In hotels, motels, inns, and the like, guest rooms typically have a means for indication of the occupant's desire that the housekeeping service make-up the room or leave the room undisturbed. Typically, this is accomplished by the use of a card that is placed on the handle of the door. One side of the card shows “do-not-disturb” and the other side shows “make-up-room.” If the occupant wishes to be undisturbed, he or she places the card on the knob outside the door so that the “do-not-disturb” sign is visible. If the occupant wishes to have the housekeeping service make-up the room, the occupant places the card on the knob outside the door so that the “make-up-room” sign is visible.
One of the drawbacks to using the doorknob mounted card is that the cards are awkward and tend to fall off when the door is closed. In addition, a doorknob mounted card is susceptible to pranksters, who have been known to switch or remove the cards. Another drawback to the use of a doorknob mounted card is that it requires the occupant to open the door to place the card on the knob outside the door. This can be an inconvenience to the occupant.
To overcome these drawbacks, indicator lights have been used. Typically, indicator lights are mounted outside the guest room or at a remote housekeeping service station. The indicator lights are typically operated from within the guest room, making operation convenient for the occupant and preventing tampering by pranksters.
Many modern guest rooms include room control systems. Room control systems comprise a central control computer or device that receives data from various remote sensors and operates a number of remote room control devices. Such remote sensors include, for example, motion sensors, temperature sensors, smoke detectors, and door and other closure switches. Such remote room control devices include, for example, thermostats and associated relays for heating, ventilation and air conditioning (HVAC) equipment, electronic locks, lighting control switches and relays, and motors and switches for opening and closing drapes. The central control computer uses the data and control devices to, for example, adjust the room's temperature, determine and annunciate whether the room is occupied or unoccupied, determine and annunciate whether the room's mini-bar has been accessed, sound fire and emergency alarms, turn lights on or off, permit or deny access to the room, open and close drapes, turn audio-visual equipment on or off, and perform other functions related to controlling equipment or annunciating status in rooms. A central control computer or device may be located in each room, and all rooms can be tied to a single master central control computer. Where a central control computer or device is used in each room, each such computer or device can provide data to the master central control computer from which such data is disseminated to display and control terminals at housekeeping, front desk, security, engineering or any number of other locations in order to provide hotel personnel with access to the data and with the ability to remotely control various room functions or settings from such terminals.
Room control systems are valuable tools for the lodging industry. Unfortunately, the equipment and installation costs associated with room control systems are generally too expensive for most new construction and renovation projects.
The above discussed and other drawbacks and deficiencies are overcome or alleviated by a system in operable communication with a doorbell chime for audio annunciation of a visitor to an occupant of a room in a multiple room building. The system is configured to indicate a status of the room to the visitor or occupant, the system comprising: a switch assembly configured to convey a message outside of the room; the switch assembly operable from inside the room; an indicating assembly in operable communication with the switch assembly, the indicating assembly configured to indicate the message when the message is selected, the message viewable from inside and outside of the room; and a doorbell button in operable communication with the doorbell chime, the doorbell button operably connected with the indicating assembly and operable from outside of the room by the visitor.
Referring to
Power is supplied to the internal door plate 12 from power supply device 16, which may comprise any U/L (or other appropriately) approved device that can receive 100-240VAC (50-60 Hz) line voltage inputs and deliver, for example, 300 mA of 12VDC output. Power supply device 16 may be mounted in any location at which it can tap into line voltage wiring 18 and from which low voltage wires 20 can be run to the internal door plate 12.
An entry door switch 100 is optionally coupled to door plate 12 via line 110 for communicating an open or closed door condition to door plate 12. Entry door switch 100 is preferably located proximate door 26 on wall 6. A mechanical or magnet contact 111 may be disposed on door 26 to provide operable communication of door 26 in an open or closed condition to switch 100.
Referring to
A standard, screwless, snap-on cover plate 42 is snap-fit to the core housing 31. Cover plate 42 may be manufactured from a selection of multiple colors and materials, including plastic and brass. The physical design of the core housing 31 is dimensioned to accommodate any Decora-type cover plate manufactured by many manufacturers (e.g., Leviton, Eagle or Lutron), and the internal door plate 12 can be mounted in a multiple gang box next to one or more Decora-style switches by using existing multiple-opening cover plates (not shown) produced by those same manufacturers.
In an alternative embodiment, a mounting plate (not shown) is positioned beneath the snap-on cover plate 42, and extends along the same plane as the snap-on cover plate 42. The mounting plate is secured to the core housing 31 using screws, bolts, or the like. The snap-on cover plate 42 is then snap-fit over the mounting plate.
As can best be seen in
At the lower rear of the internal door plate 12 are four small connectors 50, 52, 54, and 56 for electrically connecting internal door plate 12 with external door plate 14 (FIG. 1), power supply device 16 (FIG. 1), and other optional devices (not shown).
Internal door plate 12 is an intelligent (smart) device. Internal door plate includes a circuit board 64 having a printed circuit and electronic components disposed thereon. The printed circuit is attached to DND button 30 by wires 66, to MUR button 32 by wires 68, to connectors 50, 52, 54, and 56 by wires 70 and to chime speaker 36 by wires 72. The functionality of circuit board will be described hereinafter, with reference to
Referring to
A standard, screwless, snap-on cover plate 42 is snap-fit to the core housing 80. Cover plate 42 may be manufactured from a selection of multiple colors and materials, including plastic and brass. The physical design of the core housing 80 is dimensioned to accommodate any Decora-type cover plate manufactured by many manufacturers (e.g., Leviton, Eagle or Lutron), and the external door plate 14 can be mounted in a multiple gang box next to one or more Decora-style switches by using existing multiple-opening cover plates (not shown) produced by those same manufacturers.
In an alternative embodiment, a mounting plate (not shown) is positioned beneath the snap-on cover plate 42, and extends along the same plane as the snap-on cover plate 42. The mounting plate is secured to the core housing 80 using screws, bolts, or the like. The snap-on cover plate 42 is then snap-fit over the mounting plate.
At the rear of the external door plate 14 is a 6-pin Molex-type connector 90. Connector 90 accepts wires 22 (FIG. 1), which extend from internal door plate 12 to external door plate 14 for providing power the external door plate 14 and providing data flow between the two devices 12 and 14.
As shown in
In an alternative embodiment, not shown, the core housing 80 of external door plate 14 is dimensioned such that its thickness is reduced allowing the external door plate 14 to be mounted flush with external surface 32 of wall 6 (
In
ROM 152 stores boot-code for directing microprocessor 150 when microprocessor 150 is initially powered-up. NVM 156 stores programming instructions that are transferred into RAM 154 by microprocessor 150 and then executed by microprocessor 150. The functionality provided by the execution of the programming instructions by microprocessor 150 can now be described with reference to
Referring to
When either the DND or MUR button 30 or 32 is pressed, the LED 38 or 40 on that button is illuminated, so the guest knows which function has been activated. When the DND command is activated by the guest, the door chime 36 is muted. Additionally, when microprocessor 150 senses that the internal door plate 12 is connected to a centralized room control system, incoming calls to the room 8 can be diverted to voice mail and active MUR or butler call requests are cancelled when the DND command is activated. It will also be understood, that it is contemplated that, microprocessor 150 is optionally configured to serially connect with an incoming telephone line entering the room and configured to generate a signal when the DND command is activated in a stand alone set up to direct all incoming telephone calls to voicemail. The signal may duplicate a busy signal that causes many existing telephone systems to direct the incoming call to voicemail.
The chime speaker 36 of internal door plate 12 is sounded when the doorbell button 82 on external door plate 14 is pressed. When the doorbell button 82 is pressed, a signal is received by the internal door plate 12, and a single synthesized “ding dong” is sounded over its speaker 36. Each time a doorbell signal is received, the “ding dong” is sounded. (There is no time out between signals, so that, if the doorbell button 82 is pressed three times consecutively, the “ding dong” will sound three consecutive times.)
Entry switch 100 senses the opening and closing of door 26 (FIG. 1). Passive infra-red sensor 106 is positioned within room 8 (
For occupancy sensing and annunciation, an entry door switch 100 (such as INNCOM's S241) and a 2-wire or 3-wire passive infra-red device 106 can be connected to internal door plate 12 via connector 54. Microprocessor 150 detects when a passive infra-red device 106 is connected at connector 54, and, in response, executes programming instructions for occupancy determination. Occupancy determination includes logic in the circuitry of internal door plate 12 in which the time-out between entry switch 100 activation and non-sensing by the passive infra-red sensor 106 can be programmed for 0, 10 or 30 minutes by adjusting the 2-pin jumper position on the 3-pin connector 56. If the room 8 is electronically determined to be occupied and the hidden (mechanical or magnetic) switch 88 is closed once, the backlit DND legend 84 will flash 3 or more times. If the room 8 is determined to be unoccupied, and the hidden switch 88 is closed, the green MUR LED 86 will flash 3 or more times.
For occupancy determination, the housekeeper or other staff member activates the hidden switch 88. Where hidden switch 88 is mechanically activated, a housekeeper or other staff member activates the hidden switch 88 by depressing it. Where hidden switch 88 is magnetically activated, the housekeeper or other staff member activates the hidden switch 88 by placing a small, handheld magnet (not shown) near the hidden switch. If the room 8 is occupied, the DND legend 84 flashes; if the room 8 is unoccupied, the green MUR LED 86 flashes.
The microprocessor 150 senses when a mini-bar switch is attached to connector 54, and, in response, executes programming instructions to sense a mini-bar door opening. Such opening can be queried by using the hidden mechanical or magnetic switch 88 on the external door plate 14. If the mini-bar door has been opened and the hidden switch 88 is closed twice in rapid succession, the backlit DND legend 84 will flash 3 or more times. If the mini-bar door has not been opened, the green MUR LED 86 will flash 3 or more times. In this embodiment, a normally closed switch, such as INNCOM's S241, is used as the mini-bar switch 102. The microprocessor 150 will reset the status to “not opened” in accordance with a “sequential openings/closings” routine. With the sequential openings/closings routine, if the microprocessor 150 senses a number (e.g. three) rapid openings/closings of the mini-bar door, the microprocessor 150 will reset the status to “not opened”, allowing the housekeeping staff to reset the status of the mini-bar after stocking the mini-bar.
Referring to
The intelligent doorbell/do-not-disturb/make-up-room annunciation system 10 of the present disclosure is convenient, inexpensive, and expandable. System 10 overcomes the inconvenience of doorknob mounted tags by providing MUR and DND buttons within the guest room. System 10 is expandable to include other options such as a mini-bar switch, an entry switch, and a passive infra-red sensor, all of which provide convenience to housekeeping and other hotel staff. In addition, system 10 is a potential “starter kit” for an expanded system. Basic functionality can be expanded to include mini-bar and occupancy monitoring and annunciation by simply plugging devices into connections on the internal door plate 12. System 10 can also become part of a larger system, either standalone or centrally controlled without the need to make any hardware or software changes. Because system 10 can be expanded, the system will not have to be discarded with future expandability, creating a cost savings. Also, the internal and external door plates 12 and 14 of system 10 are sized to fit within the recess for a standard light switch, allowing door plates 12 and 14 to each be installed in a standard, single gang junction box or to be mounted in a standard multi-gang junction box together with entry light or other switches. Because the internal and external door plates can be installed in standard junction boxes, the cost of installation is reduced from that of previously available room control systems, which require customized installation.
It will be understood that a person skilled in the art may make modifications to the preferred embodiment shown herein within the scope and intent of the claims. While the present invention has been described as carried out in a specific embodiment thereof, it is not intended to be limited thereby but is intended to cover the invention broadly within the scope and spirit of the claims.
This application is based upon, and claims priority to U.S. Provisional Application Ser. No. 60/257,010, filed Dec. 20, 2000.
Number | Name | Date | Kind |
---|---|---|---|
4523193 | Levinson et al. | Jun 1985 | A |
5428345 | Bruno | Jun 1995 | A |
5774039 | Housley | Jun 1998 | A |
5861806 | Vories et al. | Jan 1999 | A |
6107928 | Gatti | Aug 2000 | A |
6236303 | Wagner et al. | May 2001 | B1 |
6359564 | Thacker | Mar 2002 | B1 |
6414589 | Angott et al. | Jul 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20020149492 A1 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
60257010 | Dec 2000 | US |