov 2006 TW
200643744 Dec 2006 TW
200801988 Jan 2008 TW
I301373 Sep 2008 TW
M348993 Jan 2009 TW
200943903 Oct 2009 TW
201018258 May 2010 TW
201027515 Jul 2010 TW
201028996 Aug 2010 TW
201110108 Mar 2011 TW
201142823 Dec 2011 TW
201227715 Jul 2012 TW
201245989 Nov 2012 TW
201312548 Mar 2013 TW
1993020640 Oct 1993 WO
1994016434 Jul 1994 WO
1994029788 Dec 1994 WO
1995002221 Jan 1995 WO
1995016950 Jun 1995 WO
1995017746 Jun 1995 WO
1997010586 Mar 1997 WO
1997026612 Jul 1997 WO
1997029614 Aug 1997 WO
1997038488 Oct 1997 WO
1997049044 Dec 1997 WO
1998009270 Mar 1998 WO
1998033111 Jul 1998 WO
1998041956 Sep 1998 WO
1999001834 Jan 1999 WO
1999008238 Feb 1999 WO
1999016181 Apr 1999 WO
1999056227 Nov 1999 WO
2000014727 Mar 2000 WO
2000014728 Mar 2000 WO
2000019697 Apr 2000 WO
2000022820 Apr 2000 WO
2000029964 May 2000 WO
2000030070 May 2000 WO
2000038041 Jun 2000 WO
2000044173 Jul 2000 WO
2000060435 Oct 2000 WO
2000060435 Oct 2000 WO
2000063766 Oct 2000 WO
2000068936 Nov 2000 WO
2001006489 Jan 2001 WO
2001030046 Apr 2001 WO
2001030047 Apr 2001 WO
2001033569 May 2001 WO
2001035391 May 2001 WO
2001044912 Jun 2001 WO
2001046946 Jun 2001 WO
2001065413 Sep 2001 WO
2001067753 Sep 2001 WO
2001071480 Sep 2001 WO
2002010900 Feb 2002 WO
2002025610 Mar 2002 WO
2002031814 Apr 2002 WO
2002037469 May 2002 WO
2002049253 Jun 2002 WO
2002071259 Sep 2002 WO
2002073603 Sep 2002 WO
2003003152 Jan 2003 WO
2003003765 Jan 2003 WO
2003023786 Mar 2003 WO
2003036457 May 2003 WO
2003041364 May 2003 WO
2003049494 Jun 2003 WO
2003056789 Jul 2003 WO
2003067202 Aug 2003 WO
2003084196 Oct 2003 WO
2003094489 Nov 2003 WO
2003105125 Dec 2003 WO
2003107179 Dec 2003 WO
2004008801 Jan 2004 WO
2004025938 Mar 2004 WO
2004047415 Jun 2004 WO
2004055637 Jul 2004 WO
2004057486 Jul 2004 WO
2004061850 Jul 2004 WO
2004084413 Sep 2004 WO
2005003920 Jan 2005 WO
2005008505 Jan 2005 WO
2005008899 Jan 2005 WO
2005010725 Feb 2005 WO
2005027472 Mar 2005 WO
2005027485 Mar 2005 WO
2005031737 Apr 2005 WO
2005034082 Apr 2005 WO
2005034085 Apr 2005 WO
2005041455 May 2005 WO
2005059895 Jun 2005 WO
2005064592 Jul 2005 WO
2005069171 Jul 2005 WO
2005101176 Oct 2005 WO
2006020305 Feb 2006 WO
2006037545 Apr 2006 WO
2006054724 May 2006 WO
2006056822 Jun 2006 WO
2006078246 Jul 2006 WO
2006084144 Aug 2006 WO
2006101649 Sep 2006 WO
2006129967 Dec 2006 WO
2006133571 Dec 2006 WO
2007002753 Jan 2007 WO
2007036762 Apr 2007 WO
2007080559 Jul 2007 WO
2007083894 Jul 2007 WO
2008030970 Mar 2008 WO
2008071231 Jun 2008 WO
2008085742 Jul 2008 WO
2008098900 Aug 2008 WO
2008109835 Aug 2008 WO
2008120036 Oct 2008 WO
2008130095 Oct 2008 WO
2008140236 Nov 2008 WO
2008142472 Nov 2008 WO
2008153639 Dec 2008 WO
2009009240 Jan 2009 WO
2009016631 Feb 2009 WO
2009017280 Feb 2009 WO
2009075912 Jun 2009 WO
2009104126 Aug 2009 WO
2009156438 Dec 2009 WO
2009156978 Dec 2009 WO
2010013369 Feb 2010 WO
2010054373 May 2010 WO
2010075623 Jul 2010 WO
2010100937 Sep 2010 WO
2010141802 Dec 2010 WO
2010144651 Dec 2010 WO
2011028842 Mar 2011 WO
2011057346 May 2011 WO
2011060106 May 2011 WO
2011082521 Jul 2011 WO
2011088053 Jul 2011 WO
2011093025 Aug 2011 WO
2011100142 Aug 2011 WO
2011116309 Sep 2011 WO
2011123122 Oct 2011 WO
2011133543 Oct 2011 WO
2011133573 Oct 2011 WO
2011097309 Dec 2011 WO
2011150730 Dec 2011 WO
2011163350 Dec 2011 WO
2011088053 Jan 2012 WO
2012008434 Jan 2012 WO
2012019020 Feb 2012 WO
2012019637 Feb 2012 WO
2012063260 May 2012 WO
2012092562 Jul 2012 WO
2012112331 Aug 2012 WO
2012129231 Sep 2012 WO
2012063260 Oct 2012 WO
2012135157 Oct 2012 WO
2012154317 Nov 2012 WO
2012154748 Nov 2012 WO
2012155079 Nov 2012 WO
2012167168 Dec 2012 WO
2012173902 Dec 2012 WO
2013009578 Jan 2013 WO
2013022135 Feb 2013 WO
2013022223 Feb 2013 WO
2013048880 Apr 2013 WO
2013049358 Apr 2013 WO
2013057153 Apr 2013 WO
2013122310 Aug 2013 WO
2013137660 Sep 2013 WO
2013163113 Oct 2013 WO
2013163857 Nov 2013 WO
2013169842 Nov 2013 WO
2013173504 Nov 2013 WO
2013173511 Nov 2013 WO
2013176847 Nov 2013 WO
2013184953 Dec 2013 WO
2013184990 Dec 2013 WO
2014003138 Jan 2014 WO
2014004544 Jan 2014 WO
2014021967 Feb 2014 WO
2014022148 Feb 2014 WO
2014028735 Feb 2014 WO
2014028797 Feb 2014 WO
2014031505 Feb 2014 WO
2014032461 Mar 2014 WO
2014047047 Mar 2014 WO
2014066352 May 2014 WO
2014070872 May 2014 WO
2014078965 May 2014 WO
2014093339 Jun 2014 WO
2014096506 Jun 2014 WO
WO-2014093339 Jun 2014 WO
2014124332 Aug 2014 WO
2014137074 Sep 2014 WO
2014138604 Sep 2014 WO
2014143959 Sep 2014 WO
2014144395 Sep 2014 WO
2014144579 Sep 2014 WO
2014144949 Sep 2014 WO
2014151153 Sep 2014 WO
2014124332 Oct 2014 WO
2014159578 Oct 2014 WO
2014159581 Oct 2014 WO
2014162570 Oct 2014 WO
2014169269 Oct 2014 WO
2014173189 Oct 2014 WO
2013173504 Dec 2014 WO
2014197336 Dec 2014 WO
2014197635 Dec 2014 WO
2014197730 Dec 2014 WO
2014200728 Dec 2014 WO
2014204659 Dec 2014 WO
2014210392 Dec 2014 WO
2015018440 Feb 2015 WO
2015020942 Feb 2015 WO
2015029379 Mar 2015 WO
2015030796 Mar 2015 WO
2015041882 Mar 2015 WO
2015041892 Mar 2015 WO
2015047932 Apr 2015 WO
2015053485 Apr 2015 WO
2015084659 Jun 2015 WO
2015092943 Jun 2015 WO
2015094169 Jun 2015 WO
2015094369 Jun 2015 WO
2015098306 Jul 2015 WO
2015099939 Jul 2015 WO
2015116151 Aug 2015 WO
WO-2015116151 Aug 2015 WO
2015151133 Oct 2015 WO
2015153310 Oct 2015 WO
2015157013 Oct 2015 WO
2015183401 Dec 2015 WO
2015183699 Dec 2015 WO
2015184186 Dec 2015 WO
2015184387 Dec 2015 WO
2015200207 Dec 2015 WO
2016027933 Feb 2016 WO
2016028946 Feb 2016 WO
2016033257 Mar 2016 WO
2016039992 Mar 2016 WO
2016052164 Apr 2016 WO
2016054230 Apr 2016 WO
2016057268 Apr 2016 WO
2016075081 May 2016 WO
2016085775 Jun 2016 WO
2016085776 Jun 2016 WO
2016100139 Jun 2016 WO
2016111881 Jul 2016 WO
2016144840 Sep 2016 WO
2016144982 Sep 2016 WO
2016144983 Sep 2016 WO
2016175354 Nov 2016 WO
2016187149 Nov 2016 WO
2016190950 Dec 2016 WO
2016209444 Dec 2016 WO
2016209924 Dec 2016 WO
2017044257 Mar 2017 WO
2017044260 Mar 2017 WO
2017044629 Mar 2017 WO
2017053311 Mar 2017 WO
2017059388 Apr 2017 WO
2017071420 May 2017 WO
2017142116 Aug 2017 WO
2017160487 Sep 2017 WO
2017213682 Dec 2017 WO
2018009397 Jan 2018 WO
2018213401 Nov 2018 WO
2018213415 Nov 2018 WO
2019067930 Apr 2019 WO
2019078576 Apr 2019 WO
2019079017 Apr 2019 WO
2019147429 Aug 2019 WO
2019236217 Dec 2019 WO
2020010530 Jan 2020 WO
Non-Patent Literature Citations (1652)
Entry
Gruber, Tom, “It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing”, Proceedings of the International CIDOC CRM Symposium, Available online at <http://tomgruber.org/writing/cidoc-ontology.htm>, Mar. 26, 2003, 21 pages.
Gruber, Tom, “Ontologies, Web 2.0 and Beyond”, Ontology Summit, Available online at <http://tomgruber.org/writing/ontolog-social-web-keynote.htm>, Apr. 2007, 17 pages.
Gruber, Tom, “Ontology of Folksonomy: A Mash-Up of Apples and Oranges”, Int'l Journal on Semantic Web Information Systems, vol. 3, No. 2, 2007, 7 pages.
Sony Eiicsson Corporate, “Sony Ericsson to introduce Auto pairing.TM. to Improve Bluetooth.TM. Connectivity Between Headsets and Phones”, Press Release, available at <http://www.sonyericsson.com/spg.jsp?cc=global&c=en&ver=4001&template =pc3_1_ 1&z...>, Sep. 28, 2005, 2 pages.
Spiller, Karen, “Low-Decibel Earbuds Keep Noise at a Reasonable Level”, available at <http://www.nashuatelegraph.com/apps/pbcs.dll/article?Date=20060813&Cat e...>, Aug. 13, 2006, 3 pages.
Su et al., “A Review of ZoomText Xtra Screen Magnification Program for Windows 95”, Journal of Visual Impairment & Blindness, Feb. 1998, pp. 116-119.
Su, Joseph C., “A Review of Telesensory's Vista PCI Screen Magnification System”, Journal of Visual Impairment & Blindness, Oct. 1998, pp. 705, 707-710.
Martin et al., “Information Brokering in an Agent Architecture”, Proceedings of the Second International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Apr. 1997, pp. 1-20.
Sugumaran, V., “A Distributed Intelligent Agent-Based Spatial Decision Support System”, Proceedings of the Americas Conference on Information system (AMCIS), Dec. 31, 1998, 4 pages.
Sycara et al., “Coordination of Multiple Intelligent Software Agents”, International Journal of Cooperative Information Systems (IJCIS), vol. 5, No. 2 & 3, 1996, 31 pages.
Meet Ivee, Your Wi-Fi Voice Activated Assistant, available at http://www.helloivee.com/>, retrieved on Feb. 10, 2014, 8 pages.
T3 Magazine, “Creative MuVo TX 256MB”, available at http://www.t3.co.uk/reviews/entertainment/mp3 player/creativemuvo_tx_ 256mb>, Aug. 17, 2004, 1 page.
TAOS, “TAOS, Inc. Announces Industry's First Ambient Light Sensor to Convert Light Intensity to Digital Signals”, News Release, available at <http://www.taosine.com/pressrelease_090902.htm>, Sep. 16, 2002, 3 pages.
Tello, Ernest R., “Natural-Language Systems”, Mastering Al Tools and Techniques, Howard W. Sams Company, 1988.
Menta, Richard, “1200 Song MP3 Portable is a Milestone Player”, available at http://www.mp3newswire.net/stories/personaljuke.html>, Jan. 11, 2000, 4 pages.
Tofel, Kevin C., “SpeakToIt: A Personal Assistant for Older iPhones, iPads”, Apple News, Tips and Reviews, Feb. 9, 2012, 7 pages.
Microsoft Corporation, Microsoft Office Word 2003 (SP2), Microsoft Corporation, SP3 as of 2005, pages MSWord 2003 Figures 1-5, 1983-2003.
Top 10 Best Practices for Voice User Interface Design available at <http://www.developer.com/voice/article.php/1567051/Top-10-Best- Practices-for-Voice-UserInterface-Design.htm>, Nov. 1, 2002, 4 pages.
Microsoft Word 2000 Microsoft Corporation, pages MSWord Figures 1-5, 1999.
Miller, Chance, “Google Keyboard Updated with New Personalized Suggestions Feature”, available at <http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/>, Mar. 19, 2014, 4 pages.
Milstead et al., “Metadata: Cataloging by Any Other Name”, available at <http://www.iicm.tugraz.at/thesis/cguetldiss/literatur/Kapitel06/References/Milstead_et_al._1999/metadata.html>, Jan. 1999, 18 pages.
Milward et al., “D2.2: Dynamic Multimodal Interface Reconfiguration, Talk and Look: Tools for Ambient Linguistic Knowledge”, available at &It;http://www.ihmc.us/users/ablaylock!Pubs/Files/talk d2.2.pdf>, Aug. 8, 2006, 69 pages.
Uslan et al., “A Review of Supernova Screen Magnification Program for Windows”, Journal of Visual Impairment Blindness, Feb. 1999, pp. 108-110.
Uslan et al., “A Review of Two Screen Magnification Programs for Windows 95: Magnum 95 and LP-Windows”, Journal of Visual Impairment & Blindness, Sep.-Oct. 1997, pp. 9-13.
Veiga, Alex, “At&T Wireless Launching Music Service”, available at <http://bizyahoo.com/ap/041005/att_mobile_music_5.html?printer=l>, Oct. 5, 2004, 2 pages.
Moore et al., “Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing for ATIS”, SRI International, Artificial Intelliquence Center, 1995, 4 pages.
Verschelde, Jan, “MATLAB Lecture 8. Special Matrices in MATLAB”, UIC, Dept. of Math, Stat. & CS, MCS 320, Introduction to Symbolic Computation, 2007, 4 pages.
Vlingo InCar, “Distracted Driving Solution with Vlingo InCar”, YouTube Video, Available online at <http://www.youtube.com/watch?v=Vqs8XfXxgz4>, Oct. 2010, 2 pages.
Murty et al., “Combining Evidence from Residual Phase and MFCC Features for Speaker Recognition”, IEEE Signal Processing Letters, vol. 13, No. 1, Jan. 2006, 4 pages.
Nadoli et al., “Intelligent Agents in the Simulation of Manufacturing Systems”, Proceedings of the SCS Multiconference on Al and Simulation, 1989, 1 page.
IAP Sports Lingo 0×09 Protocol V1.00, May 1, 2006, 17 pages.
NCIP Staff, “Magnification Technology”, available at <http://www2.edc.org/ncip/library/vi/magnsfi.htm>, 1994, 6 pages.
Wilson, Mark, “New iPod Shuffle Moves Buttons to Headphones, Adds Text to Speech”, available at <http://gizmodo.com/5167946/new-ipod-shuffle-moves- buttons-to-headphones-adds-text-to-speech, Mar. 11, 2009, 13 pages.
Ng, Simon, “Google's Task List Now Comes to lphone”, SimonBlog, Available at <http://www.simonblog.com/2009/02/04/googles-task-list-now-comes-to- iphone/, Feb. 4, 2009, 33 pages.
Zainab, “Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]”, available at <http://www.addictivetips.com/internet-tips/google- input-tools-shows-multiple-language-onscreen-keyboards-chrome>/, Jan. 3, 2012, 3 pages.
Osxdaily, “Get a List of Siri Commands Directly from Siri”, Available at <http://osxdaily.com/2013/02/05/list-siri-commands>/, Feb. 5, 2013, 15 pages.
Zelig, “A Review of the Palm Treo 750v”' available at <http://www.mtekk.com.au/Articles/tabid/54/articleType/ArticleView/articleId /769/A-Review-of-the-Palm-Treo-750v.aspx>, Feb. 5, 2007, 3 pages.
Panasonic, “Toughbook 28: Powerful, Rugged and Wireless”, Panasonic: Toughbook Models, available at <http://www.pansonic.com/computer/notebook/html/01a_s8.htm>, retrieved on Dec. 19, 2002, 3 pages.
Zhao, Y., “An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition”, IEEETransactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, pp. 381-394.
Papadimitriou et al., “Latent Semantic Indexing: A Probabilistic Analysis”, Available online at <http://citeseerx.ist.psu.edu/messaqes/downloadsexceeded.htm;>, Nov. 14, 1997, 21 pages.
Patent Abstracts of Japan, vol. 014, No. 273 (E-0940)Jun. 13, 1990 (Jun. 13, 1990)-& JP 02 086057 A (Japan Storage Battery Co LTD), Mar. 27, 1900 (Mar. 27, 1990).
Karp, P. D., “A Generic Knowledge-Base Access Protocol”, Available online at <http://lecture.cs.buu.ac.th/-f450353/Document/gfp.pdf>, May 12, 1994, 66 pages.
Gruber, Thomas R., “Interactive Acquisition of Justifications: Learning “Why” by Being Told “What””, Knowledge Systems Laboratory, Technical Report KSL, Original Oct. 1990, Revised Feb. 1991, 24 pages.
Butler, Travis, “Archos Jukebox 6000 Challenges Nomad Jukebox”, available at <http://tidbits.com/article/6521>, Aug. 13, 2001, 5 pages.
Schluter et al., “Using Phase Spectrum Information for Improved Speech Speech, and Signal Processing, Recognition Performance”, IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, pp. 133-136.
Campbell et al.,“An Expandable Error-Protected 4800 BPS CELP Coder (U.S. Federal Standard 4800 BPS Voice Coder)”, (Proceedings of IEEE Int3 l Acoustics, Speech, and Signal Processing Conference, May 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 328-330.
Gruber, Tom, “Every Ontology is a Treaty—A Social Agreement—Among People with Some Common Motive in Sharing”, Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, No. 3, 2004, pp. 1-5.
Gruber, Tom, “Helping Organizations Collaborate, Communicate, and Learn”, Presentation to NASA Ames Research, Available online at <http://tomgruber.org/writing/organizational-intelligence-talk.html>, Mar.-Oct. 2003, 30 pages.
Schone et al., “Knowledge-Free Induction of Morphology Using Latent Semantic Analysis”, Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, vol. 7, 2000, pp. 67-72.
Kline et al., “Improving GUI Accessibility for People with Low Vision”, CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 7-11, 1995, pp. 114-121.
Kline et al., “UnWindows 1.0: X Windows Tools for Low Vision Users”, ACM SIGCAPH Computers and the Physically Handicapped, No. 49, Mar. 1994, pp. 1-5.
Knownav, “Knowledge Navigator”, YouTube Video available at http://www.youtube.com/watch?v=QRH8eimU_20>, Apr. 29, 2008, 1 page.
Konolige, Kurt, “A Framework for a Portable Natural-Language in erface to Large Data Bases”, SRI International, Technical Note 197, Oct. 12, 1979, 54 pages.
Choularton et al., “User Responses to Speech Recognition Errors: Consistency of Behaviour Across Domains”, Proceedings of the 10th Australian International Conference on Speech Science & Technology, Dec. 8-10, 2004, pp. 457-462.
Lee et al., “A Multi-Touch Three Dimensional Touch-Sensitive Tablet”, CHI '85 Proceedings of the SIGCHI Conference on Human Factors in Computing System, Apr. 1985, pp. 21-25.
Lee et al., “Golden Mandarin (II)—An Intelligent Mandarin Dictation Machsne for Chinese Character Input with Adaptation/Learning Functions”, International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, Apr. 1994, 5 pages.
Lee et al., “System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters”, International Conference on Computer Processing of Chinese & Oriental Languages, vol. 5, No. 3 4, Nov. 1991, 16 pages.
Cohen et al., “An Open Agent Architecture”, available at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.480>, 1994, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/044834, dated Dec. 20, 2013, 13 pages.
Creative Technology Ltd., “Creative NOMAD® II: Getting Started—User Guide (on Line Version)”, available at <http://ecl.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000026434.pdf>, Apr. 2000, 46 pages.
Creative Technology Ltd., “Creative Nomad®: Digital Audio Player: User Guide (On-Line Version)”, available at <http://ecl.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000010757.pdf>, Jun. 1999, 40 pages.
Public Safety Technologies, “Tracer 2000 Computer”, available at http://www.pst911.com/tracer.html, retrieved on Dec. 19, 2002, 3 pages.
Creative, “Digital MP3 Player”, available at <http://web.archive.org/web/20041024074823/www.creative.com/products/product.asp?category=213subcategory=216&product=4983, 2004, 1 page.
Intraspect Software, “The Intraspect Knowledge Management Solution: Technical Overview”, available at <http://tomgruber.org/writing/intraspect- whitepaper-1998.pdf, 1998, 18 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/049568, dated Nov. 14, 2014, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019322, dated Jun. 18, 2015, 16 pages.
Ren et al., “Efficient Strategies for Selecting Small Targets on Pen-Based Systems: An Evaluation Experiment for Selection Strategies and Strategy Classifications”, Proceedings of the IFIP TC2/TC13 WG2.7/WG13.4 Seventh Working Conference on Engineering for Human-Computer Interaction, vol. 150, 1998, pp. 19-37.
Diamond Multimedia Systems, Inc., “Rio PMP300: User's Guide”, available at <http://eel.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000022854.pdf>, 1998, 28 pages.
Iso-Sipila et al., “Multi-Lingual Speaker-Independent Voice User Interface for Mobile Devices”, ICASSP 2006 Proceedings, IEEE International Conference on Acoustics, Speech and Signal Processing May 14, 2006, pp. 1-081.
IBM, “Why Buy: ThinkPad”, available at <http://www.pc.ibm.com/us/thinkpad/easeofuse.html>, retrieved on Dec. 19, 2002, 2 pages.
id3.org, “id3v2.4.0—Frames”, available at <http://id3.org/id3v2.4.0- frames?action=print, retrieved on Jan. 22, 2015, 41 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2005/030234, dated Mar. 20, 2007, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/037014, dated Dec. 13, 2012, 10 pages.
Baudel et al., “2 Techniques for Improved HC Interaction: Toolglass & Magic Lenses: The See-Through Interface”, Apple Inc., Video Clip, CHI'94 Video Program on a CD, 1994.
Abcom Pty. Ltd. “12.1 925 Candela Mobile PC”, LCDHardware.com, available at <http://www.lcdhardware.com/panel/12_1_panel/default.asp.>, retrieved on Dec. 19, 2002, 2 pages.
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 15169349.6, dated Jul. 28, 2015, 8 pages.
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 16150079.8, dated Feb. 18, 2016, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/023826, datedd Sep. 24, 2015, 9 pages.
Aikawa et al., “Generation for Multilingual MT”, available at <http://mtarchive.info/mts-2001-Aikawa.pdf>, retrieved on Sep. 18, 2001, 6 pages.
Alshawi et al., “Declarative Derivation of Database Queries from Meaning Representations”, Proceedings of the BANKAI Workshop on Intelligent Information Access, Oct. 19914, 21 pages.
International Search Report Written Opinion received for PCT Patent Application No. PCT/US2016/021410, dated Jul. 26, 2016, 19 pages.
Bociurkiw, Michael, “Product Guide: Vanessa Matz”' available at <http://www.forbes.com/asap/2000/1127/vmartzprint.html, retrieved on Jan. 23, 2003, 2 pages.
Amano, Junko, “A User-Friendly Authoring System for Digital Talking Books”, IEICE Technical Report, The Institute of Electronics, Information and Communication Engineers, vol. 103, No. 418, Nov. 6, 2003, pp. 33-40.
Amrel Corporation, “Rocky Matrix BackLit Keyboard”, available at <http://www.amrel.com/asi_matrixkeyboard.html, retrieved on Dec. 19, 2002, 1 page.
Burke et al., “Question Answering from Frequently Asked Question Files”, Al Magazine, vol. 18, No. 2, 1997, 10 pages.
Apple Computer, Inc., “Welcome to Tiger”, available at <http://www.maths.dundee.ac.uk/software/Welcom_to_Mac_OS_X_v10.4_Ti ger.pdf>, 2005, pp. 1-32.
Office Action received for Danish Patent Application No. PA201770035, dated Oct. 17, 2017, 4 pages.
Office Action received for Danish Patent Application No. PA201770035, dated Mar. 23, 2017, 6 pages.
Office Action received for Danish Patent Application No. PA201770036, dated Jun. 20, 2017, 10 pages.
Office Action received for Danish Patent Application No. PA201770036, dated Feb. 21, 2018, 3 pages.
Office Action received for Danish Patent Application No. PA201770032, dated Oct. 19, 2017, 2 pages.
Office Action received for Danish Patent Application No. PA201770035, dated Mar. 20, 2018, 5 pages.
Office Action received for Danish Patent Application No. PA201770032, dated Apr. 18, 2017, 10 pages.
Extended European Search Report received for European Patent Application No. 16904830.3, dated Jun. 24, 2019, 8 pages.
Extended European Search Report received for European Patent Application No. 19157463.1, dated Jun. 6, 2019, 8 pages.
Office Action received for Korean Patent Application No. 10-2019-7004448, dated Sep. 19, 2019, 12 pages (6 pages of English translation and 6 pages of Official Copy).
Intention to Grant received for Danish Patent Application No. PA201770036, dated May 1, 2018, 2 pages.
Notice of Acceptance received for Australian Patent Application No. 2018241102, dated May 22, 2019, 3 pages.
Decision to Grant received for Danish Patent Application No. PA201770032, dated May 22, 2019, 2 pages.
Invitation to Pay Additional Fees Received for PCT Patent Application No. PCT/US2016/059953, dated Dec. 29, 2016, 2 pages.
Leong et al., “CASIS: A Context-Aware Speech Interface System”, Proceedings of the 10th International Conference on Intelligent User Interfaces, Jan. 2005, pp. 231-238.
Leung et al., “A Review and Taxonomy of Distortion-Oriented Presentation Techniques”, ACM Transactions on Computer-Human Interaction (TOCHI), vol. 1, No. 2, Jun. 1994, pp. 126-160.
Leveseque et al., “A Fundamental Tradeoff in Knowledge Representation and Reasoning”, Readings in Knowledge Representation, 1985, 30 pages.
Levinson et al., “Speech synthesis in telecommunications”, IEEE Communications Magazine, vol. 31, No. 11, Nov. 1993, pp. 46-53.
Lewis, “Speech synthesis in a computer aided learning environment”, UK IT, Mar. 19-22, 1990, pp. 294-298.
Gruber, Tom, “It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing”, Proceedings of the International CIDOC CRM Symposium, Available online at <http://tomgruber.org/writing/cidoc-onyology.htm>, Mar. 26, 2003, 21 pages.
Lewis, Cameron, “Task Ave for iPhone Review”, Mac Life, Available at <http://www.maclife.com/article/reviews/taskaveiphonereview>, Mar. 3, 2011, 5 pages.
Simkovitz, Daniel, “LP-DOS Magnifies the PC Screen”, IEEE, 1992, pp. 203-204.
Gruber, Tom, “Ontologies, Web 2.0 and Beyond”, Ontology Summit, Available online at <http://tomgruber.org/writing/ontolog-social-web-keynote.htm, Apr. 2007, 17 pages.
Lewis, Peter, “Two New Ways to Buy Your Bits”, CNN Money, available at <http://money.cnn.com/2003/12/30/commentary/ontechnology/download/>,, Dec. 31, 2003, 4 pages.
Simonite, Tom, “One Easy Way to Make Siri Smarter”, Technology Review, Oct. 18, 2011, 2 pages.
Gruber, Tom, “Ontology of Folksonomy: A Mash-Up of Apples and Oranges”, Int'l Journal on Semantic Web & Information Systems, vol. 3, No. 2, 2007, 7 pages.
Gruber, Tom, “Siri, A Virtual Personal Assistant-Bringing Intelligence to the Interface”, Semantic Technologies Conference, Jun. 16, 2009, 21 pages.
Li et al., “A Phonotactic Language model for Spoken Language Identification”, Proceedings of the 43rd Annual Meeting of the ACL, Jun. 25, 2005, pp. 515-522.
Singh et al., “Automatic Generation of Phone Sets and Lexical Transcriptions”, Acoustics, Speech and Signal Processing (ICASSP'00), 2000, 1 page.
Gruber, Tom, “TagOntology”, Presentation to Tag Camp, Oct. 29, 2005, 20 pages.
Singh, N., “Unifying Heterogeneous Information Models”, Communications of the ACM, 1998, 13 pages.
Lieberman et al., “Out of Context: Computer Systems that Adapt to, and Learn from, Context”, IBM Systems Journal, vol. 39, No. 3 & 4, 2000, pp. 617-632.
Sinitsyn, Alexander, “A Synchronization Framework for Personal Mobile Servers”, Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, Piscataway, 2004, pp. 1, 3 and 5.
Lieberman, Henry, “A Multi-Scale, Multi-Layer, Translucent Virtual Space”, Proceedings of IEEE Conference on Information Visualization, Aug. 1997, pp. 124-131.
Slaney et al., “On the Importance of Time—A Temporal Representation of Sound”, Visual Representation of Speech Signals, 1993, pp. 95-116.
Lieberman, Henry, “Powers of Ten Thousand: Navigating in Large Information Spaces”, Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 1-2.
Smeaton, Alan F., “Natural Language Processing and Information Retrieval”, Information Processing and Management, vol. 26, No. 1, 1990, pp. 19-20.
Lin et al., “A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History”, Available on line at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.272>, 1999, 4 pages.
Smith et al., “Guidelines for Designing User Interface Software”, User Lab, Inc., Aug. 1986, pp. 1-384.
Lin et al., “A New Framework for Recognition of Mandarin Syllables with Tones Using Sub-syllabic Unites”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-93), Apr. 1993, 4 pages.
Smith et al., “Relating Distortion to Performance in Distortion Oriented Displays”, Proceedings of Sixth Australian Conference on Computer-Human Interaction, Nov. 1996, pp. 6-11.
Linde et al., “An Algorithm for Vector Quantizer Design”, IEEE Transactions on Communications, vol. 28, No. 1, Jan. 1980, 12 pages.
Sony Eiicsson Corporate, “Sony Ericsson to introduce Auto pairing.TM. to Improve Bluetooth.TM. Connectivity Between Headsets and Phones”, Press Release, available at <http://www.sonyericsson.com/spg.jsp?cc=global&c=en&ver=4001template =pc3_1_ 1&z...>, Sep. 28, 2005, 2 pages.
Liu et al., “Efficient Joint Compensation of Speech for the Effects of Additive Noise and Linear Filtering”, IEEE International Conference of Acoustics, Speech and Signal Processing, ICASSP-92, Mar. 1992, 4 pages.
Soong et al., “A High Quality Subband Speech Coder with Backward Adaptive Predictor and Optimal Time-Frequency Bit Assignment”, (Proceedings of the IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 316-319.
Logan et al., “Mel Frequency Cepstral Co-efficients for Music Modeling”, International Symposium on Music Information Retrieval, 2000, 2 pages.
Speaker Recognition, Wikipedia, The Free Enclyclopedia, Nov. 2, 2010, 4 pages.
Gruber, Tom, “Where the Social Web Meets the Semantic Web”, Presentation at the 5th International Semantic Web Conference, Nov. 2006, 38 pages.
Lowerre, B. T., “The-Harpy Speech Recognition System”, Doctoral Dissertation, Department of Computer Science, Carnegie Mellon University, Apr. 1976, 20 pages.
Spiller, Karen, “Low-Decibel Earbuds Keep Noise at a Reasonable Level”, available at <http://www.nashuatelegraph.com/apps/pbcs.dll/article?Date=20060813&Cat 3...>, Aug. 13, 2006, 3 pages.
Gruhn et al., “A Research Perspective on Computer-Assisted Office Work”, IBM Systems Journal, vol. 18, No. 3, 1979, pp. 432-456.
Lyon, R., “A Computational Model of Binaural Localization and Separation”, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 1983, pp. 1148-1151.
SRI International, “The Open Agent Architecture TM 1.0 Distribution”, Open Agent Architecture (OAA), 1999, 2 pages.
Guay, Matthew, “Location-Driven Productivity with Task Ave”, available at <http://iphone.appstorm.net/reviews/productivity/location-driven-productivity-with-task-ave/>, Feb. 19, 2011, 7 pages.
Lyons et al., “Augmenting Conversations Using Dual-Purpose Speech”, Proceedings of the 17th Annual ACM Symposium on User interface Software and Technology, 2004, 10 pages.
SRI, “SRI Speech: Products: Software Development Kits: EduSpeak”, available at <http://web.archive.org/web/20090828084033/http://www.speechatsri.com/ products/eduspeak>shtml, retrieved on Jun. 20, 2013, 2 pages.
Lyons, Richard F., “CCD Correlators for Auditory Models”, Proceedings of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers, Nov. 4-6, 1991, pp. 785-789.
Guida et al., “NLI: A Robust Interface for Natural Language Person-Machine Communication”, International Journal of Man-Machine Studies, vol. 17, 1982, 17 pages.
Srihari, R. K.., “Use of Multimedia Input in Automated Image Annotation and Content-based Retrieval”, Proceedings of Spie, International Society for Optical Engineering, vol. 2420, Feb. 9, 1995., pp. 249-260.
Macchi, Marian, “Issues in Text-to-Speech Synthesis” Proceedings of IEEE International Joint Symposia on Intelligence and Systems, May 21, 1998, pp. 318-325.
Srinivas et al., “Monet: A Multi-Media System for Conferencing and Application Sharing in Distributed Systems”, CERC Technical Report Series Research Note, Feb. 1992.
Mackenzie et al., “Alphanumeric Entry on Pen-Based Computers”, International Journal of Human-Computer Studies, vol. 41, 1994, pp. 775-792.
Mackinlay et al., “The Perspective Wall: Detail and Context Smoothly Integrated”, ACM, 1991, pp. 173-179.
Macsimum News, “Apple Files Patent for an Audio Interface for the iPod”, available at <http://www.macsimumnews.com/index.php/archive/applefilespatent_for_an_audio_interface_for_theipod>, retrieved on Jul. 13, 2006, 8 pages.
Starr et al., “Knowledge-Intensive Query Processing”, Proceedings of the 5th KRDB Workshop, Seattle, May 31, 1998, 6 pages.
Mactech, “KeyStrokes 3.5 for Mac OS X Boosts Word Prediction”, available at <http://www.mactech.com/news/?p=1007129>, retrieved on Jan. 7, 2008, 3 pages.
Guim, Mark, “How to Set a Person-Based Reminder with Cortana”, available at <http://www.wpcentral.com/how-to-person-based-reminder-cortana>, Apr. 26, 2014, 15 pages.
Maghbouleh, Arman, “An Empirical Comparison of Automatic Decision Tree and Linear Regression Models for Vowel Durations”, Revised Version of a Paper Presented at the Computational Phonology in Speech Technology Workshop, 1996 Annual Meeting of the Association for Computational Linguistics in Santa Cruz, California, 7 pages.
Stealth Computer Corporation, “Peripherals for Industrial Keyboards & Pointing Devices”, available at <http://www.stealthcomputer.com/peripheralsoem.htm>, retrieved on Dec. 19, 2002, 6 pages.
Gurevych et al., “Semantic Coherence Scoring Using an Ontology”, North American Chapter of the Association for Computational Linguistics Archive, Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, May 27, 2003, 8 pages.
Steinberg, Gene, “Sonicblue Rio Car (10 GB, Reviewed: 6 GB)”, available at <http://electronics.cnet.com/electronics/0-6342420-1304-4098389.htrnl>, Dec. 12, 2000, 2 pages.
Mahedero et al., “Natural Language Processing of Lyrics”, In Proceedings of the 13th Annual ACM International Conference on Multimedia, ACM, Nov. 6-11, 2005, 4 pages.
Mangu et al., “Finding Consensus in Speech Recognition: Word Error Minimization and Other Applications of Confusion Networks”, Computer Speech and Language, vol. 14, No. 4, 2000, pp. 291-294.
Stent et al., “Geo-Centric Language Models for Local Business Voice Search”, AT&T Labs—Research, 2009, pp. 389-396.
Stent et al., “The CommandTalk Spoken Dialogue System”, SRI International, 1999, pp. 183-190.
Manning etal, “Foundations of Statistical Natural Language Processing”, The MIT Press, Cambridge Massachusetts, 1999, pp. 10-11.
Guzzoni et al., “A Unified Platform for Building Intelligent Web Interaction Assistants”, Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Computer Society, 2006, 4 pages.
Stern et al., “Multiple Approaches to Robust Speech Recognition”, Proceedings of Speech and Natural Language Workshop, 1992, 6 pages.
Guzzoni et al., “Active, A Platform for Building Intelligent Operating Rooms”, Surgetica 2007 Computer-Aided Medical Interventions: Tools and Applications, 2007, pp. 191-198.
Marcus et al., “Building a Large Annotated Corpus of English: The Penn Treebank”, Computational Linguistics, vol. 19, No. 2, 1993, pp. 313-330.
Stickel, Mark E., “A Nonclausal Connection-Graph Resolution Theorem-Proving Program”, Proceedings of AAAI'82, 1982, 5 pages.
Guzzoni et al., “Active, a platform for Building Intelligent Software”, Computational Intelligence, available at <http://www.informatik.uni-trier.del-ley/pers/hd/g/Guzzoni:Didier>, 2006, 5 pages.
Stifleman, L., “Not Just Another Voice Mail System”, Proceedings of 1991 Conference, American Voice, Atlanta GA, Sep. 24-26, 1991, pp. 21-26.
Markel et al., “Linear Prediction of Speech”, Springer-Verlag, Berlin, Heidelberg, New York, 1976, 12 pages.
Stone et al., “The Movable Filter as a User Interface Tool”, CHI '94 Human Factors in Computing Systems, 1994, pp. 306-312.
Guzzoni et al., “Active, A Tool for Building Intelligent User Interfaces”, ASC 2007, Palma de Mallorca, Aug. 2007, 6 pages.
Markel et al., “Linear Production of Speech”, Reviews, 1976, pp. xii, 288.
Strom et al., “Intelligent Barge-In in Conversational Systems”, MIT laboratory for Computer Science, 2000, 4 pages.
Guzzoni et al., “Many Robots Make Short Work”, AAAI Robot Contest, SRI International, 1996, 9 pages.
Martin et al., “Building and Using Practical Agent Applications”, SRI International, PAAM Tutorial, 1998, 78 pages.
Stuker et al., “Cross-System Adaptation and Combination for Continuous Speech Recognition: The Influence of Phoneme Set and Acoustic Front-End”, Influence of Phoneme Set and Acoustic Front-End, Interspeech, Sep. 17-21, 2006, pp. 521-524.
Guzzoni et al., “Modeling Human-Agent Interaction with Active Ontologies”, AAAI Spring Symposium, Interaction Challenges for Intelligent Assistants, Stanford University, Palo Alto, California, 2007, 8 pages.
Martin et al., “Building Distributed Software Systems with the Open Agent Architecture”, Proceedings of the Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Mar. 1998, pp. 355-376.
Guzzoni, D., “Active: A Unified Platform for Building Intelligent Assistant Applications”, Oct. 25, 2007, 262 pages.
Su et al., “A Review of ZoomText Xtra Screen Magnification Program for Windows 95”, Journal of Visual Impairment Blindness Feb. 1998, pp. 116-119.
Martin et al., “Development Tools for the Open Agent Architecture”, Proceedings of the International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Apr. 1996, pp. 1-17.
Haas et al., “An Approach to Acquiring and Applying Knowledge”, SRI international, Nov. 1980, 22 pages.
Su, Joseph C., “A Review of Telesensory's Vista PCI Screen Magnification System”, Journal of Visual Impairment Blindness, Oct. 1998, pp. 705, 707-710.
Martin et al., “Information Brokering in an Agent Architecture”, Proceedings of the Second International Conference on the Practical Application of Agents and Multi-Agent Technology, Apr. 1996, pp. 1-17.
Hadidi et al., “Student's Acceptance of Web-Based Course Offerings: An Empirical Assessment”, Proceedings of the Americas Conference on Information Systems(AMCIS), 1998, 4 pages.
Sugumaran, V., “A Distributed Intelligent Agent-Based Spatial Decision Support System”, Proceedings of the Americas Conference on Information systems (AMCIS), Dec. 31, 1998, 4 pages.
Martin et al., “The Open Agent Architecture: A Framework for Building Distributed Software Systems”, Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, available at <http://adam.cheyer.com/papers/oaa.pdf>>, retrieved from internet on Jan.-Mar. 1999.
Sullivan, Danny, “How Google Instant's Autocomplete Suggestions Work”, available at http://searchengineland.com/how-google-instant-autocomplete- suggestions-work-62592>, Apr. 6, 2011, 12 pages.
Martin et al., “Transportability and Generality in a Natural-Language Interface System”, Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Technical Note 293, Aug. 1983, 21 pages.
Haga et al., “A Usability Survey of a Contents-Based Video Retrieval System by Combining Digital Video and an Electronic Bulletin Board”, The Internet and Higher Education, vol. 8, No. 3, 2005, pp. 251-262.
Martins et al., “Extracting and Exploring the Geo-Temporal Semantics of Textual Resources”, Semantic Computing, IEEE International Conference, 2008, pp. 1-9.
Summerfield et al., “ASIC Implementation of the Lyon Cochlea Model”, Proceedings of the 1992 International Conference on Acoustics, Speech and Signal Processing, IEEE, vol. V, 1992, pp. 673-676.
Hain et al., “The Papageno TTS System”, Siemens AG, Corporate Technology, Munich, Germany TC-STAR Workshop, 2006, 6 pages.
Masui, Toshiyuki, “POBox: An Efficient Text Input Method for Handheld and Ubiquitous Computers”, Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, 1999, 12 pages.
Haitsma et al., “A Highly Robust Audio Fingerprinting System”, In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), 2002, 9 pages.
Matiasek et al., “Tamic-P: A System for NL Access to Social Insurance Database”, 4th International Conference on Applications of Natural Language to Information Systems, Jun. 1999, 7 pages.
Sundaram et al., “Latent Perceptual Mapping with Data-Driven Variable- Length Acoustic Units for Template-Based Speech Recognition”, ICASSP 2012, Mar. 2012, pp. 4125-4128.
Halbert, D. C., “Programming by Example”, Dept. Electrical Engineering and Comp. Sciences, University of California, Berkley, Nov. 1984, pp. 1-76.
Sycara et al., “Coordination of Multiple Intelligent Software Agents”, International Journal of Cooperative Information Systems (IJCIS), vol. 5, No. 2 3, 1996, 31 pages.
Matsui et al., “Speaker Adaptation of Tied-Mixture-Based Phoneme Models for Text-Prompted Speaker Recognition”, 1994 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19-22, 1994, 1-125-1-128.
Hall, William S., “Adapt Your Program for Worldwide Use with Windows.TM. Internationalization Support”, Microsoft Systems Journal, vol. 6, No. 6, Nov./Dec. 1991, pp. 29-58.
Sycara et al., “Distributed Intelligent Agents”, IEEE Expert, vol. 11, No. 6, Dec. 1996, 32 pages.
Matsuzawa, A, “Low-Voltage and Low-Power Circuit Design for Mixed Analog/Digital Systems in Portable Equipment”, IEEE Journal of Solid-State Circuits, vol. 29, No. 4, 1994, pp. 470-480.
Haoui et al., “Embedded Coding of Speech: A Vector Quantization Approach”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 297-299.
Sycara et al., “Dynamic Service Matchmaking among Agents in Open Information Environments”, SIGMOD Record, 1999, 7 pages.
Hardwar, Devindra, “Driving App Waze Builds its own Siri for Hands-Free Voice Control”, Available online at <http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for- hands-free-voice-control/>, retrieved on Feb. 9, 2012, 4 pages.
McGuire et al., “SHADE: Technology for Knowledge-Based Collaborative Engineering”, Journal of Concurrent Engineering Applications and Research (CERA), 1993, 18 pages.
Sycara et al., “The RETSINA MAS Infrastructure”, Autonomous Agents and Multi-Agent Systems, vol. 7, 2003, 20 pages.
Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform”, In Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, 34 pages.
Meet Ivee, Your Wi-Fi Voice Activated Assistant, available at <http://www.helloivee.com/>, retrieved on Feb. 10, 2014, 8 pages.
T3 Magazine, “Creative MuVo TX 256MB”, available at <http://www.t3.co.uk/reviews/entertainment/mp3_player/creativemuvo_tx_256mb>, Aug. 17, 2004, 1 page.
Hartson et al., “Advances in Human-Computer Interaction”, Chapters 1, 5, and 6, vol. 3, 1992, 121 pages.
TAOS, “TAOS, Inc. Announces Industry's First Ambient Light Sensor to Convert Light Intensity to Digital Signals”, News Release, available at <http://www.taosine.com/presssrelease_090902.htm>, Sep. 16, 2002, 3 pages.
Mel Scale, Wikipedia the Free Encyclopedia, Last modified on Oct. 13, 2009 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Melscale>, 2 pages.
Mellinger, David K., “Feature-Map Methods for Extracting Sound Frequency Modulation”, IEEE Computer Society Press, 1991, pp. 795-799.
Hashimoto, Yoshiyuki , “Simple Guide for iPhone Siri, Which Can Be Operated with Your Voice”, Shuwa System Co., Ltd., vol. 1, Jul. 5, 2012, pp. 8, 130, 131.
Taylor et al., “Speech Synthesis by Phonological Structure Matching”, International Speech Communication Association, vol. 2, Section 3, 1999, 4 pages.
Meng et al., “Generating Phonetic Cognates to Handle Named Entities in English-Chinese Cross-Language Spoken Document Retrieval”, Automatic Speech Recognition and Understanding, Dec. 2001, pp. 311-314.
Hawkins et al., “Hierarchical Temporal Memory: Concepts, Theory and Terminology”, Numenta, Inc., Mar. 27, 2007, 20 pages.
Tello, Ernest R., “Natural-Language Systems”, Mastering AI Tools and Techniques, Howard W. Sams & Company, 1988.
Meng et al., “Wheels: A Conversational System in the Automobile Classified Domain”, Proceedings of Fourth International Conference on Spoken Language, ICSLP 96, vol. 1, Oct. 1996, 4 pages.
Tenenbaum et al., “Data Structure Using Pascal”, Prentice-Hall, Inc., 1981, 34 pages.
He et al., “Personal Security Agent: KQML-Based PKI”, The Robotics Institute, Carnegie-Mellon University, Paper, 1997, 14 pages.
Menico, Costas, “Faster String Searches”, Dr. Dobb's Journal, vol. 14, No. 7, Jul. 1989, pp. 74-77.
Textndrive, “Text'nDrive App Demo-Listen and Reply to your Messages by Voice while Driving!”, YouTube Video available at <http://www.youtube.com/watch?v=WaGfzoHsAMw>, Apr. 27, 2010, 1 page.
Menta, Richard, “1200 Song MP3 Portable is a Milestone Player”, available at <http://www.mp3newswire.net/stories/personaljuke.html>, Jan. 11, 2000, 4 pages.
Headset Button Controller v7.3 APK Full APP Download for Android, Blackberry, iPhone, 11 pages.
Merlin et al., “Non Directly Acoustic Process for Costless Speaker Recognition and Indexation”, International Workshop on Intelligent Communication Technologies and Applications, Jan. 1, 1999, 5 pages.
Hear voice from Google translate, Available on URL:https://www.youtube.com/watch?v=18AvMhFqD28, Jan. 28, 2011.
TG3 Electronics, Inc., “BL82 Series Backlit Keyboards”, available at <http://www.tg3electronics.com/products/backlit/backlit.htm>, retrieved on Dec. 19, 2002, 2 pages.
Meyer, Mike, “A Shell for Modern Personal Computers”, University of California, Aug. 1987, pp. 13-19.
The HP 150, “Hardware: Compact, Powerful, and Innovative”, vol. 8, No. 10, Oct. 1983, pp. 36-50.
Meyrowitz et al., “Brewin: An Adaptable Design Strategy for Window Manager/Virtual Terminal Systems”, Department of Computer Science, Brown University, 1981, pp. 180-189.
Tidwell, Jenifer, “Animated Transition”, Designing Interfaces, Patterns for effective Interaction Design, Nov. 2005, First Edition, 4 pages.
Miastkowski, Stan, “paperWorks Makes Paper Intelligent”, Byte Magazine, Jun. 1992.
Michos et al., “Towards an Adaptive Natural Language Interface to Command Languages”, Natural Language Engineering, vol. 2, No. 3, 1996, pp. 191-209.
Timothy et al., “Speech-Based Annotation and Retrieval of Digital Photographs”, Interspeech. 8th Annual Conference of the International Speech Communication Association, Aug. 27, 2007, pp. 2165-2168.
Microsoft Corporation, “Microsoft MS-DOS Operating System User's Guide”, Microsoft Corporation, 1982, pp. 4-1 to 4-16, 5-1 to 5-19.
Tofel, Kevin C., “SpeakTolt: A Personal Assistant for Older iPhones, iPads”, Apple News, Tips and Reviews, Feb. 9, 2012, 7 pages.
Heger et al., “Knowbot: An Adaptive Data Base Interface”, Nuclear Science and Engineering, V. 107, No. 2, Feb. 1991, pp. 142-157.
Tombros et al., “Users' Perception of Relevance of Spoken Documents”, Journal of the American Society for Information Science, New York, Aug. 2000, pp. 929-939.
Helm et al., “Building Visual Language Parsers”, Proceedings of CHI'91, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1991, 8 pages.
Microsoft Corporation, Microsoft Office Word 2003 (SP2), Microsoft Corporation, SP3 as of 2005, pp. MSWord 2003 Figures 1-5, 1983-2003.
Top 10 Best Practices for Voice User Interface Design available at <http://www.developer.com/voice/article.php/1567051/Top-10-Best-Practices-for-Voice-UserInterface-Design.htm, Nov. 1, 2002, 4 pages.
Touch, Joseph, “Zoned Analog Personal Teleconferencing”, USC / Information Sciences Institute, 1993, pp. 1-19.
Hendrickson, Bruce, “Latent Semantic Analysis and Fiedler Retrieval”, Discrete Algorithms and Mathematics Department, Sandia National Labs, Albuquerque, NM, Sep. 21, 2006, 12 pages.
Microsoft Press, “Microsoft Windows User's Guide for the Windows Graphical Environment”, version 3.0, 1985-1990, pp. 33-41 & 70-74.
Toutanova et al., “Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network”, Computer Science Dept., Stanford University, Stanford CA 94305-9040, 2003, 8 pages.
Hendrix et al., “Developing a Natural Language Interface to Complex Data”, ACM Transactions on Database Systems, vol. 3, No. 2, Jun. 1978, pp. 105-147.
Microsoft Windows XP, “Magnifier Utility”, Oct. 25, 2001, 2 pages.
Trigg et al., “Hypertext Habitats: Experiences of Writers in NoteCards”, Hypertext '87 Papers; Intelligent Systems Laboratory, Xerox Palo Alto Research Center, 1987, pp. 89-108.
Hendrix et al., “The Intelligent Assistant: Technical Considerations Involved in Designing Q&A's Natural-Language Interface”, Byte Magazine, Issue 14, Dec. 1987, 1 page.
Trowbridge, David, “Using Andrew for Development of Educational Applications”, Center for Design of Educational Computing, Carnegie-Mellon University (CMU-ITC-85-065), Jun. 2, 1985, pp. 1-6.
Microsoft Word 2000 Microsoft Corporation, pp. MSWord Figures 1-5, 1999.
Hendrix et al., “Transportable Natural-Language Interfaces to Databases”, SRI International, Technical Note 228, Apr. 30, 1981, 18 pages.
Tsai et al., “Attributed Grammar—A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition”, IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-10, No. 12, Dec. 1980, 13 pages.
Microsoft, “Turn on and Use Magnifier”, available at <http://www.microsoft.com/windowsxp/using/accessibility/magnifierturnon.m spx>, retrieved on Jun. 6, 2009.
Hendrix, Gary G., “Human Engineering for Applied Natural Language Processing”, SRI International, Technical Note 139, Feb. 1977, 27 pages.
Tsao et al., “Matrix Quantizer Design for LPC Speech Using the Generalized Lloyd Algorithm”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 237-245.
Microsoft/Ford, “Basic Sync Commands”, www.SyncMyRide.com, Sep. 14, 2007, 1 page.
Miller, Chance, “Google Keyboard Updated with New Personalized Suggestions Feature”, available at <http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/, Mar. 19, 2014, 4 pages.
Tucker, Joshua, “Too Lazy to Grab Your TV Remote? Use Siri Instead”, Engadget, Nov. 30, 2011, 8 pages.
Milner, N. P., “A Review of Human Performance and Preferences with Different Input Devices to Computer Systems”, Proceedings of the Fourth Conference of the British Computer Society on People and Computers, Sep. 5-9, 1988, pp. 341-352.
Hendrix, Gary G., “Klaus: A System for Managing Information and Computational Resources”, SRI International, Technical Note 230, Oct. 1980, 34 pages.
Milstead et al., “Metadata: Cataloging by Any Other Name”, available at <http://www.iicm.tugraz.at/thesis/cgueddiss/literatur/Kapite106/References/Milstead_et_al._1999/metadata.html>, Jan. 1999, 18 pages.
Tur et al., “The CALO Meeting Assistant System”, IEEE Transactions on Audio, Speech and Language Processing, vol. 18, No. 6, Aug. 2010, pp. 1601-1611.
Milward et al., “D2.2: Dynamic Multimodal Interface Reconfiguration, Talk and Look: Tools for Ambient Linguistic Knowledge”, available at <http://www.ihmc.us/users/nblaylock?Pubs/Files talk d2.2.pdf>, Aug. 8, 2006, 69 pages.
Hendrix, Gary G., “Lifer: A Natural Language Interface Facility”, SRI Stanford Research Institute, Technical Note 135, Dec. 1976, 9 pages.
Tur et al., “The CALO Meeting Speech Recognition and Understanding System”, Proc. IEEE Spoken Language Technology Workshop, 2008, 4 pages.
Miniman, Jared, “Applian Software's Replay Radio and Player v1.02”, pocketnow.com—Review, available at <http://www.pocketnow.com/reviews/replay/replay.htm>, Jul. 31, 2001, 16 pages.
Turletti, Thierry, “The INRIA Videoconferencing System (IVS)”, Oct. 1994, pp. 1-7.
Hendrix, Gary G., “Natural-Language Interface”, American Journal of Computational Linguistics, vol. 8, No. 2, Apr.-Jun. 1982, pp. 56-61.
Minimum Phase, Wikipedia the free Encyclopedia, Last modified on Jan. 12, 2010 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Minimumphase>, 8 pages.
Tyson et al., “Domain-Independent Task Specification in the TACITUS Natural Language System”, SRI International, Artificial Intelligence Center, May 1990, 16 pages.
Hendrix, Gary G., “The Lifer Manual: A Guide to Building Practical Natural Language Interfaces”, SRI International, Technical Note 138, Feb. 1977, 76 pages.
Minker et al., “Hidden Understanding Models for Machine Translation”, Proceedings of ETRW on Interactive Dialogue in Multi-Modal Systems, Jun. 1999, pp. 1-4.
Udell, J., “Computer Telephony”, BYTE, vol. 19, No. 7, Jul. 1994, 9 pages.
Mitra et al., “A Graph-Oriented Model for Articulation of Ontology Interdependencies”, Advances in Database Technology, Lecture Notes in Computer Science, vol. 1777, 2000, pp. 1-15.
Henrich et al., “Language Identification for the Automatic Grapheme-To-Phoneme Conversion of Foreign Words in a German Text-To-Speech System”, Proceedings of the European Conference on Speech Communication and Technology, vol. 2, Sep. 1989, pp. 220-223.
Moberg et al., “Cross-Lingual Phoneme Mapping for Multilingual Synthesis Systems”, Proceedings of the 8th International Conference on Spoken Language Processing, Jeju Island, Korea, INTERSPEECH 2004, Oct. 4-8, 2004, 4 pages.
Hermansky, H., “Perceptual Linear Predictive (PLP) Analysis of Speech”, Journal of the Acoustical Society of America, vol. 87, No. 4, Apr. 1990, 15 pages.
Uslan et al., “A Review of Henter-Joyce's MAGic for Windows NT”, Journal of Visual Impairment and Blindness, Dec. 1999, pp. 666-668.
Moberg, M., “Contributions to Multilingual Low-Footprint TTs System for Hand-Held Devices”, Doctoral Thesis, Tampere University of Technology, Aug. 17, 2007, 82 pages.
Uslan et al., “A Review of Supernova Screen Magnification Program for Windows”, Journal of Visual & Impairment Blindness, Feb. 1999, pp. 108-110.
Hermansky, H., “Recognition of Speech in Additive and Convolutional Noise Based on Rasta Spectral Processing”, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'93), Apr. 1993, 4 pages.
Mobile Speech Solutions, Mobile Accessibility, SVOX AG Product Information Sheet, available at <http://www.svox.com/site/bra840604/con782768/mob965831936.aSQ?osLan g=1>, Sep. 27, 2012, 1 page.
Uslan et al., “A Review of Two Screen Magnification Programs for Windows 95: Magnum 95 and LP-Windows”, Journal of Visual Impairment & Blindness, Sep.-Oct. 1997, 9-13.
Heyer et al., “Exploring Expression Data: Identification and Analysis of Coexpressed Genes”, Genome Research, vol. 9, 1999, pp. 1106-1115.
Mobile Tech News, “T9 Text Input Software Updated”, available at <http://www.mobiletechnews.com/info/2004/11/23/122155.html>, Nov. 23, 2004, 4 pages.
Van Santen, J. P.H., “Contextual Effects on Vowel Duration”, Journal Speech Communication, vol. 11, No. 6, Dec. 1992, pp. 513-546.
Modi et al., “CMRadar: A Personal Assistant Agent for Calendar Management”, AAAI, Intelligent Systems Demonstrations, 2004, pp. 1020-1021.
Hill, R. D., “Some Important Features and Issues in User Interface Management System”, Dynamic Graphics Project, University of Toronto, CSRI, vol. 21, No. 2, Apr. 1987, pp. 116-120.
Mok et al., “Media Searching on Mobile Devices”, IEEE EIT 2007 Proceedings, 2007, pp. 126-129.
Veiga, Alex, “AT&T Wireless Launching Music Service”, available at <http://bizyahoo.com/ap/041005/att_mobile_music_5.html?printer=1>, Oct. 5, 2004, 2 pages.
Hinckley et al., “A Survey of Design Issues in Spatial Input”, UIST '94 Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, 1994, pp. 213-222.
Hiroshi, “TeamWork Station: Towards a Seamless Shared Workspace”, NTT Human Interface Laboratories, CSCW 90 Proceedings, Oct. 1990, pp. 13-26.
Vepa et al., “New Objective Distance Measures for Spectral Discontinuities in Concatenative Speech Synthesis”, Proceedings of the IEEE 2002 Workshop on Speech Synthesis, 2002, 4 pages.
Moore et al., “Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing for Atis”, SRI International, Artificial Intellqence Center, 1995, 4 pages.
Hirschman et al., “Multi-Site Data Collection and Evaluation in Spoken Language Understanding”, Proceedings of the Workshop on Human Language Technology, 1993, pp. 19-24.
Verschelde, Jan, “MATLAB Lecture 8. Special Matrices in MATLAB”, UIC, Dept. of Math, Stat. CS, MCS 320, Introduction to Symbolic Computation, 2007, 4 pages.
Hobbs et al., “Fastus: A System for Extracting Information from Natural-Language Text”, SRI International, Technical Note 519, Nov. 19, 1992, 26 pages.
Viegas et al., “Chat Circles”, SIGCHI Conference on Human Factors in Computing Systems, May 15-20, 1999, pp. 9-16.
Moore et al., “SRI's Experience with the ATIS Evaluation”, Proceedings of the Workshop on Speech and Natural Language, Jun. 1990, pp. 147-148.
Hobbs et al., “Fastus: Extracting Information from Natural-Language Texts”, SRI International, 1992, pp. 1-22.
Viikki et al., “Speaker- and Language-Independent Speech Recognition in Mobile Communication Systems”, IEEE, vol. 1, 2001, pp. 5-8.
Moore et al., “The Information Warfare Advisor: An Architecture for Interacting with Intelligent Agents Across the Web”, Proceedings of Americas Conference on Information Systems (AMCIS), Dec. 31, 1998, pp. 186-188.
Hobbs, Jerry R., “Sublanguage and Knowledge”, SRI International, Technical Note 329, Jun. 1984, 30 pages.
Vingron, Martin, “Near-Optimal Sequence Alignment”, Current Opinion in Structural Biology, vol. 6, No. 3, 1996, pp. 346-352.
Moore, Robert C., “Handling Complex Queries in a Distributed Data Base”, SRI International, Technical Note 170, Oct. 8, 1979, 38 pages.
Hodjat et al., “Iterative Statistical Language Model Generation for use with an Agent-Oriented Natural Language Interface”, Proceedings of HCI International, vol. 4, 2003, pp. 1422-1426.
Moore, Robert C., “Practical Natural-Language Processing by Computer”, SRI International, Technical Note 251, Oct. 1981, 34 pages.
Hoehfeld et al., “Learning with Limited Numerical Precision Using the Cascade-Correlation Algorithm”, IEEE Transactions on Neural Networks, vol. 3, No. 4, Jul. 1992, 18 pages.
Moore, Robert C., “The Role of Logic in Knowledge Representation and Commonsense Reasoning”, SRI International, Technical Note 264, Jun. 1982, 19 pages.
Vlingo InCar, “Distracted Driving Solution with Vlingo InCar”, YouTube Video, Available online at<http://www.youtube.com/watch?v=Vqs8Xxgz4>, Oct. 2010, 2 pages.
Moore, Robert C., “Using Natural-Language Knowledge Sources in Speech Recognition”, SRI International, Artificial Intelligence Center, Jan. 1999, pp. 1-24.
Holmes, “Speech System and Research”, 1955, pp. 129-135, 152-153.
Vlingo, “Vlingo Launches Voice Enablement Application on Apple App Store”, Press Release, Dec. 3, 2008, 2 pages.
Moran et al., “Intelligent Agent-Based User Interfaces”, Proceedings of International Workshop on Human Interface Technology, Oct. 1995, pp. 1-4.
Holmes, J. N., “Speech Synthesis and Recognition-Stochastic Models for Word Recognition”, Published by Chapman Hall, London, ISBN 0 412 534304, 1998, 7 pages.
Moran et al., “Multimodal User Interfaces in the Open Agent Architecture”, International Conference on Intelligent User Interfaces (IU197), 1997, 8 pages.
Vogel et al., “Shift: A Technique for Operating Pen-Based Interfaces Using Touch”, CHI '07 Proceedings, Mobile Interaction Techniques I, Apr. 28-May 3, 2007, pp. 657-666.
Voiceassist, “Send Text, Listen to and Send E-Mail by Voice”, YouTube Video, Available online at <http://www.youtube.com/watch?v=0tEU61nHHA4>, Jul. 30, 2009, 1 page.
Hon et al., “CMU Robust Vocabulary-Independent Speech Recognition System”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-91), Apr. 1991, 4 pages.
Moran, Douglas B., “Quantifier Scoping in the SRI Core Language Engine”, Proceedings of the 26th Annual Meeting on Association for Computational Linguistics, 1988, pp. 33-40.
Voiceonthego, “Voice on the Go (BlackBerry)”, YouTube Video, available online at <http://www.youtube.com/watch?v=pJqpWgQS98w>, Jul. 27, 2009, 1 page.
Hon et al., “Towards Large Vocabulary Mandarin Chinese Speech Recognition”, Conference on Acoustics, Speech, and Signal Processing, ICASSP-94, IEEE International, vol. 1, Apr. 1994, pp. 545-548.
Morgan, B., “Business Objects (Business Objects for Windows) Business Objects Inc.”, DBMS, vol. 5, No. 10, Sep. 1992, 3 pages.
Hopper, Andy, “Pandora—An Experimental System for Multimedia Applications”, Olivetti Research Laboratory, Apr. 1990, pp. 19-34.
W3C Working Draft, “Speech Synthesis Markup Language Specification for the Speech Interface Framework”, available at <http://www.w3org./TR/speech- synthesis>, retrieved on Dec. 14, 2000, 42 pages.
Morland, D. V., “Human Factors Guidelines for Terminal Interface Design”, Communications ofthe ACM vol. 26, No. 7, Jul. 1983, pp. 484-494.
Wadlow, M. G., “The Role of Human Interface Guidelines in the Design of Multimedia Applications”, Carnegie Mellon University (To be Published in Current Psychology: Research and Reviews, Summer 1990 (CMU-ITC-91-101), 1990, pp. 1-22.
Morris et al., “Andrew: A Distributed Personal Computing Environment”, Communications of the ACM, (Mar. 1986); vol. 29 No. 3,, Mar. 1986, pp. 184-201.
Wahlster et al., “Smartkom: Multimodal Communication with a Life-Like Character”, Eurospeech-Scandinavia, 7th European Conference on Speech Communication and Technology, 2001, 5 pages.
Morton, Philip, “Checking If An Element Is Hidden”, StackOverflow, Available at <http://stackoverflow.com/questions/178325/checking-if-an-element-is- hidden>, Oct. 7, 2008, 12 pages.
Horvitz et al., “Handsfree Decision Support: Toward a Non-invasive Human-Computer Interface”, Proceedings of the Symposium on Computer Applications in Medical Care, IEEE Computer Society Press, 1995, p. 955.
Waibel, Alex, “Interactive Translation of Conversational Speech”, Computer, vol. 29, No. 7, Jul. 1996, pp. 41-48.
Motro, Amihai, “Flex: A Tolerant and Cooperative User Interface to Databases”, IEEE Transactions on Knowledge and Data Engineering, vol. 2, No. 2, Jun. 1990, pp. 231-246.
Horvitz et al., “In Pursuit of Effective Handsfree Decision Support: Coupling Bayesian Inference, Speech Understanding, and User Models”, 1995, 8 pages.
Waldinger et al., “Deductive Question Answering from Multiple Resources”, New Directions in Question Answering, Published by AAAI, Menlo Park, 2003, 22 pages.
Mountford et al., “Talking and Listening to Computers”, The Art of Human-Computer Interface Design, Apple Computer, Inc., Addison-Wesley Publishing Company, Inc., 1990, 17 pages.
Walker et al., “Natural Language Access to Medical Text”, SRI International, Artificial Intelligence Center, Mar. 1981, 23 pages.
Howard, John H., “(Abstract) An Overview of the Andrew File System”, Information Technology Center, Carnegie Mellon University; (CMU-ITC-88-062) to Appear in a future issue of the ACM Transactions on Computer Systems, 1988, pp. 1-6.
Mozer, Michael C., “An Intelligent Environment must be Adaptive”, IEEE Intelligent Systems, 1999, pp. 11-13.
Walker et al., “The LOCUS Distributed Operating System 1”, University of California Los Angeles, 1983, pp. 49-70.
Muller et al., “CSCW'92 Demonstrations”, 1992, pp. 11-14.
Waltz, D., “An English Language Question Answering System for a Large Relational Database”, ACM, vol. 21, No. 7, 1978, 14 pages.
Murty et al., “Combining Evidence from Residual Phase and MFCC Features Jan. for Speaker Recognition”, IEEE Signal Processing Letters, vol. 13, No. 1, 2006, 4 pages.
Wang et al., “An Industrial-Strength Audio Search Algorithm”, In Proceedings of the International Conference on Music Information Retrieval (ISMIR), 2003, 7 pages.
Wang et al., “An Initial Study on Large Vocabulary Continuous Mandarin Speech Recognition with Limited Training Data Based on Sub-Syllabic Models”, International Computer Symposium, vol. 2, 1994, pp. 1140-1145.
Wang et al., “Tone Recognition of Continuous Mandarin Speech Based on Hidden Markov Model”, International Journal of Pattern Recognition and Artificial Intelligence, vol. 8, 1994, pp. 233-245.
Ward et al., “A Class Based Language Model for Speech Recognition”, IEEE, 1996, 3 pages.
Murveit et al., “Integrating Natural Language Constraints into HMM-Based Speech Recognition”, International Conference on Acoustics, Speech and Signal Processing, Apr. 1990, 5 pages.
Ward et al., “Recent Improvements in the CMU Spoken Language Understanding System”, Arpa Human Language Technology Workshop, 1994, 4 pages.
Huang et al., “A Novel Approach to Robust Speech Endpoint Detection in Car Environments”, Acoustics, Speech, and Signal Processing 2000, ICASSP'00, Proceeding S. 2000 IEEE International Conference on Jun. 5-9, 2000, vol. 3, Jun. 5, 2000, pp. 1751-1754.
Ward, Wayne, “The CMU Air Travel Information Service: Understanding Spontaneous Speech”, Proceedings of the Workshop on Speech and Natural Language, HLT '90, 1990, pp. 127-129.
Murveit et al., “Speech Recognition in SRI's Resource Management and ATIS Systems”, Proceedings of the Workshop on Speech and Natural Language, 1991, pp. 94-100.
Ware et al., “The DragMag Image Magnifier Prototype I”, Apple Inc., Video Clip, Marlon, on a CD, Applicant is not Certain about the Date for the Video Clip., 1995.
Huang et al., “Real-Time Software-Based Video Coder for Multimedia Communication Systems”, Department of Computer Science and Information Engineering, 1993, 10 pages.
Ware et al., “The DragMag Image Magnifier”, CHI '95 Mosaic of Creativity, May 7-11, 1995, pp. 407-408.
Musicmatch, “Musicmatch and Xing Technology Introduce Musicmatch Jukebox”, Press Releases, available at <http://www.musicmatch.com/info/company/press/releases/?year= 1998&release=2>, May 18, 1998, 2 pages.
Huang et al., “The Sphinx-II Speech Recognition System: An Overview”, Computer, Speech and Language, vol. 7, No. 2, 1993, 14 pages.
Muthesamy et al., “Speaker-Independent Vowel Recognition: Spectograms versus Cochleagrams”, IEEE, Apr. 1990.
Warren et al., “An Efficient Easily Adaptable System for Interpreting Natural Language Queries”, American Journal of Computational Linguistics, vol. 8, No. 3-4, 1982, 11 pages.
Hukin, R. W., “Testing an Auditory Model by Resynthesis”, European Conference on Speech Communication and Technology, Sep. 26-29, 1989, pp. 243-246.
My Cool Aids, “What's New”, available at <http://www.mycoolaids.com/>, 2012, 1 page.
Watabe et al., “Distributed Multiparty Desktop Conferencing System: MERMAID”, CSCW 90 Proceedings, Oct. 1990, pp. 27-38.
Hunt, “Unit Selection in a Concatenative Speech Synthesis System Using a Large Speech Database”, Copyright 1996 IEEE “To appear in Proc. ICASSP-96, May 7-10, Atlanta, GA” ATR Interpreting Telecommunications Research Labs, Kyoto Japan, 1996, pp. 373-376.
Myers, Brad A., “Shortcutter for Palm”, available at <http://www.cs.cmu.edu/-˜'pebbles/v5/shortcutter/palm/index.html>, retrieved on Jun. 18, 2014, 10 pages.
Weizenbaum, J., “ELIZA—A Computer Program for the Study of Natural Language Communication Between Man and Machine”, Communications of the ACM, vol. 9, No. 1, Jan. 1966, 10 pages.
Werner et al., “Prosodic Aspects of Speech, Universite de Lausanne”, Fundamentals of Speech Synthesis and Speech Recognition: Basic Concepts, State of the Art and Future Challenges, 1994, 18 pages.
N200 Hands-Free Bluetooth Car Kit, available at <www.wirelessground.com>, retrieved on Mar. 19, 2007, 3 pages.
Westerman, Wayne, “Hand Tracking, Finger Identification and Chordic Manipulation on a Multi-Touch Surface”, Doctoral Dissertation, 1999, 363 Pages.
Nadoli et al., “Intelligent Agents in the Simulation of Manufacturing Systems”, Proceedings of the SCS Multiconference on AI and Simulation, 1989, 1 page.
iAP Sports Lingo 0x09 Protocol V1.00, May 1, 2006, 17 pages.
What is Fuzzy Logic?, available at <http://www.cs.cmu.edu>, retrieved on Apr. 15, 1993, 5 pages.
Nakagawa et al., “Speaker Recognition by Combining MFCC and Phase Information”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2010, 4 pages.
IBM Corporation, “Simon Says Here's How”, Users Manual, 1994, 3 pages.
White, George M., “Speech Recognition, Neural Nets, and Brains”, Jan. 1992, pp. 1-48.
Nakagawa et al., “Unknown Word Guessing and Part-of-Speech Tagging Using Support Vector Machines”, Proceedings of the 6th NLPRS, 2001, pp. 325-331.
Naone, Erica, “TR10: Intelligent Software Assistant”, Technology Review, Mar.-Apr. 2009, 2 pages.
IBM, “Integrated Audio-Graphics User Interface”, IBM Technical Disclosure Bulletin, vol. 33, No. 11, Apr. 1991, 4 pages.
Wikipedia, “Acoustic Model”, available at <http://en.wikipedia.org/wiki/AcousticModel>, retrieved on Sep. 14, 2011, 2 pages.
Navigli, Roberto, “Word Sense Disambiguation: A Survey”, ACM Computing Surveys, vol. 41, No. 2, Feb. 2009, 70 pages.
Wikipedia, “Language Model”, available at <http://en.wikipedia.org/wiki/Languagemodel>, retrieved on Sep. 14, 2011, 3 pages.
NCIP Staff, “Magnification Technology”, available at <http://www2.edc.org/ncip/library/vi/magnifi.htm>, 1994, 6 pages.
Wikipedia, “Speech Recognition”, available at <http://en.wikipedia.org/wiki/Speechrecognition>, retrieved on Sep. 14, 2011, 10 pages.
Wilensky et al., “Talking to UNIX in English: An Overview of UC”, Communications of the ACM, vol. 27, No. 6, Jun. 1984, pp. 574-593.
Feigenbaum et al., “Computer-Assisted Semantic Annotation of Scientific Life Works”, Oct. 15, 2007, 22 pages.
NCIP, “NCIP Library: Word Prediction Collection”, available at <http://www2.edc.org/ncip/library/wp/toc.htm>, 1998, 4 pages.
Wilson, Mark, “New iPod Shuffle Moves Buttons to Headphones, Adds Text to Speech”, available at <http://gizmodo.com/5167946/new-ipod-shuffle-moves- buttons-to-headphones-adds-text-to-speech>, Mar. 11, 2009, 13 pages.
Ferguson et al., “TRIPS: An Integrated Intelligent Problem-Solving Assistant”, Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) and Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), 1998, 7 pages.
NCIP, “What is Word Prediction?”, available at <http://www2.edc.org/NCIP/library/wp/whatis.htm>, 1998, 2 pages.
Windows XP: A Big Surprise!—Experiencing Amazement from Windows XP, New Computer, No. 2, Feb. 28, 2002, 8 pages.
Fikes et al., “A Network-Based Knowledge Representation and its Natural Deduction System”, SRI International, Jul. 1977, 43 pages.
NDTV, “Sony SmartWatch 2 Launched in India for Rs. 14,990”, available at <http://gadgets.ndtv.com/others/news/sony-smartwatch-2-launched-in-india-for-rs-14990-420319>, Sep. 18, 2013, 4 pages.
Winiwarter et al., “Adaptive Natural Language Interfaces to FAQ Knowledge Bases”, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, Jun. 1999, 22 pages.
Findlater et al., “Beyond Qwerty: Augmenting Touch-Screen Keyboards with Multi-Touch Gestures for Non-Alphanumeric Input”, CHI '12, Austin, Texas, USA, May 5-10, 2012, 4 pages.
Neches et al., “Enabling Technology for Knowledge Sharing”, Fall, 1991, pp. 37-56.
Wirelessinfo, “SMS/MMS Ease of Use (8.0)”, available at <http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm>, Mar. 2007, 3 pages.
Newton, Harry, “Newton's Telecom Dictionary”, Mar. 1998, pp. 62, 155, 610-611, 771.
Wolff, M., “Post Structuralism and the ARTFUL Database: Some Theoretical Considerations”, Information Technology and Libraries, vol. 13, No. 1, Mar. 1994, 10 pages.
Ng, Simon, “Google's Task List Now Comes to 1phone”, SimonBlog, Available at <http://www.simonblog.com/2009/02/04/googles-task-list-now-comes-to- iphone>/, Feb. 4, 2009, 33 pages.
Wong et al., “An 800 Bit/s Vector Quantization LPC Vocoder”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Oct. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 222-232.
Nguyen et al., “Generic Manager for Spoken Dialogue Systems”, In DiaBruck: 7th Workshop on the Semantics and Pragmatics of Dialogue, Proceedings, 2003, 2 pages.
Wong et al., “Very Low Data Rate Speech Compression with LPC Vector and Matrix Quantization”, (Proceedings of the IEEE Int'l Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 233-236.
Fiscus, J. G., “A Post-Processing System to Yield Reduced Word Error Rates: Recognizer Output Voting Error Reduction (ROVER)”, IEEE Proceedings, Automatic Speech Recognition and Understanding, Dec. 14-17, 1997, pp. 347-354.
Niesler et al., “A Variable-Length Category-Based N-Gram Language Model”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'96), vol. 1, May 1996, 6 pages.
Worldwide Character Encoding, Version 2.0, vols. 1,2 by Unicode, Inc., 12 pages.
Written Opinion received for PCT Patent Application No. PCT/US2005/046797, dated Nov. 24, 2006, 9 pages.
Fisher et al., “Virtual Environment Display System”, Interactive 3D Graphics, Oct. 23-24, 1986, pp. 77-87.
Wu et al., “Automatic Generation of Synthesis Units and Prosodic Information for Chinese Concatenative Synthesis”, Speech Communication, vol. 35, No. 3-4, Oct. 2001, pp. 219-237.
Nilsson, B. A., “Microsoft Publisher is an Honorable Start for DTP Beginners”, Computer Shopper, Feb. 1, 1992, 2 pages.
Forsdick, Harry, “Explorations into Real-Time Multimedia Conferencing”, Proceedings of the Ifip Tc 6 International Symposium on Computer Message Systems, 1986, 331 pages.
Wu et al., “KDA: A Knowledge-Based Database Assistant”, Proceeding of the Fifth International Conference on Engineering (IEEE Cat.No. 89CH2695-5), 1989, 8 pages.
Frisse, M. E., “Searching for Information in a Hypertext Medical Handbook”, Communications of the ACM, vol. 31, No. 7, Jul. 1988, 8 pages.
Wu, M., “Digital Speech Processing and Coding”, Multimedia Signal Processing, Lecture-2 Course Presentation, University of Maryland, College Park, 2003, 8 pages.
Furnas et al., “Space-Scale Diagrams: Understanding Multiscale Interfaces”, CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1995, pp. 234-241.
Noik, Emanuel G., “Layout-Independent Fisheye Views of Nested Graphs”, IEEE Proceedings of Symposium on Visual Languages, 1993, 6 pages.
Furnas, George W., “Effective View Navigation”, Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Mar. 1997, pp. 367-374.
Wu, M., “Speech Recognition, Synthesis, and H.C.I.”, Multimedia Signal Processing, Lecture-3 Course Presentation, University of Maryland, College Park, 2003, 11 pages.
Nonhoff-Arps et al., “StraBenmusik: Portable MP3-Spieler mit USB Anschluss”, CT Magazin Fuer Computer Technik, Verlag Heinz Heise GMBH, Hannover DE, No. 25, 2000, pp. 166-175.
Furnas, George W., “Generalized Fisheye Views”, CHI '86 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, vol. 17, No. 4, Apr. 1986, pp. 16-23.
Wyle, M. F., “A Wide Area Network Information Filter”, Proceedings of First International Conference on Artificial Intelligence on Wall Street, Oct. 1991, 6 pages.
Northern Telecom, “Meridian Mail PC User Guide”, 1988, 17 Pages.
Furnas, George W., “The Fisheye Calendar System”, Bellcore Technical Memorandum, Nov. 19, 1991.
Notenboom, Leo A., “Can I Retrieve Old MSN Messenger Conversations?”, available at <http://ask-leo.com/can_i_retrieve_old_msn_messengerconversations.html>, Mar. 11, 2004, 23 pages.
Gamback et al., “The Swedish Core Language Engine”, NOTEX Conference, 1992, 17 pages.
Xiang et al., “Correcting Phoneme Recognition Errors in Learning Word Pronunciation through Speech Interaction”, Speech Communication, vol. 55, No. 1, Jan. 1, 2013, pp. 190-203.
Noth et al., “Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System”, IEEE Transactions on Speech and Audio Processing, vol. 8, No. 5, Sep. 2000, pp. 519-532.
Gannes, Liz, “Alfred App Gives Personalized Restaurant Recommendations”, AllThingsD, Jul. 18, 2011, pp. 1-3.
Xu et al., “Speech-Based Interactive Games for Language Learning: Reading, Translation, and Question-Answering”, Computational Linguistics and Chinese Language Processing, vol. 14, No. 2, Jun. 2009, pp. 133-160.
Gardner, Jr., P. C., “A System for the Automated Office Environment”, IBM Systems Journal, vol. 20, No. 3, 1981, pp. 321-345.
O'Connor, Roryj., “Apple Banking on Newton's Brain”, San Jose Mercury News, Apr. 22, 1991.
Yang et al., “Auditory Representations of Acoustic Signals”, IEEE Transactions of Information Theory, vol. 38, No. 2, Mar. 1992, pp. 824-839.
Garretson, R., “IBM Adds ‘Drawing Assistant’ Design Tool to Graphic Series”, PC Week, vol. 2, No. 32, Aug. 13, 1985, 1 page.
Odubiyi et al., “SAIRE—A Scalable Agent-Based Information Retrieval Engine”, Proceedings of the First International Conference on Autonomous Agents, 1997, 12 pages.
Yang et al., “Hidden Markov Model for Mandarin Lexical Tone Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 36, No. 7, Jul. 1988, pp. 988-992.
Ohsawa et al., “A computational Model of an Intelligent Agent Who Talks with a Person”, Research Reports on Information Sciences, Series C, No. 92, Apr. 1989, pp. 1-18.
Gautier et al., “Generating Explanations of Device Behavior Using Compositional Modeling and Causal Ordering”, CiteSeerx, 1993, pp. 89-97.
Yang et al., “Smart Sight: A Tourist Assistant System”, Proceedings of Third International Symposium on Wearable Computers, 1999, 6 pages.
Gaver et al., “One Is Not Enough: Multiple Views in a Media Space”, INTERCHI, Apr. 24-29, 1993, pp. 335-341.
Ohtomo et al., “Two-Stage Recognition Method of Hand-Written Chinese Characters Using an Integrated Neural Network Model”, Denshi Joohoo Tsuushin Gakkai Ronbunshi, D-II, vol. J74, Feb. 1991, pp. 158-165.
Yankelovich et al., “Intermedia: The Concept and the Construction of a Seamless Information Environment”, Computer Magazine, IEEE, Jan. 1988, 16 pages.
Gaver et al., “Realizing a Video Environment: EuroPARC's RAVE System”, Rank Xerox Cambridge EuroPARC, 1992, pp. 27-35.
Okazaki et al., “Multi-Fisheye Transformation Method for Large-Scale Network Maps”, IEEE Japan, vol. 44, No. 6, 1995, pp. 495-500.
Yarowsky, David, “Homograph Disambiguation in Text-to-Speech Synthesis”, Chapter 12, Progress in Speech Synthesis, 1997, pp. 157-172.
Gervasio et al., “Active Preference Learning for Personalized Calendar Scheduling Assistance”, CiteSeerx, Proceedings of IUI'05, Jan. 2005, pp. 90-97.
Yiourgalis et al., “Text-to-Speech system for Greek”, ICASSP 91, vol. 1, May 14-17, 1991, pp. 525-528.
Omologo et al., “Microphone Array Based Speech Recognition with Different Talker-Array Positions”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, Apr. 21-24, 1997, pp. 227-230.
Yoon et al., “Letter-to-Sound Rules for Korean”, Department of Linguistics, The Ohio State University, 2002, 4 pages.
Giachin et al., “Word Juncture Modeling Using Inter-Word Context-Dependent Phone-Like Units”, Cselt Technical Reports, vol. 20, No. 1, Mar. 1992, pp. 43-47.
Oregon Scientific, “512MB Waterproof MP3 Player with FM Radio & Built-in Pedometer”, available at <http://www2.oregonscientific.com/shop/product.asp?cid=4&scid=11&pid=58 1>, retrieved on Jul. 31, 2006, 2 pages.
Young, S. J., “The HTK Book”, Available on <http://htk.eng.cam.ac.uk>, 4 pages.
Gillespie, Kelly, “Adventures in Integration”, Data Based Advisor, vol. 9, No. 9, Sep. 1991, pp. 90-92.
Youtube, “New bar search for Facebook”, Available at “https://www.youtube.com/watch?v=vwgN1WbvCas”, 1 page.
Gillespie, Kelly, “Internationalize Your Applications with Unicode”, Data Based Advisor, vol. 10, No. 10, Oct. 1992, pp. 136-137.
Yunker, John, “Beyond Borders: Web Globalization Strategies”, New Riders, Aug. 22, 2002, 11 pages.
Oregon Scientific, “Waterproof Music Player with FM Radio and Pedometer (MP121)—User Manual”, 2005, 24 pages.
Gilloire et al., “Innovative Speech Processing for Mobile Terminals: An Annotated Bibliography”, Signal Processing, vol. 80, No. 7, Jul. 2000, pp. 1149-1166.
Zainab, “Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]”, available at <http://www.addictivetips.com/internet-tips/google- input-tools-shows-multiple-language-onscreen-keyboards-chrome/, Jan. 3, 2012, 3 pages.
Osxdaily, “Get a List of Siri Commands Directly from Siri”, Available at <http://osxdaily.com/2013/02/05/list-siri-commands/, Feb. 5, 2013, 15 pages.
Glass et al., “Multilingual Language Generation Across Multiple Domains”, International Conference on Spoken Language Processing, Japan, Sep. 1994, 5 pages.
Owei et al., “Natural Language Query Filtration in the Conceptual Query Language”, IEEE, 1997, pp. 539-549.
Zelig, “A Review of the Palm Treo 750v”, available at <http://www.mtekk.com.au/Articles/tabid/54/articleType/ArticleView/articleld /769/A-Review-of-the-Palm-Treo-750v.aspx, Feb. 5, 2007, 3 pages.
Glass et al., “Multilingual Spoken-Language Understanding in the Mit Voyager System”, Available online at <http://groups.csail.mit.edu/sls/publications/1995/speechcomm95- voyager.pdf>, Aug. 1995, 29 pages.
Zeng et al., “Cooperative Intelligent Software Agents”, The Robotics Institute, Carnegie-Mellon University, Mar. 1995, 13 pages.
Padilla, Alfredo, “Palm Treo 750 Cell Phone Review—Messaging”, available at <http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm>, Mar. 17, 2007, 6 pages.
Palay et al., “The Andrew Toolkit: An Overview”, Information Technology Center, Carnegie-Mellon University, 1988, pp. 1-15.
Palm, Inc., “User Guide: Your Palm® Treo.TM. 755p Smartphone”, 2005-2007, 304 pages.
Glass, Alyssa, “Explaining Preference Learning”, CiteSeerx, 2006, pp. 1-5.
Zhang et al., “Research of Text Classification Model Based on Latent Semantic Analysis and Improved HS-SVM”, Intelligent Systems and Applications (ISA), 2010 2nd International Workshop, May 22-23, 2010, 5 pages.
Pan et al., “Natural Language Aided Visual Query Building for Complex Data Access”, In proceeding of: Proceedings of the Twenty-Second Conference on Innovative Applications of Artificial Intelligence, XP055114607, Jul. 11, 2010.
Glinert-Stevens, Susan, “Microsoft Publisher: Desktop Wizardry”, PC Sources, vol. 3, No. 2, Feb. 1992, 1 page.
Zhao et al., “Intelligent Agents for Flexible Workflow Systems”, Proceedings of the Americas Conference on Information Systems (AMCIS), Oct. 1998, 4 pages.
Panasonic, “Toughbook 28: Powerful, Rugged and Wireless”, Panasonic: Toughbook Models, available at <http://www.panasonic.com/computer/notebook/html/01a_s8.htm>, retrieved on Dec. 19, 2002, 3 pages.
Zhao, Y., “An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition”, IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, pp. 380-394.
Zhong et al., “JustSpeak: Enabling Universal Voice Control on Android”, W4A'14, Proceedings of the 11th Web for All Conference, No. 36, Apr. 7-9, 2014, 8 pages.
Pannu et al., “A Learning Personal Agent for Text Filtering and Notification”, Proceedings of the International Conference of Knowledge Based Systems, 1996, pp. 1-11.
Ziegler, K, “A Distributed Information System Study”, IBM Systems Journal, vol. 18, No. 3, 1979, pp. 374-401.
Papadimitriou et al., “Latent Semantic Indexing: A Probabilistic Analysis”, Available online at <http://citeseerx.ist.psu.edu/messaqes/downloadsexceeded.html>, Nov. 14, 1997, 21 pages.
Zipnick et al., “U.S. Appl. No. 10/859,661, filed Jun. 2, 2004”.
Glossary of Adaptive Technologies: Word Prediction, available at <http://www.utoronto.ca/atrc/reference/techwordpred.html>, retrieved on Dec. 6, 2005, 5 pages.
Parks et al., “Classification of Whale and Ice Sounds with a cochlear Model”, IEEE, Mar. 1992.
Zovato et al., “Towards Emotional Speech Synthesis: A Rule based Approach”, Proceedings of 5th ISCA Speech Synthesis Workshop—Pittsburgh, 2004, pp. 219-220.
Gmail, “About Group Chat”, available at <http://mail.google.com/support/bin/answer.py?answer=81090>, Nov. 26, 2007, 2 pages.
Parson, T. W., “Voice and Speech Processing”, Pitch and Formant Estimation, McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 1987, 15 pages.
Zue et al., “From Interface to Content: Translingual Access and Delivery of On-Line Information”, Eurospeech, 1997, 4 pages.
Goddeau et al., “A Form-Based Dialogue Manager for Spoken Language Applications”, Available online at <http://phasedance.com/pdf!icslp96.pdf>, Oct. 1996, 4 pages.
Zue et al., “Jupiter: A Telephone-Based Conversational Interface for Weather Information”, IEEE Transactions on Speech and Audio Processing, Jan. 2000, 13 pages.
Parsons, T. W., “Voice and Speech Processing”, Linguistics and Technical Fundamentals, Articulatory Phonetics and Phonemics, McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 1987, 5 pages.
Goddeau et al., “Galaxy: A Human-Language Interface to On-Line Travel Information”, International Conference on Spoken Language Processing, Yokohama, 1994, pp. 707-710.
Patent Abstracts of Japan, vol. 014, No. 273 (E-0940)Jun. 13, 1990 (Jun. 13, 1990) -& JP 02 086057 A (Japan Storage Battery Co Ltd), Mar. 27, 1990 (Mar. 27, 1990).
Zue et al., “Pegasus: A Spoken Dialogue Interface for On-Line Air Travel Planning”, Speech Communication, vol. 15, 1994, 10 pages.
Goldberg et al., “Using Collaborative Filtering to Weave an Information Tapestry”, Communications of the ACM, vol. 35, No. 12, Dec. 1992, 10 pages.
Zue et al., “The Voyager Speech Understanding System: Preliminary Development and Evaluation”, Proceedings of IEEE, International Conference on Acoustics, Speech and Signal Processing, 1990, 4 pages.
Pathak et al., “Privacy-preserving Speech Processing: Cryptographic and String-matching Frameworks Show Promise”, In: IEEE signal processing magazine, retrieved from <http://www.merl.com/publications/docs/TR2013-063.pdf>, Feb. 13, 2013, 16 pages.
Goldberg, Cheryl, “IBM Drawing Assistant: Graphics for the EGA”, PC Magazine, vol. 4, No. 26, Dec. 24, 1985, 1 page.
Zue, Victor W., “Toward Systems that Understand Spoken Language”, ARPA Strategic Computing Institute, Feb. 1994, 9 pages.
Patterson et al., “Rendezvous: An Architecture for Synchronous Multi-User Applications”, CSCW '90 Proceedings, 1990, pp. 317-328.
Zue, Victor, “Conversational Interfaces: Advances and Challenges”, Spoken Language System Group, Sep. 1997, 10 pages.
Gong et al., “Guidelines for Handheld Mobile Device Interface Design”, Proceedings of DSI 2004 Annual Meeting, 2004, pp. 3751-3756.
Pearl, Amy, “System Support for Integrated Desktop Video Conferencing”, Sunmicrosystems Laboratories, Dec. 1992, pp. 1-15.
Gonnet et al., “Handbook of Algorithms and Data Structures: in Pascal and C. (2nd ed.)”, Addison-Wesley Longman Publishing Co., 1991, 17 pages.
Good et al., “Building a User-Derived Interface”, Communications of the ACM; (Oct. 1984) vol. 27, No. 10, Oct. 1984, pp. 1032-1043.
Gorin et al., “On Adaptive Acquisition of Language”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), vol. 1, Apr. 1990, 5 pages.
Rudnicky et al., “Creating Natural Dialogs in the Carnegie Mellon Communicator System”, Proceedings of Eurospeech, vol. 4, 1999, pp. 1531-1534.
Julia et al., “http://www.speech.sri.com/demos/atis.html”, Proceedings of AAAI, Spring Symposium, 1997, 5 pages.
Gotoh et al., “Document Space Models Using Latent Semantic Analysis”, In Proceedings of Eurospeech, 1997, 4 pages.
Russell et al., “Artificial Intelligence, A Modern Approach”, Prentice Hall, Inc., 1995, 121 pages.
Gray et al., “Rate Distortion Speech Coding with a Minimum Discrimination Information Distortion Measure”, (IEEE Transactions on Information Theory, Nov. 1981), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 208-221.
Julia et al., “Un Editeur Interactif De Tableaux Dessines a Main Levee (An Interactive Editor for Hand-Sketched Tables)”, Traitement du Signal, vol. 12, No. 6, 1995, pp. 619-626.
Gray, R. M., “Vector Quantization”, IEEE ASSP Magazine, Apr. 1984, 26 pages.
Kaeppner et al., “Architecture of HeiPhone: A Testbed for Audio/Video Teleconferencing”, IBM European Networking Center, 1993.
Russo et al., “Urgency is a Non-Monotonic Function of Pulse Rate”, Journal of the Acoustical Society of America, vol. 122, No. 5, 2007, 6 pages.
Green, C., “The Application of Theorem Proving to Question-Answering Systems”, SRI Stanford Research Institute, Artificial Intelligence Group, Jun. 1969, 169 pages.
Sabin et al., “Product Code Vector Quantizers for Waveform and Voice Coding”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1984), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 274-288.
Kahn et al., “CoABS Grid Scalability Experiments”, Autonomous Agents and Multi-Agent Systems, vol. 7, 2003, pp. 171-178.
Greenberg, Saul, “A Fisheye Text Editor for Relaxed-WYSIWIS Groupware”, CHI '96 Companion, Vancouver, Canada, Apr. 13-18, 1996, 2 pages.
Kamba et al., “Using Small Screen Space More Efficiently”, CHI '96 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 13-18, 1996, pp. 383-390.
Sacerdoti et al., “A Ladder User's Guide (Revised)”, SRI International Artificial Intelligence Center, Mar. 1980, 39 pages.
Gregg et al., “DSS Access on the WWW: An Intelligent Agent Prototype”, Proceedings of the Americas Conference on Information Systems, Association for Information Systems, 1998, 3 pages.
Griffin et al., “Signal Estimation From Modified Short-Time Fourier Transform”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-32, No. 2, Apr. 1984, pp. 236-243.
Sagalowicz, D., “AD-Ladder User's Guide”, SRI International, Sep. 1980, 42 pages.
Kamel et al., “A Graph Based Knowledge Retrieval System”, IEEE International Conference on Systems, Man and Cybernetics, 1990, pp. 269-275.
Grishman et al., “Computational Linguistics: An Introduction”, Cambridge University Press, 1986, 172 pages.
Kanda et al., “Robust Domain Selection Using Dialogue History in Multi-domain Spoken Dialogue Systems”, Journal of Information Processing Society, vol. 48, No. 5, May 15, 2007, pp. 1980-1989. (English Abstract Submitted).
Sakoe et al., “Dynamic Programming Algorithm Optimization for Spoken Word Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-26, No. 1, Feb. 1978, 8 pages.
Grosz et al., “Dialogic: A Core Natural-Language Processing System”, SRI International, Nov. 1982, 17 pages.
Salton et al., “On the Application of Syntactic Methodologies in Automatic Text Analysis”, Information Processing and Management, vol. 26, No. 1, Great Britain, 1990, 22 pages.
Kanda et al., “Spoken Language Understanding Using Dialogue Context in Database Search Task”, Journal of Information Processing Society of Japan, vol. 47, No. 6, Jun. 15, 2016, pp. 1802-1811. (English Abstract Submitted).
Grosz et al., “Research on Natural-Language Processing at SRI”, SRI International, Nov. 1981, 21 pages.
Kane et al., “Slide Rule: Making Mobile Touch Screens Accessible to Blind People Using Multi-Touch Interaction Techniques”, ASSETS, Oct. 13-15, 2008, pp. 73-80.
Sameshima et al., “Authorization with Security Attributes and Privilege Delegation Access control beyond the ACL”, Computer Communications, vol. 20, 1997, 9 pages.
Grosz et al., “TEAM: An Experiment in the Design of Transportable Natural-Language Interfaces”, Artificial Intelligence, vol. 32, 1987, 71 pages.
Kang et al., “Quality Improvement of LPC-Processed Noisy Speech by Using Spectral Subtraction”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 6, Jun. 1989, pp. 939-942.
Sankar, Ananth, “Bayesian Model Combination (BAYCOM) for Improved Recognition”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Mar. 18-23, 2005, pp. 845-848.
Grosz, B., “Team: A Transportable Natural-Language Interface System”, Proceedings of the First Conference on Applied Natural Language Processing, 1983, 7 pages.
San-Segundo et al., “Confidence Measures for Dialogue Management in the CU Communicator System”, Proceedings of Acoustics, Speech and Signal Processing (ICASSP'00), Jun. 2000, 4 pages.
Karp, P. D., “A Generic Knowledge-Base Access Protocol”, Available online at <http://lecture.cs.buu.ac.th/-f50353/Document/gfp.pdf>, May 12, 1994, 66 pages.
Gruber et al., “An Ontology for Engineering Mathematics”, Fourth International Conference on Principles of Knowledge Representation and Reasoning, Available online at <http://www-ksl.stanford.edu/knowledge- sharing/papers/engmath.html>, 1994, pp. 1-22.
Santaholma, Marianne E., “Grammar Sharing Techniques for Rule-based Multilingual NLP Systems”, Proceedings of the 16th Nordic Conference of Computational Linguistics, NODALIDA 2007, May 25, 2007, 8 pages.
Gruber et al., “Generative Design Rationale: Beyond the Record and Replay Paradigm”, Knowledge Systems Laboratory, Technical Report KSL 92-59, Dec. 1991, Updated Feb. 1993, 24 pages.
Katz et al., “Exploiting Lexical Regularities in Designing Natural Language Systems”, Proceedings of the 12th International Conference on Computational Linguistics, 1988, pp. 1-22.
Santen, Jan P., “Assignment of Segmental Duration in Text-to-Speech Synthesis”, Computer Speech and Language, vol. 8, No. 2, Apr. 1994, pp. 95-128.
Gruber et al., “Machine-Generated Explanations of Engineering Models: A Compositional Modeling Approach”, Proceedings of International Joint Conference on Artificial Intelligence, 1993, 7 pages.
Sarawagi, Sunita, “CRF Package Page”, available at <http://crf.sourceforge.net/>, retrieved on Apr. 6, 2011, 2 pages.
Katz et al., “REXTOR: A System for Generating Relations from Natural Language”, Proceedings of the ACL Workshop on Natural Language Processing and Information Retrieval (NLP&IR), Oct. 2000, 11 pages.
Katz, Boris, “A Three-Step Procedure for Language Generation”, Massachusetts Institute of Technology, A.I. Memo No. 599, Dec. 1980, pp. 1-40.
Gruber et al., “NIKE: A National Infrastructure for Knowledge Exchange”, A Whitepaper Advocating and ATP Initiative on Technologies for Lifelong Learning, Oct. 1994, pp. 1-10.
Sarkar et al., “Graphical Fisheye Views of Graphs”, CHI '92 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 3-7, 1992, pp. 83-91.
Katz, Boris, “Annotating the World Wide Web Using Natural Language”, Proceedings of the 5th RIAO Conference on Computer Assisted Information Searching on the Internet, 1997, 7 pages.
Gruber et al., “Toward a Knowledge Medium for Collaborative Product Development”, Proceedings of the Second International Conference on Artificial Intelligence in Design, Jun. 1992, pp. 1-19.
Sarkar et al., “Graphical Fisheye Views of Graphs”, Systems Research Center, Digital Equipment Corporation,, Mar. 17, 1992, 31 pages.
Katz, Boris, “Using English for Indexing and Retrieving”, Proceedings of the 1st RIAO Conference on User-Oriented Content-Based Text and Image Handling, 1988, pp. 314-332.
Gruber, Thomas R., “A Translation Approach to Portable Ontology Specifications”, Knowledge Acquisition, vol. 5, No. 2, Jun. 1993, pp. 199-220.
Bussey, et al., “Service Architecture, Prototype Description and Network Implications of a Personalized Information Grazing Service”, INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Available at <http://slrohall.com/oublications/>, Jun. 1990, 8 pages.
Katz, S. M., “Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-35, No. 3, Mar. 1987, 3 pages.
Gruber, Thomas R., “Automated Knowledge Acquisition for Strategic Knowledge”, Machine Learning, vol. 4, 1989, pp. 293-336.
Sarkar et al., “Graphical Fisheye Views”, Communications of the ACM, vol. 37, No. 12, Dec. 1994, pp. 73-83.
Bussler et al., “Web Service Execution Environment (WSMX)”, retrieved from Internet on Sep. 17, 2012, available at <http://www.w3.org/Submission/WSMX>, Jun. 3, 2005, 29 pages.
Gruber, Thomas R., “Interactive Acquisition of Justifications: Learning “Why” by Being Told “What””, Knowledge Systems Laboratory, Technical Report KSL 91-17, Original Oct. 1990, Revised Feb. 1991, 24 pages.
Sarkar et al., “Stretching the Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens”, UIST'93, ACM, Nov. 3-5, 1993, pp. 81-91.
Kazemzadeh et al., “Acoustic Correlates of User Response to Error in Human-Computer Dialogues”, Automatic Speech Recognition and Understanding, 2003, pp. 215-220.
Gruber, Thomas R., “Toward Principles for the Design of Ontologies used for Knowledge Sharing”, International Journal of Human-Computer Studies, vol. 43, No. 5-6, Nov. 1995, pp. 907-928.
Butcher, Mike, “EVI Arrives in Town to go Toe-to-Toe with Siri”, TechCrunch, Jan. 23, 2012, 2 pages.
Kazmucha, Allyson, “How to Send Map Locations Using iMessage”, iMore.com, Available at <http://www.imore.com/how-use-imessage-share-your-location-your-iphone>, Aug. 2, 2012, 6 pages.
Sarvas et al., “Metadata Creation System for Mobile Images”, Conference Proceedings, The Second International Conference on Mobile Systems, Applications and Services, Jun. 6, 2004, pp. 36-48.
Gruber, Thomas R., et al., U.S. Appl. No. 61/186,414, filed Jun. 12, 2009 titled “System and Method for Semantic Auto-Completion” 13 pages.
Sastry, Ravindra W., “A Need for Speed: A New Speedometer for Runners”, submitted to the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, 1999, pp. 1-42.
Butler, Travis, “Archon Jukebox 6000 Challenges Nomad Jukebox”, available at <http://tidbits.com/article/6521>, Aug. 13, 2001, 5 pages.
Keahey et al., “Non-Linear Image Magnification”, Apr. 24, 1996, 11 pages.
Gruber, Thomas R., et al., U.S. Appl. No. 61/493,201, filed Jun. 3, 2011 titled “Generating and Processing Data Items That Represent Tasks to Perform”, 68 pages.
Sato, H., “A Data Model, Knowledge Base and Natural Language Processing for Sharing a Large Statistical Database”, Statistical and Scientific Database Management, Lecture Notes in Computer Science, vol. 339, 1989, 20 pages.
Butler, Travis, “Portable MP3: The Nomad Jukebox”, available at <http://tidbits.com/article/6261>, Jan. 8, 2001, 4 pages.
Savoy, J., “Searching Information in Hypertext Systems Using Multiple Sources of Evidence”, International Journal of Man-Machine Studies, vol. 38, No. 6, Jun. 1996, 15 pages.
Gruber, Thomas R., et al., Unpublished U.S. Appl. No. 61/657,744, filed Jun. 9, 2012 titled “Automatically Adapting User Interfaces for Hands-Free Interaction”, 40 pages.
Keahey et al., “Nonlinear Magnification Fields”, Proceedings of the 1997 IEEE Symposium on Information Visualization, 1997, 12 pages.
Buxton et al., “EuroPARC's Integrated Interactive Intermedia Facility (IIIF): Early Experiences”, Proceedings of the IFIP WG 8.4 Conference on Multi-User Interfaces and Applications, 1990, pp. 11-34.
Keahey et al., “Techniques for Non-Linear Magnification Transformations”, IEEE Proceedings of Symposium on Information Visualization, Oct. 1996, pp. 38-45.
Scagliola, C., “Language Models and Search Algorithms for Real-Time Speech Recognition”, International Journal of Man-Machine Studies, vol. 22, No. 5, 1985, 25 pages.
Gruber, Thomas R., et al., U.S. Appl. No. 07/976,970, filed Nov. 16, 1992 titled “Status Bar for Application Windows”.
Schafer et al., “Digital Representations of Speech Signals”, Proceedings of the IEEE, vol. 63, No. 4, Apr. 1975, pp. 662-677.
Keahey et al., “Viewing Text With Non-Linear Magnification: An Experimental Study”, Department of Computer Science, Indiana University, Apr. 24, 1996, pp. 1-9.
Schaffer et al., “Navigating Hierarchically Clustered Networks through Fisheye and Full-Zoom Methods”, ACM Transactions on Computer-Human Interaction, vol. 3, No. 2, Jun. 1996, pp. 162-188.
Gruber, Tom, “(Avoiding) The Travesty of the Commons”, Presentation at NPUC, New Paradigms for User Computing, IBM Almaden Research Center, Jul. 24, 2006, 52 pages.
Kennedy, P J., “Digital Data Storage Using Video Disc”, IBM Technical Disclosure Bulletin, vol. 24, No. 2, Jul. 1981, p. 1171.
Buzo et al., “Speech Coding Based Upon Vector Quantization”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. Assp-28, No. 5, Oct. 1980, 13 pages.
Scheifler, R. W., “The X Window System”, MIT Laboratory for Computer Science and Gettys, Jim Digital Equipment Corporation and MIT Project Athena; ACM Transactions on Graphics, vol. 5, No. 2, Apr. 1986, pp. 79-109.
CALL Centre, “Word Prediction”, The CALL Centre & Scottish Executive Education Dept., 1999, pp. 63-73.
Kerr, “An Incremental String Search in C: This Data Matching Algorithm Narrows the Search Space with each Keystroke”, Computer Language, vol. 6, No. 12, Dec. 1989, pp. 35-39.
Gruber, Tom, “2021: Mass Collaboration and the Really New Economy”, TNTY Futures, vol. 1, No. 6, Available online at <http://tomgmber.org/writing/tnty2001.htm>, Aug. 2001, 5 pages.
Schluter et al., “Using Phase Spectrum Information for Improved Speech Recognition Performance”, IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, pp. 133-136.
Caminero-Gil et al., “Data-Driven Discourse Modeling for Semantic Interpretation”, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, May 1996, 6 pages.
Kickstarter, “ivee Sleek: Wi-Fi Voice-Activated Assistant”, available at <https://www.kickstarter.com/projects/ivee/ivee-sleek-wi-fi-voice-activated-assistant>, retrieved on Feb. 10, 2014, 13 pages.
Gruber, Tom, “Big Think Small Screen: How Semantic Computing in the Cloud will Revolutionize the Consumer Experience on the Phone”, Keynote Presentation at Web 3.0 Conference, Jan. 2010, 41 pages.
Schmandt et al., “A Conversational Telephone Messaging System”, IEEE Transactions on Consumer Electronics, vol. CE-30, Aug. 1984, pp. xxi-xxiv.
Kikui, Gen-Itiro, “Identifying the Coding System and Language of On-Line Documents on the Internet”, International Conference on Computational, Aug. 1996, pp. 652-657.
Gruber, Tom, “Collaborating Around Shared Content on the WWW, W3C Workshop on WWW and Collaboration”, available at <http://www.w3.org/Collaboration/Workshop/Proceedings/P9.html>, Sep. 1995, 1 page.
Campbell et al.,“An Expandable Error-Protected 4800 BPS CELP Coder (U.S. Federal Standard 4800 BPS Voice Coder)”, (Proceedings of IEEE Int'l Acoustics, Speech, and Signal Processing Conference, May 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 328-330.
Schmandt et al., “Augmenting a Window System with Speech Input”, IEEE Computer Society, Computer, vol. 23, No. 8, Aug. 1990, 8 pages.
Gruber, Tom, “Collective Knowledge Systems: Where the Social Web Meets the Semantic Web”, Web Semantics: Science, Services and Agents on the World Wide Web, 2007, pp. 1-19.
Kim, E.A. S., “The Structure and Processing of Fundamental Frequency Contours”, University of Cambridge, Doctoral Thesis, Apr. 1987, 378 pages.
Schmandt et al., “Phone Slave: A Graphical Telecommunications Interface”, Proceedings of the SID, vol. 26, No. 1, 1985, pp. 79-82.
Cao et al., “Adapting Ranking SVM to Document Retrieval”, SIGIR '06, Seattle, WA, Aug. 6-11, 2006, 8 pages.
Gruber, Tom, “Despite Our Best Efforts, Ontologies are not the Problem”, AAAI Spring Symposium, Available online at <http://tomgruber.org/writing/aaai-ss08.htm>, Mar. 2008, pp. 1-40.
Car Working Group, “Hands-Free Profile 1.5 HFP1.5_SPEC”, Bluetooth Doc, available at <www.bluetooth.org>, Nov. 25, 2005, 93 pages.
Kirstein et al., “Piloting of Multimedia Integrated Communications for European Researchers”, Proc. INET '93, 1993, pp. 1-12.
Caraballo et al., “Language Identification Based on a Discriminative Text Categorization Technique”, Iberspeech 2012—Vii Jornadas En Tecnologia Del Habla and Iii Iberiansl Tech Workshop, Nov. 21, 2012, pp. 1-10.
Gruber, Tom, “Enterprise Collaboration Management with Intraspect”, Intraspect Technical White Paper, Jul. 2001, pp. 1-24.
Schmandt et al., “Phone Slave: A Graphical Telecommunications Interface”, Society for Information Display, International Symposium Digest of Technical Papers, Jun. 1984, 4 pages.
Card et al., “Readings in Information Visualization Using Vision to Think”, Interactive Technologies, 1999, 712 pages.
Schmid, H., “Part-of-speech tagging with neural networks”, COLING '94 Proceedings of the 15th conference on Computational linguistics—vol. 1, 1994, pp. 172-176.
Kitano, H., “PhiDM-Dialog, An Experimental Speech-to-Speech Dialog Translation System”, Computer, vol. 24, No. 6, Jun. 1991, 13 pages.
Carpendale et al., “3-Dimensional Pliable Surfaces: For the Effective Presentation of Visual Information”, UIST '95 Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology, Nov. 14-17, 1995, pp. 217-226.
Gruber, Tom, “Every Ontology is a Treaty—A Social Agreement—Among People with Some Common Motive in Sharing”, Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, No. 2, 2004, pp. 1-5.
Kitaoka et al., “Detection and Recognition of Correction Utterances on Misrecognition of Spoken Dialog System”, Systems and Computers in Japan, vol. 36, No. 11 Oct. 2005, pp. 24-33.
Schnelle, Dirk, “Context Aware Voice User Interfaces for Workflow Support”, Dissertation paper, Aug. 27, 2007, 254 pages.
Gruber, Tom, “Helping Organizations Collaborate, Communicate, and Learn”, Presentation to NASA Ames Research, Available online at <http://tomgruber.org/writing/organizational-intelligence-talk.htm>, Mar.-Oct. 2003, 30 pages.
Carpendale et al., “Extending Distortion Viewing from 2D to 3D”, IEEE Computer Graphics and Applications, Jul./Aug. 1997, pp. 42-51.
Schone et al., “Knowledge-Free Induction of Morphology Using Latent Semantic Analysis”, Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, col. 7, 2000, pp. 67-72.
Kjelldahl et al., “Multimedia—Principles, Systems, and Applications”, Proceedings of the 1991 Eurographics Workshop on Multimedia Systems, Applications, and Interaction, Apr. 1991.
Schooler et al., “A Packet-switched Multimedia Conferencing System”, by Eve Schooler, et al; ACM SIGOIS Bulletin, vol. I, No. 1, Jan. 1989, pp. 12-22.
Gruber, Tom, “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience”, Presentation at Semantic Technologies Conference, Available online at <http://tomgruber.org/writing/semtech08.htm>, May 20, 2008, pp. 1-40.
Klabbers et al., “Reducing Audible Spectral Discontinuities”, IEEE Transactions on Speech and Audio Processing, vol. 9, No. 1, Jan. 2001, 13 pages.
Carpendale et al., “Making Distortions Comprehensible”, IEEE Proceedings of Symposium on Visual Languages, 1997, 10 pages.
Schooler et al., “An Architecture for Multimedia Connection Management”, Proceedings IEEE 4th Comsoc International Workshop on Multimedia Communications, Apr. 1992, pp. 271-274.
Klatt et al., “Linguistic Uses of Segmental Duration in English: Acoustic and Perpetual Evidence”, Journal of the Acoustical Society of America, vol. 59, No. 5, May 1976, 16 pages.
Carter et al., “The Speech-Language Interface in the Spoken Language Translator”, SRI International, Nov. 23, 1994, 9 pages.
Schooler et al., “Multimedia Conferencing: Has it Come of Age?”, Proceedings 24th Hawaii International Conference on System Sciences, vol. 3, Jan. 1991, pp. 707-716.
Fine et al., “Improving GUI Accessibility for People with Low Vision”, CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 7-11, 1995, pp. 114-121.
Carter, D., “Lexical Acquisition in the Core Language Engine”, Proceedings of the Fourth Conference of the European Chapter of the Association for Computational Linguistics, 1989, 8 pages.
Schooler et al., “The Connection Control Protocol: Architecture Overview”, USC/Information Sciences Institute, Jan. 28, 1992, pp. 1-6.
Fine et al., “UnWindows 1.0: X Windows Tools for Low Vision Users”, ACM SIGCAPH Computers and the Physically Handicapped, No. 49, Mar. 1994, pp. 1-5.
Casner et al., “N-Way Conferencing with Packet Video”, The Third International Workshop on Packet Video, Mar. 22-23, 1990, pp. 1-6.
Knight et al., “Heuristic Search”, Production Systems, Artificial Intelligence, 2nd ed., McGraw-Hill, Inc., 1983-1991.
Schooler, Eve M., “Case Study: Multimedia Conference Control in a Packet-Switched Teleconferencing System”, Journal of Internetworking: Research and Experience, vol. 4, No. 2, Jun. 1993, pp. 99-120.
Castleos, “Whole House Voice Control Demonstration”, available online at: https://www.youtube.com/watch?v=9SRCoxrZ_W4, Jun. 2, 2012, 26 pages.
Knownav, “Knowledge Navigator”, YouTube Video available at <http://www.youtube.com/watch?v=QRH8eimU_20>, Apr. 29, 2008, 1 page.
Schooler, Eve M., “The Impact of Scaling on a Multimedia Connection Architecture”, Multimedia Systems, vol. 1, No. 1, 1993, pp. 2-9.
Cawley, Gavin C. “The Application of Neural Networks to Phonetic Modelling”, PhD. Thesis, University of Essex, Mar. 1996, 13 pages.
Kohler, Joachim, “Multilingual Phone Models for Vocabulary-Independent Speech Recognition Tasks”, Speech Communication, vol. 35, No. 1-2, Aug. 2001, pp. 21-30.
Schooler, Eve, “A Distributed Architecture for Multimedia Conference Control”, ISI Research Report, Nov. 1991, pp. 1-18.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/026243, dated Mar. 31, 2008, 10 pages.
Kominek et al., “Impact of Durational Outlier Removal from Unit Selection Catalogs”, 5th ISCA Speech Synthesis Workshop, Jun. 14-16, 2004, 6 pages.
Chai et al., “Comparative Evaluation of a Natural Language Dialog Based System and a Menu Driven System for Information Access: A Case Study”, Proceedings of the International Conference on Multimedia Information Retrieval (RIAO), Paris, Apr. 2000, 11 pages.
Schultz, Tanja, “Speaker Characteristics”, In: Speaker Classification I, retrieved from <http://ccc.inaoep.mx/′villasen/bib/Speaker%20Characteristics.pdf>, 2007, pp. 47-74.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088872, dated May 8, 2008, 8 pages.
Konolige, Kurt, “A Framework for a Portable Natural-Language Interface to Large Data Bases”, Sri International, Technical Note 197, Oct. 12, 1979, 54 pages.
Chakarova et al., “Digital Still Cameras—Downloading Images to a Computer”, Multimedia Reporting and Convergence, available at <http://journalism.berkeley.edu/multimedia/tutorials/stillcams/downloading.h tml>, retrieved on May 9, 2005, 2 pages.
Schutze, H., “Dimensions of Meaning”, Proceedings of Supercomputing'92 Conference, Nov. 1992, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088873, dated May 8, 2008, 7 pages.
Kroon et al., “Pitch Predictors with High Temporal Resolution”, IEEE, vol. 2, 1990, pp. 661-664.
Chamberlain, Kim, “Quick Start Guide Natural Reader”, available online at <http://atrc.colostate.edu/files/quickstarts/Natural_Reader_Quick_Start_Guide .>, Apr. 2008, 5 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000032, dated Jun. 12, 2008, 7 pages.
Kroon et al., “Quantization Procedures for the Excitation in CELP Coders”, (Proceedings of IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1987), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 320-323.
Chang et al., “A Segment-Based Speech Recognition System for Isolated Mandarin Syllables”, Proceedings TEN CON '93, IEEE Region 10 Conference on Computer, Communication, Control and Power Engineering, vol. 3, Oct. 1993, 6 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000042, dated May 21, 2008, 7 pages.
Schutze, H., “Distributional part-of-speech tagging”, EACL '95 Proceedings of the seventh conference on European chapter of the Association for Computational Linguistics, 1995, pp. 141-148.
Kubala et al., “Speaker Adaptation from a Speaker-Independent Training Corpus”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), Apr. 1990, 4 pages.
Chang et al., “Discriminative Training of Dynamic Programming based Speech Recognizers”, IEEE Transactions on Speech and Audio Processing, vol. 1, No. 2, Apr. 1993, pp. 135-143.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000043, dated Oct. 10, 2008, 12 pages.
Schutze, Hinrich, “Part-of-speech induction from scratch”, ACL '93 Proceedings of the 31st annual meeting on Association for Computational Linguistics, 1993, pp. 251-258.
Kubala et al., “The Hub and Spoke Paradigm for CSR Evaluation”, Proceedings of the Spoken Language Technology Workshop, Mar. 1994, 9 pages.
Chartier, David, “Using Multi-Network Meebo Chat Service on Your iPhone”, available at <http://www.tuaw.com/2007/07/04/using-multi-network-meebo- chat-service-on-your-iphone/>, Jul. 4, 2007, 5 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000045, dated Jun. 12, 2008, 7 pages.
Schwartz et al., “Context-Dependent Modeling for Acoustic-Phonetic Recognition of Continuous Speech”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 10, Apr. 1985, pp. 1205-1208.
Kuo et al., “A Radical-Partitioned coded Block Adaptive Neural Network Structure for Large-Volume Chinese Characters Recognition”, International Joint Conference on Neural Networks, vol. 3, Jun. 1992, pp. 597-601.
Chen et al., “An Improved Method for Image Retrieval Using Speech Annotation”, The 9th International Conference on Multi-Media Modeling, Jan. 2003, pp. 1-17.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000047, dated Sep. 11, 2008, 12 pages.
Chen, Yi, “Multimedia Siri Finds and Plays Whatever You Ask for”, PSFK Report, Feb. 9, 2012, 9 pages.
Kuo et al., “A Radical-Partitioned Neural Network System Using a Modified Sigmoid Function and a Weight-Dotted Radical Selector for Large-Volume Chinese Character Recognition VLSI”, IEEE Int. Symp. Circuits and Systems, Jun. 1994, pp. 3862-3865.
Schwartz et al., “Improved Hidden Markov Modeling of Phonemes for Continuous Speech Recognition”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 9, 1984, pp. 21-24.
Kurlander et al. “Comic Chat”' [Online], 1996 [Retrieved on: Feb. 4, 2013], SIGGRAPH '96 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, [Retrieved from: http://delivery.acm.org/10.1145/240000/237260/p225-kurlander.pdf], 1996, pp. 225-236.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000059, dated Sep. 19, 2008, 18 pages.
Schwartz et al., “The N-Best Algorithm: An Efficient and Exact Procedure for Finding the N Most Likely Sentence Hypotheses”, IEEE, 1990, pp. 81-84.
Cheyer et al., “Demonstration Video of Multimodal Maps Using an Agent Architecture”, published by SRI International no later than 1996, as depicted in Exemplary Screenshots from video entitled Demonstration Video of Multimodal Maps Using an Agent Architecture, 1996, 6 pages.
Ladefoged, Peter, “A Course in Phonetics”, New York, Harcourt, Brace, Jovanovich, Second Edition, 1982.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000061, dated Jul. 1, 2008, 13 pages.
Scott et al., “Designing Touch Screen Numeric Keypads: Effects of Finger Size, Key Size, and Key Spacing”, Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting, Oct. 1997, pp. 360-364.
Cheyer et al., “Demonstration Video of Multimodal Maps Using an Open-Agent Architecture”, published by SRI International No. later than 1996, as depicted in Exemplary Screenshots from video entitled Demonstration Video of Multimodal Maps Using an Open-Agent Architecture, 6 pages.
Laface et al., “A Fast Segmental Viterbi Algorithm for Large Vocabulary Recognition”, International Conference on Acoustics, Speech, and Signal Processing, vol. 1, May 1995, pp. 560-563.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2009/051954, dated Oct. 30, 2009, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2009/055577, dated Jan. 26, 2010, 9 pages.
Lafferty et al., “Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data”, Proceedings of the 18th International Conference on Machine Learning, 2001, 9 pages.
Cheyer et al., “Multimodal Maps: An Agent-Based Approach”, International Conference on Co-operative Multimodal Communication, 1995, 15 pages.
Seagrave, Jim, “A Faster Way to Search Text”, EXE, vol. 5, No. 3, Aug. 1990, pp. 50-52.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2010/037378, dated Aug. 25, 2010, 14 pages.
Cheyer et al., “Spoken Language and Multimodal Applications for Electronic Realties”, Virtual Reality, vol. 3, 1999, pp. 1-15.
Laird et al., “SOAR: An Architecture for General Intelligence”, Artificial Intelligence, vol. 33, 1987, pp. 1-64.
Sears et al., “High Precision Touchscreens: Design Strategies and Comparisons with a Mouse”, International Journal of Man-Machine Studies, vol. 34, No. 4, Apr. 1991, pp. 593-613.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020350, dated Jun. 30, 2011, 17 pages.
Cheyer et al., “The Open Agent Architecture”, Autonomous Agents and Multi-Agent Systems, vol. 4, Mar. 1, 2001, 6 pages.
Lamel et al., “Generation and synthesis of Broadcast Messages”, Proceedings of ESCA-NATO Workshop: Applications of Speech Technology, Sep. 1, 1993, 4 pages.
Sears et al., “Investigating Touchscreen Typing: The Effect of Keyboard Size on Typing Speed”, Behavior Information Technology, vol. 12, No. 1, 1993, pp. 17-22.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020825, dated Mar. 18, 2011, 9 pages.
Cheyer et al. “The Open Agent Architecture: Building Communities of Distributed Software Agents”, Artificial Intelligence Center, SRI International, Power Point Presentation, Available online at <http://www.ai.sri.com/-oaa/>, retrieved on Feb. 21, 1998, 25 pages.
Lamping et al., “Laying Out and Visualizing Large Trees Using a Hyperbolic Space”, Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 13-14.
Sears et al., “Touchscreen Keyboards”, Apple Inc., Video Clip, Human-Computer Interaction Laboratory, on a CD, Apr. 1991.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020861, dated Nov. 29, 2011, 12 pages.
Lamping et al., “Visualizing Large Trees Using the Hyperbolic Browser”, Apple Inc., Video Clip, MIT Media Library, on a CD, 1995.
Seide et al., “Improving Speech Understanding by Incorporating Database Constraints and Dialogue History”, Proceedings of Fourth International Conference on Philadelphia,, 1996, pp. 1017-1020.
Cheyer, A., “Demonstration Video of Vanguard Mobile Portal”, published by SRI International no later than 2004, as depicted in ‘Exemplary Screenshots from video entitled Demonstration Video of Vanguard Mobile Portal’, 2004, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/029810, dated Aug. 17, 2012, 11 pages.
Langley et al., “A Design for the ICARUS Architechture”, SIGART Bulletin, vol. 2, No. 4, 1991, pp. 104-109.
Sen et al., “Indian Accent Text-to-Speech System for Web Browsing”, Sadhana, vol. 27, No. 1, Feb. 2002, pp. 113-126.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/034028, dated Jun. 11, 2012, 9 pages.
Lantz et al., “Towards a Universal Directory Service”, Departments of Computer Science and Electrical Engineering, Stanford University, 1985, pp. 250-260.
Cheyer, Adam, “A Perspective on Al & Agent Technologies for SCM”, VerticalNet Presentation, 2001, 22 pages.
Seneff et al., “A New Restaurant Guide Conversational System: Issues in Rapid Prototyping for Specialized Domains”, Proceedings of Fourth International Conference on Spoken Language, vol. 2, 1996, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040571, dated Nov. 16, 2012, 14 pages.
Cheyer, Adam, “About Adam Cheyer”, available at <http://www.adam.cheyer.com/about.html>, retrieved on Sep. 17, 2012, 2 pages.
Lantz, Keith, “An Experiment in Integrated Multimedia Conferencing”, 1986, pp. 267-275.
Sethy et al., “A Syllable Based Approach for Improved Recognition of Spoken Names”, ITRW on Pronunciation Modeling and Lexicon Adaptation for Spoken language Technology (PMLA2002), Sep. 14-15, 2002, pp. 30-35.
Larks, “Intelligent Software Agents”, available at <http://www.cs.cmu.edu/'softagents/larks.html> retrieved on Mar. 15, 2013, 2 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040801, dated Oct. 22, 2012, 20 pages.
Sharoff et al., “Register-Domain Separation as a Methodology for Development of Natural Language Interfaces to Databases”, Proceedings of Human-Computer Interaction (INTERACT'99), 1999, 7 pages.
Lau et al., “Trigger-Based Language Models: A Maximum Entropy Approach”, ICASSP'93 Proceedings of the 1993 IEEE international conference on Acoustics, speech, and signal processing: speech processing—vol. II, 1993, pp. 45-48.
Choi et al., “Acoustic and Visual Signal based Context Awareness System for Mobile Application”, IEEE Transactions on Consumer Electronics, vol. 57, No. 2, May 2011, pp. 738-746.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040931, dated Feb. 1, 2013, 4 pages (International Search Report only).
Sheth et al., “Evolving Agents for Personalized Information Filtering”, Proceedings of the Ninth Conference on Artificial Intelligence for Applications, Mar. 1993, 9 pages.
Lauwers et al., “Collaboration Awareness in Support of Collaboration Transparency: Requirements for the Next Generation of Shared Window Systems”, CHI'90 Proceedings, 1990, pp. 303-311.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/043098, dated Nov. 14, 2012, 9 pages.
Sheth et al., “Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships”, Enhancing the Power of the Internet: Studies in Fuzziness and Soft Computing, Oct. 13, 2002, pp. 1-38.
Lauwers et al., “Replicated Architectures for Shared Window Systems: A Critique”, COCS '90 Proceedings of the ACM SIGOIS and IEEE CS TC-OA conference on Office information systems, ACM SIGOIS Bulletin, 1990, pp. 249-260.
Chomsky et al., “The Sound Pattern of English”, New York, Harper and Row, 1968, 242 pages.
Shikano et al., “Speaker Adaptation through Vector Quantization”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'86), vol. 11, Apr. 1986, 4 pages.
Lazzaro, Joseph J., “Adapting Desktop Computers to Meet the Needs of Disabled Workers is Easier Than You Might Think”, Computers for the Disabled, BYTE Magazine, Jun. 1993, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/043100, dated Nov. 15, 2012, 8 pages.
Choularton et al., “User Responses to Speech Recognition Errors: Consistency of Behaviour Across Domains”, Proceedings of the 10th Australian International Conference on Speech Science Technology, Dec. 8-10, 2004, pp. 457-462.
Leahy et al., “Effect of Touch Screen Target Location on User Accuracy”, Proceedings of the Human Factors Society 34th Annual Meeting, 1990, 5 pages.
Shimazu et al., “CAPIT: Natural Language Interface Design Tool with Keyword Analyzer and Case-Based Parser”, NEG Research & Development, vol. 33, No. 4, Oct. 1992, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/056382, dated Dec. 20, 2012, 11 pages.
Church, Kenneth W., “Phonological Parsing in Speech Recognition”, Kluwer Academic Publishers, 1987.
Lee et al., “A Multi-Touch Three Dimensional Touch-Sensitive Tablet”, CHI '85 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 1985, pp. 21-25.
Shinkle, L., “Team User's Guide”, SRI International, Artificial Intelligence Center, Nov. 1984, 78 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/028412, dated Sep. 26, 2013, 17 pages.
Cisco Systems, Inc., “Cisco Unity Unified Messaging User Guide”, Release 4.0(5), Apr. 14, 2005, 152 pages.
Lee et al., “A Real-Time Mandarin Dictation Machine for Chinese Language with Unlimited Texts and Very Large Vocabulary”, International Conference on Acoustics, Speech and Signal Processing, vol. 1, Apr. 1990, 5 pages.
Shiraki et al., “LPC Speech Coding Based on Variable-Length Segment Quantization”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Sep. 1988), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 250-257.
Cisco Systems, Inc., “Installation Guide for Cisco Unity Unified Messaging with Microsoft Exchange 2003/2000 (With Failover Configured)”, Release 4.0(5), Apr. 14, 2005, 152 pages.
Lee et al., “Golden Mandarin (II)—An Improved Single-Chip Real-Time Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary”, IEEE International Conference of Acoustics, Speech and Signal Processing, vol. 2, 1993, 4 pages.
Shklar et al., “InfoHarness: Use of Automatically Generated Metadata for Search and Retrieval of Heterogeneous Information”, Proceedings of CAiSE'95, Finland, 1995, 14 pages.
Cisco Systems, Inc., “Operations Manager Tutorial, Cisco's IPC Management Solution”, 2006, 256 pages.
Lee et al., “Golden Mandarin (II)—An Intelligent Mandarin Dictation Machine for Chinese Character Input with Adaptation/Learning Functions”, International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, Apr. 1994, 5 pages.
Shneiderman, Ben, “Designing the User Interface: Strategies for Effective Human-Computer Interaction”, Second Edition, 1992, 599 pages.
Codd, E. F., “Databases: Improving Usability and Responsiveness-How About Recently”, Copyright 1978, Academic Press, Inc., 1978, 28 pages.
Shneiderman, Ben, “Designing the User Interface: Strategies for Effective Human-Computer Interaction”, Third Edition, 1998, 669 pages.
Lee et al., “On URL Normalization”, Proceedings of the International Conference on Computational Science and its Applications, ICCSA 2005, pp. 1076-1085.
Shneiderman, Ben, “Direct Manipulation for Comprehensible, Predictable and Controllable User Interfaces”, Proceedings of the 2nd International Conference on Intelligent User Interfaces, 1997, pp. 33-39.
Lee et al., “System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters”, International Conference on Computer Processing of Chinese Oriental Languages, vol. 5, No. 3 & 4, Nov. 1991, 16 pages.
Cohen et al., “An Open Agent Architecture”, available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.480, 1994, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/028920, dated Jun. 27, 2013, 14 pages.
Lee, K. F., “Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX System”, Partial Fulfillment of the Requirements for the Degree of Doctorof Philosophy, Computer Science Department, Carnegie Mellon University, Apr. 1988, 195 pages.
Shneiderman, Ben, “Sparks of Innovation in Human-Computer Interaction”, 1993, (Table of Contents, Title Page, Ch. 4, Ch. 6 and List of References).
Cohen et al., “Voice User Interface Design,”, Excerpts from Chapter 1 and Chapter 10, 2004, 36 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/029156, dated Jul. 15, 2013, 9 pages.
Lee, Kai-Fu, “Automatic Speech Recognition”, 1989, 14 pages (Table of Contents).
Shneiderman, Ben, “The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations”, IEEE Proceedings of Symposium on Visual Languages, 1996, pp. 336-343.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/040971, dated Nov. 12, 2013, 11 pages.
Shneiderman, Ben, “Touch Screens Now Offer Compelling Uses”, IEEE Software, Mar. 1991, pp. 93-94.
Coleman, David W., “Meridian Mail Voice Mail System Integrates Voice Processing and Personal Computing”, Speech Technology, vol. 4, No. 2, Mar./Apr. 1988, pp. 84-87.
Lemon et al., “Multithreaded Context for Robust Conversational Interfaces: Context- Sensitive Speech Recognition and Interpretation of Corrective Fragments”, ACM Transactions on Computer-Human Interaction, vol. 11, No. 3, Sep. 2004, pp. 241-267.
Coles et al., “Chemistry Question-Answering”, SRI International, Jun. 1969, 15 pages.
Shoham et al., “Efficient Bit and Allocation for an Arbitrary Set of Quantizers”, (IEEE Transactions on Acoustics, Speech, and Signal Processing, Sep. 1988) as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 289-296.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/047584, dated Nov. 9, 2015, 10 pages.
Sigurdsson et al., “Mel Frequency Cepstral Co-efficients: an Evaluation of Robustness of MP3 Encoded Music”, Proceedings of the 7th International Conference on Music Information Retrieval, 2006, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/053365, dated Mar. 10, 2016, 20 pages.
Coles et al., “Techniques for Information Retrieval Using an Inferential Question-Answering System with Natural-Language Input”, SRI International, Nov. 1972, 198 pages.
Silverman et al., “Using a Sigmoid Transformation for Improved Modeling of Phoneme Duration”, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Mar. 1999, 5 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/053366, dated Apr. 26, 2016, 16 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/041225, dated Aug. 23, 2013, 3 pages (International Search Report only).
Coles et al., “The Application of Theorem Proving to Information Retrieval”, SRI International, Jan. 1971, 21 pages.
Penn et al., “Ale for Speech: A Translation Prototype”, Bell Laboratories, 1999, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/021103, dated Jun. 8, 2016, 15 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/044574, dated Sep. 27, 2013, 12 pages.
Pereira, Fernando, “Logic for Natural Language Analysis”, SRI International, Technical Note 275, Jan. 1983, 194 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/021104, dated Jun. 8, 2016, 15 pages.
Colt, Sam, “Here's One Way Apple's Smartwatch Could Be Better Than Anything Else”, Business Insider, Aug. 21, 2014, pp. 1-4.
International Search Report and Written Opinion received for PCT Paten Application No. PCT/US2013/044834, dated Dec. 20, 2013, 13 pages.
International Search Report and Written opinion received for PCT Patent Application No. PCT/US2016/021409, dated May 26, 2016, 22 pages.
Perrault et al., “Natural-Language Interfaces”, SRI International, Technical Note 393, Aug. 22, 1986, 48 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/047659, dated Jul. 7, 2014, 25 pages.
Combined Search Report and Examination Report under Sections 17 and 18(3) received for GB Patent Application No. 1009318.5, dated Oct. 8, 2010, 5 pages.
International Search report and Written Opinion received for PCT Patent Application No. PCT/US2016/024666, dated Jun. 10, 2016, 13 pages.
PhatNoise, Voice Index on Tap, Kenwood Music Keg, available at <http://www. phatnoise.com/kenwood/kenwoodssamail.html>, retrieved on Jul. 13, 2006, 1 page.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/047668, dated Feb. 13, 2014, 17 pages.
Combined Search Report and Examination Report under Sections 17 and 18(3) received for GB Patent Application No. 1217449.6, dated Jan. 17, 2013, 6 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/025404, dated Jun. 24, 2016, 21 pages.
Phillipps, Ben, “Touchscreens are Changing the Face of Computers—Today's Users Have Five Types of Touchscreens to Choose from, Each with its Own Unique Characteristics”, Electronic Products, Nov. 1994, pp. 63-70.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/052558, dated Jan. 30, 2014, 15 pages.
Compaq Inspiration Technology, “Personal Jukebox (PJB)—Systems Research Center and PAAD”, Oct. 13, 2000, 25 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/025407, dated Jun. 23, 2016, 18 pages.
Phillips, Dick, “The Multi-Media Workstation”, SIGGRAPH '89 Panel Proceedings, 1989, pp. 93-109.
Compaq, “Personal Jukebox”, available at <http://research.compaq.com/SRC/pjb/>, 2001, 3 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/058916, dated Sep. 8, 2014, 10 pages.
Phoenix Solutions, Inc., “Declaration of Christopher Schmandt Regarding the MIT Galaxy System”, West Interactive Corp., A Delaware Corporation, Document 40, Jul. 2, 2010, 162 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/025408, dated Aug. 11, 2016, 19 pages.
Conkie et al., “Preselection of Candidate Units in a Unit Selection-Based Text-to-Speech Synthesis System”, ISCA, 2000, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/060121, dated Dec. 6, 2013, 8 pages.
Conklin, Jeff, “Hypertext: An Introduction and Survey”, Computer Magazine, Sep. 1987, 25 pages.
Pickering, J. A., “Touch-Sensitive Screens: The Technologies and Their Application”, International Journal of Man-Machine Studies, vol. 25, No. 3, Sep. 1986, pp. 249-269.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/031059, dated Aug. 8, 2016, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/015418, dated Aug. 26, 2014, 17 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/031549, dated Aug. 5, 2016, 35 pages.
Picone, J., “Continuous Speech Recognition using Hidden Markov Models”, IEEE ASSP Magazine, vol. 7, No. 3, Jul. 1990, 16 pages.
Conklin, Jeffrey, “A Survey of Hypertext”, MCC Software Technology Program, Dec. 1987, 40 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/016988, dated Apr. 29, 2014, 10 pages.
Pingali et al., “Audio-Visual Tracking for Natural Interactivity”, ACM Multimedia, Oct. 1999, pp. 373-382.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/031550, dated Aug. 4, 2016, 13 pages.
Connolly et al., “Fast Algorithms for Complex Matrix Multiplication Using Surrogates”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 6, Jun. 1989, 13 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/023822, dated Sep. 25, 2014, 14 pages.
Constantinides et al., “A Schema Based Approach to Dialog Control”, Proceedings of the International Conference on Spoken Language Processing, 1998, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/035105, dated Aug. 29, 2016, 25 pages.
Plaisant et al., “Touchscreen Interfaces for Alphanumeric Data Entry”, Proceedings of the Human Factors and Ergonomics Society 36th Annual Meeting, 1992, pp. 293-297.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/023826, dated Oct. 9, 2014, 13 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/035107, dated Aug. 31, 2016, 26 pages.
Copperi et al., “CELP Coding for High Quality Speech at 8 kbits/s”, Proceedings of IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 324-327.
Plaisant et al., “Touchscreen Toggle Design”, CHI'92, May 3-7, 1992, pp. 667-668.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/026871, dated Jul. 23, 2014, 9 pages.
Pollock, Stephen, “A Rule-Based Message Filtering System”, Published in: Journal, ACM Transactions on Information Systems (TOIS), vol. 6, Issue 3, Jul. 1988, pp. 232-254.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/026873, dated Jan. 5, 2015, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/035112, dated Aug. 22, 2016, 21 pages.
Corporate Ladder, BLOC Publishing Corporation, 1991, 1 page.
Poly-Optical Products, Inc., “Poly-Optical Fiber Optic Membrane Switch Backlighting”, available at <http://www.poly-optical.com/membrane_switches.html>, retrieved on Dec. 19, 2002, 3 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/028785, dated Oct. 17, 2014, 23 pages.
Poor, Alfred, “Microsoft Publisher”, PC Magazine, vol. 10, No. 20, Nov. 26, 1991, 1 page.
International Search Report received for PCT Patent Application No. PCT/GB2009/051684, dated Mar. 12, 2010, 4 pages.
Corr, Paul, “Macintosh Utilities for Special Needs Users”, available at <http://homepage.mac.com/corrp/macsupt/columns/specneeds.html>, Feb. 1994 (content updated Sep. 19, 1999), 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/028950, dated Nov. 25, 2014, 10 pages.
International Search Report received for PCT Patent Application No. PCT/US1993/012666, dated Nov. 9, 1994, 8 pages.
Potter et al., “An Experimental Evaluation of Three Touch Screen Strategies within a Hypertext Database”, International Journal of Human-Computer Interaction, vol. 1, No. 1, 1989, pp. 41-52.
Cox et al., “Speech and Language Processing for Next-Millennium Communications Services”, Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 24 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/029050, dated Jul. 31, 2014, 9 pages.
Potter et al., “Improving the Accuracy of Touch Screens: An Experimental Evaluation of Three Strategies”, CHI '88 ACM, 1988, pp. 27-32.
International Search Report received for PCT Patent Application No. PCT/US1994/000687, dated Jun. 3, 1994, 1 page.
Craig et al., “Deacon: Direct English Access and Control”, AFIPS Conference Proceedings, vol. 19, San Francisco, Nov. 1966, 18 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/029562, dated Sep. 18, 2014, 21 pages.
International Search Report received for PCT Patent Application No. PCT/US1994/00077, dated May 25, 1994, 2 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040393, dated Dec. 8, 2014, 23 pages.
Creative Technology Ltd., “Creative NOMAD® II: Getting Started—User Guide (On Line Version)”, available at <http://ecLimages-amazon.com/media/i3d/01/A/man-migrate/MANUAL000026434.pdf, Apr. 2000, 46 pages.
International Search Report received for PCT Patent Application No. PCT/US1995/008369, dated Nov. 8, 1995, 6 pages.
Powell, Josh, “Now You See Me . . . Show/Hide Performance”, available at http://www.learningjquery.com/2010/05/now-you-see-me-showhide-performance, May 4, 2010.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040394, dated Aug. 8, 2014, 11 pages.
Creative Technology Ltd., “Creative NOMAD®: Digital Audio Player: User Guide (On-Line Version)”, available at <http://ecLimages-amazon.com/media/i3d/01/A/man-migrate/MANUAL000010757.pdf, Jun. 1999, 40 pages.
International Search Report received for PCT Patent Application No. PCT/US1995/013076, dated Feb. 2, 1996, 1 page.
Public Safety Technologies, “Tracer 2000 Computer”, available at <http://www.pst911.com/tracer.html>, retrieved on Dec. 19, 2002, 3 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040397, dated Aug. 27, 2014, 12 pages.
International Search Report received for PCT Patent Application No. PCT/US1996/01002, dated Oct. 30, 1996, 4 pages.
Pulman et al., “Clare: A Combined Language and Reasoning Engine”, Proceedings of JFIT Conference, available at <http://www.cam.sri.com/tr/crc042/paper.ps.Z>, 1993, 8 pages.
Creative Technology Ltd., “Nomad Jukebox”, User Guide, Version 1.0, Aug. 2000, 52 pages.
International Search Report received for PCT Patent Application No. PCT/US2002/024669, dated Nov. 5, 2002, 3 pages.
Quazza et al., “Actor: A Multilingual Unit-Selection Speech Synthesis System”, Proceedings of 4th ISCA Tutorial and Research Workshop on Speech Synthesis, Jan. 1, 2001, 6 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040401, dated Sep. 4, 2014, 10 pages.
Creative, “Creative NOMAD MuVo TX”, available at <http://web.archive.org/web/20041024175952/www.creative.com/products/pfriendly.asp?product=9672>, retrieved on Jun. 6, 2006, 1 page.
Quick Search Algorithm, Communications of the ACM, 33(8), 1990, pp. 132-142.
International Search Report received for PCT Patent Application No. PCT/US2002/024670, dated Sep. 26, 2002, 3 pages.
Creative, “Creative NOMAD MuVo”, available at <http://web.archive.org/web/20041024075901/www.creative.com/products/product.asp?category=213&subcategory=216&product=4983>, retrieved on Jun. 7, 2006, 1 page.
Rabiner et al., “Digital Processing of Speech Signals”, Prentice Hall, 1978, pp. 274-277.
International Search Report received for PCT Patent Application No. PCT/US2002/033330, dated Feb. 4, 2003, 6 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040403, dated Sep. 23, 2014, 9 pages.
International Search Report received for PCT Patent Application No. PCT/US2005/046797, dated Nov. 24, 2006, 6 pages.
Rabiner et al., “Fundamental of Speech Recognition”, AT&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 1993, 17 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040961, dated Mar. 10, 2015, 5 pages.
International Search Report received for PCT Patent Application No. PCT/US2011/037014, dated Oct. 4, 2011, 6 pages.
Rabiner et al., “Note on the Properties of a Vector Quantizer for LPC Coefficients”, Bell System Technical Journal, vol. 62, No. 8, Oct. 1983, 9 pages.
Creative, “Digital MP3 Player”, available at <http://web.archive.org/web/20041024074823/www.creative.com/products/product.asp?category=213&subcategory=216&product=4983, 2004, 1 page.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/041159, dated Sep. 26, 2014, 10 pages.
International Search Report received for PCT Patent Application No. PCT/US2013/041233, dated Nov. 22, 2013, 3 pages.
Rampe et al., “SmartForm Designer and SmartForm Assistant”, News release, Claris Corp., Jan. 9, 1989, 1 page.
Croft et al., “Task Support in an Office System”, Proceedings of the Second ACM-SIGOA Conference on Office Information Systems, 1984, pp. 22-24.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/041173, dated Sep. 10, 2014, 11 pages.
Intraspect Software, “The Intraspect Knowledge Management Solution: Technical Overview”, available at <http://tomgruber.org/writing/intraspect- whitepaper-1998.pdf>, 1998, 18 pages.
Rao et al., “Exploring Large Tables with the Table Lens”, Apple Inc., Video Clip, Xerox Corp., on a CD, 1994.
Crowley et al., “MMConf: An Infrastructure for Building Shared Multimedia Applications”, CSCW 90 Proceedings, Oct. 1990, pp. 329-342.
International Search Report and Written Opinion received for PCT Paten Application No. PCT/US2014/049568, dated Nov. 14, 2014, 12 pages.
Cucerzan et al., “Bootstrapping a Multilingual Part-of-Speech Tagger in One Person-Day”, In Proceedings of the 6th Conference on Natural Language Learning, vol. 20, 2002, pp. 1-7.
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2004/016519, dated Aug. 4, 2005, 6 pages.
Rao et al., “Exploring Large Tables with the Table Lens”, CHI'95 Mosaic of Creativity, ACM, May 7-11, 1995, pp. 403-404.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/053951, dated Dec. 8, 2014, 11 pages.
Rao et al., “The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus+Context Visualization for Tabular Information”, Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 1-7.
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2005/046797, dated Jul. 3, 2006, 6 pages.
Cuperman et al., “Vector Predictive Coding of Speech at 16 kbit s/s”, (IEEE Transactions on Communications, Jul. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 300-311.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/053957, dated Feb. 19, 2015, 11 pages.
Raper, Larry K.,“The C-MU PC Server Project”, (CMU-ITC-86-051), Dec. 1986, pp. 1-30.
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2006/048738, dated Jul. 10, 2007, 4 pages.
Cutkosky et al., “PACT: An Experiment in Integrating Concurrent Engineering Systems”, Journal Magazines, Computer, vol. 26, No. 1, Jan. 1993, 14 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/053958, dated Feb. 19, 2015, 10 pages.
Ratcliffe et al., “Intelligent Agents Take U.S. Bows”, MacWeek, vol. 6, No. 9, Mar. 2, 1992, 1 page.
Dar et al., “DTL's DataSpot: Database Exploration Using Plain Language”, Proceedings of the 24th VLDB Conference, New York, 1998, 5 pages.
Ratcliffe, M., “ClearAccess 2.0 Allows SQL Searches Off-Line (Structured Query Language) (ClearAccess Corp. Preparing New Version of Data-Access Application with Simplified User Interface, New Features) (Product Announcement)”, MacWeek, vol. 6, No. 41, Nov. 16, 1992, 2 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019320, dated Jul 2, 2015, 14 pages.
Ravishankar, Mosur K., “Efficient Algorithms for Speech Recognition”, Doctoral Thesis Submitted to School of Computer Science, Computer Science Division, Carnegie Mellon University, Pittsburgh, May 15, 1996, 146 pages.
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2011/020350, dated Apr. 14, 2011, 5 pages.
Database WPI Section Ch, Week 8733, Derwent Publications Ltd., London, GB; Class A17, AN 87-230826 & JP, A, 62 153 326 (Sanwa Kako KK (Sans) Sanwa Kako Co), Jul. 8, 1987.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019321, dated Jun. 3, 2015, 11 pages.
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2015/023089, dated Jun. 17, 2015, 7 pages.
Rayner et al., “Adapting the Core Language Engine to French and Spanish”, Cornell University Library, available at <http:1/arxiv.org/abs/cmp-Ig/9605015>, May 10, 1996, 9 pages.
Database WPI Section Ch, Week 8947, Derwent Publications Ltd., London, GB; Class A17, An 89-343299 & JP, A, 1 254 742 (Sekisui Plastics KK), Oct. 11, 1989.
International Search Report and Written Opinion received for PCT Pa ent Application No. PCT/US2015/019322, dated Jun. 18, 2015, 16 pages.
Invitation to Pay Additional Fees received for PCT Application No. PCT/US2016/021410, dated Apr. 28, 2016, 2 pages.
Rayner et al., “Deriving Database Queries from Logical Forms by Abductive Definition Expansion”, Proceedings of the Third Conference on Applied Natural Language Processing, ANLC, 1992, 8 pages.
Davis et al., “A Personal Handheld Multi-Modal Shopping Assistant”, International Conference on Networking and Services, IEEE, 2006, 9 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000043, dated Jun. 27, 2008, 4 pages.
Rayner et al., “Spoken Language Translation with Mid-90's Technology: A Case Study”, Eurospeech, ISCA, Available online at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.8608>, 1993, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/023089, dated Aug. 20, 2015. 16 pages.
Davis et al., “Stone Soup Translation”, Department of Linguistics, Ohio State University, 2001, 11 pages.
Rayner, M., “Abductive Equivalential Translation and its Application to Natural Language Database Interfacing”, Dissertation Paper, SRI International, Sep. 1993, 162 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/023097, dated Jul. 7, 2015, 15 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000047, dated Jul. 4, 2008, 4 pages.
De Herrera, Chris, “Microsoft ActiveSync 3.1”, Version 1.02, available at <http://www.cewindows.net/wce/activesync3.1.htm>, Oct. 13, 2000, 8 pages.
Rayner, Manny, “Linguistic Domain Theories: Natural-Language Database Interfacing from First Principles”, SRI International, Cambridge, 1993, 11 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2011/037014, dated Aug. 2, 2011, 6 pages.
Decker et al., “Designing Behaviors for Information Agents”, The Robotics Institute, Carnegie-Mellon University, Paper, Jul. 1996, 15 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/023593, dated Aug. 14, 2015, 16 pages.
Decker et al., “Matchmaking and Brokering”, The Robotics Institute, Carnegie-Mellon University, Paper, May 1996, 19 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2012/040801, dated Aug. 8, 2012, 2 pages.
Reddi, “The Parser”.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/025188, dated Jun. 23, 2015, 11 pages.
Deerwester et al., “Indexing by Latent Semantic Analysis”, Journal of the American Society for Information Science, vol. 41, No. 6, Sep. 1990, 19 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/029554, dated Jul. 16, 2015, 11 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2013/047659, dated Feb. 27, 2014, 7 pages.
Degani et al., “‘Soft’ Controls for Hard Displays: Still a Challenge”, Proceedings of the 36th Annual Meeting of the Human Factors Society, 1992, pp. 52-56.
Reddy, D. R., “Speech Recognition by Machine: A Review”, Proceedings of the IEEE, Apr. 1976, pp. 501-531.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/032470, dated Oct. 1, 2015, 13 pages.
Del Strother, Jonathan, “Coverflow”, available at <http://www.steelskies.com/coverflow>, retrieved on Jun. 15, 2006, 14 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2013/052558, dated Nov. 7, 2013, 6 pages.
Reger et al., “Speech and Speaker Independent Codebook Design in VQ Coding Schemes”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 271-273.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/032724, dated Jul. 27, 2015, 11 pages.
Invitation to pay additional fees received for PCT Patent Application No. PCT/US2014/029562, dated Jul. 4, 2014, 7 pages.
Remde et al., “SuperBook: An Automatic Tool for Information Exploration—Hypertext?”, In Proceedings of Hypertext, 87 Papers, Nov. 1987, 14 pages.
Deller, Jr. et al., “Discrete-Time Processing of Speech Signals”, Prentice Hall, ISBN: 0-02-328301-7, 1987, 14 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/033051, dated Aug. 5, 2015, 14 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2014/040393, dated Sep. 17, 2014, 7 pages.
Ren et al., “Efficient Strategies for Selecting Small Targets on Pen-Based Systems: An Evaluation Experiment for Selection Strategies and Strategy Classification”, Proceedings of the IFIP TC2/TC13 WG2.7/WG13.4 Seventh Working Conference on Engineering for Human-Computer Interaction, vol. 150, 1998, pp. 19-37.
Diagrammaker, Action Software, 1989.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/047062, dated Jan. 13, 2016, 25 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2014/040961, dated Jan. 14, 2015, 3 pages.
Ren et al., “Improving Selection Performance on Pen-Based Systems: A Study of Pen-Based Interaction for Selection Tasks”, ACM Transactions on Computer-Human Interaction, vol. 7, No. 3, Sep. 2000, pp. 384-416.
Diagram-Master, Ashton-Tate, 1989.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/047064, dated Nov. 13, 2015, 13 pages.
Diamond Multimedia Systems, Inc., “Rio PMP300: User's Guide”, available at <http://ecl.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000022854.pdf, 1998, 28 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/047281, dated Oct. 8, 2015, 6 pages.
Ren et al., “The Best among Six Strategies for Selecting a Minute Target and the Determination of the Minute Maximum Size of the Targets on a Pen-Based Computer”, Human-Computer Interaction Interact, 1997, pp. 85-92.
Dickinson et al., “Palmtips: Tiny Containers for All Your Data”, PC Magazine, vol. 9, Mar. 1990, p. 218(3).
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/047281, dated Dec. 17, 2015, 19 pages.
Digital Audio in the New Era, Electronic Design and Application, No. 6, Jun. 30, 2003, 3 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/053366, dated Feb. 19, 2016, 8 pages.
Reynolds, C. F., “On-Line Reviews: A New Application of the HICOM Conferencing System”, IEEE Colloquium on Human Factors in Electronic Mail and Conferencing Systems, Feb. 3, 1989, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/047553, dated Jan. 5, 2016, 10 pages.
Digital Equipment Corporation, “Open VMS Software Overview”, Software Manual, Dec. 1995, 159 pages.
Rice et al., “Monthly Program: Nov. 14, 1995”, The San Francisco Bay Area Chapter of ACM SIGCHI, available at <http://www.baychi.org/calendar/19951114>, Nov. 14, 1995, 2 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2016/025408, dated May 13, 2016, 2 pages.
International Search Report and Written opinion received for PCT Patent Application No. PCT/US2015/047583, dated Feb. 3, 2016, 11 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2014/028785, dated Jul. 4, 2014, 7 pages.
Rice et al., “Using the Web Instead of a Window System”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI'96, 1996, pp. 1-14.
Digital Equipment Corporation, “OpenVMS RTL DECtalk (DTK$) Manual”, May 1993, 56 pages.
Invitation to pay additional fees received for the PCT Patent Application No. PCT/US2014/015418, dated May 26, 2014, 5 pages.
Ricker, Thomas, “Apple Patents Audio User Interface”, Engadget, available at <http://www.engadget.com/2006/05/04/apple-patents-audio-user-interface/>, May 4, 2006, 6 pages.
Dittenbach et al., “A Natural Language Query Interface for Tourism Information”, In: Information and Communication Technologies in Tourism 2003, XP055114393, Feb. 14, 2003, pp. 152-162.
Iowegian International, “FIR Filter Properties, DSPGuru, Digital Signal Processing Central”, available at <http://www.dspguru.com/dsp/faq/fir/properties> retrieved on Jul. 28, 2010, 6 pages.
IBM, “Speech Editor”, IBM Technical Disclosure Bulletin, vol. 29, No. 10, Mar. 10, 1987, 3 pages.
Riecken, R D., “Adaptive Direct Manipulation”, IEEE Xplore, 1991, pp. 1115-1120.
Dobrisek et al., “Evolution of the Information-Retrieval System for Blind and Visually-Impaired People”, International Journal of Speech Technology, Kluwer Academic Publishers, Bo, vol. 6, No. 3, pp. 301-309.
Iphone Hacks, “Native iPhone MMS Application Released”, available at <http://www.iphonehacks.com/2007/12/iphone-mms-app.html>, retrieved on Dec. 25, 2007, 5 pages.
IBM, “Speech Recognition with Hidden Markov Models of Speech Waveforms”, IBM Technical Disclosure Bulletin, vol. 34, No. 1, Jun. 1991, 10 pages.
Iphonechat, “iChat for iPhone in JavaScript”, available at <http://www.publictivity.com/iPhoneChat/>, retrieved on Dec. 25, 2007, 2 pages.
Rigoll, G., “Speaker Adaptation for Large Vocabulary Speech Recognition Systems Using Speaker Markov Models”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'89), May 1989, 4 pages.
Iso-Sipila et al., “Multi-Lingual Speaker-Independent Voice User Interface for Mobile Devices”, ICASSP 2006 Proceedings, IEEE International Conference on Acoustics, Speech and Signal Processing May 14, 2006, pp. 1-1081.
IBM, “Why Buy: ThinkPad”, available at <http://www.pc.ibm.com/us/thinkpad/easeofuse.html, retrieved on Dec. 19, 2002, 2 pages.
Riley, M D., “Tree-Based Modelling of Segmental Durations”, Talking Machines Theories, Models and Designs, Elsevier Science Publishers B.V., North-Holland, ISBN: 08-444-89115.3, 1992, 15 pages.
Issar et al., “CMU's Robust Spoken Language Understanding System”, Proceedings of Eurospeech, 1993, 4 pages.
Domingue et al., “Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services”, Position Paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, Jun. 2005, 6 pages.
Ichat AV, “Video Conferencing for the Rest of Us”, Apple—Mac OS X—iChat AV, available at <http://www.apple.com/macosx/features/ichat/>, retrieved on Apr. 13, 2006, 3 pages.
Issar, Sunil, “Estimation of Language Models for New Spoken Language Applications”, Proceedings of 4th International Conference on Spoken language Processing, Oct. 1996, 4 pages.
Donahue et al., “Whiteboards: A Graphical Database Tool”, ACM Transactions on Office Information Systems, vol. 4, No. 1, Jan. 1986, pp. 24-41.
Rioport, “Rio 500: Getting Started Guide”, available at <http://ecl.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000023453.pdf, 1999, 2 pages.
id3.org, “id3v2.4.0-Frames”, available at <http://id3.org/id3v2.4.0- frames?action=print>, retrieved on Jan. 22, 2015, 41 pages.
Rivlin et al., “Maestro: Conductor of Multimedia Analysis Technologies”, SRI International, 1999, 7 pages.
Donovan, R. E., “A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers”, available at <http://citeseerx.ist.osu.edu/viewdoc/summarv?doi=10.1.1.21.6398>, 2001, 4 pages.
Jabra Corporation, “FreeSpeak: BT200 User Manual”, 2002, 42 pages.
IEEE 1394 (Redirected from Firewire, Wikipedia, The Free Encyclopedia, available at <http://www.wikipedia.org/wiki/Firewire>, retrieved on Jun. 8, 2003, 2 pages.
Rivoira et al., “Syntax and Semantics in a Word-Sequence Recognition System”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'79), Apr. 1979, 5 pages.
Dourish et al., “Portholes: Supporting Awareness in a Distributed Work Group”, CHI 1992;, May 1992, pp. 541-547.
Jabra, “Bluetooth Headset: User Manual”, 2005, 17 pages.
Interactive Voice, available at <http://www.helloivee.com/company/>, retrieved on Feb. 10, 2014, 2 pages.
Dowding et al., “Gemini: A Natural Language System for Spoken-Language Understanding”, Proceedings of the Thirty-First Annual Meeting of the Association for Computational Linguistics, 1993, 8 pages.
Jabra, “Bluetooth Introduction”, 2004, 15 pages.
Robbin et al., “MP3 Player and Encoder for Macintosh!”, SoundJam MP Plus, Version 2.0, 2000, 76 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/GB2009/051684, dated Jun. 23, 2011, 10 pages.
Robertson et al., “Information Visualization Using 3D Interactive Animation”, Communications of the ACM, vol. 36, No. 4, Apr. 1993, pp. 57-71.
Jacobs et al., “Scisor: Extracting Information from On-Line News”, Communications of the ACM, vol. 33, No. 11, Nov. 1990, 10 pages.
Dowding et al., “Interleaving Syntax and Semantics in an Efficient Bottom-Up Parser”, Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, 1994, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1993/012637, dated Apr. 10, 1995, 7 pages.
Robertson et al., “The Document Lens”, UIST '93, Nov. 3-5, 1993, pp. 101-108.
Dragon Naturally Speaking Version 11 Users Guide, Nuance Communications, Inc., Copyright @2002-2010, 132 pages.
Janas, Jurgen M., “The Semantics-Based Natural Language Interface to Relational Databases”, Chapter 6, Cooperative Interfaces to Information Systems, 1986, pp. 143-188.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1993/012666, dated Mar. 1, 1995, 5 pages.
Dual Rate Speech Coder for Multimedia Communications Transmitting at 5.3 and 6.3 kbit/s, International Telecommunication Union Recommendation G.723, 7 pages.
Roddy et al., “Communication and Collaboration in a Landscape of B2B eMarketplaces”, VerticalNet Solutions, White Paper, Jun. 15, 2000, 23 pages.
Jawaid et al., “Machine Translation with Significant Word Reordering and Rich Target-Side Morphology”, WDS'11 Proceedings of Contributed Papers, Part I, 2011, pp. 161-166.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1994/011011, dated Feb. 28, 1996, 4 pages.
Dusan et al., “Multimodal Interaction on PDA's Integrating Speech and Pen Inputs”, Eurospeech Geneva, 2003, 4 pages.
Roddy et al., “Interface Issues in Text Based Chat Rooms”, SIGCHI Bulletin, vol. 30, No. 2, Apr. 1998, pp. 119-123.
Jaybird, “Everything Wrong with AIM: Because We've All Thought About It”, available at <http://www.psychonoble.com/archives/articles/82.html%gt;, May 24, 2006, 3 pages.
dyslexic.com, “AlphaSmart 3000 with CoWriter SmartApplet: Don Johnston Special Needs”, available at <http://www.dyslexic.com/procuts.php?catid- 2&pid=465&PHPSESSID=2511b800000f7da>, retrieved on Dec. 6, 2005, 13 pages.
Root, Robert, “Design of a Multi-Media Vehicle for Social Browsing”, Bell Communications Research, 1988, pp. 25-38.
Jeffay et al., “Kernel Support for Live Digital Audio and Video”, In Proc. of the Second Intl. Workshop on Network and Operating System Support for Digital Audio and Video, vol. 614, Nov. 1991, pp. 10-21.
Eagle et al., “Social Serendipity: Proximity Sensing and Cueing”, MIT Media Laboratory Technical Note 580, May 2004, 18 pages.
Rose et al., “Inside Macintosh”, vols. I, II, and III, Addison-Wesley Publishing Company, Inc., Jul. 1988, 1284 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1995/008369, dated Oct. 9, 1996, 4 pages.
Edwards, John R., “Q&A: Integrated Software with Macros and an Intelligent Assistant”, Byte Magazine, vol. 11, No. 1, Jan. 1986, pp. 120-122.
Jelinek et al., “Interpolated Estimation of Markov Source Parameters from Sparse Data”, In Proceedings of the Workshop on Pattern Recognition in Practice,, May 1980, pp. 381-397.
Roseberry, Catherine, “How to Pair a Bluetooth Headset & Cell Phone”, available at <http://mobileoffice.about.com/od/usingyourphone/ht/blueheadset_p.htm>, retrieved on Apr. 29, 2006, 2 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2004/002873, dated Feb. 1, 2006, 5 pages.
Rosenberg et al., “An Overview of the Andrew Message System”, Information Technology Center Carnegie-Mellon University, Jul. 1987, pp. 99-108.
Jelinek, F., “Self-Organized Language Modeling for Speech Recognition”, Readings in Speech Recognition, Edited by Alex Waibel and Kai-Fu Lee, Morgan Kaufmann Publishers, Inc., ISBN: 155860-124-4, 1990, 63 pages.
Egido, Carmen, “Video Conferencing as a Technology to Support Group Work: A Review of its Failures”, Bell Communications Research, 1988, pp. 13-24.
Rosenfeld, R., “A Maximum Entropy Approach to Adaptive Statistical Language Modelling”, Computer Speech and Language, vol. 10, No. 3, Jul. 1996, 25 pages.
International Preliminary report on Patentability received for PCT Patent Application No. PCT/US2004/016519, dated Jan. 23, 2006, 12 pages.
Elio et al., “On Abstract Task Models and Conversation Policies”, Proc. Workshop on Specifying and Implementing Conversation Policies, Autonomous Agents'99 Conference, 1999, pp. 1-10.
Jennings et al., “A Personal News Service Based on a User Model Neural Network”, IEICE Transactions on Information and Systems, vol. E75-D, No. 2, Mar. 1992, 12 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2005/030234, dat Mar. 20, 2007, 9 pages.
Elliot, Chip, “High-Quality Multimedia Conferencing Through a Long-Haul Packet Network”, BBN Systems and Technologies, 1993, pp. 91-98.
Ji et al., “A Method for Chinese Syllables Recognition Based upon Sub-syllable Hidden Markov Model”, 1994 International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, Apr. 1994, 4 pages.
Rosner et al., “In Touch: A Graphical User Interface Development Tool”, IEEE Colloquium on Software Tools for Interface Design, Nov. 8, 1990, pp. 12/1-12/7.
Elliott et al., “Annotation Suggestion and Search for Personal Multimedia Objects on the Web”, CIVR, Jul. 7-9, 2008, pp. 75-84.
Rossfrank, “Konstenlose Sprachmitteilungins Festnetz”, XP002234425, Dec. 10, 2000, pp. 1-4.
Jiang et al., “A Syllable-based Name Transliteration System”, Proc. of the 2009 Named Entities Workshop, Aug. 7, 2009, pp. 96-99.
Elofson et al., “Delegation Technologies: Environmental Scanning with Intelligent Agents”, Jour. of Management Info. Systems, Summer 1991, vol. 8, No. 1, 1991, pp. 37-62.
Roszkiewicz, A., “Extending your Apple”, Back Talk-Lip Service, A+ Magazine, The Independent Guide for Apple Computing, vol. 2, No. 2, Feb. 1984, 5 pages.
Johnson, Jeff A., “A Comparison of User Interfaces for Panning on a Touch-Controlled Display”, CHI '95 Proceedings, 1995, 8 pages.
Eluminx, “Illuminated Keyboard”, available at <http://www.elumix.com/>, retrieved on Dec. 19, 2002, 1 page.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2008/000042, dated Jul. 7, 2009, 6 pages.
Engst, Adam C., “SoundJam Keeps on Jammi”, available at <http://db.tidbits.com/getbits.acgi?tbart=05988>, Jun. 19, 2000, 3 pages.
Roucos et al., “A Segment Vocoder at 150 B/S”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 246-249.
Johnson, Julia Ann., “A Data Management Strategy for Transportable Natural Language Interfaces”, Doctoral Thesis Submitted to the Department of Computer Science, University of British Columbia, Canada, Jun. 1989, 285 pages.
Jones, J., “Speech Recognition for Cyclone”, Apple Computer, Inc., E.R.S. Revision 2.9, Sep. 10, 1992, 93 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2008/000043, dated Jul. 7, 2009, 8 pages.
Jouvet et al., “Evaluating Grapheme-to-phoneme Converters in Automatic Speech Recognition Context”, IEEE,, 2012,, pp. 4821-4824.
Epstein et al., “Natural Language Access to a Melanoma Data Base”, SRI International, Sep. 1978, 7 pages.
Roucos et al., “High Quality Time-Scale Modification for Speech”, Proceedings of the 1985 IEEE Conference on Acoustics, Speech and Signal Processing, 1985, pp. 493-496.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2008/000047, dated Jul. 7, 2009, 8 pages.
Ericsson et al., “Software Illustrating a Unified Approach to Multimodality and Multilinguality in the In-Home Domain”, Talk and Look: Tools for Ambient Linguistic Knowledge, Dec. 2006, 127 pages
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/051954, dated Mar. 24, 2011, 8 pages.
Ericsson Inc., “Cellular Phone with Integrated MP3 Player”, Research Disclosure Journal No. 41815, Feb. 1999, 2 pages.
Bahl et al., “Large Vocabulary Natural Language Continuous Speech Recognition”, Proceedings of 1989 International Conference on Acoustics, Speech and Signal Processing, vol. 1, May 1989, 6 pages.
Rubine, Dean Harris, “Combining Gestures and Direct Manipulation”, CHI'92, May 3-7, 1992, pp. 659-660.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/055577, completed on Aug. 6, 2010, 12 pages.
Bahl et al., “Multonic Markov Word Models for Large Vocabulary Continuous Speech Recognition”, IEEE Transactions on Speech and Audio Processing, vol. 1, No. 3, Jul. 1993, 11 pages.
Rubine, Dean Harris, “The Automatic Recognition of Gestures”, CMU-CS-91-202, Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, Dec. 1991, 285 pages.
Erol et al., “Multimedia Clip Generation From Documents for Browsing on Mobile Devices”, IEEE Transactions on Multimedia, vol. 10, No. 5, Aug. 2008, 13 pages.
Eslambolchilar et al., “Making Sense of Fisheye Views”, Second Dynamics and Interaction Workshop at University of Glasgow, Aug. 2005, 6 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2010/037378, dated Dec. 6, 2011, 9 pages.
Bahl et al., “Recognition of a Continuously Read Natural Corpus”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, Apr. 1978, pp. 422-424.
Eslambolchilar et al., “Multimodal Feedback for Tilt Controlled Speed Dependent Automatic Zooming”, UIST'04, Oct. 24-27, 2004, 2 pages.
Bahl et al., “Speech Recognition with Continuous-Parameter Hidden Markov Models”, Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP'88), vol. 1, Apr. 1988, 8 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/020350, dated Jul. 17, 2012, 12 pages.
European Search Report received for European Patent Application No. 01201774.5, dated Sep. 14, 2001, 3 pages.
Bajarin, Tim, “With Low End Launched, Apple Turns to Portable Future”, PC Week, vol. 7, Oct. 1990, p. 153(1).
European Search Report received for European Patent Application No. 99107544.1, dated Jul. 8, 1999, 4 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/020825, dated Jan. 13, 2012, 17 pages.
Ruch et al., “Using Lexical Disambiguation and Named-Entity Recognition to Improve Spelling Correction in the Electronic Patient Record”, Artificial Intelligence in Medicine, Sep. 2003, pp. 169-184.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/020861, dated Aug. 2, 2012, 11 pages.
Banbrook, M., “Nonlinear Analysis of Speech from a Synthesis Perspective”, A Thesis Submitted for the Degree of Doctor of Philosophy, The University of Edinburgh, Oct. 15, 1996, 35 pages.
European Search Report received for European Patent Application No. 99107545.8, dated Jul. 1, 1999, 3 pages.
International Preliminary Report on Patentability received for PCT Paten Application No. PCT/US2011/037014, dated Dec. 13, 2012, 10 pages.
Evermann et al., “Posterior Probability Decoding, Confidence Estimation and System Combination”, Proceedings Speech Transcription Workshop, 2000, 4 pages.
2004 Chrysler Pacifica: U-Connect Hands-Free Communication System, The Best and Brightest of 2004, Brief Article, Automotive Industries, Sep. 2003, 1 page.
Barrett et al., “How to Personalize the Web”, 1997 In proceddings of the ACM SIGCHI Conference on Human Factors in Computer Systems, Mar. 22-27, 1997, pp. 75-82.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/029810, dated Oct. 3, 2013, 9 pages.
Evi, “Meet Evi: The One Mobile Application that Provides Solutions for your Everyday Problems”, Feb. 2012, 3 pages.
2007 Lexus GS 450h 4dr Sedan (3.5L 6cyl Gas/Electric Hybrid CVT), available at <http://review.cnet.com/4505-10865_16-31833144.html>, retrieved on Aug. 3, 2006, 10 pages.
Barthel, B., “Information Access for Visually Impaired Persons: Do We Still Keep a “Document” in “Documentation”?”, Professional Communication Conference, Sep. 1995, pp. 62-66.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/034028, dated Oct. 31, 2013, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040571, dated Dec. 19, 2013, 10 pages.
Baudel et al., “2 Techniques for Improved HC Interaction: Toolglass Magic Lenses: The See-Through Interface”, Apple Inc., Video Clip, CHI'94 Video Program on a CD, 1994.
Abcom Pty. Ltd. “12.1” 925 Candela Mobile PC, LCDHardware.com, available at <http://www.lcdhardware.com/pane1/12_1_panel/default.asp.>, retrieved on Dec. 19, 2002, 2 pages.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results”, List of Publications Manually Reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Bear et al., “A System for Labeling Self-Repairs in Speech”, SRI International, Feb. 22, 1993, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040801, dated Dec. 19, 2013, 16 pages.
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 06256215.2, dated Feb. 20, 2007, 6 pages.
Bear et al., “Detection and Correction of Repairs in Human-Computer Dialog”, SRI International, May 1992, 11 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040931, dated Dec. 18, 2014, 9 pages.
Bear et al., “Integrating Multiple Knowledge Sources for Detection and Correction of Repairs in Human-Computer Dialog”, Proceedings of the 30th Annual Meeting on Association for Computational Linguistics (ACL), 1992, 8 pages.
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 12186113.2, dated Apr. 28, 2014, 14 pages.
Bear et al., “Using Information Extraction to Improve Document Retrieval”, SRI International, Menlo Park, California, 1998, 11 pages.
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 13169672.6, dated Aug. 14, 2013, 11 pages.
Beck et al., “Integrating Natural Language, Query Processing, and Semantic Data Models”, COMCON Spring '90. IEEE Computer Society International Conference, 1990, Feb. 26-Mar. 2, 1990, pp. 538-543.
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 1516349.6, dated Jul. 28, 2015, 8 pages.
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 15196748.6, dated Apr. 4, 2016.
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 16150079.8, dated Feb. 18, 2016.
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 07863218.9, dated Dec. 9, 2010, 7 pages.
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 12727027.0, dated Sep. 26, 2014, 7 pages.
Extended European Search Report (inclusive of the Partial European Search Report and European Search Opinion) received for European Patent Application No. 12729332.2, dated Oct. 31, 2014, 6 pages.
Bederson et al., “Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics”, UIST' 94 Proceedings of the 7th Annual ACM symposium on User Interface Software and Technology, Nov. 1994, pp. 17-26.
Extended European Search Report and Search Opinion received for European Patent Application No. 12185276.8, dated Dec. 18, 2012, 4 pages.
Bederson et al., “The Craft of Information Visualization”, Elsevier Science, Inc., 2003, 435 pages.
Extended European Search Report received for European Patent Application No. 11159884.3, dated May 20, 2011, 8 pages.
Belaid et al., “A Syntactic Approach for Handwritten Mathematical Formula Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, No. 1, Jan. 1984, 7 pages.
Bellegarda et al., “A Latent Semantic Analysis Framework for Large-Span Language Modeling”, 5th European Conference on Speech, Communication and Technology (EUROSPEECH'97), Sep. 1997, 4 pages.
Extended European Search Report received for European Patent Application No. 12186663.6, dated Jul. 16, 2013, 6 pages.
Bellegarda et al., “A Multispan Language Modeling Framework for Large Vocabulary Speech Recognition”, IEEE Transactions on Speech and Audio Processing, vol. 6, No. 5, Sep. 1998, 12 pages.
Extended European Search Report received for European Patent Application No. 13726938.7, dated Dec. 14, 2015, 8 pages.
Bellegarda et al., “A Novel Word Clustering Algorithm Based on Latent Semantic Analysis”, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'96), vol. 1, 1996, 4 pages.
Extended European Search Report received for European Patent Application No. 13770552.1, dated Jan. 7, 2016, 5 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/043098, dated Jan. 9, 2014, 8 pages.
Extended European Search Report received for European Patent Application No. 14737370.8, dated May 19, 2016, 12 pages.
Bellegarda et al., “Experiments Using Data Augmentation for Speaker Adaptation”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'95), May 1995, 4 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/043100, dated Jan. 9, 2014, 7 pages.
Bellegarda et al., “On-Line Handwriting Recognition using Statistical Mixtures”, Advances in Handwriting and Drawings: A Multidisciplinary Approach, Europia, 6th International IGS Conference on Handwriting and Drawing, Paris, France, Jul. 1993, 11 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/056382, dated Apr. 10, 2014, 9 pages.
Bellegarda et al.,“Performance of the IBM Large Vocabulary Continuous Speech Recognition System on the ARPA Wall Street Journal Task”, Signal Processing VII: Theories and Applications, European Association for Signal Processing, 1994, 4 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/028412, dated Sep. 12, 2014, 12 pages.
Bellegarda et al., “The Metamorphic Algorithm: A Speaker Mapping Approach to Data Augmentation”, IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 8 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/028920, dated Sep. 18, 2014, 11 pages.
Bellegarda et al., “Tied Mixture Continuous Parameter Modeling for Speech Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 38, No. 12, Dec. 1990, pp. 2033-2045.
Fanty et al., “A Comparison of DFT, PLP and Cochleagram for Alphabet Recognition”, IEEE, Nov. 1991.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/029156, dated Sep. 9, 2014, 7 pages.
Bellegarda, Jerome R. “Latent Semantic Mapping”, IEEE Signal Processing Magazine, vol. 22, No. 5, Sep. 2005, pp. 70-80.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/041225, dated Nov. 27, 2014, 9 pages.
Bellegarda, Jerome R., “Exploiting both Local and Global Constraints for Multi-Span Statistical Language Modeling”, Proceeding of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing (1CASSP'98), vol. 2, May 1998, 5 pages.
ABF Software, “Lens—Magnifying Glass 1.5”, available at <http://download.com/3000-2437-10262078.html?tag=1st-0-1>, retrieved on Feb. 11, 2004, 1 page.
Bellegarda, Jerome R., “Exploiting Latent Semantic Information in Statistical Language Modeling”, Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 18 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/041233, dated Nov. 18, 2014, 8 pages.
Abut et al., “Low-Rate Speech Encoding Using Vector Quantization and Subband Coding”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization IEEE Press, 1990, pp. 312-315.
Bellegarda, Jerome R., “Interaction-Driven Speech Input—A Data-Driven Approach to the Capture of both Local and Global Language Constraints”, available at <http://old.sig.chi.ora/bulletin/1998.2/bellegarda.html>, 1992, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/044574, dated Dec. 9, 2014, 8 pages.
Abut et al., “Vector Quantization of Speech and Speech-Like Waveforms”, (IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 258-270.
Bellegarda, Jerome R., “Large Vocabulary Speech Recognition with Multispan Statistical Language Models”, IEEE Transactions on Speech and Audio Processing, vol. 8, No. 1, Jan. 2000, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/044834, dated Dec. 9, 2014, 9 pages.
Acero et al., “Environmental Robustness in Automatic Speech Recognition”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), Apr. 1990, 4 pages.
Belvin et al., “Development of the HRL Route Navigation Dialogue System”, Proceedings of the First International Conference on Human Language Technology Research, Paper, 2001, 5 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/047659, dated Dec. 31, 2014, 15 pages.
Benel et al., “Optimal Size and Spacing of Touchscreen Input Areas”, Human-Computer Interaction—Interact, 1987, pp. 581-585.
Acero et al., “Robust Speech Recognition by Normalization of the Acoustic Space”, International Conference on Acoustics, Speech and Signal Processing, 1991, 4 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/047668, dated Jan. 8, 2015, 13 pages.
Bergmann et al., “An adaptable man-machine interface using connected-word recognition”, 2nd European Conference on Speech Communication and Technology (Eurospeech 91), vol. 2, XP002176387, Sep. 24-26, 1991, pp. 467-470.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/052558, dated Feb. 12, 2015, 12 pages.
Beringer et al., “Operator Behavioral Biases Using High-Resolution Touch Input Devices”, Proceedings of the Human Factors and Ergonomics Society 33rd Annual Meeting, 1989, 3 pages.
Adium, “AboutAdium—Adium X—Trac”, available at <http://web.archive.org/web/20070819113247/http://trac.adiumx.com/wiki/A boutAdium>, retrieved on Nov. 25, 2011, 2 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/058916, dated Mar. 19, 2015, 8 pages.
Beringer, Dennis B., “Target Size, Location, Sampling Point and Instruction Set: More Effects on Touch Panel Operation”, Proceedings of the Human Factors and Ergonomics Society 34th Annual Meeting, 1990, 5 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/060121, dated Apr. 2, 2015, 6 pages.
Bernabei et al., “Graphical I/O Devices for Medical Users”, 14th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, vol. 3, 1992, pp. 834-836.
adobe.com, “Reading PDF Documents with Adobe Reader 6.0—A Guide for People with Disabilities”, Available online at “https://www.adobe.com/enterprise/accessibility/pdfs/acro6_cgue.pdf”, Jan. 2004, 76 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/015418, dated Aug. 20, 2015, 12 pages.
Bernstein, Macrophone, “Speech Corpus”, IEEE/ICASSP, Apr. 22, 1994, pp. 1-81 to 1-84.
Agnas et al., “Spoken Language Translator: First-Year Report”, SICS (ISSN 0283-3638), SRI and Telia Research AB, Jan. 1994, 161 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/016988, dated Sep. 3, 2015, 8 pages.
Ahlberg et al., “The Alphaslider: A Compact and Rapid Selector”, CHI '94 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 365-371.
Berry et al., “PTIME: Personalized Assistance for Calendaring”, ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Jul. 2011, pp. 1-22.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/023822, dated Sep. 24, 2015, 12 pages.
Ahlberg et al., “Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 24-28, 1994, pp. 313-317.
Berry et al., “Symantec”, New version of MORE.TM, Apr. 10, 1990, 1 page.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/023826, dated Sep. 24, 2015, 9 pages.
Ahlbom et al., Modeling Spectral Speech Transitions Using Temporal Decomposition Techniques, IEEE International Conference of Acoustics, Speech and Signal Processing (ICASSP'87), vol. 12, Apr. 1987, 4 pages.
Berry et al., “Task Management under Change and Uncertainty Constraint Solving Experience with the CALO Project”, Proceedings of CP'05 Workshop on Constraint Solving under Change, 2005, 5 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/026871, dated Sep. 24, 2015, 7 pages.
Bertulucci, Jeff, “Google Adds Voice Search to Chrome Browser”, PC World, Jun. 14, 2011.
Ahlstrom et al., “Overcoming Touchscreen User Fatigue by Workplace Design”, CHI '92 Posters and Short Talks of the 1992 SIGCHI Conference on Human Factors in Computing Systems, 1992, pp. 101-102.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/026873, dated Sep. 24, 2015, 9 pages.
Best Buy, “When it Comes to Selecting a Projection TV, Toshiba Makes Everything Perfectly Clear”, Previews of New Releases, available at <http://www.bestbuy.com/HomeAudioVideo/Specials/ToshibaTVFeatures.asp> retrieved on Jan. 23, 2003, 5 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/028785, dated Sep. 24, 2015, 15 pages.
Ahmed et al., “Intelligent Natural Language Query Processor”, TENCON '89, Fourth IEEE Region 10 International Conference, Nov. 22-24, 1989, pp. 47-49.
Betts et al., “Goals and Objectives for User Interface Software”, Computer Graphics, vol. 21, No. 2, Apr. 1987, pp. 73-78.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/028950, dated Sep. 24, 2015, 8 pages.
Biemann et al., “Disentangling from Babylonian Confusion—Unsupervised Language Identification”, CICLing'05 Proceedings of the 6th international conference on Computational Linguistics and Intelligent Text Processing, vol. 3406, Feb. 2005, pp. 773-784.
Ahuja et al., “A Comparison of Application Sharing Mechanisms in Real-Time Desktop Conferencing Systems”, At&T Bell Laboratories, 1990, pp. 238-248.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/029050, dated Sep. 24, 2015, 7 pages.
Biemann, Chris, “Unsupervised Part-of-Speech Tagging Employing Efficient Graph Clustering”, Proceeding COLING ACL '06 Proceedings of the 21st International Conference on computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, 2006, pp. 7-12.
Aikawa et al., “Generation for Multilingual MT”, available at http://mtarchive.info/MTS-2001-Aikawa.pdf>, retrieved on Sep. 18, 2001, 6 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/029562, dated Sep. 24, 2015, 16 pages.
Aikawa et al., “Speech Recognition Using Time-Warping Neural Networks”, Proceedings of the 1991, IEEE Workshop on Neural Networks for Signal Processing, 1991, 10 pages.
Bier et al., “Toolglass and Magic Lenses: The See-Through Interface”, Computer Graphics (SIGGRAPH '93 Proceedings), vol. 27, 1993, pp. 73-80.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040393, dated Dec. 8, 2015, 15 pages.
Aikawa, K. “Time-Warping Neural Network for Phoneme Recognition”, IEEE International Joint Conference on Neural Networks, vol. 3, Nov. 18-21, 1991, pp. 2122-2127.
Birrell, Andrew, “Personal Jukebox (PJB)”, available at <http://birrell.org/andrew/talks/pjb-overview.ppt>, Oct. 13, 2000, 6 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040394, dated Dec. 23, 2015, 7 pages.
Alfred App, “Alfred”, available at <http://www.alfredapp.com/>, retrieved on Feb. 8, 2012, 5 pages.
Black et al., “Automatically Clustering Similar Units for Unit Selection in Speech Synthesis”, Proceedings of Eurospeech, vol. 2, 1997, 4 pages.
Black et al., “Multilingual Text-to-Speech Synthesis”, Acoustics, Speech and Signal Processing (ICASSP'04), Proceedings of the IEEE International Conference, vol. 3, May 17-21, 2004, pp. 761-764.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040397, dated Dec. 17, 2015, 8 pages.
All Music Website, available at <http://www.allmusic.com/>, retrieved on Mar. 19, 2007, 2 pages.
Blair et al., “An Evaluation of Retrieval Effectiveness for a Full-Text Document—Retrieval System”, Communications of the ACM, vol. 28, No. 3, Mar. 1985, 11 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040401, dated Dec. 8, 2015, 6 pages.
Allen et al., “Automated Natural Spoken Dialog”, Computer, vol. 35, No. 4, Apr. 2002, pp. 51-56.
Bleher et al., “A Graphic Interactive Application Monitor”, IBM Systems Journal, vol. 19, No. 3, Sep. 1980, pp. 382-402.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040403 dated Dec. 23, 2015, 7 pages.
Allen, J., “Natural Language Understanding”, 2nd Edition, The Benjamin/Cummings Publishing Company, Inc., 1995, 671 pages.
BluePhoneElite: About, available at <http://www.reelintelligence.com/BluePhoneElite>, retrieved on Sep. 25, 2006, 2 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040961, dated Dec. 17, 2015, 20 pages.
BluePhoneElite: Features, available at <http://www.reelintelligence.com/BluePhoneElite/features.shtml,>, retrieved on Sep. 25, 2006, 2 pages.
Alleva et al., “Applying SPHINX-II to DARPA Wall Street Journal CSR Task”, Proceedings of Speech and Natural Language Workshop, Feb. 1992, pp. 393-398.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/041159, dated Dec. 17, 2015, 8 pages.
Alshawi et al., “CLARE: A Contextual Reasoning and Co-operative Response Framework for the Core Language Engine”, SRI International, Cambridge Computer Science Research Centre, Cambridge, Dec. 1992, 273 pages.
Bluetooth PC Headsets, “‘Connecting’ Your Bluetooth Headset with Your Computer”, Enjoy Wireless VoIP Conversations, available at <http://www.bluetoothpcheadsets.com/connect.htm>, retrieved on Apr. 29, 2006, 4 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/041173, dated Dec. 17, 2015, 9 pages.
Alshawi et al., “Declarative Derivation of Database Queries from Meaning Representations”, Proceedings of the BANKAI Workshop on Intelligent Information Access, Oct. 1991, 12 pages.
Bobrow et al., “Knowledge Representation for Syntactic/Semantic Processing”, From: AAA-80 Proceedings, Copyright 1980, AAAI, 1980, 8 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/049568, dated Feb. 18, 2016, 10 pages.
Bocchieri et al., “Use of Geographical Meta-Data in ASR Language and Acoustic Models”, IEEE International Conference on Acoustics Speech and Signal Processing, 2010, pp. 5118-5121.
Alshawi et al., “Logical Forms in the Core Language Engine”, Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, 1989, pp. 25-32.
International Search Report & Written Opinion received for PCT Patent Application No. PCT/US2016/021410, dated Jul. 26, 2016, 19 pages.
Alshawi et al., “Overview of the Core Language Engine”, Proceedings of Future Generation Computing Systems,Tokyo, Sep. 1988, 13 pages.
Bociurkiw, Michael, “Product Guide: Vanessa Matz”, available at <http://www.forbes.com/asap/2000/1127/vmartzprint.html>, retrieved on Jan. 23, 2003, 2 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US1994/011011, dated Feb. 8, 1995, 3 pages (International Search Report only).
Borden IV, G.R., “An Aural User Interface for Ubiquitous Computing”, Proceedings of the 6th International Symposium on Wearable Computers, IEEE, 2002, 2 pages.
Alshawi, H., “Translation and Monotonic Interpretation/Generation”, SRI International, Cambridge Computer Science Research Centre, Cambridge, available at <http://www.cam.sri.com/tr/crc024/paper.ps.Z1992>, Jul. 1992, 18 pages.
Borenstein, Nathaniel S., “Cooperative Work in the Andrew Message System”, Information Technology Center and Computer Science Department, Carnegie Mellon University; Thyberg, Chris A. Academic Computing, Carnegie Mellon University, 1988, pp. 306-323.
Amano et al., “A User-friendly Multimedia Book Authoring System”, The Institute of Electronics, Information and Communication Engineers Technical Report, vol. 103, No. 416, Nov. 2003, pp. 33-40.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2004/002873, dated Oct. 13, 2005, 7 pages.
Bouchou et al., “Using Transducers in Natural Language Database Query”, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, Jun. 1999, 17 pages.
Amano, Junko, “A User-Friendly Authoring System for Digital Talking Books”, IEICE Technical Report, The Institute of Electronics, Information and Communication Engineers, vol. 103, No. 418, Nov. 6, 200, pp. 33-40.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2004/016519, dated Nov. 3, 2005, 6 pages.
Boy, Guy A., “Intelligent Assistant Systems”, Harcourt Brace Jovanovicy, 1991, 1 page.
Ambite et al., “Design and Implementation of the CALO Query Manager”, American Association for Artificial Intelligence, 2006, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2005/030234, dated Mar. 17, 2006, 11 pages.
Boyer et al., “A Fast String Searching Algorithm”, Communications of the ACM, vol. 20, 1977, pp. 762-772.
Ambite et al., “Integration of Heterogeneous Knowledge Sources in the CALO Query Manager”, The 4th International Conference on Ontologies, Databases and Applications of Semantics (ODBASE), 2005, 18 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2005/038819, dated Apr. 5, 2006, 12 pages.
Amrel Corporation, “Rocky Matrix BackLit Keyboard”, available at <http://www.amrel.com/asi_matrixkeyboard.html>, retrieved on Dec. 19, 2002, 1 page.
Brain, Marshall, “How MP3 Files Work”, available at <http://www.howstuffworks.com>, retrieved on Mar. 19, 2007, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048669, dated Jul. 2, 2007, 12 pages.
Anastasakos et al., “Duration Modeling in Large Vocabulary Speech Recognition”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'95), May 1995, pp. 628-631.
Bratt et al., “The SRI Telephone-Based ATIS System”, Proceedings of ARPA Workshop on Spoken Language Technology, 1995, 3 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048670, dated May 21, 2007, 11 pages.
Briner, L. L., “Identifying Keywords in Text Data Processing”, In Zelkowitz, Marvin V., Ed, Directions and Challenges, 15th Annual Technical Symposium, Gaithersbury, Maryland, Jun. 17, 1976, 7 pages.
Anderson et al., “Syntax-Directed Recognition of Hand-Printed Two-Dimensional Mathematics”, Proceedings of Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, 1967, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048753, dated Jun. 19, 2007, 15 pages.
Brown et al., “Browing Graphs Using a Fisheye View”, Apple Inc., Video Clip, Systems Research Center, CHI '92 Continued Proceedings on a CD, 1992.
Anhui USTC IFL YTEK Co. Ltd., “Flytek Research Center Information Datasheet”, available at <http://www.iflttek.com/english/Research.htm>, retrieved on Oct. 15, 2004, 3 pages.
Brown et al., “Browsing Graphs Using a Fisheye View”, CHI '93 Proceedings of the Interact '93 and Chi '93 Conference on Human Factors in Computing Systems, 1993, p. 516.
Ansari et al., “Pitch Modification of Speech using a Low-Sensitivity Inverse Filter Approach”, IEEE Signal Processing Letters, vol. 5, No. 3, Mar. 1998, pp. 60-62.
Bulyko et al., “Error-Correction Detection and Response Generation in a Spoken Dialogue System”, Speech Communication, vol. 45, 2005, pp. 271-288.
Anthony et al., “Supervised Adaption for Signature Verification System”, IBM Technical Disclosure, Jun. 1, 1978, 3 pages.
Bulyko et al., “Joint Prosody Prediction and Unit Selection for Concatenative Speech Synthesis”, Electrical Engineering Department, University of Washington, Seattle, 2001, 4 pages.
API.AI, “Android App Review—Speaktoit Assistant”, Available at <https://www.youtube.com/watch?v=myE498nyfGw>, Mar. 30, 2011, 3 pages.
Burger, D., “Improved Access to Computers for the Visually Handicapped: New Prospects and Principles”, IEEE Transactions on Rehabilitation Engineering, vol. 2, No. 3, Sep. 1994, pp. 111-118.
Appelt et al., “Fastus: A Finite-State Processor for Information Extraction from Real-world Text”, Proceedings of IJCAI, 1993, 8 pages.
Burke et al., “Question Answering from Frequently Asked Question Files”, AI Magazine, vol. 18, No. 2, 1997, 10 pages.
Appelt et al., “SRI International Fastus System MUC-6 Test Results and Analysis”, SRI International, Menlo Park, California, 1995, 12 pages.
Burns et al., “Development of a Web-Based Intelligent Agent for the Fashion Selection and Purchasing Process via Electronic Commerce”, Proceedings of the Americas Conference on Information System (AMCIS), Dec. 31, 1998, 4 pages.
Appelt et al., “SRI: Description of the JV-FASTUS System used for MUC-5”, SRI International, Artificial Intelligence Center, 1993, 19 pages.
Busemann et al., “Natural Language Diaglogue Service for Appointment Scheduling Agents”, Technical Report RR-97-02, Deutsches Forschungszentrum fur Kunstliche Intelligenz GmbH, 1997, 8 pages.
Apple Computer, “Guide Maker User's Guide”, Apple Computer, Inc., Apr. 27, 1994, 8 pages.
Apple Computer, “Introduction to Apple Guide”, Apple Computer, Inc., Apr. 28, 1994, 20 pages.
Apple Computer, “Knowledge Navigator”, published by Apple Computer no later than 2008, as depicted in Exemplary Screenshots from video entitled ‘Knowledge Navigator’, 2008, 7 pages.
Apple Computer, Inc., “Apple—iPod—Technical Specifications, iPod 20GB and 60GB Mac + PC”, available at <http://www.apple.com/ipod/color/specs.html>, 2005, 3 pages.
Apple Computer, Inc., “Apple Announces iTunes 2”, Press Release, Oct. 23, 2001, 2 pages.
Apple Computer, Inc., “Apple Introduces iTunes—World's Best and Easiest to Use Jukebox Software”, Macworld Expo, Jan. 9, 2001, 2 pages.
Apple Computer, Inc., “Apple's iPod Available in Stores Tomorrow”, Press Release, Nov. 9, 2001, 1 page.
Apple Computer, Inc., “Inside Macintosh”, vol. VI, 1985.
Apple Computer, Inc., “iTunes 2, Playlist Related Help Screens”, iTunes v2.0, 2000-2001, 8 pages.
Apple Computer, Inc., “iTunes 2: Specification Sheet”, 2001, 2 pages.
Apple Computer, Inc., “iTunes, Playlist Related Help Screens”, iTunes v1.0, 2000-2001, 8 pages.
Apple Computer, Inc., “QuickTime Movie Playback Programming Guide”, Aug. 11, 2005, pp. 1-58.
Apple Computer, Inc., “QuickTime Overview”, Aug. 11, 2005, pp. 1-34.
Apple Computer, Inc., “Welcome to Tiger”, available at <http://www.maths.dundee.ac.uk/software/Welcome_to_Mac_OS_X_v10.4_Ti ger.pdf>, 2005, pp. 1-32.
Apple, “iPhone User's Guide”, Available at <http://mesnotices.20minutes.fr/manuel-notice-mode- emploi/APPLE/IPHONE%2D%5FE#>, Retrieved on Mar. 27, 2008, Jun. 2007, 137 pages.
Apple, “VoiceOver”, available at <http://www.apple.com/accessibility/voiceover/>, Feb. 2009, 5 pages.
Applebaum et al., “Enhancing the Discrimination of Speaker Independent Hidden Markov Models with Corrective Training”, International Conference on Acoustics, Speech, and Signal Processing, May 23, 1989, pp. 302-305.
AppleEvent Manager, which is described in the publication Inside Macintosh vol. VI, available from Addison-Wesley Publishing Company, 1985.
Arango et al., “Touring Machine: A Software Platform for Distributed Multimedia Applications”, 1992 IFIP International Conference on Upper Layer Protocols, Architectures, and Applications, May 1992, pp. 1-11.
Archbold et al., “A Team User's Guide”, SRI International, Dec. 21, 1981, 70 pages.
Arons, Barry M., “The Audio-Graphical Interface to a Personal Integrated Telecommunications System”, Thesis Submitted to the Department of Architecture at the Massachusetts Institute of Technology, Jun. 1984, 88 pages.
Asanovic et al.,“Experimental Determination of Precision Requirements for Back-Propagation Training of Artificial Neural Networks”, Proceedings of the 2nd International Conference of Microelectronics for Neural Networks, 1991, www.ICSI.Berkelev.EDU, 1991, 7 pages.
Atal et al., “Efficient Coding of LPC Parameters by Temporal Decomposition”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'83), Apr. 1983, 4 pages.
Badino et al., “Language Independent Phoneme Mapping for Foreign TTS”, 5th ISCA Speech Synthesis Workshop, Pittsburgh, PA, Jun. 14-16, 2004, 2 pages.
Baechtle et al., “Adjustable Audio Indicator”, IBM Technical Disclosure Bulletin, Jul. 1, 1984, 2 pages.
Baeza-Yates, Ricardo, “Visualization of Large Answers in Text Databases”, AVI '96 Proceedings of the Workshop on Advanced Visual Interfaces, 1996, pp. 101-107.
Bahl et al., “A Maximum Likelihood Approach to Continuous Speech Recognition”, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1983, 13 pages.
Bahl et al., “A Tree-Based Statistical Language Model for Natural Language Speech Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 7, Jul. 1989, 8 pages.
Bahl et al., “Acoustic Markov Models Used in the Tangora Speech Recognition System”, Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP'88), vol. 1, Apr. 1988, 4 pages.
Decision to Grant received for Danish Patent Application No. PA201770036, dated Oct. 8, 2018, 2 pages.
Notice of Acceptance received for Australian Patent application No. 2016409890, dated Jul. 6, 2018, 3 pages.
Office Action received for Japanese Patent Application No. 2018-535277, dated Nov. 19, 2018, 10 pages (5 pages of English Translation and 5 pages of Official Copy).
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/059953, dated Dec. 20, 2018, 9 pages.
Office Action received for Danish Patent Application No. PA201770032, dated Feb. 18, 2019, 2 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/059953, dated Mar. 10, 2017, 13 pages.
Office Action received for Danish Patent Application No. PA201770032, dated Apr. 16, 2018, 5 pages.
Office Action received for Australian Patent Application No. 2019213416, dated Aug. 14, 2019, 4 pages.
Office Action received for Japanese Patent Application No. 2019-121991, dated Aug. 30, 2019, 4 pages (2 pages of English Translation and 2 pages of Official copy).
Corrected Notice of Allowance received for U.S. Appl. No. 16/402,922, dated Jul. 8, 2020, 2 pages.
Notice of Allowance received for U.S. Appl. No. 16/402,922, dated Jun. 22, 2020, 10 pages.
Advisory Action received for U.S. Appl. No. 16/024,447, dated Jan. 28, 2020, 7 pages.
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/024,447, dated Jan. 17, 2020, 4 pages.
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/402,922, dated Jan. 17, 2020, 3 pages.
Corrected Notice of Allowance received for U.S. Appl. No. 15/271,766, dated Jan. 28, 2020, 2 pages.
Final Office Action received for U.S. Appl. No. 16/402,922, dated Jan. 31, 2020, 22 pages.
Office Action received for Chinese Patent Application No. 201910010561.2, dated Jul. 1, 2020, 19 pages (10 pages of English Translation and 9 pages of Official Copy).
Summons to Attend Oral Proceedings received for European Patent Application No. 19150734.2, mailed on Aug. 5, 2020, 9 pages.
Non-Final Office Action received for U.S. Appl. No. 16/024,447, dated Feb. 28, 2020, 63 pages.
Office Action received for European Patent Application No. 16904830.3, dated Feb. 28, 2020, 7 pages.
Office Action received for European Patent Application No. 19150734.2, dated Feb. 21, 2020, 7 pages.
Office Action received for European Patent Application No. 19157463.1, dated Mar. 2, 2020, 7 pages.
2007 Lexus GS 450h 4dr Sedan (3.5L 6cyl Gas/Electric Hybrid CVT), available at <http://review.cnet.com/4505-10865_16-31833144.html>, retrieved on Aug. 3, 2006, 10 pages.
Abcom Pty. Ltd. “12.1” 925 Candela Mobile PC, LCDHardware.com, available at <http://www.lcdhardware.com/pane1/12_1_panel/default.asp>, retrieved on Dec. 19, 2002, 2 pages.
ABF Software, “Lens-Magnifying Glass 1.5”, available at <http://download.com/3000-2437-10262078.html?tag=1st-0-1>, retrieved on Feb. 11, 2004, 1 page.
Adium, “AboutAdium—Adium X—Trac”, available at <http://web.archive.org/web/20070819113247/http://trac.adiumx.com/wiki/AboutAdium>, retrieved on Nov. 25, 2011, 2 pages.
Ahuja et al., “A Comparison of Application Sharing Mechanisms in Real-Time Desktop Conferencing Systems”, At&T Bell Laboratories, 1990, pp. 238-248.
Aikawa et al., “Generation for Multilingual MT”, available at <http://mtarchive.info/MTS-2001-Aikawa.pdf>, retrieved on Sep. 18, 2001, 6 pages.
Alfred App, “Alfred”, available at <http://www.alfredapp.com/>, retrieved on Feb. 8, 2012, 5 pages.
All Music Website, available at <http://www.allmusic.com/>, retrieved on Mar. 19, 2007, 2 pages.
Alshawi, H., “Translation and Monotonic Interpretation/Generation”, SRI International, Cambridge Computer Science Research Centre, Cambridge, available at <http://www.cam.sri.com/tr/crc024/paper.ps.Z1992>, Jul. 1992, 18 pages.
Amrel Corporation, “Rocky Matrix BackLit Keyboard”, available at <http://www.amrel.com/asi_matrixkeyboard.html>, retrieved on Dec. 19, 2002, 1 page.
Anhui USTC Ifl Ytek Co. Ltd., “Flytek Research Center Information Datasheet”, available at <http://www.iflttek.com/english/Research.htm>, retrieved on Oct. 15, 2004, 3 pages.
Api.Ai, “Android App Review—Speaktoit Assistant”, Available at <https://www.youtube.com/watch?v=myE498nyfGw>, Mar. 30, 2011, 3 pages.
Apple Computer, Inc., “Apple—iPod—Technical Specifications, iPod 20GB and 60GB Mac + PC”, available at <http://www.apple.com/ipod/color/specs.html>, 2005, 3 pages.
Apple Computer, Inc., “Apple Announces iTunes 2”, Press Release, Oct. 2001, 2 pages.
Apple Computer, Inc. “Welcome to Tiger”, available at <http://www.maths.dundee.ac.uk/software/Welcome_to_Mac_OS_X_v10.4_Tiger.pdf>, 2005, pp. 1-32.
Apple, “iPhone User's Guide”, Available at <http://mesnotices.20minutes.fr/manuel-notice-mode-emploi/APPLE/IPHONE%2D%5FE#>, Retrieved on Mar. 27, 2008, Jun. 2007, 137 pages.
Apple, “VoiceOver”, available at <http://www.apple.com/accessibility/voiceover/>, Feb. 2009, 5 pages.
Bellegarda, Jerome R., “Interaction-Driven Speech Input-A Data-Driven Approach to the Capture of both Local and Global Language Constraints”, available at <http://old.sig.chi.ora/bulletin/1998.2/bellegarda.html>, 1992, 7 pages.
Bertulucci, Jeff, “Google Adds Voice Search to Chrome Browser”, PC World, Jun. 14, 2011, 5 pages.
Best Buy, “When it Comes to Selecting a Projection TV, Toshiba Makes Everything Perfectly Clear”, Previews of New Releases, available at <http://www.bestbuy.com/HomeAudioVideo/Specials/ToshibaTVFeatures.asp>, retrieved on Jan. 23, 2003, 5 pages.
Birrell, Andrew, “Personal Jukebox (PJB)”, available at <http://birrell.org/andrew/talks/pjb-overview.ppt>, Oct. 13, 2000, 6 pages.
BluePhoneElite: About, available at <http://www.reelintelligence.com/BluePhoneElite>, retrieved on Sep. 25, 2006, 2 pages.
BluePhoneElite: Features, available at <http://www.reelintelligence.com/BluePhoneElite/features.shtml,>, retrieved on Sep. 25, 2006, 2 pages.
Bluetooth PC Headsets, “‘Connecting’ Your Bluetooth Headset with Your Computer”, Enjoy Wireless VoIP Conversations, available at <http://www.bluetoothpcheadsets.com/connect.htm>, retrieved on Apr. 29, 2006, 4 pages.
Bociurkiw, Michael, “Product Guide: Vanessa Matz”, available at <http://www.forbes.com/asap/2000/1127/vmartz_print.html>, retrieved on Jan. 23, 2003, 2 pages.
Brain, Marshall, “How MP3 Files Work”, available at <http://www.howstuffworks.com>, retrieved on Mar. 19, 2007, 4 pages.
Bussey, et al., “Service Architecture, Prototype Description and Network Implications of a Personalized Information Grazing Service”, INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Available at <http://slrohall.com/oublications/>, Jun. 1990, 8 pages.
Bussler et al., “Web Service Execution Environment (WSMX)”, retrieved from Internet on Sep. 17, 2012, available at <http://www.w3.org/Submission/WSMX>, Jun. 3, 2005, 29 pages.
Butler, Travis, “Archos Jukebox 6000 Challenges Nomad Jukebox”, available at <http://tidbits.com/article/6521>, Aug. 13, 2001, 5 pages.
Butler, Travis, “Portable MP3: The Nomad Jukebox”, available at <http://tidbits.com/article/6261>, Jan. 8, 2001, 4 pages.
Call Centre, “Word Prediction”, The CALL Centre & Scottish Executive Education Dept., 1999, pp. 63-73.
Car Working Group, “Hands-Free Profile 1.5 HFP1.5_SPEC”, Bluetooth Doc, available at <www.bluetooth.org>, Nov. 25, 2005, 93 pages.
Chakarova et al., “Digital Still Cameras—Downloading Images to a Computer”, Multimedia Reporting and Convergence, available at <http://journalism.berkeley.edu/multimedia/tutorials/stillcams/downloading.html>, retrieved on May 9, 2005, 2 pages.
Chamberlain, Kim, “Quick Start Guide Natural Reader”, available online at <http://atrc.colostate.edu/files/quickstarts/Natural_Reader_Quick_Start_Guide.>, Apr. 2008, 5 pages.
Chartier, David, “Using Multi-Network Meebo Chat Service on Your iPhone”, available at <http://www.tuaw.com/2007/07/04/using-multi-network-meebo-chat-service-on-your-iphone/>, Jul. 4, 2007, 5 pages.
Cheyer et al., “The Open Agent Architecture: Building Communities of Distributed Software Agents”, Artificial Intelligence Center, SRI International, Power Point Presentation, Available online at <http://www.ai.sri.com/-oaa/>, retrieved on Feb. 21, 1998, 25 pages.
Cheyer, Adam, “A Perspective on AI & Agent Technologies for SCM”, VerticalNet Presentation, 2001, 22 pages.
Cheyer, Adam, “About Adam Cheyer”, available at <http://www.adam.cheyer.com/about.html>, retrieved on Sep. 17, 2012, 2 pages.
Compaq, “Personal Jukebox”, available at <http://research.compaq.com/SRC/pjb/>, 2001, 3 pages.
Corr, Paul, “Macintosh Utilities for Special Needs Users”, available at <http://homepage.mac.com/corrp/macsupt/columns/specneeds.html>, Feb. 1994 (content updated Sep. 19, 1999), 4 pages.
Corrected Notice of Allowance received for U.S. Appl. No. 15/271,766, dated Dec. 4, 2019, 2 pages.
Corrected Notice of Allowance received for U.S. Appl. No. 15/271,766, dated Oct. 15, 2019, 2 pages.
Corrected Notice of Allowance received for U.S. Appl. No. 15/271,766, dated Sep. 30, 2019, 2 pages.
Creative Technology Ltd., “Creative NOMAD® II: Getting Started—User Guide (On Line Version)”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000026434.pdf>, Apr. 2000, 46 pages.
Creative Technology Ltd., “Creative NOMAD®: Digital Audio Player: User Guide (On-Line Version)”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000010757.pdf>, Jun. 1999, 40 pages.
Creative, “Creative NOMAD MuVo TX”, available at <http://web.archive.org/web/20041024175952/www.creative.com/products/pfriendly.asp?product=9672>, retrieved on Jun. 6, 2006, 1 page.
Creative, “Creative NOMAD MuVo”, available at <http://web.archive.org/web/20041024075901/www.creative.com/products/product.asp?category=213&subcategory=216&product=4983>, retrieved on Jun. 7, 2006, 1 page.
Creative, “Digital MP3 Player”, available at <http://web.archive.org/web/20041024074823/www.creative.com/products/product.asp?category=213&subcategory=216&product=4983, 2004, 1 page.
Database WPI Section Ch, Week 8733, Derwent Publications Ltd., London, GB; AN 87-230826 & JP, A, 62 153 326 (Sanwa Kako KK (Sans) Sanwa Kako Co), Jul. 8, 1987, 6 pages.
Database WPI Section Ch, Week 8947, Derwent Publications Ltd., London, GB; AN 89-343299 & JP, A, 1 254 742 (Sekisui Plastics KK), Oct. 11, 1989, 7 pages.
De Herrera, Chris, “Microsoft ActiveSync 3.1”, Version 1.02, available at <http://www.cewindows.net/wce/activesync3.1.htm>, Oct. 13, 2000, 8 pages.
Decision to Grant received for Danish Patent Application No. PA201770035, dated Jun. 21,2019, 2 pages.
Del Strother, Jonathan, “Coverflow”, available at <http://www.steelskies.com/coverflow>, retrieved on Jun. 15, 2006, 14 pages.
Diamond Multimedia Systems, Inc., “Rio PMP300: User's Guide”, available at <http://ec1.images-amazon.com/media/i3d/01/a/man-migrate/MANUAL000022854.pdf>, 1998, 28 pages.
Donovan, R. E., “A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers”, available at <http://citeseerx.ist.osu.edu/viewdoc/summarv?doi=1 0.1.1.21.6398>, 2001, 4 pages.
259 ⋅ Dragon Naturally Speaking Version 11 Users Guide, Nuance Communications, Inc., Copyright @2002-2010, 132 pages.
dyslexic.com, “AlphaSmart 3000 with CoWriter SmartApplet: Don Johnston Special Needs”, available at <http://www.dyslexic.com/procuts.php?catid-2&pid=465&PHPSESSID=2511b800000f7da>, retrieved on Dec. 6, 2005, 13 pages.
Edwards, John R., “Q&A: Integrated Software with Macros and an Intelligent Assistant”, Byte Magazine, vol. 11, No. 1, Jan. 1986, pp. 120-122.
Eluminx, “Illuminated Keyboard”, available at <http://www.elumix.com/>, retrieved on Dec. 19, 2002, 1 page.
Engst, Adam C., “SoundJam Keeps on Jammin'”, available at <http://db.tidbits.com/getbits.acgi?tbart=05988>, Jun. 19, 2000, 3 pages.
Extended European Search Report received for European Patent Application No. 19150734.2, dated Apr. 26, 2019, 8 pages.
Fanty et al., “A Comparison of DFT, PLP and Cochleagram for Alphabet Recognition”, IEEE, Nov. 1991, pp. 326-329.
Final Office Action Received for U.S. Appl. No. 15/271,766, dated Mar. 11, 2019, 17 pages.
Furnas, George W., “The Fisheye Calendar System”, Bellcore Technical Memorandum, Nov. 19, 1991, pp. 1-9.
Glass et al., “Multilingual Spoken-Language Understanding in the Mit Voyager System”, Available online at <http://groups.csail.mit.edu/sls/publications/1995/speechcomm95-voyager.pdf>, Aug. 1995, 29 pages.
Glossary of Adaptive Technologies: Word Prediction, available at <http://www.utoronto.ca/atrc/reference/techwordpred.html>, retrieved on Dec. 6, 2005, 5 pages.
Gmail, “About Group Chat”, available at <http://mail.google.com/support/bin/answer.py?answer=81090>, Nov. 26, 2007, 2 pages.
Goddeau et al., “A Form-Based Dialogue Manager for Spoken Language Applications”, Available online at <http://phasedance.com/pdf!icslp96.pdf>, Oct. 1996, 4 pages.
Gruber et al., “An Ontology for Engineering Mathematics”, Fourth International Conference on Principles of Knowledge Representation and Reasoning, Available online at <http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html>, 1994, pp. 1-22.
Gruber, Tom, “2021: Mass Collaboration and the Really New Economy”, TNTY Futures, vol. 1, No. 6, Available online at <http://tomgruber.org/writing/tnty2001.htm>, Aug. 2001, 5 pages.
Gruber, Tom, “Collaborating Around Shared Content on the Www, W3C Workshop on Www and Collaboration”, available at <http://www.w3.org/Collaboration/Workshop/Proceedings/P9.html>, Sep. 1995, 1 page.
Gruber, Tom, “Despite Our Best Efforts, Ontologies are not the Problem”, AAAI Spring Symposium, Available online at <http://tomgruber.org/writing/aaai-ss08.htm>, Mar. 2008, pp. 1-40.
Gruber, Tom, “Helping Organizations Collaborate, Communicate, and Learn”, Presentation to NASA Ames Research, Available online at <http://tomgruber.org/writing/organizational-intelligence-talk.htm>, Mar.-Oct. 2003, 30 pages.
Gruber, Tom, “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience”, Presentation at Semantic Technologies Conference, Available online at <http://tomgruber.org/writing/semtech08.htm>, May 20, 2008, pp. 1-40.
Gruber, Tom, “It Is What It Does: the Pragmatics of Ontology for Knowledge Sharing”, Proceedings of the International CIDOC CRM Symposium, Available online at <http://tomgruber.org/writing/cidoc-ontology.htm>, Mar. 26, 2003, 21 pages.
Gruber, Tom, “Ontologies, Web 2.0 and Beyond”, Ontology Summit, Available online at <http://tomgruber.org/writing/ontolog-social-web-keynote.htm>, Apr. 2007, 17 pages.
Guay, Matthew, “Location-Driven Productivity with Task Ave”, available at <http://iphone.appstorm.net/reviews/productivity/location-driven-productivity-with-task-ave/>, Feb. 19, 2011, 7 pages.
Guim, Mark, “How to Set a Person-Based Reminder with Cortana”, available at <http://www.wpcentral.com/how-to-person-based-reminder-cortana>, Apr. 26, 2014, 15 pages.
Guzzoni et al., “Active, A platform for Building Intelligent Software”, Computational Intelligence, available at <http://www.informatik.uni-trier.del-ley/pers/hd/g/Guzzoni:Didier >, 2006, 5 pages.
Hardwar, Devindra, “Driving App Waze Builds its own Sin for Hands-Free Voice Control”, Available online at <http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/>, retrieved on Feb. 9, 2012, 4 pages.
Hear voice from Google translate, Available on URL: https://www.youtube.com/watch?v=18AvMhFqD28, Jan. 28, 2011, 1 page.
Hendrickson, Bruce, “Latent Semantic Analysis and Fiedler Retrieval”, Linear Algebra and its Applications, vol. 421, 2007, pp. 345-355.
Hendrix et al., “The Intelligent Assistant: Technical Considerations Involved in Designing Q&A's Natural-Language Interface”, Byte Magazine, Issue 14, Dec. 1987, 1 page.
Henrich et al., “Language Identification for the Automatic Grapheme-To-Phoneme Conversion of Foreign Words in a German Text-To-Speech System”, Proceedings of the European Conference on Speech Communication and Technology, vol. 2, Sep. 1989, pp. 2220-2223.
IBM, “Why Buy: ThinkPad”, available at <http://www.pc.ibm.com/us/thinkpad/easeofuse.html>, retrieved on Dec. 19, 2002, 2 pages.
IChat AV, “Video Conferencing for the Rest of Us”, Apple—Mac OS X—iChat AV, available at <http://www.apple.com/macosx/features/ichat/>, retrieved on Apr. 13, 2006, 3 pages.
id3.org, “id3v2.4.0-Frames”, available at <http://id3.org/id3v2.4.0-frames?action=print>, retrieved on Jan. 22, 2015, 41 pages.
IEEE 1394 (Redirected from Firewire, Wikipedia, The Free Encyclopedia, available at <http://www.wikipedia.org/wiki/Firewire>, retrieved on Jun. 8, 2003, 2 pages.
Intention to Grant received for Danish Patent Application No. PA201770032, dated Mar. 18, 2019, 2 pages.
Intention to Grant received for Danish Patent Application No. PA201770035, dated Apr. 26, 2019, 2 pages.
Interactive Voice, available at <http://www.helloivee.com/company/>, retrieved on Feb. 10, 2014, 2 pages.
Intraspect Software, “The Intraspect Knowledge Management Solution: Technical Overview”, available at <http://tomgruber.org/writing/intraspect-whitepaper-1998.pdf>, 1998, 18 pages.
Invitation to Pay Additional Fee Received for PCT Patent Application No. PCT/US2016/059953, dated Dec. 29, 2016, 2pages.
Iowegian International, “FIR Filter Properties, DSPGuru, Digital Signal Processing Central”, available at <http://www.dspguru.com/dsp/faq/fir/properties> retrieved on Jul. 28, 2010, 6 pages.
Iphone Hacks, “Native iPhone MMS Application Released”, available at <http://www.iphonehacks.com/2007/12/iphone-mms-app.html>, retrieved on Dec. 25, 2007, 5 pages.
Iphonechat, “iChat for iPhone in JavaScript”, available at <http://www.publictivity.com/iPhoneChat/>, retrieved on Dec. 25, 2007, 2 pages.
Jaybird, “Everything Wrong with AIM: Because We've All Thought About It”, available at <http://www.psychonoble.com/archives/articles/82.html>, May 24, 2006, 3 pages.
Kahn et al., “CoABS Grid Scalability Experiments”, Autonomous Agents and Multi-Systems, vol. 7, 2003, pp. 171-178.
Karp, P. D., “A Generic Knowledge-Base Access Protocol”, Available online at <http://lecture.cs.buu.ac.th/-f50353/Document/gfp.pdf>, May 12, 1994, 66 pages.
Katz et al., “REXTOR: A System for Generating Relations from Natural Language”, Proceedings of the ACL Workshop on Natural Language Processing and Information Retrieval (NLP&IR), Oct. 2000, 11 pages.
Kazmucha, Allyson, “How to Send Map Locations Using iMessage”, iMore.com, Available at <http://www.imore.com/how-use-imessage-share-your-location-your-iphone>, Aug. 2, 2012, 6 pages.
Kickstarter, “Ivee Sleek: Wi-Fi Voice-Activated Assistant”, available at <https://www.kickstarter.com/projectst/ivee/ivee-sleek-wi-fi-voice-activated-assistant>, retrieved on Feb. 10, 2014, 13 pages.
Kline et al., “UnWndows 1.0: X Windows Tools for Low Vision Users”, ACM SIGCAPH Computers and the Physically Handicapped, No. 49, Mar. 1994, pp. 1-5.
Knownav, “Knowledge Navigator”, YouTube Video available at <http://www.youtube.com/watch?v=QRH8eimU_20>, Apr. 29, 2008, 1 page.
Kroon et al., “Pitch Predictors with High Temporal Resolution”, IEEE, vol. 2, pp. 661-664.
Larks, “Intelligent Software Agents”, available at <http://www.cs.cmu.edu/˜softagents/larks.html> retrieved on Mar. 15, 2013, 2 pages.
Lee et al., “System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters”, International Conference on Computer Processing of Chinese & Oriental Languages, vol. 5, No. 3 & 4, Nov. 1991, 16 pages.
Lewis, Cameron, “Task Ave for iPhone Review”, Mac Life, Available at <http://www.maclife.com/article/reviews/task_ave_iphone_review>, Mar. 3, 2011, 5 pages.
Lewis, Peter, “Two New Ways to Buy Your Bits”, CNN Money, available at <http://money.cnn.com/2003/12/30/commentary/ontechnology/download/>, Dec. 31, 2003, 4 pages.
Lieberman et al., “Out of Context: Computer Systems that Adapt to, and Learn from, Context”, IBM Systems Journal, vol. 39, No. 3 & 4, 2000, pp. 617-632.
Lin et al., “A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History”, Available on line at <http://citeseerxist.psu.edu/viewdoc/summary?doi=10.1.1.42.272>, 1999, 4 pages.
Macsimum News, “Apple Files Patent for an Audio Interface for the iPod”, available at <http://www.macsimumnews.com/index.php/archive/apple_files_patent_for_an_audio_interface_for_the_ipod>, retrieved on Jul. 13, 2006, 8 pages.
MACTECH, “KeyStrokes 3.5 for Mac OS X Boosts Word Prediction”, available at <http://www.mactech.com/news/?p=1007129>, retrieved on Jan. 7, 2008, 3 pages.
Martin et al., “The Open Agent Architecture: A Framework for Building Distributed Software Systems”, Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, available at <http://adam.cheyer.com/papers/oaa.pdf> >, retrieved from internet on Jan.-Mar. 1999.
Matsui et al., “Speaker Adaptation of Tied-Mixture-Based Phoneme Models for Text-Prompted Speaker Recognition”, 1994 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19-22, 1994, pp. 1-125-1-128.
Meet Ivee, Your Wi-Fi Voice Activated Assistant, available at <http://www.helloivee.com/>, retrieved on Feb. 10, 2014, 8 pages.
Mel Scale, Wikipedia the Free Encyclopedia, Last modified on Oct. 13, 2009 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Mel_scale>, 2 pages.
Menta, Richard, “1200 Song MP3 Portable is a Milestone Player”, available at <http://www.mp3newswire.net/stories/personaljuke.html>, Jan. 11, 2000, 4 pages.
Meyrowitz et al., “Bruwin: An Adaptable Design Strategy for Window Manager/Virtual Terminal Systems”, Department of Computer Science, Brown University, 1981, pp. 180-189.
Microsoft Press, “Microsoft Windows User's Guide for the Windows Graphical Environment”, version 3.0, 1985-1990, pp. 33-41 & 70-74.
Microsoft, “Turn on and Use Magnifier”, available at <http://www.microsoft.com/windowsxp/using/accessibility/magnifierturnon.mspx>, retrieved on Jun. 6, 2009.
Miller, Chance, “Google Keyboard Updated with New Personalized Suggestions Feature”, available at <http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/>, Mar. 19, 2014, 4 pages.
Milstead et al., “Metadata: Cataloging by Any Other Name”, available at <http://www.iicm.tugraz.at/thesis/cguetl_diss/literatur/KapiteI06/References/Milstead_et_al._1999/metadata.html>, Jan. 1999, 18 pages.
Milward et al., “D2.2: Dynamic Multimodal Interface Reconfiguration, Talk and Look: Tools for Ambient Linguistic Knowledge”, available at <http://www.ihmc.us/users/nblaylock!Pubs/Files/talk d2.2.pdf>, Aug. 8, 2006, 69 pages.
Miniman, Jared, “Applian Software's Replay Radio and Player v1.02”, pocketnow.com—Review, available at <http://www.pocketnow.com/reviews/replay/replay.htm>, Jul. 31, 2001, 16 pages.
Minimum Phase, Wikipedia the free Encyclopedia, Last modified on Jan. 12, 2010 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Minimum_phase>, 8 pages.
Mobile Speech Solutions, Mobile Accessibility, SVOX AG Product Information Sheet, available at <http://www.svox.com/site/bra840604/con782768/mob965831936.aSQ?osLang=1> , Sep. 27, 2012, 1 page.
Mobile Tech News, “T9 Text Input Software Updated”, available at <http://www.mobiletechnews.com/info/2004/11/23/122155.html>, Nov. 23, 2004, 4 pages.
Moore et al., “Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing for ATIS”, SRI International, Artificial Intelligence Center, 1995, 4 pages.
825. Moore et al., “The Information Warfare Advisor: An Architecture for Interacting with Intelligent Agents Across the Web”, Proceedings of Americas Conference on Information Systems (AMCIS), Dec. 31, 1998, pp. 186-188.
Morton, Philip, “Checking If an Element Is Hidden”, StackOverflow, Available at <http://stackoverflow.com/questions/178325/checking-if-an-element-is-hidden>, Oct. 7, 2008, 12 pages.
838. Mountford et al., “Talking and Listening to Computers”, The Art of Human-Computer Interface Design, Apple Computer, Inc., Addison-Wesley Publishing Company, Inc., 1990, 17 pages.
Musicmatch, “Musicmatch and Xing Technology Introduce Musicmatch Jukebox”, Press Releases, available at <http://www.musicmatch.com/info/company/press/releases/?year=1998&release=2>, May 18, 1998, 2 pages.
Muthusamy et al., “Speaker-Independent Vowel Recognition: Spectograms versus Cochleagrams”, IEEE, Apr. 1990, pp. 533-536.
My Cool Aids, “What's New”, available at <http://www.mycoolaids.com/>, 2012, 1 page.
Myers, Brad A., “Shortcutter for Palm”, available at <http://www.cs.cmu.edu/˜pebbles/v5/shortcutter/palm/index.html>, retrieved on Jun. 18, 2014, 10 pages.
N200 Hands-Free Bluetooth Car Kit, available at <www.wirelessground.com>, retrieved on Mar. 19, 2007, 3 pages.
NCIP Staff, “Magnification Technology”, available at <http://www2.edc.org/ncip/library/vi/magnifi.htm>, 1994, 6 pages.
NCIP, “NCIP Library: Word Prediction Collection”, available at <http://www2.edc.org/ncip/library/wp/toc.htm>, 1998, 4 pages.
NCIP, “What is Word Prediction?”, available at <http://www2.edc.org/NCIP/library/wp/what_is.htm>, 1998, 2 pages.
NDTV, “Sony SmartWatch 2 Launched in India for Rs. 14,990”, available at <http://gadgets.ndtv.com/others/news/sony-smartwatch-2-launched-in-india-for-rs-14990-420319>, Sep. 18, 2013, 4 pages.
Ng, Simon, “Google's Task List Now Comes to Iphone”, SimonBlog, Available at <http://www.simonblog.com/2009/02/04/googles-task-list-now-comes-to-iphone/>, Feb. 4, 2009, 33 pages.
Non-Final Office Action received for U.S. Appl. No. 15/271,766, dated Oct. 1, 2018, 16 pages.
Non-Final Office Action received for U.S. Appl. No. 16/024,447, dated Jul. 3, 2019, 50 pages.
Notenboom, Leo A., “Can I Retrieve Old MSN Messenger Conversations?”, available at <http://ask-leo.com/can_i_retrieve_old_msn_messenger_conversations.html>, Mar. 11, 2004, 23 pages.
Notice of Allowance received for U.S. Appl. No. 15/271,766, dated Jul. 31, 2019, 19 pages.
Office Action received for Danish Patent Application No. PA201770035, dated Jan. 8, 2019, 4 pages.
Office Action received for Japanese Patent Application No. 2018-535277, dated Mar. 12, 2019, 7 pages.
Office Action received for Japanese Patent Application No. 2018-535277, dated Nov. 19, 2018, 10 pages.
Office Action received for Japanese Patent Application No. 2019-121991, dated Aug. 30, 2019, 4 pages.
Office Action received for Korean Patent Application No. 10-2019-7004448, dated Sep. 19, 2019, 12 pages.
Office Action received for Korean Patent Application No. 10-2018-7023111, dated Jan. 2, 2019, 11 pages.
Oregon Scientific, “512MB Waterproof MP3 Player with FM Radio & Built-in Pedometer”, available at <http://www2.oregonscientific.com/shop/product.asp?cid=4&scid=11&pid=581>, retrieved on Jul. 31, 2006, 2 pages.
Osxdaily, “Get a List of Siri Commands Directly from Siri”, Available at <http://osxdaily.com/2013/02/05/list-siri-commands/>, Feb. 5, 2013, 15 pages.
Padilla, Alfredo, “Palm Treo 750 Cell Phone Review—Messaging”, available at <http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm>, Mar. 17, 2007, 6 pages.
Panasonic, “Toughbook 28: Powerful, Rugged and Wireless”, Panasonic: Toughbook Models, available at <http://www.panasonic.com/computer/notebook/html/01a_s8.htm>, retrieved on Dec. 19, 2002, 3 pages.
Papadimitriou et al., “Latent Semantic Indexing: A Probabilistic Analysis”, Available online at <http://citeseerx.ist.psu.edu/messaqes/downloadsexceeded.html>, Nov. 14, 1997, 21 pages.
Patent Abstracts of Japan, vol. 014, No. 273 (E-0940) Jun. 13, 1990 (Jun. 13, 1990) -& JP 02 086057 A (Japan Storage Battery Co Ltd), Mar. 27, 1990 (Mar. 27, 1990), 3 pages.
Pathak et al., “Privacy-preserving Speech Processing: Cryptographic and String-matching Frameworks Show Promise”, In: IEEE signal processing magazine, retrieved from <http://www.merl.com/publications/docs/TR2013-063.pdf>, Feb. 13, 2013, 16 pages.
PhatNoise, Voice Index on Tap, Kenwood Music Keg, available at <http://www.phatnoise.com/kenwood/kenwoodssamail.html>, retrieved on Jul. 13, 2006, 1 page.
Poly-Optical Products, Inc., “Poly-Optical Fiber Optic Membrane Switch Backlighting”, available at <http://www.poly-optical.com/membrane_switches.html>, retrieved on Dec. 19, 2002, 3 pages.
Powell, Josh, “Now You See Me . . . Show/Hide Performance”, available at http://www.learningjquery.com/2010/05/now-you-see-me-showhide-performance, May 4, 2010, 3 pages.
Pulman et al., “Clare: A Combined Language and Reasoning Engine”, Proceedings of JFIT Conference, available at <http://www.cam.sri.com/tr/crc042/paper.ps.Z>, 1993, 8 pages.
Rabiner et al., “Fundamental of Speech Recognition” AT&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 1993, 17 pages.
Rayner et al., “Adapting the Core Language Engine to French and Spanish”, Cornell University Library, available at <http:l/arxiv.org/abs/cmp-lg/9605015>, May 10, 1996, 9 pages.
Rayner et al., “Spoken Language Translation with Mid-90's Technology: A Case Study”, Eurospeech, ISCA, Available online at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.8608>, 1993, 4 pages.
Reininger et al., “Speech and Speaker Independent Codebook Design in VQ Coding Schemes”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 271-273.
Rice et al., “Monthly Program: Nov. 14, 1995”, The San Francisco Bay Area Chapter of ACM SIGCHI, available at <http://www.baychi.org/calendar/19951114>, Nov. 14, 1995, 2 pages.
Ricker, Thomas, “Apple Patents Audio User Interface”, Engadget, available at <http://www.engadget.com/2006/05/04/apple-patents-audio-user-interface/>, May 4, 2006, 6 pages.
Rioport, “Rio 500: Getting Started Guide”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000023453.pdf>, 1999, 2 pages.
Roseberry, Catherine, “How to Pair a Bluetooth Headset & Cell Phone”, available at <http://mobileoffice.about.com/od/usingyourphone/ht/blueheadset_p.htm>, retrieved on Apr. 29, 2006, 2 pages.
Sarawagi, Sunita, “CRF Package Page”, available at <http://crf.sourceforge.net/>, retrieved on Apr. 6, 2011, 2 pages.
Sato, H., “A Data Model, Knowledge Base and Natural Language Processing for Sharing a Large Statistical Database”, Statistical and Scientific Database Management, Lecture Notes in Computer Science, vol. 339, 1989, 20 pp.
Schultz, Tanja, “Speaker Characteristics”, In: Speaker Classification I, retrieved from <http://ccc.inaoep.mx/˜villasen/bib/Speaker%20Characteristics.pdf>, 2007, pp. 47-74.
Shimazu et al., “CAPIT: Natural Language Interface Design Tool with Keyword Analyzer and Case-Based Parser”, NEG Research & Development, vol. 33, No. 4, Oct. 1992, 11 pages.
Simonite, Tom, “One Easy Way to Make Sin Smarter”, Technology Review, Oct. 18, 2011, 2 pages.
Sony Eiicsson Corporate, “Sony Ericsson to introduce Auto pairing.TM. to Improve Bluetooth.TM. Connectivity Between Headsets and Phones”, Press Release, available at <http://www.sonyericsson.com/spg.jsp?cc=global&lc=en&ver=4001&template=pc3_1_ 1&z . . . >, Sep. 28, 2005, 2 pages.
Speaker Recognition, Wkipedia, the Free Enclyclopedia, Nov. 2, 2010, 4 pages.
Spiller, Karen, “Low-Decibel Earbuds Keep Noise at a Reasonable Level”, available at <http://www.nashuatelegraph.com/apps/pbcs.d11/article?Date=20060813&Cate . . . >, Aug. 13, 2006, 3 pages.
SRI, “SRI Speech: Products: Software Development Kits: EduSpeak”, available at <http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak>shtml, retrieved on Jun. 20, 2013, 2 pages.
Stealth Computer Corporation, “Peripherals for Industrial Keyboards & Pointing Devices”, available at <http://www.stealthcomputer.com/peripherals_oem.htm>, retrieved on Dec. 19, 2002, 6 pages.
Steinberg, Gene, “Sonicblue Rio Car (10 GB, Reviewed: 6 GB)”, available at <http://electronics.cnet.com/electronics/0-6342420-1304-4098389.html>, Dec. 12, 2000, 2 pages.
Stent et al., “Geo-Centric Language Models for Local Business Voice Search”, AT&T Labs— Research, 2009, pp. 389-396.
1087. Stuker et al., “Cross-System Adaptation and Combination for Continuous Speech Recognition: The Influence of Phoneme Set and Acoustic Front-End”, Influence of Phoneme Set and Acoustic Front-End, Interspeech, Sep. 17-21, 2006, pp. 521-524.
Sullivan, Danny, “How Google Instant's Autocomplete Suggestions Work”, available at <http://searchengineland.com/how-google-instant-autocomplete-suggestions-work-62592>, Apr. 6, 2011, 12 pages.
T3 Magazine, “Creative MuVo TX 256MB”, available at <http://www.t3.co.uk/reviews/entertainment/mp3_player/creative_muvo_tx_256mb>, Aug. 17, 2004, 1 page.
TAOS, “TAOS, Inc. Announces Industry's First Ambient Light Sensor to Convert Light Intensity to Digital Signals”, News Release, available at <http://www.taosinc.com/presssrelease_090902.htm>, Sep. 16, 2002, 3 pages.
Tello, Ernest R., “Natural-Language Systems”, Mastering AI Tools and Techniques, Howard W. Sams & Company, 1988, pp. 25-64.
TextnDrive, “Text'nDrive App Demo-Listen and Reply to your Messages by Voice while Driving!”, YouTube Video available at <http://www.youtube.com/watch?v=WaGfzoHsAMw>, Apr. 27, 2010, 1 page.
TG3 Electronics, Inc., “BL82 Series Backlit Keyboards”, available at <http://www.tg3electronics.com/products/backlit/backlit.htm>, retrieved on Dec. 19, 2002, 2 pages.
Top 10 Best Practices for Voice User Interface Design available at <http://www.developer.com/voice/article.php/1567051/Top-10-Best-Practices-for-Voice-UserInterface-Design.htm>, Nov. 1, 2002, 4 pages.
Uslan et al., “A Review of Two Screen Magnification Programs for Windows 95: Magnum 95 and LP-Windows”, Journal of Visual Impairment & Blindness, Sep.-Oct. 1997, pp. 9-13.
Veiga, Alex, “AT&T Wireless Launching Music Service”, available at <http://bizyahoo.com/ap/041005/at_t_mobile_music_5.html?printer=1>, Oct. 5, 2004, 2 pages.
Vlingo Incar, “Distracted Driving Solution with Vlingo InCar”, YouTube Video, Available online at <http://www.youtube.com/watch?v=Vqs8XfXxgz4>, Oct. 2010, 2 pages.
Voiceassist, “Send Text, Listen to and Send E-Mail by Voice”, YouTube Video, Available online at <http://www.youtube.com/watch?v=0tEU61nHHA4>, Jul. 30, 2009, 1 page.
VoiceontheGo, “Voice on the Go (BlackBerry)”, YouTube Video, available online at <http://www.youtube.com/watch?v=pJqpWgQS98w>, Jul. 27, 2009, 1 page.
W3C Working Draft, “Speech Synthesis Markup Language Specification for the Speech Interface Framework”, available at <http://www.w3org./TR/speech-synthesis>, retrieved on Dec. 14, 2000, 42 pages.
What is Fuzzy Logic?, available at <http://www.cs.cmu.edu>, retrieved on Apr. 15, 1993, 5 pages.
Wikipedia, “Acoustic Model”, available at <http://en.wikipedia.org/wiki/AcousticModel>, retrieved on Sep. 14, 2011, 2 pages.
Wikipedia, “Language Model”, available at <http://en.wikipedia.org/wiki/Language_model>, retrieved on Sep. 14, 2011, 3 pages.
Wikipedia, “Speech Recognition”, available at <http://en.wikipedia.org/wiki/Speech_recognition>, retrieved on Sep. 14, 2011, 10 pages.
Wilson, Mark, “New iPod Shuffle Moves Buttons to Headphones, Adds Text to Speech”, available at <http://gizmodo.com/5167946/new-ipod-shuffle-moves-buttons-to-headphones-adds-text-to-speech>, Mar. 11, 2009, 13 pages.
Wirelessinfo, “SMS/MMS Ease of Use (8.0)”, available at <http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm>, Mar. 2007, 3 pages.
Yiourgalis et al., “Text-to-Speech system for Greek”, ICASSP 91, vol. 1, 14-17 May 1991, pp. 525-528.
Young et al, “The HTK Book”, Version 3.4, Dec. 2006, 368 pages.
Zainab, “Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]”, available at <http://www.addictivetips.com/internet-tips/google-input-tools-shows-multiple-language-onscreen-keyboards-chrome/>, Jan. 3, 2012, 3 pages.
Zelig, “A Review of the Palm Treo 750v”, available at <http://www.mtekk.com.au/Articles/tabid/54/articleType/ArticleView/articleId/769/A-Review-of-the-Palm-Treo-750v.aspx>, Feb. 5, 2007, 3 pages.
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/024,447, dated Oct. 2, 2019, 4 pages.
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/402,922, dated Apr. 28, 2020, 3 pages.
Final Office Action received for U.S. Appl. No. 16/024,447, dated Oct. 11, 2019, 59 pages.
Non-Final Office Action received for U.S. Appl. No. 16/402,922, dated Oct. 18, 2019, 20 pages.
Notice of Acceptance received for Australian Patent Application No. 2019213416, dated Nov. 7, 2019, 3 pages.
Notice of Allowance received for Japanese Patent Application No. 2019-121991, dated Dec. 13, 2019, 4 pages (1 page of English Translation and 3 pages of Official Copy).
Notice of Allowance received for U.S. Appl. No. 16/024,447, dated Apr. 22, 2020, 18 pages.
Office Action received for Korean Patent Application No. 10-2018-7023111, dated Dec. 12, 2019, 6 pages (3 pages of English Translation and 3 pages of Official Copy).
Office Action received for Korean Patent Application No. 10-2018-7023111, dated Sep. 25, 2019, 6 pages (3 pages of English Translation and 3 pages of Official Copy).
Office Action received for Korean Patent Application No. 10-2019-7004448, dated May 22, 2020, 9 pages (4 pages of English Translation and 5 pages of Official Copy).
Office Action received for Australian Patent Application No. 2020201030, dated Aug. 25, 2020, 4 pages.
Summons to Attend Oral Proceedings received for European Patent Application No. 16904830.3, mailed on Sep. 3, 2020, 10 pages.
Notice of Allowance received for Korean Patent Application No. 10-2019-7004448, dated Sep. 28, 2020, 3 pages (1 page of English Translation and 2 pages of Official Copy).
Corrected Notice of Allowance received for U.S. Appl. No. 16/402,922, dated Sep. 17, 2020, 2 pages.
Corrected Notice of Allowance received for U.S. Appl. No. 16/402,922, dated Sep. 28, 2020, 2 pages.
Summons to Attend Oral Proceedings received for European Patent Application No. 19157463.1, mailed on Sep. 14, 2020, 10 pages.
Corrected Notice of Allowance received for U.S. Appl. No. 16/402,922, dated Oct. 27, 2020, 2 pages.
Office Action received for Chinese Patent Application No. 201680079283.0, dated Oct. 9, 2020, 22 pages (11 pages of English Translation and 11 pages of Official Copy).
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 19150734.2, mailed on Nov. 17, 2020, 2 pages.
Office Action received for Australian Patent Application No. 2020201030, dated Nov. 11, 2020, 4 pages.
Result of Consultation received for European Patent Application No. 19150734.2, dated Nov. 16, 2020, 3 pages.
AAAAPLAY, “Sony Media Remote for iOS and Android”, Online available at: <https://www.youtube.com/watch?v=W8QoeQhlGok>, Feb. 4, 2012, 3 pages.
“Alexa, Turn Up the Heat!, Smartthings Samsung [online]”, Online available at:—<https://web.archive.org/web/20160329142041/https://blog.smartthings.com/news/smart thingsupdates/alexa-turn-up-the-heat/>, Mar. 3, 2016, 3 pages.
Anania Peter, “Amazon Echo with Home Automation (Smartthings)”, Online available at:—<https://www.youtube.com/watch?v=LMW6aXmsWNE>, Dec. 20, 2015, 1 page.
Android Authority, “How to use Tasker: A Beginner's Guide”, Online available at:—<https://youtube.com/watch?v= rDpdS_YWzFc>, May 1, 2013, 1 page.
Asakura et al., “What LG thinks; How the TV should be in the Living Room”, HiVi, vol. 31, No. 7, Stereo Sound Publishing, Inc., Jun. 17, 2013, pp. 68-71 (Official Copy Only). {See Communication Under Rule 37 CFR § 1.98(a) (3)}.
“Ask Alexa—Things That Are Smart Wiki”, Online available at:—<http://thingsthataresmart.wiki/index.php?title=Ask_Alexa&oldid=4283>, Jun. 8, 2016, pp. 1-31.
Ashbrook, Daniel L., “Enabling Mobile Microinteractions”, May 2010, 186 pages.
Ashingtondctech & Gaming, “SwipeStatusBar—Reveal the Status Bar in a Fullscreen App”, Online Available at: <https://www.youtube.com/watch?v=wA_tT9lAreQ>, Jul. 1, 2013, 3 pages.
Automate Your Life, “How to Setup Google Home Routines—A Google Home Routines Walkthrough”, Online Available at: <https://www.youtube.com/watch?v=pXokZHP9kZg>, Aug. 12, 2018, 1 page.
Bell, Jason, “Machine Learning Hands-On for Developers and Technical Professionals”, Wiley, 2014, 82 pages.
Bellegarda, Jeromer, “Chapter 1: Spoken Language Understanding for Natural Interaction: The Siri Experience”, Natural Interaction with Robots, Knowbots and Smartphones, 2014, pp. 3-14.
Bellegarda, Jeromer, “Spoken Language Understanding for Natural Interaction: The Siri Experience”, Slideshow retrieved from : <https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.iwsds2012/files/Bellegarda.pdf>, International Workshop on Spoken Dialog Systems (IWSDS), May 2012, pp. 1-43.
beointegration.com, “BeoLink Gateway—Programming Example”, Online Available at: <https:/ /www.youtube.com/watch?v=TXDaJFm5UH4>, Mar. 4, 2015, 3 pages.
Burgess, Brian, “Amazon Echo Tip: Enable the Wake Up Sound”, Online available at:—<https://www.groovypost.com/howto/amazon-echo-tip-enable-wake-up-sound/>, Jun. 30, 2015, 4 pages.
Cambria et al., “Jumping NLP curves: A Review of Natural Language Processing Research.”, IEEE Computational Intelligence magazine, 2014, vol. 9, May 2014, pp. 48-57.
Chang et al., “Monaural Multi-Talker Speech Recognition with Attention Mechanism and Gated Convolutional Networks”, Interspeech 2018, Sep. 2-6, 2018, pp. 1586-1590.
Chen, Yl, “Multimedia Siri Finds and Plays Whatever You Ask for”, PSFK Report, Feb. 9, 2012, pp. 1-9.
Conneau et al., “Supervised Learning of Universal Sentence Representations from Natural Language Inference Data”, Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, Sep. 7-11, 2017, pp. 670-680.
Coulouris et al., “Distributed Systems: Concepts and Design (Fifth Edition)” Addison-Wesley, 2012, 391 pages.
Czech Lucas, “A System for Recognizing Natural Spelling of English Words”, Diploma Thesis, Karlsruhe Institute of Technology, May 7, 2014, 107 pages.
Deedeevuu, “Amazon Echo Alarm Feature”, Online available at:—<https://www.youtube.com/watch?v=fdjU8eRLk7c>, Feb. 16, 2015, 1 page.
Delcroix et al., “Context Adaptive Deep Neural Networks for Fast Acoustic Model Adaptation”, ICASSP, 2015, pp. 4535-4539.
Delcroix et al., “Context Adaptive Neural Network for Rapid Adaptation of Deep CNN Based Acoustic Models”, Interspeech 2016, Sep. 8-12, 2016, pp. 1573-1577.
Derrick, Amanda, “How to Set Up Google Home for Multiple Users”, Lifewire, Online available at:—<https://www.lifewire.com/set-up-google-home-multiple-users-4685691>, Jun. 8, 2020, 9 pages.
Detroitborg, “Apple Remote App (iPhone & iPod Touch): Tutorial and Demo”, Online Available at:—<https://www.youtube.com/watch?v=M_jzeEevKgl>, Oct. 13, 2010, 4 pages.
Dihelson, “How Can I Use Voice or Phrases as Triggers to Macrodroid?”, Macrodroid Forums, Online Available at:—<https://www.tapatalk.comigroups/macrodroid/how-can-i-use-voice-or-phrases-as-triggers-to-macr-t4845.html>, May 9, 2018, 5 pages.
“DIRECTV™ Voice”, Now Part of the DIRECTTV Mobile App for Phones, Sep. 18, 2013, 5 pages.
Earthling1984, “Samsung Galaxy Smart Stay Feature Explained”, Online available at:—<https://www.youtube.com/watch?v=RpjBNtSjupl>, May 29, 2013, 1 page.
Eder et al., “At the Lower End of Language—Exploring the Vulgar and Obscene Side of German”, Proceedings of the Third Workshop on Abusive Language Online, Florence, Italy, Aug. 1, 2019, pp. 119-128.
Filipowicz, Luke, “How to use the QuickType keyboard in iOS 8”, Online available at:—<https://www.imore.com/comment/568232>, Oct. 11, 2014, pp. 1-17.
Gadget Hacks, “Tasker Too Complicated? Give MacroDroid a Try [How-To]”, Online available at: <https://www.youtube.com/watch?v=8YL9cWCykKc>, May 27, 2016, 1 page.
“Galaxy S7: How to Adjust Screen Timeout & Lock Screen Timeout”, Online available at:—<https://www.youtube.com/watch?v=n6e1WKUS2ww>, Jun. 9, 2016, 1 page.
Gasic et al., “Effective Handling of Dialogue State in the Hidden Information State POMDP-based Dialogue Manager”, ACM Transactions on Speech and Language Processing, May 2011, pp. 1-25.
Ghauth et al., “Text Censoring System for Filtering Malicious Content Using Approximate String Matching and Bayesian Filtering”, Proc. 4th INNS Symposia Series on Computational Intelligence in Information Systems, Bandar Seri Begawan, Brunei, 2015, pp. 149-158.
Google Developers,“Voice search in your app”, Online available at:—<https://www.youtube.com/watch?v=PS1FbB5qWEI>, Nov. 12, 2014, 1 page.
Gupta et al., “I-vector-based Speaker Adaptation of Deep Neural Networks for French Broadcast Audio Transcription”, ICASSP, 2014, 2014, pp. 6334-6338.
Gupta, Naresh, “Inside Bluetooth Low Energy”, Artech House, 2013, 274 pages.
Hershey et al., “Deep Clustering: Discriminative Embeddings for Segmentation and Separation”, Proc. ICASSP, Mar. 2016, 6 pages.
“Hey Google: How to Create a Shopping List with Your Google Assistant”, Online available at:—<https://www.youtube.com/watch?v=w9NCsElax1Y>, May 25, 2018, 1 page.
“How to Enable Google Assistant on Galaxy S7 and Other Android Phones (No Root)”, Online available at:—<https://www.youtube.com/watch?v=HeklQbWyksE>, Mar. 20, 2017, 1 page.
“How to Use Ok Google Assistant Even Phone is Locked”, Online available at:—<https://www.youtube.com/watch?v=9B_gP4j_SP8>, Mar. 12, 2018, 1 page.
Hutsko et al., “iPhone All-in-One for Dummies”, 3rd Edition, 2013, 98 pages.
Ikeda, Masaru, “beGLOBAL Seoul 2015 Startup Battle: Talkey”, YouTube Publisher, Online Available at:—<https://www.youtube.com/watch?v=4Wkp7sAAldg>, May 14, 2015, 1 page.
INews and Tech,“How to Use the QuickType Keyboard in IOS 8”, Online available at:—<http://www.inewsandtech.com/how-to-use-the-quicktype-keyboard-in-ios-8/>, Sep. 17, 2014, 6 pages.
Intention to Grant received for European Patent Application No. 19150734.2, dated Dec. 1, 2020, 8 pages.
Internet Services and Social Net, “How to Search for Similar Websites”, Online availabe at:—<https://www.youtube.com/watch?v=nLf2uirpt5s>, see from 0:17 to 1:06, Jul. 4, 2013, 1 page.
“iPhone 6 Smart Guide Full Version for SoftBank”, Gijutsu-Hyohron Co., Ltd., vol. 1, Dec. 1, 2014, 4 pages (Official Copy Only). {See communication under Rule 37 CFR § 1.98(a) (3)}.
Isik et al., “Single-Channel Multi-Speaker Separation using Deep Clustering”, Interspeech 2016, Sep. 8-12, 2016, pp. 545-549.
Jonsson et al., “Proximity-based Reminders Using Bluetooth”, 2014 IEEE International Conference on Pervasive Computing and Communications Demonstrations, 2014, pp. 151-153.
Karn, Ujjwal, “An Intuitive Explanation of Convolutional Neural Networks”, The Data Science Blog, Aug. 11, 2016, 23 pages.
Kastrenakes, Jacob, “Siri's creators will unveil their new AI bot on Monday”, The Verge, Online available at:—<https://web.archive.org/web/20160505090418/https://www.theverge.com/2016/5/4/11593564/viv-labs-unveiling-monday-new-ai-from-siri-creators>, May 4, 2016, 3 pages.
King et al., “Robust Speech Recognition Via Anchor Word Representations”, Interspeech 2017, Aug. 20-24, 2017, pp. 2471-2475.
Lee, Sungjin, “Structured Discriminative Model for Dialog State Tracking”, Proceedings of the SIGDIAL 2013 Conference, Aug. 22-24, 2013, pp. 442-451.
“Link Your Voice to Your Devices with Voice Match, Google Assistant Help”, Online available at:—<https://support.google.com/assistant/answer/9071681?co=GENIE.Platform%3DAndroid&hl=en>, Retrieved on Jul. 1, 2020, 2 pages.
Liou et al., “Autoencoder for Words”, Neurocomputing, vol. 139, Sep. 2014, pp. 84-96.
Liu et al., “Accurate Endpointing with Expected Pause Duration”, Sep. 6-10, 2015, pp. 2912-2916.
Loukides et al., “What Is the Internet of Things?”, O'Reilly Media, Inc., Online Available at: <https://www.oreilly.com/library/view/what-is-the/9781491975633/>, 2015, 31 pages.
Luo et al., “Speaker-Independent Speech Separation With Deep Attractor Network”, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26, No. 4, Apr. 2018, pp. 787-796.
Majerus Wesley, “Cell Phone Accessibility for Your Blind Child”, Online available at:—<https://web.archive.org/web/20100210001100/https://nfb.org/images/nfb/publications/fr/fr28/3/fr280314.htm>, 2010, pp. 1-5.
Malcangi Mario, “Text-driven Avatars Based on Artificial Neural Networks and Fuzzy Logic”, International Journal of Computers, vol. 4, No. 2, Dec. 31, 2010, pp. 61-69.
Marketing Land,“Amazon Echo: Play music”, Online Available at:—<https://www.youtube.com/watch?v=A7V5NPbsX14>, Apr. 27, 2015, 3 pages.
Mhatre et al., “Donna Interactive Chat-bot acting as a Personal Assistant”, International Journal of Computer Applications (0975-8887), vol. 140, No. 10, Apr. 2016, 6 pages.
Mikolov et al., “Linguistic Regularities in Continuous Space Word Representations”, Proceedings of NAACL-HLT, Jun. 9-14, 2013, pp. 746-751.
Modern Techies,“Braina-Artificial Personal Assistant for PC(like Cortana,Siri)!!!!”, Online available at: <https://www.youtube.com/watch?v=_Coo2P8iIqQ>, Feb. 24, 2017, 3 pages.
Morrison Jonathan, “iPhone 5 Siri Demo”, Online Available at:—<https://www.youtube.com/watch?v=_wHWwG5lhWc>, Sep. 21, 2012, 3 pages.
Nakamura et al., “Realization of a Browser to Filter Spoilers Dynamically”, vol. No. 67, 2010, 8 pages (Official Copy Only). {See communication under Rule 37 CFR § 1.98(a) (3)}.
Nakamura et al., “Study of Information Clouding Methods to Prevent Spoilers of Sports Match”, Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI' 12), ISBN: 978-1-4503-1287-5, May 2012, pp. 661-664.
Nakamura et al., “Study of Methods to Diminish Spoilers of Sports Match: Potential of a Novel Concept “Information Clouding””, vol. 54, No. 4, ISSN: 1882-7764. Online available at: <https://ipsj.ixsq.nii.ac.jp/ej/index.php?active_action=repository_view_main_item_detail&page_id=13&block_id=8&item_id=91589&item_no=1>, Apr. 2013, pp. 1402-1412 (Official Copy Only). {See communication under Rule 37 CFR § 1.98(a) (3)}.
Nakamura Satoshi, “Antispoiler : An Web Browser to Filter Spoiler”, vol. 2010-HCL-139 No. 17, Online available at:—<https://ipsj.ixsq.nii.ac.jp/ej/index.php?active_action=repository_view_main_item_detail&page_id=13&block_id=8&item_id=70067&item_no=1>, Jul. 31, 2010, 8 pages (Official Copy Only). {See communication under Rule 37 CFR § 1.98(a) (3)}.
Nakazawa et al., “Detection and Labeling of Significant Scenes from TV program based on Twitter Analysis”, Proceedings of the 3rd Forum on Data Engineering and Information Management (deim 2011 proceedings), IEICE Data Engineering Technical Group, Feb. 28, 2011, 11 pages (Official Copy Only). {See communication under Rule 37 CFR § 1.98(a) (3)}.
Nozawa et al., “iPhone 4S Perfect Manual”, vol. 1, First Edition, Nov. 11, 2011, 4 pages (Official Copy Only). {See communication under Rule 37 CFR § 1.98(a) (3)}.
Pak, Gamerz, “Braina: Artificially Intelligent Assistant Software for Windows PC in (urdu / hindhi)”, Online available at: <https://www.youtube.com/watch?v=JH_rMjw8lqc>, Jul. 24, 2018, 3 pages.
Patra et al., “A Kernel-Based Approach for Biomedical Named Entity Recognition”, Scientific World Journal, vol. 2013, 2013, pp. 1-7.
PC Mag, “How to Voice Train Your Google Home Smart Speaker”, Online available at: <https://in.pcmag.com/google-home/126520/how-to-voice-train-your-google-home-smart-speaker>, Oct. 25, 2018, 12 pages.
Pennington et al., “GloVe: Global Vectors for Word Representation”, Proceedings of the Conference on Empirical Methods Natural Language Processing (EMNLP), Doha, Qatar, Oct. 25-29, 2014, pp. 1532-1543.
Perlow, Jason, “Alexa Loop Mode with Playlist for Sleep Noise”, Online Available at: <https://www.youtube.com/watch?v=nSkSuXziJSg>, Apr. 11, 2016, 3 pages.
“Phoenix Solutions, Inc. v. West Interactive Corp.”, Document 40, Declaration of Christopher Schmandt Regarding the MIT Galaxy System, Jul. 2, 2010, 162 pages.
pocketables.com,“AutoRemote example profile”, Online available at: https://www.youtube.com/watch?v=kC_zhUnNZj8, Jun. 25, 2013, 1 page.
Qian et al., “Single-channel Multi-talker Speech Recognition With Permutation Invariant Training”, Speech Communication, Issue 104, 2018, pp. 1-11.
“Quick Type Keyboard on iOS 8 Makes Typing Easier”, Online available at:—<https://www.youtube.com/watch?v=0CldLR4fhVU>, Jun. 3, 2014, 3 pages.
Rasch, Katharina, “Smart Assistants for Smart Homes”, Doctoral Thesis in Electronic and Computer Systems, 2013, 150 pages.
Ritchie, Rene, “QuickType keyboard in iOS 8: Explained”, Online Available at:—<https://www.imore.com/quicktype-keyboards-ios-8-explained>, Jun. 21, 2014, pp. 1-19.
Routines, “SmartThings Support”, Online available at:—<https://web.archive.org/web/20151207165701/https://support.smartthings.com/hc/en-us/articles/205380034-Routines>, 2015, 3 pages.
Rowland et al., “Designing Connected Products: UX for the Consumer Internet of Things”, O'Reilly, May 2015, 452 pages.
Samsung Support, “Create a Quick Command in Bixby to Launch Custom Settings by at Your Command”, Online Available at:—<https://www.facebook.corn/samsungsupport/videos/10154746303151213>, Nov. 13, 2017, 1 page.
Santos et al., “Fighting Offensive Language on Social Media with Unsupervised Text Style Transfer”, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (vol. 2: Short Papers), May 20, 2018, 6 pages.
Seehafer Brent, “Activate Google Assistant on Galaxy S7 with Screen off”, Online available at:—<https://productforums.google.com/forum/#!topic/websearch/lp3qlGBHLVI>, Mar. 8, 2017, 4 pages.
Selfridge et al., “Interact: Tightly-coupling Multimodal Dialog with an Interactive Virtual Assistant”, International Conference on Multimodal Interaction, ACM, Nov. 9, 2015, pp. 381-382.
Senior et al., “Improving DNN Speaker Independence With I-Vector Inputs”, ICASSP, 2014, pp. 225-229.
Seroter et al., “SOA Patterns with BizTalk Server 2013 and Microsoft Azure”, Packt Publishing, Jun. 2015, 454 pages.
Settle et al., “End-to-End Multi-Speaker Speech Recognition”, Proc. ICASSP, Apr. 2018, 6 pages.
Shen et al., “Style Transfer from Non-Parallel Text by Cross-Alignment”, 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017, 12 pages.
Siou, Serge, “How to Control Apple TV 3rd Generation Using Remote app”, Online available at: <https://www.youtube.com/watch?v=PhyKftZ0S9M>, May 12, 2014, 3 pages.
“Skilled at Playing my iPhone 5”, Beijing Hope Electronic Press, Jan. 2013, 6 pages (Official Copy Only). {See communication under Rule 37 CFR § 1.98(a) (3)}.
“SmartThings +Amazon Echo”, Smartthings Samsung [online], Online available at:—<https://web.archive.org/web/20160509231428/https://blog.smartthings.com/featured/alexa-turn-on-my-smartthings/>, Aug. 21, 2015, 3 pages.
Smith, Jake, “Amazon Alexa Calling: How to Set it up and Use it on Your Echo”, iGeneration, May 30, 2017, 5 pages.
Spivack, Nova, “Sneak Preview of Siri—Part Two—Technical Foundations—Interview with Tom Gruber, CTO of Siri I Twine”, Online Available at:—<https://web.archive.org/web/20100114234454/http://www.twine.com/item/12vhy39k4-22m/interview-with-tom-gruber-of-siri>, Jan. 14, 2010, 5 pages.
Sundermeyer et al., “From Feedforward to Recurrent LSTM Neural Networks for Language Modeling.”, IEEE Transactions to Audio, Speech, and Language Processing, vol. 23, No. 3, Mar. 2015, pp. 517-529.
Sundermeyer et al., “LSTM Neural Networks for Language Modeling”, INTERSPEECH 2012, Sep. 9-13, 2012, pp. 194-197.
Tan et al., “Knowledge Transfer in Permutation Invariant Training for Single-channel Multi-talker Speech Recognition”, ICASSP 2018, 2018, pp. 5714-5718.
Tanaka Tatsuo, “Next Generation IT Channel Strategy Through “Experience Technology””, Intellectual Resource Creation, Japan, Nomura Research Institute Ltd. vol. 19, No. 1, Dec. 20, 2010, 17 pages. (Official Copy Only) {See communication under Rule 37 CFR § 1.98(a) (3)}.
Vaswani et al., “Attention Is All You Need”, 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017, pp. 1-11.
Villemure et al., “The Dragon Drive Innovation Showcase: Advancing the State-of-the-art in Automotive Assistants”, 2018, 7 pages.
Vodafone Deutschland, “Samsung Galaxy S3 Tastatur Spracheingabe”, Online available at—<https://www.youtube.com/watch?v=6kOd6Gr8uFE>, Aug. 22, 2012, 1 page.
Wang et al., “End-to-end Anchored Speech Recognition”, Proc. ICASSP2019, May 12-17, 2019, 5 pages.
Weng et al., “Deep Neural Networks for Single-Channel Multi-Talker Speech Recognition”, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, No. 10, Oct. 2015, pp. 1670-1679.
Wikipedia, “Home Automation”, Online Available at:—<https://en.wikipedia.org/w/index.php?title=Home_automation&oldid=686569068>, Oct. 19, 2015, 9 pages.
Wikipedia, “Siri”, Online Available at:—<https://en.wikipedia.org/w/index.php?title=Siri&oldid=689697795>, Nov. 8, 2015, 13 Pages.
Wikipedia, “Virtual Assistant”, Wikipedia, Online Available at: <https://en.wikipedia.org/w/index.php?title=Virtual_assistant&oldid=679330666>, Sep. 3, 2015, 4 pages.
X.AI, “How it Works”, Online available at:—<https://web.archive.org/web/20160531201426/https://x.ai/how-it-works/>, May 31, 2016, 6 pages.
Xu et al., “Policy Optimization of Dialogue Management in Spoken Dialogue System for Out-of-Domain Utterances”, 2016 International Conference on Asian Language Processing (IALP), IEEE, Nov. 21, 2016, pp. 10-13.
Yan et al., “A Scalable Approach to Using DNN-derived Features in GMM-HMM Based Acoustic Modeling for LVCSR”, 14th Annual Conference of the International Speech Communication Association, InterSpeech 2013, Aug. 2013, pp. 104-108.
Yang Astor, “Control Android TV via Mobile Phone App RKRemoteControl”, Online Available at : <https://www.youtube.com/watch?v=zpmUeOX_xro>, Mar. 31, 2015, 4 pages.
Yates MichaelC., “How Can I Exit Google Assistant After I'm Finished with it”, Online available at:—<https://productforums.google.com/forum/#!msg/phone-by-google/faECnR2RJwA/gKNtOkQgAQAJ>, Jan. 11, 2016, 2 pages.
Ye et al., “iPhone 4S Native Secret”, Jun. 30, 2012, 1 page (Official Copy Only). {See communication under Rule 37 CFR § 1.98(a) (3)}.
Yeh Jui-Feng, “Speech Act Identification Using Semantic Dependency Graphs With Probabilistic Context-free Grammars”, ACM Transactions on Asian and Low-Resource Language Information Processing, vol. 15, No. 1, Dec. 2015, pp. 5.1-5.28.
Young et al., “The Hidden Information State Model: A Practical Framework for POMDP-Based Spoken Dialogue Management”, Computer Speech & Language, vol. 24, Issue 2, Apr. 2010, pp. 150-174.
Yousef, Zulfikara., “Braina (A.I) Artificial Intelligence Virtual Personal Assistant”, Online available at:—<https://www.youtube.com/watch?v=2h6xpB8bPSA>, Feb. 7, 2017, 3 pages.
Yu et al., “Permutation Invariant Training of Deep Models for Speaker-Independent Multi-talker Speech Separation”, Proc. ICASSP, 2017, 5 pages.
Yu et al., “Recognizing Multi-talker Speech with Permutation Invariant Training”, Interspeech 2017, Aug. 20-24, 2017, pp. 2456-2460.
Zangerle et al., “Recommending #-Tags in Twitter”, proceedings of the Workshop on Semantic Adaptive Socail Web, 2011, pp. 1-12.
Zhan et al., “Play with Android Phones”, Feb. 29, 2012, 1 page (Official Copy Only). {See Communication Under Rule 37 CFR § 1.98(a) (3)}.
Zmolikova et al., “Speaker-Aware Neural Network Based Beamformer for Speaker Extraction in Speech Mixtures”, Interspeech 2017, Aug. 20-24, 2017, pp. 2655-2659.
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 19157463.1, dated Mar. 8, 2021, 2 pages.
Decision to Refuse received for European Patent Application No. 16904830.3, dated Mar. 24, 2021, 20 pages.
Notice of Allowance received for Chinese Patent Application No. 201910010561.2, dated Feb. 25, 2021, 2 pages (1 page of English Translation and 1 page of Official Copy).
Office Action received for Australian Patent Application No. 2020201030, dated Mar. 9, 2021, 4 pages.
Result of Consultation received for European Patent Application No. 19157463.1, dated Mar. 5, 2021, 7 pages.
Related Publications (1)
Number Date Country
20200118568 A1 Apr 2020 US
Provisional Applications (1)
Number Date Country
62348728 Jun 2016 US
Continuations (1)
Number Date Country
Parent 15271766 Sep 2016 US
Child 16717790 US