Intelligent load balancer enhanced routing

Information

  • Patent Grant
  • 9516104
  • Patent Number
    9,516,104
  • Date Filed
    Wednesday, September 10, 2014
    10 years ago
  • Date Issued
    Tuesday, December 6, 2016
    7 years ago
Abstract
Enhanced intelligent routing logic for routing and load balancing a SET-initiated SUPL session request based on SET capabilities (e.g. SET-supported positioning protocols) and a roaming status identified for a requesting SET. When a SET capabilities parameter in a SUPL START message initiated by a requesting SET indicates that the SET supports a LTE positioning protocol (LPP), only, enhanced intelligent routing logic routes the SUPL session request to newly configured SUPL servers that support the LTE positioning protocol (LPP), only. Alternatively, when SET capabilities indicate that a requesting SET supports a radio resource location services protocol (RRLP), in addition to or in exclusion of a LPP, the intelligent router routes the session request message to SUPL servers that support the RRLP, in addition to or in exclusion of the LPP. Intelligent routing logic may also be enhanced to support SUPL intelligent off load (SI-OL) based on SET capabilities.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to wireless telecommunication location routing/load balancing—CDMA, GSM, UMTS, IMS/LTE, SUPL, etc.


2. Background of Related Art


The Open Mobile Alliance (OMA) standards working group has defined a Secure User Plane Location (SUPL) standard to support location of SUPL enabled terminals (i.e. mobile devices with secure user plane location (SUPL) support). In particular, the Secure User Plane Location (SUPL) standard is conventionally used to transfer location information between a SUPL location platform (SLP) (i.e. a location server) and a SUPL enabled terminal (SET), for purposes of articulating a current position of the SUPL enabled terminal (SET).


Before a SUPL location platform (SLP) and a SUPL enabled terminal (SET) may exchange location information, the two entities must first establish a SUPL session. In accordance with conventional technology, a SUPL session can either be SET-initiated or network-initiated.


Traditionally, a network-initiated SUPL session begins when a SUPL location platform (SLP) passes a SUPL INIT message to a SUPL enabled terminal (SET). Alternatively, a SET-initiated SUPL session traditionally begins when a SUPL enabled terminal (SET) passes a SUPL START message to a SUPL location platform (SLP).


An intelligent router product, such as an Xypoint® Intelligent Router (XIR), available from TeleCommunication Systems, Inc. of Annapolis, Md., is conventionally integrated between a SUPL location platform (SLP) and a SUPL enabled terminal (SET).



FIG. 7 depicts a conventional network architecture for establishing a SUPL session between a SUPL location platform (SLP) and a SUPL enabled terminal (SET).


In particular, as depicted in FIG. 7, an intelligent router product (e.g. an Xypoint® Intelligent Router (XIR)) 800 is conventionally used during SUPL session setup to route network-initiated SUPL session requests to an originating SUPL server 820a, 820b and to load balance SET 810 initiated SUPL session requests across multiple SUPL servers 820a, 820b. In accordance with conventional technology, an existing intelligent router 800 routes SUPL session requests based on a SUPL version and a roaming status/location identifier identified for a requesting SUPL enabled terminal (SET) 810.


As portrayed in FIG. 7, an existing intelligent router 800 (e.g. Xypoint® Intelligent Router (XIR), also known as a SUPL intelligent load balancer (SILB)) conventionally includes a SUPL session director (SSD) 840 and a global service load balancer 830.


A global service load balancer (GSLB) 830 is typically used to balance SET 810-initiated SUPL session requests across multiple SUPL servers 820a, 820b. In particular, a conventional global service load balancer (GSLB) 830 may balance load by directing client requests across multiple servers 820a, 820b and/or by directing client requests to one or more servers 820a, 820b located within a closest geographic proximity of a requesting client device 810, and/or by directing client requests to servers 820a, 820b deemed best equipped to handle client requests initiated by a requesting client device 810, etc.


When a SUPL session is established between a SUPL location platform (SLP) 820a, 820b and a SUPL enabled terminal (SET) 810, the SUPL enabled terminal (SET) 810 may send a SUPL POS INIT message to the SUPL location platform (SLP) 820a, 820b (via an intermediary intelligent router product 800) to initiate a positioning protocol session therewith. A SUPL POS INIT message conventionally includes a session ID (as indicated in a SUPL session request message), a SET capabilities parameter, a hash of a previously exchanged SUPL session request, and a location identifier, among other parameters. The SET capabilities parameter in the SUPL POS INIT message typically indicates SET-supported positioning methods (e.g. assisted global positioning system (A-GPS)) and SET-supported positioning protocols, e.g., a radio resource location services protocol (RRLP), a long term evolution (LTE) positioning protocol (LLP), etc.


Once a SUPL location platform (SLP) 820a, 820b receives a SUPL POS INIT message from a SUPL enabled terminal (SET) 810, the SUPL location platform (SLP) 820a, 820b can select an appropriate positioning method to use for calculating the current position of the SUPL enabled terminal (SET) 810. A SUPL location platform (SLP) 820a, 820b typically selects an appropriate positioning method for a SUPL enabled terminal (SET) 810 based on SET-supported positioning methods and protocols listed in a received SUPL POS INIT message.


In accordance with conventional technology, a SUPL location platform (SLP) 820a, 820b and a SUPL enabled terminal (SET) 810 exchange positioning messages until a current position of the SUPL enabled terminal (SET) 810 is articulated. Once positioning information is obtained for the SUPL enabled terminal (SET) 810, the SUPL enabled terminal (SET) 810 and the SUPL location platform (SLP) 820a, 820b exchange a SUPL END message to terminate the SUPL session.


Conventional SUPL standards cover a number of networks and positioning technologies. A secure location session manager is known, e.g., U.S. Pat. No. 7,974,235.


The secure user plane location (SUPL) standard is a conventional standard used to exchange location information between a SUPL enabled terminal (SET) (i.e. a mobile device with secure user plane location (SUPL) standard support) and a SUPL location platform (i.e. a location server), for purposes of articulating a current position of the SUPL enabled terminal (SET). To exchange positioning messages, a SUPL location platform (SLP) and a SUPL enabled terminal (SET) must first establish a SUPL session. A SUPL session may either be SET-initiated or network-initiated.


When multiple SUPL servers (e.g. SUPL location platforms) are deployed in a network for purposes of load sharing and high availability, a couple issues may arise. First, in network-initiated call flows, open mobile alliance (OMA) SUPL version 1 and SUPL version 2 specifications do not permit a SUPL enabled terminal (SET) to respond directly to an originating SUPL server (e.g. a SUPL location platform (SLP)). Second, open mobile alliance (OMA) SUPL version 1 and SUPL version 2 specifications do not address a global service load balancing (GSLB) functionality for SET-initiated calls.


An intelligent router is conventionally integrated between a SUPL enabled terminal (SET) and a SUPL server (e.g. a SUPL location platform (SLP)) to provide appropriate session binding for network-initiated call flows and to provide global service load balancing (GSLB) for SET-initiated call flows.


In the context of an intelligent router, a SET-initiated SUPL session is identified as a message exchange sequence that begins when a SUPL START message (that does not include a SUPL location platform (SLP) identifier (ID)), transmitted by a SUPL enabled terminal (SET) (i.e. a mobile device with secure user plane location (SUPL) support), is received at a SUPL location platform (SLP) (i.e. a location server). A SET-initiated SUPL session ends when a SUPL END response is received at a SUPL enabled terminal (SET) or a SUPL location platform (SLP), or when a connection is closed due to termination by a peer or due to expiration of a connection inactivity timer.


Moreover, a network-initiated SUPL session is identified as a message exchange sequence that begins when a SUPL INIT message, or any other message (excluding a SUPL START message) that has both SUPL enabled terminal (SET) and SUPL location platform (SLP) session IDs populated, is received at a SUPL enabled terminal (SET). A network-initiated SUPL session ends when a first SUPL END message is exchanged between a SUPL enabled terminal (SET) and a SUPL location platform (SLP), or when a connection is closed due to termination by a peer or due to expiration of a connection inactivity timer.



FIG. 8 depicts conventional intelligent routing logic.


In particular, as portrayed in FIG. 8, existing intelligent routing logic routes SET-initiated SUPL session requests (e.g. SUPL START messages) to a target SUPL location platform (SLP) 70a, 70b, 72a, 72b based on a SUPL version and a roaming status/location ID identified for the requesting SUPL enabled terminal (SET).


In particular, as portrayed in step 700 of FIG. 8, existing intelligent routing logic receives and processes a SUPL START message initiated by a SUPL enabled terminal (SET).


As shown in step 702, the intelligent router then checks mobile country code (MCC)/mobile network code (MNC) information for the requesting SUPL enabled terminal (SET) to determine whether or not the SUPL enabled terminal (SET) is roaming. The roamed-to SUPL server may be the same operator as the HOME SUPL Server or the server may be in a different operator. This allows for a sophisticated inter-operator roaming deployment without the need for the operators to implement the OMA Roaming Location Protocol (RLP).


As portrayed in step 704, if the intelligent router finds that the SUPL enabled terminal (SET) is not roaming, then the intelligent router routes the SUPL START message to either a home SUPL location platform (SLP) SUPL version 1 server 70a or a home SUPL location platform (SLP) SUPL version 2 server 72a, depending on which version of SUPL the SUPL enabled terminal (SET) is supporting, e.g., SUPL 1.0 or SUPL 2.0.


Alternatively, as shown in step 706, if the intelligent router determines that the SUPL enabled terminal (SET) is roaming, then the intelligent router routes the SUPL START message to either a roaming SUPL location platform (SLP) SUPL version 1 server 70b or a roaming SUPL location platform (SLP) SUPL version 2 server 72b, depending on which version of SUPL the SUPL enabled terminal (SET) is supporting, e.g., SUPL 1.0 or SUPL 2.0.


SUMMARY OF THE INVENTION

A method and apparatus for routing a SET-initiated SUPL session request based on positioning protocols supported by a requesting SUPL enabled terminal (SET) comprises enhanced intelligent routing logic. In particular, intelligent routing logic is enhanced to route and load balance a SET-initiated SUPL session request to SUPL servers that support at least one positioning protocol supported by a requesting SUPL enabled terminal (SET).


Inventive intelligent routing logic preferably routes SET-initiated SUPL session requests to SUPL 2.0 radio resource location protocol (RRLP) servers, SUPL 1.0 radio resource location protocol (RRLP) servers, and newly configured LTE positioning protocol (LPP) servers. Routing is determined based on SET capabilities of a requesting SET, a roaming status of a requesting SET, a SUPL version supported by a requesting SET, and/or whether or not enhanced routing logic is enabled.


In accordance with the principles of the present invention, enhanced intelligent routing logic can be enabled or disabled. When enhanced intelligent routing logic is enabled, the intelligent router routes SET-initiated SUPL session requests based on SET capabilities (e.g. positioning protocol capabilities) and a roaming status/location identifier identified for a requesting SUPL enabled terminal (SET). Alternatively, when enhanced routing logic is disabled, the intelligent router routes SET-initiated SUPL session requests in a manner consistent with conventional technology, i.e., based on a SUPL version and a roaming status/location identifier identified for a requesting SUPL enabled terminal (SET).


More particularly, when enhanced intelligent routing logic is enabled, and a pos protocol field in a SET capabilities parameter of a SUPL START message (i.e. a SET-initiated SUPL session request message) indicates that a requesting SUPL enabled terminal (SET) supports a long term evolution (LTE) positioning protocol (LPP), only, new alias fully qualified domain names (FQDNs) are used to load balance the session request message to newly configured SUPL servers that support the long term evolution (LTE) positioning protocol (LPP), only (i.e LPP SUPL servers).


Alternatively, when a pos protocol field in a SET capabilities parameter of a SUPL START message indicates that a requesting SUPL enabled terminal (SET) supports a radio resource location services protocol (RRLP), in addition to or in exclusion of a long term evolution (LTE) positioning protocol (LPP), existing alias fully qualified domain names (FQDNs) are preferably used to route the session request message to SUPL servers that support a radio resource location services protocol (RRLP), in addition to or in exclusion of other positioning protocols (i.e. a 1.0 or 2.0 RRLP SUPL server).


A global service load balancer (GSLB) functionality on the intelligent router load balances a SUPL session request to a target SUPL server (e.g. SUPL location platform) after determining the roaming status of the requesting SUPL enabled terminal (SET).


In accordance with the principles of the present invention, an intelligent router may be further enhanced to include support for SUPL intelligent off load (SI-OL) based on SET capabilities. In this particular embodiment of the present invention, an intelligent router may be enhanced to offload all or part of SET-initiated traffic to alternative servers based on the capabilities of a requesting SET.


The following four deployment options may be implemented to provide intelligent router SUPL intelligent off load (SI-OL): (1) addition of a virtual machine to a global service load balancer (GSLB) on an intelligent router platform, (2) implementation of additional servers on an intelligent router platform, (3) remote management of intelligent router services (capacity offload), and (4) implementation of an intelligent router blade server architecture.





BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the drawings, in which:



FIG. 1 depicts an illustrative example of an intelligent router with enhanced routing logic, in accordance with the principles of the present invention.



FIG. 2 portrays an exemplary high level SUPL 2.0 SET-initiated SUPL session call flow, in accordance with the principles of the present invention.



FIG. 3 depicts an exemplary virtual machine deployment option for enabling intelligent router SUPL intelligent off load (SI-OL), in accordance with the principles of the present invention.



FIG. 4 depicts exemplary additional servers implemented on an intelligent router for purposes of providing SUPL intelligent off load (SI-OL) based on SET capabilities, in accordance with the principles of the present invention.



FIG. 5 depicts exemplary remote management of intelligent router services (capacity offload) for purposes of providing SUPL intelligent offload (SI-OL) based on SET capabilities, in accordance with the principles of the present invention.



FIG. 6 depicts an exemplary intelligent router blade architecture for providing SUPL intelligent offload (SI-OL) based on SET capabilities, in accordance with the principles of the present invention.



FIG. 7 depicts a conventional network architecture for establishing a SUPL session between a SUPL location platform (SLP) and a SUPL enabled terminal (SET).



FIG. 8 depicts conventional intelligent routing logic.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present invention augments an intelligent router server, such as an Xypoint® Intelligent Router (XIR) commercially available from TeleCommunication Systems, Inc. in Annapolis, Md., to include functionality that uses secure user plane location (SUPL) fields, SET capabilities and location ID, in combination with a configured or provisioned routing policy, to route and load balance a SUPL enabled terminal (SET)-initiated SUPL session request to a SUPL server (e.g. a SUPL location platform (SLP)) or a group of SUPL servers, based on the capabilities (e.g. positioning protocol capabilities) of the requesting SUPL enabled terminal (SET).


Today, many SUPL enabled terminals (SETs) contain multiple cellular radios to enable support for a multitude of networks (e.g. code division multiple access (CDMA), global system for mobile communications (GSM), long term evolution (LTE)/IP multimedia subsystem (IMS), Wi-Fi/IP multimedia subsystem (IMS), etc.) and a multitude of positioning technologies. However, SUPL location platforms (SLPs) are not guaranteed to support all positioning technologies.


The inventors herein have realized that existing intelligent router systems do not check whether or not a target secure user plane location (SUPL) server supports a positioning protocol required by a requesting SUPL enabled terminal (SET) before forwarding a SUPL session request initiated by that SUPL enabled terminal (SET) to the target SUPL server. Unfortunately, if a SET-initiated SUPL session request is routed to a SUPL server that does not support a positioning protocol required by the requesting SUPL enabled terminal (SET), or a capability required by the requesting SUPL enabled terminal (SET), then the positioning session will likely fail.


For purposes of avoiding failed positioning sessions, carriers are currently forced to provide SUPL servers that support all positioning capabilities across all devices deployed in their carrier network (or networks, in the case that overlay networks are deployed), which can become quite complex. SUPL location determination gets even more complex for carriers when a device is roaming and a home SUPL location platform (SLP) does not have required information and/or does not support required positioning technologies, and roaming has not been implemented.


In accordance with the principles of the present invention, intelligent routing logic is enhanced to route SET-initiated SUPL session requests based on positioning protocols supported by requesting SUPL enabled terminals (SETs). More particularly, the present invention enhances intelligent routing logic to route and load balance a SET-initiated SUPL session request to a SUPL server that supports at least one positioning protocol supported by the requesting SUPL enabled terminal (SET). Enhanced intelligent routing logic effectively minimizes the need for carriers/service providers to provide support for all positioning technologies.


A SUPL enabled terminal (SET) conventionally indicates supported positioning protocols in a SET capabilities parameter of a SUPL START message (i.e. a SUPL session request message). In particular, a SET capabilities parameter in a SUPL START message includes a mandatory pos protocol field, which indicates SET-supported positioning protocols, such as a long term evolution (LTE) positioning protocol (LPP) and/or a radio resource location services protocol (RRLP).


In accordance with the principles of the present invention, when a pos protocol field in a SET capabilities parameter of a SUPL START message indicates that a requesting SUPL enabled terminal (SET) supports only a long term evolution (LTE) positioning protocol (LPP), new alias fully qualified domain names (FQDNs) are preferably used to load balance the session request message to newly configured SUPL servers (e.g. SUPL location platforms (SPLs)) that are dedicated to supporting only the long term evolution (LTE) positioning protocol (LPP). A global service load balancer (GSLB) functionality on the intelligent router then load balances the SUPL session request to a target SUPL server (e.g. SUPL location platform) after determining the roaming status of the requesting SUPL enabled terminal (SET) (which is identified via mobile country code (MCC)/mobile network code (MNC) information indicated in a location ID field of the SET-initiated SUPL START message).


Alternatively, when a pos protocol field in a SET capabilities parameter of a SUPL START message indicates that a requesting SUPL enabled terminal (SET) supports a radio resource location services protocol (RRLP), in addition to or in exclusion of a long term evolution (LTE) positioning protocol (LPP), existing alias fully qualified domain names (FQDNs) are preferably used to route the session request message to SUPL servers that support a radio resource location services protocol (RRLP), in addition to or in exclusion of other positioning protocols. A global service load balancer (GSLB) on the intelligent router then load balances the session request to a target SUPL server, in a manner consistent with conventional technology.



FIG. 1 depicts an illustrative example of an intelligent router with enhanced routing logic, in accordance with the principles of the present invention.


In particular, as depicted in FIG. 1, an intelligent router 100, such as an Xypoint® Intelligent Router (XIR)/SUPL intelligent load balancer (SILB), with enhanced routing logic 102 preferably services SUPL version 1.0 SUPL enabled terminals (SETs) 104a and SUPL version 2.0 SUPL enabled terminals (SETs) 104b, and preferably comprises a conventional global service load balancer (GSLB) 106 and a SUPL session director (SSD) 108.


Also portrayed in FIG. 1, inventive intelligent router 100 routing logic preferably routes SET-initiated SUPL session requests to SUPL 2.0 radio resource location protocol (RRLP) servers 32, SUPL 1.0 radio resource location protocol (RRLP) servers 30, and newly configured LTE positioning protocol (LPP) servers 110.


In accordance with the principles of the present invention, the intelligent router 100 global service load balancer (GSLB) 106 functionality is responsible for load balancing session requests to inventive LTE positioning protocol (LPP) servers (i.e. servers that support a LTE positioning protocol (LPP) only) 110 and to radio resource location services protocol (RRLP) servers (i.e. servers that support a radio resource location services protocol (RRLP) and other positioning protocols) 30, 32. The global service load balancer (GSLB) load balancing feature 106 allows carriers to fine-tune which servers are to be identified as LTE positioning protocol (LPP) servers 110 and which servers are to be identified as radio resource location services protocol (RRLP) servers 30, 32. In accordance with the principles of the present invention, the global service load balancer (GSLB) configuration is updated to configure new servers to handle SUPL 1.0 and SUPL 2.0 radio resource location services protocol (RRLP) sessions.


A global service load balancer (GSLB) 106 is a conventional 3rd party product and only requirements of functionalities relevant to intelligent routing logic 102 are covered within this specification.


In accordance with the principles of the present invention, enhanced intelligent router 100 routing logic 102 can be enabled and disabled. In particular, when enhanced routing logic 102 is enabled, the intelligent router 100 routes SET-initiated SUPL session requests based on SET capabilities (e.g. positioning protocol capabilities) and a roaming status/location ID identified for a requesting SUPL enabled terminal (SET) 104a, 104b. Alternatively, when enhanced routing logic 102 is disabled, the intelligent router 100 routes SET-initiated SUPL session requests in a manner consistent with conventional technology, i.e., based on a SUPL version and a roaming status/location ID identified for a requesting SUPL enabled terminal (SET) 104a, 104b.


In accordance with the principles of the present invention, inventive intelligent router 100 routing logic additionally includes peg counters to track the number of SET-initiated sessions routed to LTE positioning protocol (LPP) servers 110 and the number of SET-initiated sessions routed to radio resource location services protocol (RRLP) servers 30, 32.



FIG. 2 portrays an exemplary high level SUPL 2.0 SET-initiated SUPL session call flow, in accordance with the principles of the present invention.


In particular, as depicted in step 200, a SET 104a, 104b initiates a SUPL session by transmitting a SUPL START message and one or more SUPL TRIGGERED START messages to an intelligent router 100. A SUPL START message/SUPL TRIGGERED START message must include a SET capabilities parameter.


As portrayed in step 202, the intelligent router 100, receives the SUPL START message and one or more SUPL TRIGGERED START messages, and inspects the following message fields separately, or in combination, depending on a predefined routing configuration/policy: pos technology, positioning protocol (e.g. RRLP, LPP, IS801, etc.), positioning protocol version (e.g. RRLP, LPP, etc.), galileo and additional navigation satellite systems (GANSS) positioning methods, galileo and additional navigation satellite systems (GANSS) positioning modes, preferred method specified by the SUPL enabled terminal (SET) 104a. 104b, service capabilities (SUPL TRIGGERED START), event trigger capabilities, supported bearers, serving cell information (Location ID), and multiple location ID information.


As portrayed in step 204, the intelligent router 100 subsequently determines whether or not enhanced routing logic 102 is enabled.


As shown in step 206, if the intelligent router 100 determines that enhanced routing logic 102 is not enabled (e.g. an enhanced routing flag is set to OFF), then the intelligent router 100 routes the SUPL START message and SUPL TRIGGERED START messages (i.e. SET-initiated SUPL session request message) in a manner consistent with conventional technology (see FIG. 7).


Otherwise, as portrayed in step 208, if the intelligent router 100 determines that enhanced routing logic 102 is enabled (e.g. an enhanced routing flag is set to ‘ON’), then the intelligent router 100 checks the SET capabilities parameter in the SUPL START message/SUPL TRIGGERED START messages to determine whether or not the requesting SUPL enabled terminal (SET) 104a, 104b supports an LTE positioning protocol (LPP), only.


If the intelligent router 100 determines that the SUPL enabled terminal (SET) 104a, 104b does not support an LTE positioning protocol (LPP), only, then the intelligent router 100 routes the SUPL START message in a manner consistent with conventional technology (step 206, see FIG. 7).


Alternatively, as shown in step 210, if it is determined that the SUPL enabled terminal (SET) 104a, 104b does support an LTE positioning protocol (LPP), only, then the intelligent router 100 checks mobile country code (MCC) and mobile network code (MNC) information indicated in the location ID and/or multiple location ID message parameter of the received SUPL START message/SUPL TRIGGERED START messages to determine if the SUPL enabled terminal (SET) 104a, 104b is roaming.


If the SUPL enabled terminal (SET) 104a, 104b is roaming, then the intelligent router 100 routes the SUPL START message/SUPL TRIGGERED START messages to a roaming SUPL location platform (SLP) SUPL version 2/LTE positioning protocol (LPP) server 110b.


Alternatively, if the SUPL enabled terminal (SET) 104a, 104b is not roaming, then the intelligent router 100 routes the SUPL START message/SUPL TRIGGERED START messages to a home SUPL location platform (SLP) SUPL version 2/LTE positioning protocol (LPP) server 110a.


Hence, as portrayed in FIG. 2, enhanced intelligent routing logic 102 uses a location ID message parameter (e.g. mobile country code (MCC)/mobile network code (MNC)) and a multiple location ID message parameter (optional), in combination with a SET capabilities message parameter, to route and load balance SET-initiated SUPL session request messages to a nearest server 110, 30, 32 that is capable of articulating a current position of the SUPL enabled terminal (SET) 104a, 104b.


For example, if a location ID field in a SUPL START message/SUPL TRIGGERED START message indicates LTE cell information, and a SET capabilities field in the SUPL START message/SUPL TRIGGERED START message indicates support for the LTE positioning protocol (LPP), only, then in accordance with the principles of the present invention, the intelligent router 100 routes the SET-initiated SUPL session request messages to alias fully qualified domain names (FQDNs) that represent servers 110 that support a LTE positioning protocol (LPP), only.


When routing session request messages to an alias fully qualified domain name (FQDN), the intelligent router 100 preferably load balances the requests using a global service load balancer (GSLB) 106, which round-robins the requests for domain name service (DNS) to a specific alias fully qualified domain name (FQDN).


In accordance with the principles of the present invention, an intelligent router 100 may be further enhanced to include support for the following capabilities: SUPL intelligent off load (SI-OL) based on SET capabilities, SET traffic load balancing across new SUPL intelligent offload (SI-OL) nodes (based on a new weighted algorithm), and SET initiated/based support for assistance data.


In particular, inventive routing logic 102 may be further enhanced to enable carriers to offload traffic for specific regions to a group of SUPL location platforms (SLPs). One or more of the following SUPL START message fields can be used, in combination or separately, to offload all or part of SET-initiated traffic to alternative servers: a positioning technology parameter, a supported positioning protocol (e.g., RRLP, LPP, IS801, etc.) parameter, a preferred positioning method specified by SET parameter, a serving cell information parameter, and/or a multiple location ID information parameter.


In accordance with the principles of the present invention, offloading SET-initiated SET based location requests from existing SUPL servers based on SET capabilities may result in peaks of 630 transactions per second (TPS). In accordance with the principles of the present invention, a radio resource location services protocol (RRLP) and an LTE positioning protocol (LPP) are supported for SUPL intelligent off load (SI-OL) capabilities. Moreover, cell site and measurement data for SUPL intelligent off load (SI-OL) may include global system for mobile communications (GSM), universal mobile telecommunications system (UMTS), long term evolution (LTE) data, etc., a target transaction per second (TPS) per node for SUPL intelligent off load (SI-OL) is 500 transactions per second (TPS), with a network license of 1500 transactions per second (TPS).


SET-initiated/based cross-site scripting (XSS) capabilities can be migrated to the intelligent router 100 for radio resource location services protocol (RRLP) for SUPL 2.0, SET-based assisted-GPS, enhanced cell ID flows supported by SUPL intelligent off load (SI-OL), additional measurement and assistance data delivery for the LTE positioning protocol (LPP), and cell database updates and provisioning to support long term evolution (LTE) technology.


Further, operations, administration, and management (OA&M) updates for enabling SUPL intelligent off load (SI-OL) based on SET capabilities may include: integration of SUPL intelligent offload (SI-OL) nodes into dashboard, operational metrics and location detail records, an extension of existing location detail records to include new fields, network data provisioning using an existing format, and integration via an existing Xypoint reference network for satellite assistance data.


The following four deployment options may be implemented to provide intelligent router SUPL intelligent off load (SI-OL) capabilities: (1) addition of a virtual machine to a global service load balancer (GSLB) 106 on the intelligent router 100 platform, (2) implementation of additional servers on the intelligent router 100 platform, (3) remote management of intelligent router 100 services (capacity offload), and (4) implementation of an intelligent router 100 blade server architecture.



FIG. 3 depicts an exemplary virtual machine deployment option for enabling SUPL intelligent off load (SI-OL) capabilities via an intelligent router, in accordance with the principles of the present invention.


As depicted in FIG. 3, a virtual machine 300 is implemented on a global service load balancer (GSLB) 106 on the intelligent router 100 platform for purposes of providing SUPL intelligent off load (SI-OL) based on SET capabilities. The virtual machine 300 deployment option isolates load balancing processes and allows for inter process intelligent router SUPL communication. In this embodiment the global service load balancers 106 may not be completely isolated, with a possible competition for system resources at high TPS levels.



FIG. 4 depicts exemplary servers added to an intelligent router for purposes of providing SUPL intelligent off load (SI-OL) based on SET capabilities, in accordance with the principles of the present invention.


As depicted in FIG. 4, two new servers (e.g. linux servers) 400 are added to an existing intelligent router 100 architecture to enable SUPL intelligent offload (SI-OL) based on SET capabilities. This embodiment is preferably completely isolated from intelligent router 100 load balancing functionalities 106, network impacts are incurred remotely, and intelligent router 100 SUPL communication is inter process.



FIG. 5 depicts exemplary remote management of intelligent router services (capacity offload) for purposes of providing SUPL intelligent offload (SI-OL) based on SET capabilities, in accordance with the principles of the present invention.


As depicted in FIG. 5, a remotely managed intelligent router 500 includes a global service load balancer (GSLB) 106, a SUPL session director 108, and a SUPL intelligent offload (SI-OL) module 510. This embodiment is preferably completely isolated from the load balancer 106, a blade system can be deployed in a new data center when ready, and TPS growth can be implanted via use of additional blades, as needed. This embodiment may require the most network carrier changes from conventional systems. Intelligent router 100 SUPL communication is encrypted ULP.



FIG. 6 depicts an exemplary intelligent router blade architecture for providing SUPL intelligent offload (SI-OL) based on SET capabilities, in accordance with the principles of the present invention.


As depicted in FIG. 6, an intelligent router 100 blade server architecture 600 can be used to provide SUPL intelligent offload (SI-OL). This embodiment may have impact on capacity requirements.


The present invention has particular applicability to carriers and service providers that support the secure user plane location (SUPL) protocol.


While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention.

Claims
  • 1. An intelligent router to route a Secure User Plane Location (SUPL) enabled terminal (SET)-initiated SUPL session request to a SUPL server based on SET capabilities, comprising: a global service load balancer (GSLB) to load balance SUPL sessions among a plurality of SUPL servers, wherein a given SUPL server of said plurality of SUPL servers supports a given set of positioning protocols and another SUPL server of said plurality of SUPL server supports another set of positioning protocols, different from said given set of positioning protocols: a SUPL session director; and an enhanced router to;receive a SET capabilities parameter in a SET-initiated SUPL session request to identify a SET-supported positioning protocol; andselect a target SUPL server from said given SUPL server and said other SUPL server based on a match between said identified SET-supported positioning protocol and either a positioning protocol in said given set of positioning protocols supported by said given SUPL server or a positioning protocol in said other set of protocols supported by said other SUPL server;route the SET-initiated SUPL session request to said target SUPL server.
  • 2. The intelligent router to route a SET-initiated SUPL session request to a SUPL server based on SET capabilities according to claim 1, wherein: said enhanced router further routes based on a roaming status of said requesting SUPL enabled terminal (SET).
  • 3. The intelligent router to route a SET-initiated SUPL session request to a SUPL server based on SET capabilities according to claim 1, wherein: said enhanced router routes said SET-initiated SUPL session request to said target SUPL server, in response to determining that said target SUPL server supports a home long term evolution (LTE) positioning protocol (LPP) server and said identified SET capability parameter indicates support of only a LTE positioning protocol (LPP).
  • 4. The intelligent router to route a SET-initiated SUPL session request to a SUPL server based on SET capabilities according to claim 1, wherein: said enhanced router routes said SET-initiated SUPL session request to said target SUPL server, in response to determining that said target SUPL server supports a home radio resource location services protocol (RRLP) server said said identified SET capability parameter indicates no support of an LTE positioning protocol (LPP).
  • 5. The intelligent router to route a SET-initiated SUPL session request to a SUPL server based on SET capabilities according to claim 1, wherein: said enhanced router routes said SET-initiated SUPL session request based on a SUPL version and a roaming status identified for said requesting SUPL enabled terminal (SET).
  • 6. The intelligent router to route a SET-initiated SUPL session request to a SUPL server based on SET capabilities according to claim 1, wherein said enhanced router comprises: a peg counter to track a number of SET-initiated SUPL session requests routed to an LTE positioning protocol (LPP) server of said plurality of SUPL servers, and a number of SET-initiated SUPL session requests routed to a radio resource location services protocol (RRLP) server of said plurality of SUPL servers.
  • 7. The intelligent router to route a SET-initiated SUPL session request to a SUPL server based on SET capabilities according to claim 1, wherein said global service load balancer (GSLB) comprises: a SUPL intelligent offload module to enable SUPL intelligent off load (SI-OL).
  • 8. The intelligent router to route a SET-initiated SUPL session request to a SUPL server based on SET capabilities according to claim 1, wherein: said intelligent router is implemented in a blade architecture to enable SUPL intelligent off load (SI-OL).
  • 9. The intelligent router to route a SET-initiated SUPL session request to a SUPL server based on SET capabilities according to claim 1, further comprising: a remote management module to enable SUPL intelligent off load (SI-OL).
  • 10. The intelligent router to route a SET-initiated SUPL session request to a SUPL server based on SET capabilities according to claim 1, further comprising: a SUPL intelligent offload server to enable SUPL intelligent off load (SI-OL).
  • 11. The intelligent router to route a SET-initiated SUPL session request to a SUPL server based on SET capabilities according to claim 1, wherein: said global service load balancer (GSLB) load balances between a SUPL 1.0 radio resource location services protocol (RRLP) session, and a SUPL 2.0 radio resource location services protocol (RRLP) session.
  • 12. A method of intelligently load balancing, a Secure User Plane Location (SUPL) enabled terminal (SET)-initiated SUPL session request to a target SUPL server based on SET capabilities, comprising: receiving a SUPL session request from a SUPL enabled terminal;determining from a SET capabilities parameter of said SUPL session request to determine if said requesting SUPL enabled terminal (SET) supports only a long term evolution (LTE) positioning protocol (LPP);determining a roaming status of said requesting SUIT enabled terminal (SET) when said requesting SUPL enabled terminal (SET) supports only said LPP;routing said SUPL session request to a radio resource location services protocol (RRLP) server based on a SUPL version and said roaming status, when said requesting SUPL enabled terminal (SET) does not support only an LTE positioning protocol (LPP);routing said SUPL session request to a roaming LTE positioning protocol (LPP) server when said requesting SUPL enabled terminal (SET) supports only an LTE positioning protocol (LPP), and is not roaming; androuting said SUPL session request to a home LTE positioning protocol (LPP) server when said requesting SUPL enabled terminal (SET) supports only an LTE positioning protocol (LPP), and is roaming.
  • 13. The method of intelligently routing a SUPL enabled terminal (SET)-initiated SUPL session request based on SET capabilities according to claim 12, wherein: said SUPL session request is a SUPL START message.
  • 14. The method of intelligently routing a SUPL enabled terminal (SET)-initiated SUPL session request based on SET capabilities according to claim 12, wherein: said SUPL session request is a SUPL TRIGGERED START message.
  • 15. The method of intelligently routing a SUPL enabled terminal (SET)-initiated SUPL session request based on SET capabilities according to claim 12, further comprising: routing said SUPL session request based on a SUPL version and a roaming status identified for said requesting SUPL enabled terminal (SET).
  • 16. The method of intelligently routing a SUPL enabled terminal (SET)-initiated SUPL session request based on SET capabilities according to claim 12, further comprising: tracking a number of SET-initiated SUPL session requests routed to an LTE positioning protocol (LPP) server; andtracking a number of SET-initiated SUPL session requests routed to a radio resource location services protocol (RRLP) server.
  • 17. The method of intelligently routing a SUPL enabled terminal (SET)-initiated SUPL session request based on SET capabilities according to claim 12, further comprising: routing said SET-initiated SUPL session request to an LTE positioning protocol (LPP) server when said requesting SUPL enabled terminal (SET) supports only an LTE positioning protocol (LPP).
  • 18. The method of intelligently routing a SUPL enabled terminal (SET)-initiated SUPL session request based on SET capabilities according to claim 12, further comprising: routing said SET-initiated SUPL session request to a radio resource location services protocol (RRLP) server when said requesting SUPL enabled terminal (SET) does not support an LTE positioning protocol (LPP).
  • 19. The method of intelligently routing a SUPL enabled terminal (SET)-initiated SUPL session request based on SET capabilities according to claim 12, further comprising: providing SUPL intelligent off load (SI-OL) based on said SET capabilities.
Parent Case Info

The present invention claims priority from U.S. Provisional No. 61/876,355, filed Sep. 11, 2013, entitled “SUPL Session Router—Using Handset Capabilities”; and also from U.S. Provisional No. 61/888,700, filed Oct. 9, 2013, entitled “SI-LB Enhanced Routing—RRLP/LPP”, the entirety of both of which is expressly incorporated herein by reference.

US Referenced Citations (843)
Number Name Date Kind
1103073 O'Connell Jul 1914 A
4445118 Taylor et al. Apr 1984 A
4494119 Wimbush Jan 1985 A
4651156 Martinez Mar 1987 A
4706275 Kamil Nov 1987 A
4737916 Ogawa Apr 1988 A
4891638 Davis Jan 1990 A
4891650 Sheffer Jan 1990 A
4939662 Numura Jul 1990 A
4952928 Carroll Aug 1990 A
4972484 Theile Nov 1990 A
5014206 Scribner May 1991 A
5043736 Darnell Aug 1991 A
5055851 Sheffer Oct 1991 A
5068656 Sutherland Nov 1991 A
5068891 Marshall Nov 1991 A
5070329 Jasinaki Dec 1991 A
5081667 Drori Jan 1992 A
5119104 Heller Jun 1992 A
5126722 Kamis Jun 1992 A
5144283 Arens Sep 1992 A
5161180 Chavous Nov 1992 A
5166972 Smith Nov 1992 A
5177478 Wagai Jan 1993 A
5193215 Olmer Mar 1993 A
5208756 Song May 1993 A
5214789 George May 1993 A
5218367 Sheffer Jun 1993 A
5223844 Mansell Jun 1993 A
5239570 Koster Aug 1993 A
5265630 Hartmann Nov 1993 A
5266944 Carroll Nov 1993 A
5283570 DeLuca Feb 1994 A
5289527 Tiedemann Feb 1994 A
5293642 Lo Mar 1994 A
5299132 Wortham Mar 1994 A
5301354 Schwendeman Apr 1994 A
5311516 Kuznicki May 1994 A
5325302 Izidon Jun 1994 A
5327529 Fults Jul 1994 A
5334974 Simms Aug 1994 A
5335246 Yokev Aug 1994 A
5343493 Karimulah Aug 1994 A
5347568 Moody Sep 1994 A
5351235 Lahtinen Sep 1994 A
5361212 Class Nov 1994 A
5363425 Mufti Nov 1994 A
5365451 Wang Nov 1994 A
5374936 Feng Dec 1994 A
5379451 Nakagoshi Jan 1995 A
5381338 Wysocki Jan 1995 A
5387993 Heller Feb 1995 A
5388147 Grimes Feb 1995 A
5389934 Kass Feb 1995 A
5390339 Bruckery Feb 1995 A
5394158 Chia Feb 1995 A
5396227 Carroll Mar 1995 A
5398190 Wortham Mar 1995 A
5406614 Hara Apr 1995 A
5418537 Bird May 1995 A
5422813 Schuchman Jun 1995 A
5423076 Westergren Jun 1995 A
5434789 Fraker Jul 1995 A
5454024 Lebowitz Sep 1995 A
5461390 Hosher Oct 1995 A
5470233 Fruchterman Nov 1995 A
5479408 Will Dec 1995 A
5479482 Grimes Dec 1995 A
5485161 Vaughn Jan 1996 A
5485163 Singer Jan 1996 A
5488563 Chazelle Jan 1996 A
5494091 Freeman Feb 1996 A
5497149 Fast Mar 1996 A
5504491 Chapman Apr 1996 A
5506886 Maine Apr 1996 A
5508931 Snider Apr 1996 A
5513243 Kage Apr 1996 A
5515287 Hakoyama May 1996 A
5517199 DiMattei May 1996 A
5519403 Bickley May 1996 A
5530655 Lokhoff Jun 1996 A
5530914 McPheters Jun 1996 A
5532690 Hertel Jul 1996 A
5535434 Siddoway Jul 1996 A
5539395 Buss Jul 1996 A
5539398 Hall Jul 1996 A
5539829 Lokhoff Jul 1996 A
5543776 L'Esperance Aug 1996 A
5546445 Dennison Aug 1996 A
5552772 Janky Sep 1996 A
5555286 Tendler Sep 1996 A
5557254 Johnson Sep 1996 A
5568119 Schipper Oct 1996 A
5568153 Beliveau Oct 1996 A
5574648 Pilley Nov 1996 A
5579372 Angstrom Nov 1996 A
5588009 Will Dec 1996 A
5592535 Klotz Jan 1997 A
5594780 Wiedeman Jan 1997 A
5604486 Lauro Feb 1997 A
5606313 Allen Feb 1997 A
5606618 Lokhoff Feb 1997 A
5606850 Nakamura Mar 1997 A
5610815 Gudat Mar 1997 A
5614890 Fox Mar 1997 A
5615116 Gudat Mar 1997 A
5621793 Bednarek Apr 1997 A
5628051 Salin May 1997 A
5629693 Janky May 1997 A
5633912 Tsoi May 1997 A
5636122 Shah Jun 1997 A
5636276 Brugger Jun 1997 A
5661652 Sprague Aug 1997 A
5661755 Van de Kerkhof Aug 1997 A
5682600 Salin Oct 1997 A
5684951 Goldman Nov 1997 A
5689245 Noreen Nov 1997 A
5689269 Norris Nov 1997 A
5689809 Grube Nov 1997 A
5699053 Jonsson Dec 1997 A
5717688 Belanger Feb 1998 A
5727057 Emery Mar 1998 A
5731785 Lemelson Mar 1998 A
5740534 Ayerst Apr 1998 A
5761618 Lynch Jun 1998 A
5765152 Erickson Jun 1998 A
5767795 Schaphorst Jun 1998 A
5768509 Gunluk Jun 1998 A
5771353 Eggleston Jun 1998 A
5774533 Patel Jun 1998 A
5774670 Montulli Jun 1998 A
5774824 Streit Jun 1998 A
5787357 Salin Jul 1998 A
5794142 Vantilla Aug 1998 A
5797094 Houde Aug 1998 A
5797096 Lupien Aug 1998 A
5801700 Ferguson Sep 1998 A
5802492 DeLorrme Sep 1998 A
5806000 Vo Sep 1998 A
5809415 Rossmann Sep 1998 A
5812086 Bertiger Sep 1998 A
5812087 Krasner Sep 1998 A
5822700 Hult Oct 1998 A
5828740 Khuc Oct 1998 A
5841396 Krasner Nov 1998 A
5857201 Wright, Jr. Jan 1999 A
5864667 Barkam Jan 1999 A
5874914 Krasner Feb 1999 A
5896369 Warsta Apr 1999 A
5920821 Seaholtz Jul 1999 A
5922074 Richard Jul 1999 A
5926118 Hayashida Jul 1999 A
5930250 Klok Jul 1999 A
5944768 Ito Aug 1999 A
5953398 Hill Sep 1999 A
5960362 Grob Sep 1999 A
5974054 Couts Oct 1999 A
5978685 Laiho Nov 1999 A
5982301 Ohta Nov 1999 A
5983099 Yao Nov 1999 A
5983109 Montoya Nov 1999 A
5987323 Houtari Nov 1999 A
5998111 Abe Dec 1999 A
5999124 Sheynblat Dec 1999 A
6002936 Roel-Ng Dec 1999 A
6014602 Kithol Jan 2000 A
6032051 Hall Feb 2000 A
6035025 Hanson Mar 2000 A
6035253 Hayahi Mar 2000 A
6049710 Nilsson Apr 2000 A
6052081 Krasner Apr 2000 A
6058300 Hanson May 2000 A
6061018 Sheynblat May 2000 A
6061346 Nordman May 2000 A
6064336 Krasner May 2000 A
6064875 Morgan May 2000 A
6067045 Castelloe May 2000 A
6070067 Nguyen May 2000 A
6075982 Donovan Jun 2000 A
6081229 Soliman Jun 2000 A
6081508 West Jun 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6091957 Larkins Jul 2000 A
6101378 Barabush Aug 2000 A
6108533 Brohoff Aug 2000 A
6115611 Kimoto Sep 2000 A
6122503 Daly Sep 2000 A
6122520 Want Sep 2000 A
6124810 Segal Sep 2000 A
6128664 Yanagidate et al. Oct 2000 A
6131067 Girerd Oct 2000 A
6133874 Krasner Oct 2000 A
6134316 Kallioniemi Oct 2000 A
6134483 Vayanos Oct 2000 A
6138003 Kingdon Oct 2000 A
6148197 Bridges Nov 2000 A
6148198 Anderson Nov 2000 A
6149353 Nilsson Nov 2000 A
6150980 Krasner Nov 2000 A
6154172 Piccionelli Nov 2000 A
6169516 Watanabe Jan 2001 B1
6169891 Gorham Jan 2001 B1
6169901 Boucher Jan 2001 B1
6169902 Kawamoto Jan 2001 B1
6173181 Losh Jan 2001 B1
6178505 Schneider Jan 2001 B1
6178506 Quick, Jr. Jan 2001 B1
6181935 Gossman Jan 2001 B1
6181939 Ahvenainen Jan 2001 B1
6182006 Meek Jan 2001 B1
6182227 Blair Jan 2001 B1
6185426 Alperovich Feb 2001 B1
6188354 Soliman Feb 2001 B1
6188752 Lesley Feb 2001 B1
6188909 Alanara Feb 2001 B1
6188957 Bechtolsheim Feb 2001 B1
6189098 Kaliski, Jr. Feb 2001 B1
6195557 Havinis Feb 2001 B1
6198431 Gibson Mar 2001 B1
6199045 Giniger Mar 2001 B1
6199113 Alegre Mar 2001 B1
6204844 Fumarolo Mar 2001 B1
6205330 Winbladh Mar 2001 B1
6208290 Krasner Mar 2001 B1
6208854 Roberts Mar 2001 B1
6215441 Moeglein Apr 2001 B1
6219557 Havinis Apr 2001 B1
6223046 Hamill-Keays Apr 2001 B1
6226529 Bruno May 2001 B1
6239742 Krasner May 2001 B1
6247135 Feague Jun 2001 B1
6249680 Wax Jun 2001 B1
6249742 Frriederich Jun 2001 B1
6249744 Morita Jun 2001 B1
6249873 Richard Jun 2001 B1
6253074 Carlsson Jun 2001 B1
6253203 O'Flaherty Jun 2001 B1
6260147 Quick, Jr. Jul 2001 B1
6266614 Alumbaugh Jul 2001 B1
6275692 Skog Aug 2001 B1
6275849 Ludwig Aug 2001 B1
6278701 Ayyagari Aug 2001 B1
6278936 Jones Aug 2001 B1
6289373 Dezonno Sep 2001 B1
6297768 Allen, Jr. Oct 2001 B1
6307504 Sheynblat Oct 2001 B1
6308269 Proidl Oct 2001 B2
6313786 Sheynblat Nov 2001 B1
6317594 Gossman Nov 2001 B1
6317684 Roeseler Nov 2001 B1
6321091 Holland Nov 2001 B1
6321092 Fitch Nov 2001 B1
6321158 DeLorme Nov 2001 B1
6321257 Kotala Nov 2001 B1
6324524 Lent Nov 2001 B1
6327473 Soliman Dec 2001 B1
6327479 Mikkola Dec 2001 B1
6331825 Ladner Dec 2001 B1
6333919 Gaffney Dec 2001 B2
6360093 Ross Mar 2002 B1
6360102 Havinis Mar 2002 B1
6363254 Jones Mar 2002 B1
6366782 Fumarolo Apr 2002 B1
6366856 Johnson Apr 2002 B1
6367019 Ansell Apr 2002 B1
6370389 Isomursu Apr 2002 B1
6377209 Krasner Apr 2002 B1
6397143 Paschke May 2002 B1
6400314 Krasner Jun 2002 B1
6400943 Montoya Jun 2002 B1
6400958 Isomursu Jun 2002 B1
6411254 Moeglein Jun 2002 B1
6415224 Wako Jul 2002 B1
6421002 Krasner Jul 2002 B2
6427001 Contractor Jul 2002 B1
6429808 King Aug 2002 B1
6433734 Krasner Aug 2002 B1
6434381 Moore Aug 2002 B1
6437735 McMahan Aug 2002 B1
6441752 Fomukong Aug 2002 B1
6442384 Shah Aug 2002 B1
6442391 Johansson Aug 2002 B1
6449473 Raivisto Sep 2002 B1
6449476 Hutchison, IV Sep 2002 B1
6456852 Bar Sep 2002 B2
6463272 Wallace Oct 2002 B1
6466788 Carlsson Oct 2002 B1
6477150 Maggenti Nov 2002 B1
6504491 Christians Jan 2003 B1
6505049 Dorenbosch Jan 2003 B1
6510387 Fuchs Jan 2003 B2
6512922 Burg Jan 2003 B1
6512930 Sandegren Jan 2003 B2
6515623 Johnson Feb 2003 B2
6519466 Pande Feb 2003 B2
6522682 Kohli Feb 2003 B1
6526026 Menon Feb 2003 B1
6529500 Pandharipande Mar 2003 B1
6529722 Heinrich Mar 2003 B1
6529829 Turetzky Mar 2003 B2
6531982 White Mar 2003 B1
6538757 Sansone Mar 2003 B1
6539200 Schiff Mar 2003 B1
6539232 Hendrey et al. Mar 2003 B2
6539304 Chansarkar Mar 2003 B1
6542464 Takeda Apr 2003 B1
6542734 Abrol Apr 2003 B1
6542743 Soliman Apr 2003 B1
6549522 Flynn Apr 2003 B1
6549776 Joong Apr 2003 B1
6549844 Egberts Apr 2003 B1
6556832 Soliman Apr 2003 B1
6560461 fomukong May 2003 B1
6560534 Abraham May 2003 B2
6563824 Bhatia May 2003 B1
6564261 Gudjonsson May 2003 B1
6570530 Gaal May 2003 B2
6571095 Koodli May 2003 B1
6571174 Rigazio May 2003 B2
6574558 Kohli Jun 2003 B2
6580390 Hay Jun 2003 B1
6584552 Kuno Jun 2003 B1
6587691 Granstam Jul 2003 B1
6594500 Bender Jul 2003 B2
6597311 Sheynblat Jul 2003 B2
6600927 Hamilton Jul 2003 B2
6603973 Foladare Aug 2003 B1
6606495 Korpi Aug 2003 B1
6606554 Edge Aug 2003 B2
6609004 Morse Aug 2003 B1
6611757 Brodie Aug 2003 B2
6618670 Chansarkar Sep 2003 B1
6621423 Cooper Sep 2003 B1
6621452 Knockeart Sep 2003 B2
6621810 Leung Sep 2003 B1
6628233 Knockeart Sep 2003 B2
6633255 Krasner Oct 2003 B2
6640184 Rabe Oct 2003 B1
6640185 Tokota Oct 2003 B2
6643516 Stewart Nov 2003 B1
6650288 Pitt Nov 2003 B1
6661353 Gopen Dec 2003 B1
6661372 Girerd Dec 2003 B1
6665539 Sih Dec 2003 B2
6665541 Krasner Dec 2003 B1
6665613 Duvall Dec 2003 B2
6665715 Houri Dec 2003 B1
6671620 Garin Dec 2003 B1
6677894 Sheynblat Jan 2004 B2
6680694 Knockheart Jan 2004 B1
6687504 Raith Feb 2004 B1
6691019 Seeley Feb 2004 B2
6694258 Johnson Feb 2004 B2
6697629 Grilli Feb 2004 B1
6698195 Hellinger Mar 2004 B1
6701144 Kirbas Mar 2004 B2
6703971 Pande Mar 2004 B2
6703972 Van Diggelen Mar 2004 B2
6704651 Van Diggelen Mar 2004 B2
6707421 Drury Mar 2004 B1
6714793 Carey Mar 2004 B1
6718174 Vayanos Apr 2004 B2
6720915 Sheynblat Apr 2004 B2
6721578 Minear Apr 2004 B2
6721652 Sanqunetti Apr 2004 B1
6721716 Gross Apr 2004 B1
6721871 Piispanen Apr 2004 B2
6724342 Bloebaum Apr 2004 B2
6725159 Krasner Apr 2004 B2
6728701 Stoica Apr 2004 B1
6731940 Nagendran May 2004 B1
6734821 Van Diggelen May 2004 B2
6738013 Orler May 2004 B2
6738800 Aquilon May 2004 B1
6741842 Goldberg May 2004 B2
6744856 Karnik Jun 2004 B2
6744858 Ryan Jun 2004 B1
6745038 Callaway, Jr. Jun 2004 B2
6747596 Orler Jun 2004 B2
6748195 Phillips Jun 2004 B1
6751464 Burg Jun 2004 B1
6756938 Zhao Jun 2004 B2
6757266 Hundscheidt Jun 2004 B1
6757544 Rangarajan Jun 2004 B2
6757545 Nowak Jun 2004 B2
6766174 Kenyon Jul 2004 B1
6771639 Holden Aug 2004 B1
6771742 McCalmont Aug 2004 B2
6772340 Peinado Aug 2004 B1
6775267 Kung Aug 2004 B1
6775534 Lindgren Aug 2004 B2
6775655 Peinado Aug 2004 B1
6775802 Gaal Aug 2004 B2
6778136 Gronemeyer Aug 2004 B2
6778885 Agashe Aug 2004 B2
6781963 Crockett Aug 2004 B2
6788249 Farmer Sep 2004 B1
6795444 Vo Sep 2004 B1
6795699 McCraw Sep 2004 B1
6799049 Zellner Sep 2004 B1
6799050 Krasner Sep 2004 B1
6801159 Swope Oct 2004 B2
6801850 Wolfson Oct 2004 B1
6804524 Vandermaijden Oct 2004 B1
6807534 Erickson Oct 2004 B1
6810323 Bullock Oct 2004 B1
6810405 LaRue Oct 2004 B1
6813264 Vassilovski Nov 2004 B2
6813501 Kinnunen Nov 2004 B2
6813560 Van Diggelen Nov 2004 B2
6816111 Krasner Nov 2004 B2
6816710 Krasner Nov 2004 B2
6816719 Heinonen Nov 2004 B1
6816734 Wong Nov 2004 B2
6816782 Walters Nov 2004 B1
6819919 Tanaka Nov 2004 B1
6820069 Kogan Nov 2004 B1
6829475 Lee Dec 2004 B1
6829532 Obradovich Dec 2004 B2
6832373 O'Neill Dec 2004 B2
6839020 Geier Jan 2005 B2
6839021 Sheynblat Jan 2005 B2
6839417 Weisman Jan 2005 B2
6839630 Sakamoto Jan 2005 B2
6842696 Silvester Jan 2005 B2
6842715 Gaal Jan 2005 B1
6845321 Kerns Jan 2005 B1
6847822 Dennison Jan 2005 B1
6853916 Fuchs Feb 2005 B2
6856282 Mauro Feb 2005 B2
6861980 Rowitch Mar 2005 B1
6865171 Nilsson Mar 2005 B1
6865395 Riley Mar 2005 B2
6867733 Sandhu Mar 2005 B2
6867734 Voor Mar 2005 B2
6873854 Crockett Mar 2005 B2
6882850 McConnell et al. Apr 2005 B2
6885874 Grube Apr 2005 B2
6885940 Brodie Apr 2005 B2
6888497 King May 2005 B2
6888932 Snip May 2005 B2
6895238 Newell May 2005 B2
6895249 Gaal May 2005 B2
6895329 Wolfson May 2005 B1
6898516 Pechatnikov May 2005 B2
6898633 Lyndersay May 2005 B1
6900758 Mann May 2005 B1
6903684 Simic Jun 2005 B1
6904029 Fors Jun 2005 B2
6907224 Younis Jun 2005 B2
6907238 Leung Jun 2005 B2
6910818 McLoone Jun 2005 B2
6912230 Salkini Jun 2005 B1
6912395 Benes Jun 2005 B2
6912545 Lundy Jun 2005 B1
6915208 Garin Jul 2005 B2
6917331 Gronemeyer Jul 2005 B2
6925603 Naito Aug 2005 B1
6930634 Peng Aug 2005 B2
6934705 Tu Aug 2005 B2
6937187 Van Diggelen Aug 2005 B2
6937872 Krasner Aug 2005 B2
6940950 Dickinson et al. Sep 2005 B2
6941144 Stein Sep 2005 B2
6944535 Iwata Sep 2005 B2
6944540 King Sep 2005 B2
6947772 Minear Sep 2005 B2
6950058 Davis Sep 2005 B1
6957068 Hutchison Oct 2005 B2
6957073 Bye Oct 2005 B2
6961562 Ross Nov 2005 B2
6963557 Knox Nov 2005 B2
6963748 Chithambaram Nov 2005 B2
6965754 King Nov 2005 B2
6965767 Maggenti Nov 2005 B2
6968044 Beason Nov 2005 B2
6970871 Rayburn Nov 2005 B1
6970917 Kushwaha Nov 2005 B1
6973320 Brown Dec 2005 B2
6975266 Abraham Dec 2005 B2
6978453 Rao Dec 2005 B2
6980816 Rohler Dec 2005 B2
6985747 Chithambaram Jan 2006 B2
6990081 Schaefer Jan 2006 B2
6993355 Pershan Jan 2006 B1
6996720 DeMello Feb 2006 B1
6999782 Shaughnessy Feb 2006 B2
7024321 Deninger Apr 2006 B1
7024393 Peinado Apr 2006 B1
7047411 DeMello May 2006 B1
7058506 Kawase Jun 2006 B2
7065351 Carter Jun 2006 B2
7065507 Mohammed Jun 2006 B2
7072667 Olrik Jul 2006 B2
7079857 Maggenti Jul 2006 B2
7089110 Pechatnikov Aug 2006 B2
7092385 Gallant Aug 2006 B2
7103018 Hansen Sep 2006 B1
7103574 Peinado Sep 2006 B1
7106717 Rousseau Sep 2006 B2
7110773 Wallace Sep 2006 B1
7136466 Gao Nov 2006 B1
7136838 Peinado Nov 2006 B1
7142163 Fukano Nov 2006 B2
7142196 Connor Nov 2006 B1
7142205 Chithambaram Nov 2006 B2
7145900 Nix Dec 2006 B2
7151946 Maggenti Dec 2006 B2
7167187 Scott Jan 2007 B2
7171220 Belcea Jan 2007 B2
7171304 Wako Jan 2007 B2
7177397 Mccalmont Feb 2007 B2
7177398 Meer Feb 2007 B2
7177399 Dawson Feb 2007 B2
7184418 Baba Feb 2007 B1
7200380 Havlark Apr 2007 B2
7202801 Chou Apr 2007 B2
7209758 Moll Apr 2007 B1
7209969 Lahti Apr 2007 B2
7218940 Niemenna May 2007 B2
7221959 Lindquist May 2007 B2
7245900 Lamb Jul 2007 B1
7245910 Osmo Jul 2007 B2
7260186 Zhu Aug 2007 B2
7260384 Bales Aug 2007 B2
7266376 Nakagawa Sep 2007 B2
7286929 Staton Oct 2007 B2
7330899 Wong Feb 2008 B2
7333480 Clarke Feb 2008 B1
7340241 Rhodes Mar 2008 B2
7369508 Parantainen May 2008 B2
7369530 Keagy May 2008 B2
7424293 Zhu Sep 2008 B2
7426380 Hines Sep 2008 B2
7428571 Ichimura Sep 2008 B2
7436785 McMullen Oct 2008 B1
7440442 Grabelsky Oct 2008 B2
7450951 Vimpari Nov 2008 B2
7453990 Welenson Nov 2008 B2
7477903 Wilcock Jan 2009 B2
7495608 Chen Feb 2009 B1
7522581 Acharya Apr 2009 B2
7565157 Ortega Jul 2009 B1
7602886 Beech Oct 2009 B1
7623447 Faccin Nov 2009 B1
7627331 Winterbottom Dec 2009 B2
7653544 Bradley Jan 2010 B2
7660321 Cortes Feb 2010 B2
7702081 Klesper Apr 2010 B1
7711094 Olshansky May 2010 B1
7739033 Murata Jun 2010 B2
7747258 Farmer Jun 2010 B2
7751614 Funakura Jul 2010 B2
7764961 Zhu Jul 2010 B2
7774003 Ortega Aug 2010 B1
7783297 Ishii Aug 2010 B2
7792989 Toebes Sep 2010 B2
7822823 Jhanji Oct 2010 B2
7881233 Bieselin Feb 2011 B2
7881730 Sheha Feb 2011 B2
7895263 Kirchmeier Feb 2011 B1
7937067 Maier May 2011 B2
8249589 Zhu Aug 2012 B2
20010011247 O'Flaherty Aug 2001 A1
20010015756 Wilcock Aug 2001 A1
20010016849 Squibbs Aug 2001 A1
20020032036 Nakajima Mar 2002 A1
20020037735 Maggenti Mar 2002 A1
20020052214 Maggenti May 2002 A1
20020058515 Holler May 2002 A1
20020061760 Maggenti May 2002 A1
20020069239 Katada Jun 2002 A1
20020069529 Wieres Jun 2002 A1
20020077083 Zellner Jun 2002 A1
20020077084 Zellner Jun 2002 A1
20020077118 Zellner Jun 2002 A1
20020077897 Zellner Jun 2002 A1
20020085538 Leung Jul 2002 A1
20020086683 Kohar Jul 2002 A1
20020102996 Jenkins Aug 2002 A1
20020102999 Maggenti Aug 2002 A1
20020111172 DeWolf Aug 2002 A1
20020112047 Kushwaha Aug 2002 A1
20020118650 Jagadeesan Aug 2002 A1
20020123327 Vataja Sep 2002 A1
20020123354 Nowak Sep 2002 A1
20020126656 Park Sep 2002 A1
20020130906 Miyaki Sep 2002 A1
20020158777 Flick Oct 2002 A1
20020164998 Younis Nov 2002 A1
20020169539 Menard Nov 2002 A1
20020173317 Nykanen Nov 2002 A1
20020191595 Mar Dec 2002 A1
20030009277 Fan Jan 2003 A1
20030009602 Jacobs Jan 2003 A1
20030012148 Peters Jan 2003 A1
20030013449 Hose Jan 2003 A1
20030014487 Iwakawa Jan 2003 A1
20030016804 Sheha Jan 2003 A1
20030026245 Ejzak Feb 2003 A1
20030032448 Bulthius Feb 2003 A1
20030036848 Sheha Feb 2003 A1
20030036949 Kaddeche Feb 2003 A1
20030037163 Kitada Feb 2003 A1
20030040272 Lelievre Feb 2003 A1
20030045327 Kobayashi Mar 2003 A1
20030054835 Gutowski Mar 2003 A1
20030060938 Duvall Mar 2003 A1
20030065788 Salomaki Apr 2003 A1
20030072318 Lam Apr 2003 A1
20030078054 Okuda Apr 2003 A1
20030078064 Chan Apr 2003 A1
20030081557 Mettala May 2003 A1
20030096623 Kim May 2003 A1
20030101329 Lahti May 2003 A1
20030101341 Kettler May 2003 A1
20030103484 Oommen Jun 2003 A1
20030108176 Kung Jun 2003 A1
20030109245 McCalmont Jun 2003 A1
20030114157 Spitz Jun 2003 A1
20030119521 Tipnis Jun 2003 A1
20030119528 Pew Jun 2003 A1
20030125064 Koskinen Jul 2003 A1
20030126250 Jhanji Jul 2003 A1
20030137961 Tsirtsis Jul 2003 A1
20030149526 Zhou Aug 2003 A1
20030151501 Teckchandani Aug 2003 A1
20030153340 Crockett Aug 2003 A1
20030153341 Crockett Aug 2003 A1
20030153342 Crockett Aug 2003 A1
20030153343 Crockett Aug 2003 A1
20030161298 Bergman Aug 2003 A1
20030165254 Chen Sep 2003 A1
20030182053 Swope Sep 2003 A1
20030186709 Rhodes Oct 2003 A1
20030196105 Fineburg Oct 2003 A1
20030201931 Durst Oct 2003 A1
20030204640 Sahineja Oct 2003 A1
20030223381 Schroderus Dec 2003 A1
20030231190 Jawerth Dec 2003 A1
20030236618 Kamikawa Dec 2003 A1
20040002326 Maher Jan 2004 A1
20040002814 Gogic Jan 2004 A1
20040008225 Campbell Jan 2004 A1
20040021567 Dunn Feb 2004 A1
20040032485 Stephens Feb 2004 A1
20040041729 Rowitch Mar 2004 A1
20040043775 Kennedy Mar 2004 A1
20040044623 Wake Mar 2004 A1
20040047342 Gavish Mar 2004 A1
20040047461 Weisman et al. Mar 2004 A1
20040054428 Sheha Mar 2004 A1
20040068724 Gardner Apr 2004 A1
20040076277 Kuusinen Apr 2004 A1
20040098497 Banet May 2004 A1
20040124977 Biffar Jul 2004 A1
20040132465 Mattila Jul 2004 A1
20040146040 Phan-Anh Jul 2004 A1
20040181689 Kiyoto Sep 2004 A1
20040184584 McCalmont Sep 2004 A1
20040186880 Yamamoto Sep 2004 A1
20040190497 Knox Sep 2004 A1
20040198332 Lundsgaard Oct 2004 A1
20040198375 Schwengler Oct 2004 A1
20040198386 Dupray Oct 2004 A1
20040203732 Brusilovsky Oct 2004 A1
20040204829 Endo Oct 2004 A1
20040204847 Yanai Oct 2004 A1
20040205151 Sprigg Oct 2004 A1
20040205517 Lampert Oct 2004 A1
20040220957 McDonough Nov 2004 A1
20040229632 Flynn Nov 2004 A1
20040242238 Wang Dec 2004 A1
20040267445 De Luca Dec 2004 A1
20050020242 Holland Jan 2005 A1
20050021769 Kim Jan 2005 A1
20050027445 McDonough Feb 2005 A1
20050028034 Gantman Feb 2005 A1
20050031095 Pietrowics Feb 2005 A1
20050039178 Marolia Feb 2005 A1
20050041578 Huotari Feb 2005 A1
20050043037 Loppe Feb 2005 A1
20050043038 Maanoja Feb 2005 A1
20050053209 D'Evelyn et al. Mar 2005 A1
20050062636 Conway Mar 2005 A1
20050063519 James Mar 2005 A1
20050071671 Karaoguz Mar 2005 A1
20050078612 Lang Apr 2005 A1
20050083911 Grabelsky Apr 2005 A1
20050085999 Onishi Apr 2005 A1
20050086467 Asokan Apr 2005 A1
20050090236 Schwinke Apr 2005 A1
20050101335 Kelly May 2005 A1
20050107673 Ball May 2005 A1
20050111630 Potorney May 2005 A1
20050112030 Gaus May 2005 A1
20050119012 Merheb Jun 2005 A1
20050125148 Van Buer Jun 2005 A1
20050134504 Harwood Jun 2005 A1
20050135569 Dickinson Jun 2005 A1
20050136885 Kaltsukis Jun 2005 A1
20050149430 Williams Jul 2005 A1
20050159883 Humphries Jul 2005 A1
20050174991 Keagy Aug 2005 A1
20050190746 Xiong Sep 2005 A1
20050190892 Dawson Sep 2005 A1
20050192822 Hartenstein Sep 2005 A1
20050201358 Nelson Sep 2005 A1
20050201528 Meer Sep 2005 A1
20050201529 Nelson Sep 2005 A1
20050209995 Aksu Sep 2005 A1
20050213716 Zhu Sep 2005 A1
20050219067 Chung Oct 2005 A1
20050232252 Hoover Oct 2005 A1
20050239458 Hurtta Oct 2005 A1
20050242168 Tesavis Nov 2005 A1
20050255857 Kim Nov 2005 A1
20050259675 Tuohino Nov 2005 A1
20050261002 Cheng Nov 2005 A1
20050265318 Khartabil Dec 2005 A1
20050271029 Iffland Dec 2005 A1
20050282518 D'Evelyn Dec 2005 A1
20050287979 Rollender Dec 2005 A1
20050289097 Trossen Dec 2005 A1
20060008065 Longman et al. Jan 2006 A1
20060019724 Bahl Jan 2006 A1
20060023747 Koren et al. Feb 2006 A1
20060026288 Acharya Feb 2006 A1
20060041375 Witmer Feb 2006 A1
20060053225 Poikselka Mar 2006 A1
20060058102 Nguyen et al. Mar 2006 A1
20060068753 Karpen Mar 2006 A1
20060069503 Suomela Mar 2006 A1
20060072729 Lee et al. Apr 2006 A1
20060074547 Kaufman Apr 2006 A1
20060077911 Shaffer Apr 2006 A1
20060088152 Green Apr 2006 A1
20060104306 Adamczkk May 2006 A1
20060120517 Moon Jun 2006 A1
20060128395 Muhonen Jun 2006 A1
20060135177 Winterbottom Jun 2006 A1
20060188083 Breen Aug 2006 A1
20060193447 Schwartz Aug 2006 A1
20060200359 Khan Sep 2006 A1
20060212558 Sahinoja Sep 2006 A1
20060212562 Kushwaha Sep 2006 A1
20060224752 Parekh Oct 2006 A1
20060233338 Venkata Oct 2006 A1
20060234639 Kushwaha Oct 2006 A1
20060234698 Fok Oct 2006 A1
20060239205 Warren Oct 2006 A1
20060250987 White Nov 2006 A1
20060258380 Liebowitz Nov 2006 A1
20060259365 Agarwal et al. Nov 2006 A1
20060268120 Funakura Nov 2006 A1
20060270421 Phillips Nov 2006 A1
20060281437 Cook Dec 2006 A1
20060293024 Benco Dec 2006 A1
20060293066 Edge Dec 2006 A1
20070003024 Olivier Jan 2007 A1
20070004461 Bathina Jan 2007 A1
20070014282 Mitchell Jan 2007 A1
20070019614 Hoffmann Jan 2007 A1
20070021908 Jaugilas Jan 2007 A1
20070022011 Altberg et al. Jan 2007 A1
20070026854 Nath Feb 2007 A1
20070026871 Wager Feb 2007 A1
20070027997 Polk Feb 2007 A1
20070030539 Nath Feb 2007 A1
20070032244 Counts Feb 2007 A1
20070036139 Patel Feb 2007 A1
20070049288 Lamprecht Mar 2007 A1
20070054676 Duan Mar 2007 A1
20070060097 Edge Mar 2007 A1
20070072553 Barbera Mar 2007 A1
20070081635 Croak Apr 2007 A1
20070083911 Madden Apr 2007 A1
20070115941 Patel May 2007 A1
20070121601 Kikinis May 2007 A1
20070139411 Jawerth Jun 2007 A1
20070149166 Turcotte Jun 2007 A1
20070149213 Lamba Jun 2007 A1
20070162228 Mitchell Jul 2007 A1
20070182631 Berlinsky Aug 2007 A1
20070201623 Hines Aug 2007 A1
20070206568 Silver Sep 2007 A1
20070206613 Silver Sep 2007 A1
20070208687 O'Connor Sep 2007 A1
20070242660 Xu Oct 2007 A1
20070253429 James Nov 2007 A1
20070254625 Edge Nov 2007 A1
20070263610 Mitchell Nov 2007 A1
20070270164 Maier Nov 2007 A1
20070291733 Doran Dec 2007 A1
20080032703 Krumm Feb 2008 A1
20080037715 Prozeniuk Feb 2008 A1
20080045250 Hwang Feb 2008 A1
20080063153 Krivorot Mar 2008 A1
20080065775 Polk Mar 2008 A1
20080077324 Hatano Mar 2008 A1
20080113671 Ghozati May 2008 A1
20080117859 Shahidi May 2008 A1
20080129475 Breed Jun 2008 A1
20080162637 Adamczyk Jul 2008 A1
20080176582 Ghai Jul 2008 A1
20080186164 Emigh Aug 2008 A1
20080195314 Green Aug 2008 A1
20080200182 Shim Aug 2008 A1
20080214202 Toomey Sep 2008 A1
20080220747 Ashkenazi Sep 2008 A1
20080288166 Onishi Nov 2008 A1
20090003535 Grabelsky Jan 2009 A1
20090067417 Kalavade Mar 2009 A1
20090097450 Wallis Apr 2009 A1
20090113346 Wickramasuriya Apr 2009 A1
20090128404 Martino May 2009 A1
20090177557 Klein Jul 2009 A1
20090181698 Farmer Jul 2009 A1
20090224931 Dietz Sep 2009 A1
20090298488 Snapp Dec 2009 A1
20090323636 Dillon Dec 2009 A1
20090328163 Preece Dec 2009 A1
20100003976 Zhu Jan 2010 A1
20100004993 Troy Jan 2010 A1
20100042592 Stolz Feb 2010 A1
20100054220 Bischinger et al. Mar 2010 A1
20100067444 Faccin Mar 2010 A1
20100167760 Kim Jul 2010 A1
20100188992 Raleigh Jul 2010 A1
20100198933 Smith Aug 2010 A1
20100203902 Wachter Aug 2010 A1
20100223222 Zhou et al. Sep 2010 A1
20100268848 Maurya Oct 2010 A1
20110113060 Martini May 2011 A1
20110165861 Wilson et al. Jul 2011 A1
20110231561 Pawson Sep 2011 A1
20110249623 Wachter Oct 2011 A1
20120046014 Wachter Feb 2012 A1
20120202447 Edge Aug 2012 A1
20130012232 Titus Jan 2013 A1
20130212663 Edge Aug 2013 A1
20140372616 Arisoylu Dec 2014 A1
20150304452 Tran Oct 2015 A1
Foreign Referenced Citations (6)
Number Date Country
WO9921380 Apr 1999 SE
WO0145342 Jun 2001 WO
WO0211407 Jul 2001 WO
WO2004025941 Mar 2004 WO
WO2007027166 Jun 2005 WO
WO2005051033 Jun 2005 WO
Non-Patent Literature Citations (23)
Entry
Le-Pond Chin, Jyh-Hong Wen, Ting-Way Liu, The Study of the Interconnection of GSM Mobile Communications Systems Over IP Based Network, May 6, 2001, IEEE, Vehicular Technology Conference, vol. 3, pp. 2219-2223.
Qualcomm CDMA Technologies, LBS Control Plane Roaming—80-VD377-1NP A, 2006, pp. 1-10.
Qualcomm CDMA Technologies, MS Resident User Plane LBS Roaming—80-VC718-1 E, 2006, pp. 1-37.
3rd Generation Partnership Project 2, Position Determination Service Standard for Dual Mode Spread Spectrum Systems, Feb. 16, 2001, pp. i-X, 1-1-1-5, 2-1-2-2, 3-1-3-51, 4-1-4-66, A-1-A2, B-1-B-2, C-1-C-2, D-1-D-2.
Intrado Inc., Qwest Detailed SR/ALI to MPC/GMLC Interface Specification for TCP/IP Implementation of TIA/EIA/J-STD-036 E2 with Phase I Location Description Addition, Intrado Informed Response; Apr. 2004; Issue 1.11; pp. 1-57.
Extended European Search Report from EPO in European Appl. No. 06827172.5 dated Dec. 29, 2009.
Qualcomm CDMA Technologies, LBS Control Plane/User Plane Overview—80-VD378-1NP B, 2006, pp. 1-36.
Bhalla et al, TELUS, Technology Strategy—LBS Roaming Summit, Sep. 19, 2006.
Alfredo Aguirre, Ilusacell, First and Only Carrier in Mexico with a 3G CDMA Network, 2007.
Mike McMullen, Sprint, LBS Roaming Summit, Sep. 19, 2006.
Nars Haran, U.S. Cellular, Packet Data—Roaming and LBS Overview, Nov. 2, 2007, pp. 1-15.
Location Based Services V2 Roaming Support (non proprietary), 80-V8470-2NP A, dated Jan. 27, 2005, pp. 1-56.
Yilin Ahao, Efficient and reliable date transmission for cellular and GPS based mayday systems, Nov. 1997, IEEE, IEEE Conference on Intelligent Transportation System, 1997. ITSC 97, 555-559.
Examiner's Office Letterin Japanese Patent Application No. 2006-542691 dated Sep. 7, 2009.
JP Laid-Open Gazette No. 2004-158947 (English abstract only).
JP Laid-Open Gazette No. 2007-507123 (counterpart English text US Patent Application Publication No. 2007/0054676).
T. Hattori, “Wireless Broadband Textbook,” IDG Japan, Jun. 10, 2002, p. 142-p. 143. (no English text).
Schulzrinne et al., Emergency Services for Internet Telephony Systems draft-schulzrinne-sipping-emergency-arch, IETF Standard Working Draft, Feb. 4, 2004, 1-22.
International Preliminary Report on Patentability receiving in PCT/US2011/02002 dated Nov. 23, 2012.
International Search Report received in PCT/US2011/02001 dated Apr. 27, 2012.
International Search Report received in PCT/US2011/000100 dated Apr. 24, 2012.
International Search Report Received in PCT/US11/01971 dated Feb. 28, 2013.
International Preliminary Report on Patentability receiving in PCT/US2011/02001 dated Nov. 9, 2012.
Related Publications (1)
Number Date Country
20150071172 A1 Mar 2015 US
Provisional Applications (2)
Number Date Country
61888700 Oct 2013 US
61876355 Sep 2013 US