Field of the Invention
The invention relates to an intelligent dispensing system for a clothes dryer and more particularly to the efficient dispensing of water and other chemistries onto fabric articles during the drying cycle.
Description of the Related Art
Contemporary clothes dryer construction includes a cabinet that houses a stationary tub and a rotatable drum mounted within the tub that defines a fabric treatment chamber. A motor is usually coupled to the drum to control rotation of the drum. Both the tub and the drum share an access opening that may be selectively closed by a door. The motor can rotate the drum at various speeds and in opposite rotational directions. A clothes dryer may also include a venting system for circulating air within the drum and venting air to the exterior of the clothes dryer.
Some clothes dryers include a dispensing system for dispensing chemistry or water inside the clothes dryer. For example, a clothes dryer may include a dispenser to spray water, fabric softeners or other fluids into the drum during a drying cycle to prevent wrinkles from forming. As a result of this trend, the ability to accurately and efficiently dispense chemistry inside a clothes dryer is becoming a critical enabler behind increasing overall machine performance and consumer satisfaction.
One problem with the current dryer dispensing systems is the non-uniformity of the chemistry coverage on the fabric articles during dispensing of the chemistry. The current systems often spray the chemistry directly onto the fabric articles, which can lead to non-uniform coverage of the fabric and an inefficient dispensing system. Additionally, since the venting system and the drum are controlled by a single, shared motor, the blower is always actuated when the drum is tumbling. As a result, suspended chemistry particles are vented to the exterior of the machine. The non-uniformity conditions and venting of chemistry usually requires manufacturers to compensate by spraying more chemistry onto the fabric than is necessary. This increase in chemistry may lead to an undesirable stronger than expected scented fabric as well as expensive chemistry waste. Therefore, an improvement over the prior art would be a dispensing system that can provide a uniform application of chemistry onto fabric articles, thereby increasing the efficiency of the dispensing system.
Another problem with prior art dryer dispensing systems is related to clogging of the dispensing system. When chemistries are dispensed into the drum during the drying cycle, the chemistry solvent is driven off. Any residue inside the dispensing nozzle tends to thicken, which can lead to clogging in the dispensing system. Thus, an improvement over the prior art would be a dispensing system that is able to prevent clogging or detect clogging and clean out the system as necessary.
Additionally, current dryer dispensing systems are not intelligent dispensing systems. Typically, the dispensing system is programmed to dispense a fluid at pre-determined times during the drying cycle, but the dispensing system is not able to sense the operating environment and adapt the dispensing mode accordingly. Furthermore, current dryer dispensing systems dispense each type of chemistry in the same manner. However, the optimal dispensing mode may vary depending on the chemistry being dispensed. Therefore, a further improvement over the prior art would be to provide a multitude of spray patterns and flows that react variably according to machine parameters, operating conditions, chemistry type and cycle options.
Accordingly, in one aspect, the present invention is directed to a clothes dryer having a drum having an inner surface at least partially defining a treating chamber in combination with a dispensing system that sprays a fabric-condition substance onto an inner surface of the drum for subsequent distribution to the fabric articles.
A clothes dryer having an intelligent dispensing system will now be described in detail with initial reference to the illustrative embodiment of the invention as shown in
When operated, the drum 14 rotates, thereby tumbling the fabric articles 17 within the drum 14. During the tumbling operation, the fabric articles 17 are generally pushed outwardly to the inner surface of the drum, due to the centrifugal force exerted on the fabric articles 17. However, when the fabric articles 17 reach an upper portion of the drum, as indicated generally by area 19, the fabric articles 17 tend to separate from the drum 14 and fall to the bottom portion of the drum, as shown in
The area 19 of the inner surface of the drum forms a target area on which to spray the fabric-conditioning substance for subsequent transfer to the fabric articles. As a result, the dispenser 20 may be positioned to direct the fabric-conditioning substance towards this area 19. In one embodiment, the dispenser 20 may be positioned adjacent to an access opening of the drum and may be directed upwardly at the area 19. Alternatively, the dispenser 20 may be mounted on the bulkhead 15. It can be readily understood that the position of the dispenser 20 may be changed without altering this aspect of the invention, as long as the dispenser 20 is able to direct the fabric-conditioning substance at area 19. The target area 19 may be of any selected size, location, or configuration so long as liquid is not projected against the bulkhead 15 in the direction of the air inlet, where electrically live parts could be damaged, the outlet where it could foul the lint filter and be wasted, or the drum seals where friction or corrosion could degrade them.
Dispensing a fabric-conditioning substance directly onto an inner surface of the drum and allowing the fabric articles to contact and absorb the fabric-conditioning substance may be more effective in uniformly applying the fabric-conditioning substance to the fabric articles than dispensing the fabric-conditioning substance directly onto the fabric articles. When the dispenser dispenses the fabric-conditioning substance onto the inner surface of the drum, the fabric-conditioning substance may form a band of droplets, covering both the front surface of the drum and the back surface of the drum. Once the band of droplets has formed, the fabric articles may fall against these droplets and absorb them from the inner surface of the drum. This increases the likelihood that more of the fabric articles will be coated by the fabric-conditioning substance. In contrast, when the fabric-conditioning substance may be directed at the fabric articles, the fabric-conditioning substance distribution is limited to the fabric articles that are directly in the path of the dispenser. By dispensing the fabric-conditioning substance throughout the surface of the drum, more of the fabric articles may be able to contact the fabric-conditioning substance. When tested, this method has been found to improve fabric-conditioning substance loss and uniform application by up to approximately 50% as compared to some configurations that dispense directly onto the fabric articles.
The dispenser 20 may also be configured to direct the fabric-conditioning substance at both an inner surface of the drum and directly onto the fabric articles, depending on system conditions and the required application. For example, the dispenser may provide a first spray, such as a directed spray, at the drum surface using a first pressure or a second spray, such as a mist spray, that disperses the fabric-conditioning substance into the drum using a second pressure.
The dispenser 20 may be used to dispense a variety of chemistries or fabric-conditioning substances into the clothes dryer. For example, the fabric-conditioning substance may be a fluid, vapor, powder, or phase changing liquid. More specifically, the fabric-conditioning substance may be water, or various mixtures of fabric softeners, surfactants, builders, emulsifiers, perfume fixatives, perfume binders, perfume carriers, and various other fabric-conditioning substances. These and other chemistries may be used to prevent wrinkles from forming and to remove odors from fabric articles. Thus, any fabric-conditioning substance that aids in odor and wrinkle removal is within the scope of the invention. Additionally, any fabric-conditioning substance that aids in fabric softening, fragrance addition, and anti-static guard may also be used. The dispensing system may also deliver functional finishes, or fabric care additives, such as stain guards and other coatings or chemistries that reduce color loss, fabric shrinkage, and other fabric wear characteristics. Finally, the chemistries may include ingredients to sanitize the clothes load and add other hygienic treatments to the garments being processed. This sanitization chemistry may be coupled with high heat or medium to low heat adding a delicate/gentle sanitization feature to the dryer. In general, it is contemplated that any of a variety of fabric conditioning substances may be dispensed through the system, and the particular chemistry or material is not limiting to the invention.
The dispenser 20 may be a spray nozzle that may provide substantially uniform application of a fabric-conditioning substance onto the fabric articles 17. The dispenser 20 may be a rigid nozzle or may be a flexible nozzle constructed of a material such as silicone, fluorosilicone, ethylene-propylene-diene monomer (EPDM), high density polyethylene (HDPE), metal, polyethylene, low density polyethylene (LDPE), or polystyrene. When a fabric-conditioning substance is delivered to the nozzle using a pump or other pressure source, flexible nozzles may provide spray streams having a higher velocity and lower flow at lower pump speeds compared to conventional rigid nozzles. Additionally, flexible nozzles may provide relatively higher flow rates at higher pump speeds or pressures. Thus, the dispensing mode may be varied based on the required application. If a high velocity, direct spray is required, such as for spraying a fabric-conditioning substance directly onto the fabric articles, the nozzle may be operated at a low pump speed or pressure. In contrast, if a high flow rate is required, the nozzle may be operated at a high pump speed or pressure. Flexible nozzles provide several additional advantages in a clothes dryer application. For example, their compliant nature may enable some designs to close and seal in the absence of pressure, similar to a check valve. As a result, these types of flexible nozzles may not drip excess fabric-conditioning substance into the drum and would potentially prevent or inhibit lint from entering and clogging the nozzle. Furthermore, their compliant nature may prevent clogging of the nozzle. If there is an obstruction in the nozzle, the resulting pressure may cause the nozzle to open around the obstruction to release the pressure. As a result, the pressure may be released at the nozzle orifice instead of allowing it to build and potentially cause a burst elsewhere in the system. Alternatively, the output pressure of the pump may be varied, such as by increasing the voltage to a motor that drives the pump, in order to vary the size of the flexible nozzle opening. As the voltage is increased, the pressure increases, which in turn pushes open the nozzle and creates more flow out of the nozzle.
It can be readily understood that the type of dispenser and the number of dispensers may be changed without altering the function of the invention. For example, there may be any number of nozzles positioned to direct the fabric-conditioning substance upwardly or elsewhere onto an inner surface of the drum at area 19. Furthermore, the dispenser 20 may be movable to provide improved coverage of the inner surface of the drum. In addition to nozzles, other types of dispensers may be used, such as misters, nebulizers, steamers, or any of a variety of other outlet known to those skilled in the art that produces a spray. The dispenser may dispense the fabric-conditioning substance as a continuous stream, a mist, an intermittent stream, or various other spray patterns.
Another implementation of the intelligent dispensing system of the present invention is further described with reference to
For example, as illustrated in the implementation of
Referring back to
Referring again to
The delivery apparatus 24 may be a variable pressure source, such as a pump, or a variable flow source, such as a blower. The pump may be a variable speed pump, such as an impeller based pump, a peristaltic type pump, or various other types. As shown in the implementation of
Alternatively, as shown in the implementation of
Another implementation of the dryer with an intelligent dispensing system is illustrated in
In other embodiments of the invention, a separate drum motor 40 may be used to control rotation of the drum 14 via a belt 42. Thus, the drum 14 and blower fan 50 are controlled independently and the fabric-conditioning substance being dispensed may be directed at the drum 14 or the fabric articles 17 while the blower fan 50 is off. Thus, there may be reduced fabric-conditioning substance loss through the venting system. The separate motors for the drum and blower may be variable speed, enabling unconventional tumble speeds and tumble durations of the drum 14. Additional embodiments of the invention may enable the drum 14 to manipulate the fabric articles 17 by reversing the drum rotation instead of utilizing a continuous rotation in one direction. Additionally, the drum 14 may have a variable rotation time and pause time, including rotation in both directions. The drum motor 40 may also move the drum back and forth in successive motion with high acceleration and deceleration capabilities. The increased flexibility in drum 14 movement and reduced fabric-conditioning substance loss may lead to improved drying of fabric articles 17 and increases the likelihood of the fabric articles being sprayed consistently. Another advantage of using separate motors to control the drum 14 and the air flow system is that the air flow system may be controlled to prevent venting of air when the dispenser 20 is dispensing a fabric-conditioning substance. This further increases the likelihood that the fabric-conditioning substance will be absorbed by the fabric articles 17 and will not be vented external to the dryer 10. The air flow system may also be included in the embodiments previously described. The above features may be combined with various sensing systems, such as sensors to determine load size, load type, and the type of fabric-conditioning substance being dispensed, in order to further optimize performance. Exemplary sensing systems will be described in the following paragraphs.
Another embodiment of the invention may include a recirculation loop for redistributing air within the drum. The recirculation loop may include a conduit having an outlet leading from the drum and an inlet leading back into the drum. With this configuration, the vent 53 may be closed and the recirculation loop opened. Thus, any fabric-conditioning substance carried away by the air stream through the recirculation loop may be recirculated back into the drum, giving the fabric-conditioning substance another opportunity to be absorbed by the fabric articles.
In each of the embodiments described, the delivery apparatus 24 may be an intelligent source that may improve fabric-conditioning substance delivery under a variety of operating conditions. As a result, the delivery apparatus 24 may provide a multitude of spray patterns and flows that react variably according to machine parameters and cycle options. For example, the duty cycle of the delivery apparatus 24 may be varied in order to vary the dispensing mode of the fabric-conditioning substance. Varying the duty cycle of the delivery apparatus 24 enables a variation in the “on” time and “off” time of the dispenser, creating a condition in which the dispenser 20 may be pulsing to dispense the fabric-conditioning substance. The pulsing may enable fabric-conditioning substance droplets to carry to the back side of the drum when the delivery apparatus is “on.” As the pressure diminishes, the front side of the drum may also be coated by the fabric-conditioning substance. Thus, the dispenser 20 may be controlled to dispense the fabric-conditioning substance so that it intermittently impinges upon an inner surface of the drum 14, thereby distributing the fabric-conditioning substance axially within the drum 14. This may improve the likelihood of uniformly covering the fabric articles 17 within the drum 14 and prevent over-saturation. Additionally, pulsing may aid in the prevention of clogging of the dispenser 20. Furthermore, pulsing may also create a variety of droplet sizes that may improve surface coating of the drum 14 and fabric fabric-conditioning substance absorption. The pulsing of the dispenser 20 may be controlled by using fast, slow, random, or other variations of the duty cycle.
Similarly, the speed of the delivery apparatus 24 may be varied in order to vary the dispensing mode of the fabric-conditioning substance. Varying the speed of the delivery apparatus 24 enables variation in the pressure of the fabric-conditioning substance as it is dispensed. When a pump is used as the delivery apparatus 24, the speed of the pump affects the spray pattern of the fabric-conditioning substance. For example, at lower pump speeds the fabric-conditioning substance will be dispensed at a lower pressure. As a result, the total exit flow of the fabric-conditioning substance decreases, but the flow pattern may also change, likely having a decreased spray angle and exit velocity. This flow pattern may be beneficial when there is a need to soak fabric articles 17 that are passing directly in front of a dispenser 20 with a heavy, concentrated flow. In contrast, at higher pump speeds and therefore higher pressure, the fabric-conditioning substance will typically exit at a higher velocity and greater flow angle. As a result, the spray pattern will be more spread out and may be used to project the fabric-conditioning substance droplets further into the drum 14. Variation in the speed of the delivery apparatus 24 may further improve the likelihood of uniformly covering the fabric articles 17 within the drum.
Furthermore, the delivery apparatus 24 may be configured to respond to various user settings, such as the user's preferred dispensing mode, and to additional feedback from the dryer, such as machine parameters, cycle parameters, fabric-conditioning substance type, load size, fabric type, and various other factors. For example, the optimal dispensing parameters for one type of fabric-conditioning substance may be different from another type of fabric-conditioning substance. Thus, the dryer may include a sensor to determine the type of fabric-conditioning substance being dispensed. In one embodiment, a sensor may be provided within a conduit through which the fabric-conditioning substance travels and the type of fabric-conditioning substance may be determined by a conductivity measurement from the sensor. In the case of a multiple reservoir system similar to the system illustrated in
The delivery apparatus 24 may also have flexibility in adapting the fabric-conditioning substance flow based on the preferred application method. In some situations, the dispenser 20 may be controlled to direct a fabric-conditioning substance onto an inner surface of the drum 14, whereas in other situations the dispenser 20 may be controlled to direct a fabric-conditioning substance at the fabric articles 17. In order to accomplish this, a machine sensor or user-defined information may be monitored by the machine's controller. For example, the controller may monitor factors such as load size, humidity level, temperature, cycle selected, dryness of the fabric articles, fabric type, drum size, drum geometry, and various other factors. The delivery apparatus 24 and resulting spray characteristics may then change accordingly. For example, as shown in the embodiment illustrated in
To further improve the efficiency of the dispensing system, the delivery apparatus 24 may be configured to remove residual fabric-conditioning substance from the dispenser 20 after the fabric-conditioning substance has been dispensed. In an exemplary system including a nozzle as the dispenser 20 and a pump as the delivery apparatus 24, if the reservoir 28 is located below the nozzle, atmospheric venting may cause the fabric-conditioning substance to retract from the nozzle. Alternatively, reversing the direction of the pump after each cycle when the nozzle is used may cause the fabric-conditioning substance to retract from the nozzle. If the reservoir 28 is located above the nozzle, reversing direction of the pump after each cycle using the nozzle may cause the fabric-conditioning substance to retract from the nozzle. Thus, residual fabric-conditioning substance may be removed from the nozzle, thereby aiding in the prevention of clogging. Additionally, the nozzle may be removable or replaceable, so the user is able to clean or replace the nozzle as desired.
In each of the above described embodiments, the clothes dryer may include a user interface for displaying information related to the dispensing system. For example, the user interface may notify the user when a fabric-conditioning substance is being dispensed into the drum. The user interface may accomplish this by displaying a message, illuminating an LED or other light display, actuating a buzzer, or by various other methods that are evident to one of skill in the art. Additionally, the user interface may display the type of fabric-conditioning substance being dispensed or the resulting treatment to the fabric articles. For example, the user interface may display that the dryer is executing a wrinkle removal cycle, an odor removal cycle, a fragrance addition cycle, an anti-static guard cycle, a stain guard cycle, or various other cycles that are within the scope of this invention.
In operation, the intelligent dispensing system may vary the flow characteristics of the fabric-conditioning substance as it is dispensed through the dispenser 20, according to various user settings and feedback from the machine. In addition to varying the flow characteristics of the fabric-conditioning substance, other types of cycle optimization may occur in response to the various sensors in the machine. For example, the machine temperature may be adjusted. Additionally, the fabric articles may be heated during the drying cycle in order to drive entrained fabric-conditioning substance into the fabric articles, thus improving absorption. Furthermore, the fabric-conditioning substance may be dispensed at specific moments during the drying cycle where it will be the most effective. The above optimizations are designed to enhance spray uniformity, prevent fabric-conditioning substance loss and improve the efficiency of the dispensing system.
While the present invention has been described with reference to the above described embodiments, those of skill in the art will recognize that changes may be made thereto without departing from the scope of the invention as set forth in the appended claims.
This application is a continuation of and claims the benefit of U.S. patent application Ser. No. 13/449,351, filed Apr. 18, 2012, which is a divisional of U.S. patent application Ser. No. 12/113,425, filed on May 1, 2008, both of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3049905 | Freire | Aug 1962 | A |
3114653 | Kruzan | Dec 1963 | A |
3933114 | Horn | Jan 1976 | A |
4236320 | Schwadike et al. | Dec 1980 | A |
4555019 | Spendel | Nov 1985 | A |
4642908 | Brenner | Feb 1987 | A |
RE33448 | Bauer | Nov 1990 | E |
5219371 | Shim et al. | Jun 1993 | A |
5307651 | Felzer | May 1994 | A |
5595071 | Pasad et al. | Jan 1997 | A |
H0001676 | Marshall | Sep 1997 | H |
H001676 | Marshall | Sep 1997 | H |
6012307 | Malchow | Jan 2000 | A |
6898951 | Severns et al. | May 2005 | B2 |
7146749 | Barron et al. | Dec 2006 | B2 |
20020001675 | Tisone | Jan 2002 | A1 |
20050183208 | Scheper et al. | Aug 2005 | A1 |
20050251924 | Du Val et al. | Nov 2005 | A1 |
20060175426 | Schramm et al. | Aug 2006 | A1 |
20060288608 | Carow et al. | Dec 2006 | A1 |
20070151312 | Bruce et al. | Jul 2007 | A1 |
20100115788 | Kim et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
09193953 | Jul 1997 | JP |
2007055510 | May 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20160215438 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12113425 | May 2008 | US |
Child | 13449351 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13449351 | Apr 2012 | US |
Child | 15091030 | US |