Intelligent privacy system, apparatus, and method thereof

Abstract
A directional display apparatus including a directional display device that is capable of directing a displayed image into a viewing window of variable width is provided with a privacy control function. A control system detects the presence of one or more secondary viewers in addition to a primary viewer, and decides whether the one or more secondary viewers is permitted to view the displayed image. The control system directs a displayed image into a viewing window which is adjusted, for example by decreasing the width, in dependence on that detection. In addition, the control system detects relative movement between the primary viewer and the display device, and the width of the viewing window is increased in response to detection of said relative movement.
Description
TECHNICAL FIELD

This disclosure generally relates to privacy control of a directional display apparatus.


BACKGROUND

Display devices are ubiquitous. There are many situations where viewers of apparatuses including display devices are concerned about privacy issues when using the display device in public or unsecure environments, for example when working on confidential or sensitive documents. Examples of display devices where such concerns exist include computer apparatuses, such as desktop computers, laptop computers and tablets; mobile communication devices, such as smartphones; and display devices in static installations, such as kiosks and ATMs. In such circumstances, the primary viewer is required to be vigilant of other people in their surroundings and to take action to obscure or turn off the display device when unwanted, secondary viewers are present. It would be desirable for the display device to have a privacy control function which assists the primary user in preventing unwanted viewing of the displayed image.


There exist privacy functions which may determine that secondary viewers are viewing a display device, and in response may blur the displayed image. However, typically the display device is then blurred for everyone, including the primary viewer. This is less than desirable and it may be more constructive for the primary viewer to be able to continue viewing.


Display devices which are directional are known. Examples of a type of directional display device using a directional backlight are disclosed in U.S. Patent Publ. No. 2012/0127573, and U.S. Patent Publ. No. 2014/0240828. Directional display devices of this and other types may direct the displayed image into a viewing window, which may have a finite width in a viewing plane, being typically much narrower than the viewing width of a conventional display device. Such a directional display device may be operated in a mode in which the displayed image is directed into a viewing window of relatively narrow width in order to provide a privacy function. The privacy function may be used to provide the displayed image with reduced or negligible visibility to a secondary viewer.


An aspect of the present disclosure is concerned with the functionality of a directional display device used to provide a privacy function.


BRIEF SUMMARY

According to a first aspect of the present disclosure, there is provided a privacy control method of controlling a directional display device that is capable of directing a displayed image into a viewing window that is adjustable, the method comprising: directing the displayed image into a viewing window; detecting the presence of one or more secondary viewers in addition to a primary viewer; in the event of detecting the presence of the one or more secondary viewers, deciding whether the one or more secondary viewers is permitted to view the displayed image; and adjusting the viewing window in response to detecting the presence of one or more secondary viewers and deciding that the one or more secondary viewers is not permitted to view the displayed image.


In this aspect of the disclosure, advantage is taken of a directional display device that is capable of directing a displayed image into a viewing window that is adjustable, for example by having variable width and/or variable position. In the privacy control method, while directing the displayed image into a viewing window, there is detected the presence of one or more secondary viewers in addition to a primary viewer. This detection may be used in the control of the viewing window. In particular the viewing window may be adjusted when it is decided that the secondary viewer is not permitted to view the displayed image. Such adjustment may reduce the visibility of the viewing window to the secondary viewer. In a first example, the adjustment may decrease the width of the viewing window. In a second example, the adjustment may shift the position of the viewing window away from the secondary viewer. By way of example, the directional display device may be controlled between (a) a normal mode in which no adjustment is made, which in the first example may cause the viewing window to have a maximum width, and (b) a privacy mode in which the viewing window is adjusted, which in the first example may cause the viewing window to have a width that is sufficient only for viewing by a primary viewer.


The detection of the presence of one or more secondary viewers in addition to the primary viewer may be performed in various ways, some non-limitative examples being as follows.


In one example, the method may further comprise capturing a viewing region image, in which case the presence of one or more secondary viewers may comprise analyzing the viewing region image.


In another example, the presence of one or more secondary viewers may comprise detecting an electromagnetic tag carried by the one or more secondary viewers.


The decision of whether the one or more secondary viewers is permitted to view the displayed image may be taken in dependence on one or a combination of a variety of factors, some non-limitative examples being as follows. This provides powerful control of the privacy function.


In one example of such a factor, the decision may be taken in dependence on a comparison of image information derived from a captured viewing region image with a database that associates image information of viewers with viewer permission information.


In another example of such a factor, the decision may be taken in dependence on a comparison of the identity of the one or more secondary viewers determined from an electromagnetic tag with a database that associates viewers with viewer permission information.


In another example of such a factor, the decision may be taken in dependence on information about the location of the display device. Such information may comprise the geographical location of the display device based on the output of a location sensor and/or may comprise information derived from a viewing region image.


Further according to the first aspect of the present disclosure, there may be provided a directional display apparatus capable of implementing a similar privacy control method.


According to a second aspect of the present disclosure, there is provided a method of controlling a directional display device that is capable of directing a displayed image into a viewing window of variable width, the method comprising: directing a displayed image into a viewing window, detecting relative movement between a viewer and the display device; and increasing the width of the viewing window in response to detecting said relative movement.


In this aspect of the disclosure, advantage is taken of a directional display device that is capable of directing a displayed image into a viewing window of variable width. In the privacy control method, while directing the displayed image into a viewing window, there is detected the relative movement between a viewer and the display device. The width of the viewing window may be increased in response to detecting said relative movement.


When the viewer is moving, as a viewing window typically has some spatial non-uniformity in brightness, there is a risk of the viewer perceiving fluctuations in the brightness of the displayed image as they move between different portions of the viewing window. This might be perceived in some circumstances as flicker. However, by increasing the width of the viewing window when relative movement of the viewer is detected, such the perception of such brightness fluctuations may be reduced.


The relative movement which is detected may be, for example, linear motion of the viewer relative to the display device laterally of the viewing window, and or vibratory movement of the display device relative to the viewer.


The relative movement may be detected using a motion sensor mounted in the display device or, where an image of the viewing region is captured, may be detected by analyzing the viewing region image to determine the position of the viewer.


Further according to the first aspect of the present disclosure, there may be provided a directional display apparatus capable of implementing a similar privacy control method.


The first and second aspects of the disclosure may be applied in combination. Similarly, the optional features of the first and second aspects may be implemented together in any combination.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limitative embodiments are illustrated by way of example in the accompanying figures, in which like reference numbers indicate similar parts, and in which:



FIG. 1 is a perspective view of an example directional display device in which a privacy control function may be implemented;



FIG. 2 is a circuit diagram of an example directional display apparatus incorporating the directional display device of FIG. 1;



FIG. 3, FIG. 4, FIG. 5, and FIG. 6 are diagrams of different luminous flux profiles;



FIG. 7 is a block diagram of function blocks and data flow in an example directional display apparatus;



FIG. 8 is a block diagram of an identification module in an example directional display apparatus;



FIG. 9 is a block diagram of an observer tracking module in an example directional display apparatus;



FIG. 10 is a block diagram of a context module in an example directional display apparatus;



FIG. 11 is a flow chart of the operation of an authentication module in an example directional display apparatus;



FIG. 12 is a block diagram of a proximity module in an example directional display apparatus; and



FIG. 13 is a block diagram of a motion sensing module in an example directional display apparatus.





DETAILED DESCRIPTION


FIG. 1 illustrates a directional display device 1 to which a privacy control method may be applied.


The directional display device 1 is an example of a device that is capable of directing a displayed image into a viewing window that is adjustable, in this example by having variable position and width. In this example, the directional display device 1 is a type disclosed in U.S. Patent Publ. No. 2012/0127573, and U.S. Patent Publ. No. 2014/0240828, which are herein incorporated by reference in their entireties. A general description of the directional display device 1 is given below, but reference is made to U.S. Patent Publ. No. 2012/0127573, and U.S. Patent Publ. No. 2014/0240828 for further details of the construction and operation that may be applied here.


The directional display device 1 includes a directional backlight 2 and a spatial light modulator 3.


The directional backlight 2 directs light into optical windows. In particular, the directional backlight includes an array of light sources 4 and a waveguide 5. The light sources 4 may be light emitting diodes (LEDs). The light sources 4 may alternatively be of other types, for example diode sources, semiconductor sources, laser sources, local field emission sources, organic emitter arrays, and so forth.


The waveguide 5 directs light from each light source 4 into a respective viewing window 7.


In general terms, a possible construction of the waveguide 5 is as follows. The waveguide 5 has first and second guide surfaces 10 and 11 and a reflective end 12 which may have positive optical power. Input light from the light sources 4 is guided through the waveguide 5 by the first and second guide surfaces 10 and 11 to the reflective end 10 where it is reflected and directed back through the waveguide 5.


The second guide surface 12 includes extraction features 13 extending in a lateral direction across the waveguide 5 facing the reflective end 10. The extraction features 13 are oriented to reflect light from the light sources, after reflection from the reflective end 10, through the first guide surface 11 as output light. The intermediate regions 14 of the second guide surface 12 intermediate the extraction features 13 guide light through the waveguide without extracting it. The second guide surface 12 may have a stepped shape that provides the extraction features 13 and intermediate regions 14.


The waveguide 5 may provide focusing of the output light in the lateral direction. The focusing may be achieved, at least in part, by the extraction features 13 having positive optical power in the lateral direction. As a result, the output light derived from individual light sources 4 is directed into respective optical windows 7 in a viewing plane. The direction in which the optical windows 7 lie, relative to the directional display device 1 is dependent on the input position of the light source 4. Thus, the optical windows 7 produced by the array of light sources 4 are in output directions that are distributed in the lateral direction in dependence on the input positions of the respective light sources 4.


Further details of possible constructions of the waveguide 5 that causes it to direct light into optical windows are disclosed in more detail in U.S. Patent Publ. No. 2012/0127573 and U.S. Patent Publ. No. 2014/0240828.


The spatial light modulator 3 is capable of displaying an image. The spatial light modulator 3 is transmissive and modulates the light passing therethrough. The spatial light modulator 3 may be a liquid crystal display (LCD) but this is merely by way of example, and other spatial light modulators or displays may be used including LCOS, DLP devices, and so forth.


The spatial light modulator 3 extends across the first guide surface 11 of the waveguide 5 and so modulates the light that is output therethrough. Thus, the image displayed on the spatial light modulator 3 is directed into the optical windows 7. The extraction features 13 may be provided across an area of the waveguide 5 corresponding to the entire area of the spatial light modulator 3. In that case, the output light is output into the optical windows across the entire area of the spatial light modulator 2.


As described above, selective operation of the light sources 4 allows light to be directed into selected viewing windows. In principle a single light source 4 may be operated to direct light into a viewing window having a single optical window 7, but typically plural light sources 4 are operated at a time to direct light into a viewing window having a plural optical windows 7. By selectively varying the light sources 4 that are operated, the resultant viewing window may be provided with a variable position and width, and in this manner be adjustable.


The waveguide 5 including extraction features 13 may be replaced by a waveguide as of the type disclosed for example in U.S. Pat. No. 7,970,246, which is herein incorporated by reference in its entirety, and which may be referred to as a “wedge type directional backlight”.


The directional display device 1 forms part of a directional display apparatus 20 as shown in FIG. 2 that also includes a control system 21 that controls the directional display device 1 as follows. The control system 21 includes a control circuit 22 and a driver circuit 23.


The control circuit 22 may be implemented by a processor executing a suitable program, although optionally some functions of the control circuit 22 may be implemented by dedicated hardware.


The driver circuit 23 drives the light sources 4 by supplying a drive signal to each light source 4. In a conventional manner, the driver circuit 23 includes appropriate electronic circuitry to generate drive signals of sufficient power to drive the light sources 4.


The control circuit 22 controls the spatial light modulator 3 to display an image.


The control circuit 22 also controls the driver circuit 23 to drive the light sources 4. The light sources 4 are thus operated to output light with a variable luminous flux in accordance with the respective drive signal. The driver circuit 23 is supplied with a luminous flux profile from the control circuit 22, the luminous flux profile being a control signal that represents the desired luminous flux of each light source 4 across the array. Typically, the luminous flux profile represents the desired luminous fluxes in relative terms, not absolute terms. The driver circuit 23 generates drive signals for each light source 4 in accordance with the luminous flux profile. Thus, the luminous flux profile thus effectively represents the shape of the viewing window, including its width and position.


The control circuit 22 supplies different luminous flux profiles to the driver circuit 23 in different modes. Changing between modes may occur instantaneously, or occur over several frames of the image display in order to provide a more comfortable viewing performance for a viewer. Examples of luminous flux profiles supplied in different modes will now be described with reference to FIGS. 3 to 6 which illustrate different luminous flux profiles, wherein the bars represent the level of the luminous fluxes of successive light sources 4 across the array.



FIG. 3 shows an example of a luminous flux profile in a wide angle mode. In this case, all the light sources 4 are operated, albeit with non-uniform luminous fluxes. As a result the viewing window includes optical windows 7 corresponding to every light source 4, hence having the maximum possible width.



FIG. 4 show an example of a first luminous flux profile in a privacy mode of a type in which the width of the viewing window is decreased compared to the wide angle mode. In this example, a central group of light sources 4 corresponding to the center of the viewing window are operated with maximum luminous flux and light sources 4 on either side of the central group are operated with reducing luminous flux. As a result, the viewing window includes optical windows 7 corresponding to the operated light sources 4.



FIG. 5 show an example of a second luminous flux profile in the privacy mode of a type in which the width of the viewing window is decreased compared to the wide angle mode. The form of the second luminous flux profile is the same as the luminous flux profile, except that the roll-off of the luminous flux of the light sources 4 on either side of the central group is less steep. As a result, the viewing window includes optical windows 7 corresponding to the operated light sources 4, and so the width of the viewing window is increased compared to the first luminous flux profile.


As an alternative way of increasing the width of the viewing window compared to the first luminous flux profile, it is possible to increase the number of light sources 4 in the central group of light sources 4 that are operated with maximum luminous flux. In that case, the roll-off of the luminous flux of the light sources 4 on either side of the central group may be the same as in the first luminous flux profile, or may additionally be less steep than in the first luminous flux profile (as in the second luminous flux profile).


To make the position of the viewing window adjustable, the first and second luminous flux profiles may be changed to move the viewing window from the central position as shown in FIGS. 4 and 5 to a shifted position, for example to track the position of the viewer as described below. In this case, the first and second luminous flux profiles have the same shape as in FIGS. 4 and 5 but centered on a different light source 4 which may be any of the light sources 4.



FIG. 6 show an example of this, in particular showing the second luminous flux profile in a privacy mode when the viewing window is moved. In this case, the shape of the luminous flux profile remains the same, but the positions of the operated light sources 4 are shifted to shift the viewing window. In this manner, the viewing window may be shifted to any lateral position. It is not essential to shift the viewing window in this manner. In some implementations, the viewing window may have a fixed position, typically corresponding to a central viewing position in front of the directional display device 1.


The arrangement of the directional display device 1 described above is given as an example, but the directional display device 1 may alternatively be of any other type that is capable of directing a displayed image into a viewing window of variable width and/or of variable position.



FIG. 7 shows further components of the directional display apparatus 20 and function blocks and data flow within the control circuit 22, as will now be described.


The directional display apparatus 20 includes a camera system 24 arranged to capture an image of the viewing region, including the viewing plane. The camera system 24 may include a single camera or plural cameras.


Where the camera system 24 includes plural cameras, the following considerations may apply. The control circuit 22 may find the spatial relationship of the cameras in a calibration step using a reference image, or the spatial relationship may be specified a priori. The cameras face towards viewing region, their orientation depending on the field of view of each camera. One example to determine the orientation of a set of cameras is by maximizing the combined field of view of all cameras. The cameras may have different fields of view.


The cameras may have different sensing modalities. Examples for these are RGB data, infrared data, Time-of-Flight data, and Push-broom. Generally, a constraint is that the output of the camera system allows for angular localization of the observations with respect to the directional display device 1. One way to provide angular localization is to use the position and orientation of a camera with respect to the directional display device 1 and to back-project the observed location (image measurement), yielding a line of sight along the observation is positioned.


One way to estimate spatial localization in front of the directional display device 1 is to use the expected spatial extent of an object, and the extent of the measurement in any of the images of the camera system 24. Using the angular localization described above, the expected spatial extent can be related to the observed and a distance estimate. Another way to estimate spatial localization is to use the relative position of more than one camera to triangulate two image measurements.


The output of the camera system is a set of images (measurements allowing angular localization), the orientation and position of the cameras with respect to the directional display device 1, the sensing modalities and internal parameters of the sensor (focal length, optical axis) that may be used for angular localization.


The directional display apparatus 20 further includes a tag sensor 25 arranged to detect electromagnetic tags that allow identification of a viewer in the vicinity of the directional display device 1. The tag sensor 25 produces an output signal that may include an identifier from the detected tag that is unique.


The tag sensor 25 may be any sensor capable of providing such identification electromagnetically. One example is a tag sensor 25 using RFID (radio frequency identification tags) technology. In that case, RFID tags may be provided in an object such as a badge worn by viewers. Another embodiment is a tag sensor 25 using low power Bluetooth or the MAC address of a WiFi device, in which case the tag sensor 25 may sense for this data wirelessly, e.g. using an RFID sensor, a Bluetooth device, a WiFi device.


The directional display apparatus 20 further includes a motion sensor 26 that detects motion of the directional display device 1, and hence effectively detects relative motion between the viewer and the directional display device 1. The motion sensor 26 produces an output signal representing the detected motion.


The motion sensor 26 may be of any suitable type for detecting motion. By way of example, the motion sensor 26 may be a gyroscope, an IMU (inertial motion unit), or a differential GPS (global positioning system) device. The spatial resolution of the motion sensor 26 is typically less than 10 cm, more often less than 1 cm.


The directional display apparatus 20 further includes a location sensor 27 that determines the geographical location of the directional display device 1. The location sensor 27 produces an output signal representing the determined location.


The location sensor 27 may be of any suitable type, typically providing an absolute location, allowing localization of the direction display device 1 on Earth. In one example, the location sensor 27 may be a GPS sensor.


The directional display apparatus 20 further includes a proximity sensor 28 that detects the proximity of an object from the front of the directional display device 1, typically in the form of a scalar value indicating the distance of detected object. The proximity sensor 28 may be of any suitable type. By way of example, the proximity sensor may be an IR (infra-red) sensor, a sonar sensor or an ambient light sensor.


Each of the camera system 24, the tag sensor 25, the motion sensor 26, the location sensor 27, and the proximity sensor 28 supply output signals to the control circuit 22, continuously but at rates that may vary as between the different components, typically at above 1 Hz for at least the camera system 24 and the motion sensor 26, but perhaps at slower rates for the tag sensor 25, the location sensor 27, and the proximity sensor 28.


There will now be described some functional modules of the control circuit 22. Each functional module provides particular function and may be implemented in software executed by a processor.


The directional display apparatus 20 further includes a list 29 of system processes being performed by the control circuit 22, the list 29 being stored in a memory of the control circuit 22.


One functional module of the control circuit 22 is a pattern generator 30 which generates a luminous flux profile that is supplied to the driver circuit 23. The generated luminous flux profile is selected in accordance with a mode of operation determined as described further below.


Another functional module of the control circuit 22 is an identification module 31 arranged as shown in FIG. 8.


The identification module 31 includes a viewer tracking module 32 arranged as shown in FIG. 9. The viewer tracking module 32 is supplied with the output signal from the camera system 24.


The viewer tracking module 32 includes a viewer detection module 33 and a tracking module 34 that are each supplied with the output signal from the camera system 24, as well as data association module 35 that is supplied with outputs from the viewer detection module 33 and the tracking module 34.


The viewer detection module 33 analyzes the image captured by the camera system 24 to detect any viewers in the image. The viewer detection module 33 may use conventional detection algorithms for this purpose, typically detecting faces. In one example, the viewer detection module 33 may perform the detection using Haar feature cascades, for example as disclosed in Viola and Jones, “Rapid object detection using a boosted cascade of simple features”, CVPR 2001, which is herein incorporated by reference in its entirety.


The tracking module 34 analyzes the image captured by the camera system 24 to determine the position of viewers in the image. The tracking module 34 may use conventional detection algorithms for this purpose, typically tracking heads. In one example, the tracking module 34 may use the approach of Active Appearance Models to provide the position of the head of the viewer, for example as disclosed in Cootes, Edwards, and Taylor, “Active appearance models”, ECCV, 2:484-498, 1998, which is herein incorporated by reference in its entirety.


Tracking of a viewer may be stopped if the viewer leaves the field of view of the camera system 24, or becomes occluded for a given time span, or fails to be tracked for a given time span.


The data association module 35 associates the viewers detected by the viewer detection module 33 with the viewers tracked by the tracking module 34. The data association module 35 may start a tracking process for each viewer detected by the viewer detection module 33 that is not a false positive, and that does not overlap more than a given threshold with the currently tracked viewers. In this sense, a false positive is defined as a detection which has not been detected in at least a certain percentage of frames.


In one example of the operation of the data association module 35, only a single viewer treated as the primary viewer is tracked. Detections of viewers from the viewer detection module 33 are assigned a position, and assigned the same identifier as previously detected observations of a viewer having sufficient spatial overlap. In this example, the viewer tracking module 32 stores a history of past appearances of a viewer and uses this as a robustness measure in deciding whether to remove a viewer from the list of tracked viewers. In respect of each previously tracked viewer, if the viewer is not successfully tracked in the current frame or if there is not enough overlap of this viewer's most recent bounding box with any current detection, a count of untracked frames for this viewer is incremented. If the count of untracked frames is greater than a certain threshold, this viewer is removed from list of tracked viewers. Otherwise, the tracking module 34 is supplied the current detection position from the viewer detection module 33 and tracks the viewer who is in that position.


In another example of the operation of the data association module 35, all viewers are tracked, including a primary viewer and secondary viewers. This example may use a Joint Probabilistic Data Association Filter (JPDAF) to predict which detection to assign to which viewer, for example as disclosed in Bar-Shalom and Li “Multitarget-Multisensor Tracking: Principles and Techniques” 1995, which is herein incorporated by reference in its entirety.


The identification module 31 also includes an identity lookup module 36 and an authentication module 37. The viewer tracking module 32 supplies a first output to the identity lookup module 36 that includes, for each viewer detected by the viewer detection module 33 (if any), a unique identifier and image information derived from the captured image. The viewer tracking module 32 also supplies a second output to the authentication module 37 that includes, for each viewer detected by the viewer detection module 33 (if any), a unique identifier and the position of viewer detected by the tracking module 34.


The identity lookup module 36 receives the first output from the viewer tracking module 32 and the output signal from the tag sensor 25 (or alternatively just one of those). On the basis of these signals, identity lookup module 36 attempts to identify any viewers and derives viewer permission information in respect of successfully identified viewers.


The identity lookup module 36 uses a database storing viewer permission information related to individual viewers. This may be related to image information for the viewers and to identifiers for the viewers. The database may be local to the directional display apparatus 20, for example stored in a memory thereof, or may be remote, in which case it can be accessed via a network connection.


The identity lookup module 36 may use the first output from the viewer tracking module 32 that includes image information derived from the captured image by comparing that derived image information with the image information in the database. This comparison may use conventional image comparison techniques. In the event of a match, the viewer permission information associated with the matching image information in the database is retrieved.


The identity lookup module 36 may use the output signal from the tag sensor 25 that includes an identifier (i.e. the determined identity) of each detected viewer derived from the detected tag by comparing the derived identifier with identifiers in the database, In the event of a match, the viewer permission information associated with the matching identifier in the database is retrieved.


Where the identity lookup module 36 uses both the first output from the viewer tracking module 32 and the output signal from the tag sensor 25, the information from each technique is combined to provide a union of the viewer permission information provided by each technique. Alternatively only one of the techniques may be used to provide viewer permission information.


In either case, where the viewer is on the database, then the viewer is identified and the identities of the viewers and their viewer permission information is retrieved and supplied to the authentication module 37.


The identities of the viewers and their viewer permission information are also supplied to a context module 38 that is arranged as shown in FIG. 10. The context module 38 determines whether the viewers are permitted to view the displayed image according to an authentication rule in an authentication rule look-up module 39. This may be implemented by assigning a label to each viewer. A viewer is defined to the system by position and extent in an image, as well as the actual source image.


The authentication rule may take account of the viewer permission information of the viewers, as determined by the identity lookup module 36. The authentication rule may also take account of other information. Generally speaking, the authentication rule may take account of any information that is available, thus providing significant power in the authentication process. Some non-limitative examples of the authentication rule that may be implemented in the context module 38 are as follows. These and other examples may be used individually, or in any combination.


The authentication rule may also take account of the viewer permission information in various alternative ways.


In one simple example, the viewer permission information may specify that given viewers are authorized or not. In that case, the authentication rule may be to permit viewing in respect of viewers who are both present in the database and authorized (i.e. a “white list”, wherein unknown viewers are forbidden from viewing). Alternatively, the authentication rule may be to permit viewing in respect of viewers unless they are present in the database and not authorized (i.e. a “black list”, wherein unknown viewers are permitted to view).


The authentication rule may be to permit individuals to view or not on the basis of only of their own viewer permission information, i.e. applying the viewer permission information on an individual basis. Alternatively, the viewer permission information may take account of the set of viewers who are present, i.e. applying the viewer permission information on a group basis. For example, the viewer permission information for one individual may provide (or forbid) permission for all viewers present, in which case the authentication rule may be to permit (or forbid) viewing by all viewers present on the basis of the presence of an individual having such viewer permission information. By way of example, this may allow a senior individual in an organization to authorize viewing by others.


The viewer permission information may indicate relationships between the viewers. In that case, the authentication rule may take account of those indicated relationships. For example where the primary viewer who is first observed by the viewer tracking module 32 is permitted to view an image, then the authentication rule may be to permit viewing by secondary viewers who are observed later, if they have a predetermined relationship with the primary viewer. By way of example, this may allow teams in an organization to view together.


As an alternative, the authentication rule may provide set permissions on the basis of the order in which the viewers are observed by the viewer tracking module 32. This may occur without reference to the viewer permission information, or in combination with the viewer permission information. In one example, the primary viewer who is first observed by the viewer tracking module 32 may be permitted to view an image and secondary viewers who are subsequently observed by the viewer tracking module 32 may be not be permitted to view an image, irrespective of their identity. In another example, the primary viewer who is first observed by the viewer tracking module 32 may be permitted to view an image and secondary viewers who are subsequently observed by the viewer tracking module 32 may be permitted or not on the basis of their viewer permission information.


The authentication rule may take account of image information concerning the viewers that is derived from the image capture by the capture system 24. For example, the width of the faces of any viewers may be determined as indicating the distance of the viewers from the directional display device 1.


In one example, the authentication rule may allow or forbid viewing in dependence on the determined width of the faces of the viewers, for example only permitting viewers for whom the width is above a threshold taken to indicate that the viewers are close to the directional display device 1.


In another example, a primary viewer who is first observed by the viewer tracking module 32 is permitted to view an image irrespective of the output of the identity lookup module 36 and secondary viewers who are subsequently observed by the viewer tracking module 32 are not permitted. If the primary observer ceases to be observed, but later a viewer reappears in similar location and having a similar width, then the reappearing viewer is permitted viewing, i.e. on the assumption that it is likely to be the same individual. However, after a predetermined timeout after the primary observer ceases to be observed, the authentication rule is reset such that the next viewer who is observed is taken as the primary viewer.


The context module 38 may also be supplied with any or all of output signals from the camera system 24, output signals from the location sensor 27 and the list 29 of system processes, which may be applied in the authentication rule.


In some examples, the authentication rule may decide whether viewers are permitted viewing in dependence on information about the location of the directional display device 1. The authentication rule may take account of the location alone, for example permitting or forbidding viewing in particular locations, or in combination with the viewer permission information, for example by the viewer permission information being location-specific.


In one type of example using location, the information about the location of the directional display device 1 may be the geographical location of the directional display device 1 represented by the output signal from the location sensor 27.


In another type of example, the information about the location of the directional display device 1 may be derived from the image captured by the camera system 24 in a location identification module 40. Any suitable image analysis technique that provides information about the scene of the captured image may be applied. For example, the captured image may be classified using a suitably trained image classification system, e.g. as disclosed in Karen Simonyan & Andrew Zisserman, “Very Deep Convolutional Networks For Large-Scale Image Recognition”, ICLR 2015, which is herein incorporated by reference in its entirety, or using Bag-of-Words indexing of suitable sparse features. The output may be a label describing the environment in the location of the directional display device 1. Such techniques may for example indicate the location as being in a car, in a domestic home, or a workplace, etc.


In some examples, the authentication rule may decide whether viewers are permitted viewing in dependence on the list 29 of system processes. For example, the label assigned to the viewers can be adjusted according to the use case of the directional display device, including the software being executed and/or the nature of the image being viewed. In one example, where the image is deemed to be non-sensitive for example a film, all viewers may be permitted viewing. This may be used without reference to the viewer permission information, or in combination with the viewer permission information. In one example, the viewer permission information may be specific to certain software is being executed.


The authentication rule may take account of the time and/or date.


The output of the context module 38 that indicates whether the viewers are permitted to view the displayed image is supplied to the authentication module 37 of the identification module 31.


The authentication module 37 uses the second output of the viewer tracking module 32 that includes, for each viewer detected by the viewer detection module 33 (if any), a unique identifier and the position of viewer detected by the tracking module 34, together with the output of the context module 38, to decide whether viewers are permitted to view the displayed image. On the basis of that decision, the authentication module 37 sets the mode of operation causing selection of the luminous flux profile.


The authentication module 37 may perform this operation of setting the mode of operation in accordance with the flow chart shown in FIG. 11, which is now described. In this operation, the viewing window is adjusted by varying its width.


In step S1, a default mode of operation is set. This may be the wide angle mode, for example as shown in FIG. 3, or a blank mode in which no image is displayed.


In step S2, the first viewer to be observed, as identified by the second output of the viewer tracking module 32, is detected and assigned as the primary viewer.


In step S3, it is determined whether the primary viewer is permitted viewing of the displayed image, as indicated by the output of the context module 38. If not, then in step S4, the blank mode is set, and the method pauses until the primary viewer ceases to be observed, after which the method reverts to step S2.


As an alternative step S3 may be replaced by a step of setting the wide angle mode (if that is not already the default mode) and the method continues to step S6 described below. In this alternative, the primary viewer is always permitted to view the displayed image.


If it is determined in step S3 that the primary viewer is permitted viewing, then in step S5, the wide angle mode is set, if it has not already been set in step S1. Thus, at this stage the wide angle mode is used, providing a wide viewing angle.


In step S6, any further viewers to be observed, as identified by the second output of the viewer tracking module 32, are detected and assigned as secondary viewers.


In step S7, it is determined whether the secondary viewer assigned in step S6 is permitted viewing of the displayed image, as indicated by the output of the context module 38. If not, then in step S4, the privacy mode is set. In this example which involves adjustment by changing the width of the viewing mode, the width of the viewing window is decreased in the privacy mode set in step S8, for example as shown in FIG. 4, compared to the wide angle mode set in step S5 (or step S1). As a result, the visibility of the image to the secondary viewer is reduced.


If it is determined in step S7 that the secondary viewer is permitted viewing, then the method reverts to step S6 to detect any further secondary viewers. If further secondary viewers are detected, then the method repeats step S7 in case the additional secondary viewer affects the decision whether to permit viewing.


The authentication module 37 provides an output indicating the set mode of operation to the pattern generator 30 as the basis for generating the luminous flux profile that is supplied to the driver circuit 23. As well as selecting between luminous flux profiles in the wide angle mode and the privacy mode, the pattern generator selects other aspects the luminous flux profile as follows.


The pattern generator 30 is supplied with the second output of viewer tracking module 32, via the authentication module 37. In the privacy mode, the pattern generator 30 shifts the luminous flux profile, for example as shown in FIG. 6, to track the position of the primary viewer, as indicated by the second output of viewer tracking module 32. In the wide angle mode, as all the light sources 4 are operated as shown in FIG. 3, the viewing window need not, and indeed cannot, be so shifted.


Another functional module of the control circuit 22 is a proximity module 41 arranged as shown in FIG. 12 including a signal filter 42. The signal filter 42 of the proximity module 41 is supplied with the output signal from the proximity sensor 28 and the second output of the viewer tracking module 32, for each detected viewer, a unique identifier and the position of viewer detected by the tracking module 34. The signal filter 42 filters these signals to generate parameters that are supplied to the pattern generator 30.


The parameters may include a depth estimate of the primary viewer derived from the output of the proximity sensor 28. In one example, where only the output signal of the proximity sensor 28 is used and the proximity sensor 28 yields a single depth value, the signal filter 42 includes a low-pass filter which removes high-frequency noise, e.g. due to noise in the proximity sensor 28, to derive the depth estimate. Such a depth estimate may alternatively be derived from the second output of the viewer tracking module 32.


The pattern generator 30 controls the luminous flux profile in accordance with the parameters supplied from the proximity module 41. For example, in the case that the parameters include a depth estimate of the primary viewer, the width of the luminous flux profile may be adjusted in accordance with the depth estimate, typically to widen the viewing window with increasing proximity of the primary viewer.


Another functional module of the control circuit 22 is a motion sensing module 43 arranged as shown in FIG. 13 including a signal filter 44. The signal filter 44 of the motion sensing module 43 is supplied with the output signal from the motion sensor 28 and the second output of the tracking module 32, for each detected viewer, a unique identifier and the position of viewer detected by the tracking module 34. The signal filter 44 filters these signals to generate parameters that are supplied to the pattern generator 30.


The parameters may include a parameter representing relative movement between the primary viewer and the directional display device 1.


The parameter may be derived from the output signal of the motion sensor 26. As this represents the detected motion of the directional display apparatus, it effectively represents relative movement between the primary viewer and the directional display device 1.


Additionally or instead, the parameter may be derived from the second output of the tracking module 32. As this indicates the position of the viewers determined from analysis of the image captured by the camera system 24, change in the position derived by the output of the filter represents relative movement between the primary viewer and the directional display device 1.


The relative movement represented by the parameter may include a linear motion of the viewer relative to the directional display device 1 laterally of the viewing window. By way of example, the parameter may represent the velocity of this motion.


Additionally or instead, the relative movement represented by the parameter may include vibratory movement of the directional display device 1 relative to the viewer. By way of example, the parameter may represent a covariance, for example a covariance matrix, of the velocity of movement. In one example where the output signal of the motion sensor 28 is used and where output signal of the motion sensor 28 represents acceleration, the signal filter 44 may be a high-pass filter which removes low-frequency noise, e.g. due to slow velocity changes.


The pattern generator 30 controls the luminous flux profile in accordance with the parameters supplied from the motion sensing module 43. In particular, in the privacy mode, the width of the luminous flux profile is increased in response to the parameters indicating detection of relative movement between the primary viewer and the directional display device 1. The width may be increased as described above, for example by changing from the first luminous flux profile of FIG. 5 to the second luminous flux profile of FIG. 6. In the wide angle mode, as all the light sources 4 are operated, the viewing window need not, and indeed cannot, be so widened.


Thus, the above example relates to a case where the position and width of the viewing window are variable, wherein the position of the viewing window is controlled to track the determined position of the viewer, and wherein the viewing window is adjusted in response to detecting the presence of one or more secondary viewers by reducing the width of the viewing window (in step S8). However, various modifications are possible. Some non-limitative examples of possible modifications are as follows.


A first possible modification is that only the width of the viewing windows is variable, not the position of the viewing windows. In that case, the position of the viewing window is not controlled to track the determined position of the viewer, but the viewing window may still be adjusted in response to detecting the presence of one or more secondary viewers by decreasing the width of the viewing window.


A second possible modification is that the viewing window may be adjusted in response to detecting the presence of one or more secondary viewers by shifting the position of the viewing window away from the secondary viewer, instead of decreasing the width of the viewing window. This may be achieved by modifying the operation in accordance with the flow chart shown in FIG. 11 as follows.


Firstly, step S5 is modified so that, instead of wide angle mode being set, the first luminous flux profile of the privacy mode is set, for example as shown in FIG. 4.


Secondly, step S8 is modified so that the first luminous flux profile of the privacy mode is set but with a shifted position, so that the position of the viewing window is shifted away from the position of the secondary viewer, as determined by the viewer tracking module 32. This adjustment may be made without changing the width of the viewing window (although optionally the width of the viewing window could additionally be decreased). The shift of position is chosen so that the image is still visible to the primary viewer. However, by shifting the viewing window away from the secondary viewer the visibility of the image to the secondary viewer is reduced.


In this second modification, the position of the viewing window may continue to be controlled to track the determined position of the viewer, as described above.


Also incorporated by reference herein in their entireties are U.S. Patent Publ. No. 2013/0321599, U.S. Patent Publ. No. 2015/0378085, and U.S. patent application Ser. No. 15/165,960.


While various embodiments in accordance with the principles disclosed herein have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of this disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with any claims and their equivalents issuing from this disclosure. Furthermore, the above advantages and features are provided in described embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages.


Additionally, the section headings herein are provided for consistency with the suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the embodiment(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Technical Field,” the claims should not be limited by the language chosen under this heading to describe the so-called field. Further, a description of a technology in the “Background” is not to be construed as an admission that certain technology is prior art to any embodiment(s) in this disclosure. Neither is the “Summary” to be considered as a characterization of the embodiment(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple embodiments may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the embodiment(s), and their equivalents, that are protected thereby. In all instances, the scope of such claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings set forth herein.

Claims
  • 1. A privacy control method of controlling a directional display device that is capable of directing a displayed image into a viewing window that is adjustable, the method comprising: directing the displayed image into a viewing window that is adjustable;capturing a viewing region image;analyzing the viewing region image to detect the presence of one or more secondary viewers in addition to a primary viewer; in the event of detecting the presence of the one or more secondary viewers:deriving image information of the one or more secondary viewers detected in the viewing region image,deciding whether the one or more secondary viewers is permitted to view the displayed image in dependence on what application software system processes are being performed and in dependence on (ii) a comparison of derived image information with a database that associates image information of viewers with viewer permission information; andadjusting the viewing window in response to detecting the presence of one or more secondary viewers and deciding that the one or more secondary viewers is not permitted to view the displayed image.
  • 2. A privacy control method according to claim 1, wherein the step of detecting the presence of one or more secondary viewers in addition to the primary viewer comprises detecting an electromagnetic tag carried by the one or more secondary viewers.
  • 3. A privacy control method according to claim 1, wherein the directional display device is capable of directing the displayed image into a viewing window of variable width, andsaid adjusting of the viewing window comprises decreasing the width of the viewing window.
  • 4. A privacy control method according to claim 3, wherein the directional display device is capable of directing the displayed image into a viewing window of variable position and width,the method further comprises capturing a viewing region image, analyzing the viewing region image to determine the position of the primary viewer, andin said step of directing a displayed image into a viewing window, at least when the width of the viewing window is decreased, the viewing window has a position that tracks the determined position of the primary viewer.
  • 5. A privacy control method according to claim 1, wherein the directional display device is capable of directing the displayed image into a viewing window of variable position, andsaid adjusting of the viewing window comprises shifting the position of the viewing window away from the secondary viewer.
  • 6. A privacy control method according to claim 5, wherein the method further comprises capturing a viewing region image, analyzing the viewing region image to determine the position of the primary viewer and the secondary viewer, andin said step of directing a displayed image into a viewing window, the viewing window has a position that tracks the determined position of the primary viewer.
  • 7. A privacy control method according to claim 1, wherein the directing of the displayed image comprises directing light from a directional backlight through a transmissive spatial light modulator and into a viewing window, the modulator being capable of displaying the displayed image.
  • 8. A privacy control method according to claim 7, wherein the directing of the displayed image further comprises directing light emitted by an array of light sources of the directional backlight to a waveguide arranged to direct light from the light sources into respective optical windows, said viewing window comprising at least one optical window.
  • 9. A directional display apparatus having a privacy control function, the apparatus comprising: a directional display device that is capable of directing a displayed image into a viewing window that is adjustable;a camera system arranged to capture a viewing region image;a control system for controlling the directional display device, wherein the control system is arranged to detect the presence of one or more secondary viewers in addition to a primary viewer by analyzing the viewing region image to detect the one or more secondary viewers in the viewing region image, and, in the event of detecting the presence of the one or more secondary viewers: to derive image information of the one or more secondary viewers detected in the viewing region image, andto decide whether the one or more secondary viewers is permitted to view the displayed image in dependence on: (i) what application software system processes are being performed by the control system; and(ii) a comparison of derived image information with a database that associates image information of viewers with viewer permission information;wherein the control system is arranged to control the directional display device to direct a displayed image into a viewing window that is adjusted in dependence on the decision whether the one or more secondary viewers is permitted to view the displayed image.
  • 10. A directional display apparatus according to claim 9, wherein the directional display apparatus further comprises a tag sensor arranged to detect electromagnetic tags, andthe control system is arranged to detect the presence of one or more secondary viewers in addition to the primary viewer on the basis of the output of the tag sensor.
  • 11. A directional display apparatus according to claim 9, wherein the directional display device is capable of directing the displayed image into a viewing window of variable width, andthe control system is arranged to control the directional display device to adjust the viewing window by decreasing the width of the viewing window.
  • 12. A directional display apparatus according to claim 11, wherein the directional display device is capable of directing the displayed image into a viewing window of variable position and width,the directional display apparatus further comprises a camera system arranged to capture a viewing region image,the control system is arranged to analyze the viewing region image to determine the position of the primary viewer, andthe control system is arranged to control the directional display device to direct a displayed image into a viewing window whose width is decreased in dependence on detection of the presence of the one or more secondary viewers, and whose position, at least when the width of the viewing window is decreased, tracks the determined position of the primary viewer.
  • 13. A directional display apparatus according to claim 9, wherein the directional display device is capable of directing the displayed image into a viewing window of variable position, andthe control system is arranged to control the directional display device to adjust the viewing window by shifting the position of the viewing window away from the secondary viewer.
  • 14. A directional display apparatus according to claim 13, wherein the control system is arranged to analyze the viewing region image to determine the position of the primary viewer and the secondary viewer, andthe control system is arranged to control the directional display device to direct a displayed image into a viewing window whose position tracks the determined position of the primary viewer, while shifting the position of the viewing window away from the secondary viewer.
  • 15. A directional display apparatus according to claim 9, further comprising: a transmissive spatial light modulator capable of displaying a displayed image; anda directional backlight capable of directing light through the spatial light modulator into said viewing window.
  • 16. A directional display apparatus according to claim 15, wherein the directional backlight comprises: an array of light sources; anda waveguide arranged to direct light from the light sources into respective optical windows, said viewing window comprising at least one optical window.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Appl. No. 62/246,584, entitled “Intelligent privacy system, apparatus, and method thereof” filed Oct. 26, 2015 and to U.S. Provisional Patent Appl. No. 62/261,151, entitled “Intelligent privacy system, apparatus, and method thereof” filed Nov. 30, 2015, which are both herein incorporated by reference in their entireties.

US Referenced Citations (505)
Number Name Date Kind
1128979 Hess Feb 1915 A
1970311 Ives Aug 1934 A
2133121 Stearns Oct 1938 A
2247969 Lemuel Jul 1941 A
2480178 Zinberg Aug 1949 A
2810905 Barlow Oct 1957 A
3409351 Winnek Nov 1968 A
3715154 Bestenreiner Feb 1973 A
4057323 Ward Nov 1977 A
4528617 Blackington Jul 1985 A
4542958 Young Sep 1985 A
4621898 Cohen Nov 1986 A
4804253 Stewart Feb 1989 A
4807978 Grinberg et al. Feb 1989 A
4829365 Eichenlaub May 1989 A
4914553 Hamada et al. Apr 1990 A
4974941 Gibbons et al. Dec 1990 A
5005108 Pristash et al. Apr 1991 A
5035491 Kawagishi et al. Jul 1991 A
5278608 Taylor et al. Jan 1994 A
5347644 Sedlmayr Sep 1994 A
5349419 Taguchi et al. Sep 1994 A
5459592 Shibatani et al. Oct 1995 A
5466926 Sasano et al. Nov 1995 A
5510831 Mayhew Apr 1996 A
5528720 Winston et al. Jun 1996 A
5581402 Taylor Dec 1996 A
5588526 Fantone et al. Dec 1996 A
5658490 Sharp et al. Aug 1997 A
5697006 Taguchi et al. Dec 1997 A
5703667 Ochiai Dec 1997 A
5715028 Abileah et al. Feb 1998 A
5727107 Umemoto et al. Mar 1998 A
5771066 Barnea Jun 1998 A
5796451 Kim Aug 1998 A
5808784 Ando et al. Sep 1998 A
5808792 Woodgate et al. Sep 1998 A
5835166 Hall et al. Nov 1998 A
5850580 Taguchi et al. Dec 1998 A
5875055 Morishima et al. Feb 1999 A
5894361 Yamazaki et al. Apr 1999 A
5896225 Chikazawa Apr 1999 A
5903388 Sedlmayr May 1999 A
5933276 Magee Aug 1999 A
5956001 Sumida et al. Sep 1999 A
5959664 Woodgate Sep 1999 A
5959702 Goodman Sep 1999 A
5969850 Harrold et al. Oct 1999 A
5971559 Ishikawa et al. Oct 1999 A
6008484 Woodgate et al. Dec 1999 A
6014164 Woodgate et al. Jan 2000 A
6023315 Harrold et al. Feb 2000 A
6044196 Winston et al. Mar 2000 A
6055013 Woodgate et al. Apr 2000 A
6055103 Woodgate et al. Apr 2000 A
6061179 Inoguchi et al. May 2000 A
6061489 Ezra et al. May 2000 A
6064424 Berkel et al. May 2000 A
6075557 Holliman et al. Jun 2000 A
6094216 Taniguchi et al. Jul 2000 A
6099758 Verrall et al. Aug 2000 A
6108059 Yang Aug 2000 A
6118584 Berkel et al. Sep 2000 A
6128054 Schwarzenberger Oct 2000 A
6144118 Cahill et al. Nov 2000 A
6144433 Tillin et al. Nov 2000 A
6172723 Inoue et al. Jan 2001 B1
6199995 Umemoto et al. Mar 2001 B1
6204904 Tillin et al. Mar 2001 B1
6219113 Takahara Apr 2001 B1
6222672 Towler et al. Apr 2001 B1
6224214 Martin et al. May 2001 B1
6232592 Sugiyama May 2001 B1
6256447 Laine Jul 2001 B1
6262786 Perlo et al. Jul 2001 B1
6295109 Kubo et al. Sep 2001 B1
6302541 Grossmann Oct 2001 B1
6305813 Lekson et al. Oct 2001 B1
6335999 Winston et al. Jan 2002 B1
6373637 Gulick et al. Apr 2002 B1
6377295 Woodgate et al. Apr 2002 B1
6392727 Larson et al. May 2002 B1
6422713 Fohl et al. Jul 2002 B1
6437915 Moseley et al. Aug 2002 B2
6456340 Margulis Sep 2002 B1
6464365 Gunn et al. Oct 2002 B1
6476850 Erbey Nov 2002 B1
6481849 Martin et al. Nov 2002 B2
6654156 Crossland et al. Nov 2003 B1
6663254 Ohsumi Dec 2003 B2
6724452 Takeda et al. Apr 2004 B1
6731355 Miyashita May 2004 B2
6736512 Balogh May 2004 B2
6801243 Berkel Oct 2004 B1
6816158 Lemelson et al. Nov 2004 B1
6825985 Brown et al. Nov 2004 B2
6847354 Vranish Jan 2005 B2
6847488 Travis Jan 2005 B2
6859240 Brown et al. Feb 2005 B1
6867828 Taira et al. Mar 2005 B2
6870671 Travis Mar 2005 B2
6883919 Travis Apr 2005 B2
7052168 Epstein et al. May 2006 B2
7058252 Woodgate et al. Jun 2006 B2
7067985 Adachi Jun 2006 B2
7073933 Gotoh et al. Jul 2006 B2
7091931 Yoon Aug 2006 B2
7101048 Travis Sep 2006 B2
7136031 Lee et al. Nov 2006 B2
7163319 Kuo et al. Jan 2007 B2
7215391 Kuan et al. May 2007 B2
7215415 Maehara et al. May 2007 B2
7215475 Woodgate et al. May 2007 B2
7227602 Jeon et al. Jun 2007 B2
7239293 Perlin et al. Jul 2007 B2
7365908 Dolgoff Apr 2008 B2
7375886 Lipton et al. May 2008 B2
7410286 Travis Aug 2008 B2
7430358 Qi et al. Sep 2008 B2
7492346 Manabe et al. Feb 2009 B2
7524542 Kim et al. Apr 2009 B2
7528893 Schultz et al. May 2009 B2
7528913 Kobayashi May 2009 B2
7545429 Travis Jun 2009 B2
7587117 Winston et al. Sep 2009 B2
7614777 Koganezawa et al. Nov 2009 B2
7633586 Winlow et al. Dec 2009 B2
7660047 Travis et al. Feb 2010 B1
7750981 Shestak et al. Jul 2010 B2
7750982 Nelson et al. Jul 2010 B2
7766534 Iwasaki Aug 2010 B2
7771102 Iwasaki Aug 2010 B2
7834834 Takatani et al. Nov 2010 B2
7944428 Travis May 2011 B2
7970246 Travis et al. Jun 2011 B2
7976208 Travis Jul 2011 B2
7991257 Coleman Aug 2011 B1
8016475 Travis Sep 2011 B2
8098350 Sakai et al. Jan 2012 B2
8154686 Mather et al. Apr 2012 B2
8216405 Emerton et al. Jul 2012 B2
8223296 Lee et al. Jul 2012 B2
8237876 Tan et al. Aug 2012 B2
8249408 Coleman Aug 2012 B2
8251562 Kuramitsu et al. Aug 2012 B2
8262271 Tillin et al. Sep 2012 B2
8325295 Sugita et al. Dec 2012 B2
8354806 Travis et al. Jan 2013 B2
8477261 Travis et al. Jul 2013 B2
8502253 Min Aug 2013 B2
8534901 Panagotacos et al. Sep 2013 B2
8556491 Lee Oct 2013 B2
8646931 Choi et al. Feb 2014 B2
8651725 Ie et al. Feb 2014 B2
8714804 Kim et al. May 2014 B2
8752995 Park Jun 2014 B2
8801260 Urano et al. Aug 2014 B2
8939595 Choi et al. Jan 2015 B2
8973149 Buck Mar 2015 B2
9195087 Terashima Nov 2015 B2
9197884 Lee et al. Nov 2015 B2
9274260 Urano et al. Mar 2016 B2
9304241 Wang et al. Apr 2016 B2
9324234 Ricci et al. Apr 2016 B2
9448355 Urano et al. Sep 2016 B2
9501036 Kang et al. Nov 2016 B2
9519153 Robinson et al. Dec 2016 B2
10054732 Robinson et al. Aug 2018 B2
10126575 Robinson et al. Nov 2018 B1
10228505 Robinson et al. Mar 2019 B2
10303030 Robinson et al. May 2019 B2
10401638 Robinson et al. Sep 2019 B2
10488705 Xu et al. Nov 2019 B2
10649248 Jiang et al. May 2020 B1
10649259 Lee et al. May 2020 B2
20010001566 Moseley et al. May 2001 A1
20010050686 Allen Dec 2001 A1
20020018299 Daniell Feb 2002 A1
20020024529 Miller et al. Feb 2002 A1
20020113246 Nagai et al. Aug 2002 A1
20020113866 Taniguchi et al. Aug 2002 A1
20020171793 Sharp et al. Nov 2002 A1
20030046839 Oda et al. Mar 2003 A1
20030089956 Allen et al. May 2003 A1
20030107686 Sato et al. Jun 2003 A1
20030117790 Lee et al. Jun 2003 A1
20030133191 Morita et al. Jul 2003 A1
20030137738 Ozawa et al. Jul 2003 A1
20030137821 Gotoh et al. Jul 2003 A1
20040008877 Leppard et al. Jan 2004 A1
20040015729 Elms et al. Jan 2004 A1
20040021809 Sumiyoshi et al. Feb 2004 A1
20040042233 Suzuki et al. Mar 2004 A1
20040046709 Yoshino Mar 2004 A1
20040100598 Adachi et al. May 2004 A1
20040105264 Spero Jun 2004 A1
20040108971 Waldern et al. Jun 2004 A1
20040109303 Olczak Jun 2004 A1
20040125430 Kasajima et al. Jul 2004 A1
20040135741 Tomisawa et al. Jul 2004 A1
20040145703 O'Connor et al. Jul 2004 A1
20040170011 Kim et al. Sep 2004 A1
20040240777 Woodgate et al. Dec 2004 A1
20040263968 Kobayashi et al. Dec 2004 A1
20040263969 Lipton et al. Dec 2004 A1
20050007753 Hees et al. Jan 2005 A1
20050094295 Yamashita et al. May 2005 A1
20050110980 Maehara et al. May 2005 A1
20050111100 Mather et al. May 2005 A1
20050117186 Li et al. Jun 2005 A1
20050135116 Epstein et al. Jun 2005 A1
20050157225 Toyooka et al. Jul 2005 A1
20050174768 Conner Aug 2005 A1
20050180167 Hoelen et al. Aug 2005 A1
20050190326 Jeon et al. Sep 2005 A1
20050190329 Okumura Sep 2005 A1
20050190345 Dubin et al. Sep 2005 A1
20050219693 Hartkop et al. Oct 2005 A1
20050237488 Yamasaki et al. Oct 2005 A1
20050254127 Evans et al. Nov 2005 A1
20050264717 Chien et al. Dec 2005 A1
20050274956 Bhat Dec 2005 A1
20050276071 Sasagawa et al. Dec 2005 A1
20050280637 Ikeda et al. Dec 2005 A1
20060012845 Edwards Jan 2006 A1
20060056166 Yeo et al. Mar 2006 A1
20060082702 Jacobs et al. Apr 2006 A1
20060114664 Sakata et al. Jun 2006 A1
20060132423 Travis Jun 2006 A1
20060139447 Unkrich Jun 2006 A1
20060158729 Vissenberg et al. Jul 2006 A1
20060176912 Anikitchev Aug 2006 A1
20060203162 Ito et al. Sep 2006 A1
20060203200 Koide Sep 2006 A1
20060215129 Alasaarela et al. Sep 2006 A1
20060215244 Yosha et al. Sep 2006 A1
20060221642 Daiku Oct 2006 A1
20060227427 Dolgoff Oct 2006 A1
20060244884 Jeon et al. Nov 2006 A1
20060244918 Cossairt et al. Nov 2006 A1
20060250580 Silverstein et al. Nov 2006 A1
20060262258 Wang et al. Nov 2006 A1
20060262376 Mather et al. Nov 2006 A1
20060262558 Cornelissen Nov 2006 A1
20060268207 Tan et al. Nov 2006 A1
20060269213 Hwang et al. Nov 2006 A1
20060284974 Lipton et al. Dec 2006 A1
20060285040 Kobayashi Dec 2006 A1
20060291053 Robinson et al. Dec 2006 A1
20060291243 Niioka et al. Dec 2006 A1
20070008406 Shestak et al. Jan 2007 A1
20070013624 Bourhill Jan 2007 A1
20070025680 Winston et al. Feb 2007 A1
20070035706 Margulis Feb 2007 A1
20070035829 Woodgate et al. Feb 2007 A1
20070035964 Olczak Feb 2007 A1
20070047254 Schardt et al. Mar 2007 A1
20070064163 Tan et al. Mar 2007 A1
20070081110 Lee Apr 2007 A1
20070085105 Beeson et al. Apr 2007 A1
20070109401 Lipton et al. May 2007 A1
20070115551 Spilman et al. May 2007 A1
20070115552 Robinson et al. May 2007 A1
20070139772 Wang Jun 2007 A1
20070153160 Lee et al. Jul 2007 A1
20070183466 Son et al. Aug 2007 A1
20070188667 Schwerdtner Aug 2007 A1
20070189701 Chakmakjian et al. Aug 2007 A1
20070223251 Liao Sep 2007 A1
20070223252 Lee et al. Sep 2007 A1
20070285775 Lesage et al. Dec 2007 A1
20080068329 Shestak et al. Mar 2008 A1
20080079662 Saishu et al. Apr 2008 A1
20080084519 Brigham et al. Apr 2008 A1
20080086289 Brott Apr 2008 A1
20080128728 Nemchuk et al. Jun 2008 A1
20080158491 Zhu et al. Jul 2008 A1
20080225205 Travis Sep 2008 A1
20080259012 Fergason Oct 2008 A1
20080285310 Aylward et al. Nov 2008 A1
20080291359 Miyashita Nov 2008 A1
20080297431 Yuuki et al. Dec 2008 A1
20080297459 Sugimoto et al. Dec 2008 A1
20080304282 Mi et al. Dec 2008 A1
20080316198 Fukushima et al. Dec 2008 A1
20080316768 Travis Dec 2008 A1
20090014700 Metcalf et al. Jan 2009 A1
20090016057 Rinko Jan 2009 A1
20090040426 Mather et al. Feb 2009 A1
20090067156 Bonnett et al. Mar 2009 A1
20090085894 Gandhi et al. Apr 2009 A1
20090086509 Omori et al. Apr 2009 A1
20090128735 Larson et al. May 2009 A1
20090128746 Kean et al. May 2009 A1
20090135623 Kunimochi May 2009 A1
20090140656 Kohashikawa et al. Jun 2009 A1
20090160757 Robinson Jun 2009 A1
20090167651 Benitez et al. Jul 2009 A1
20090174700 Daiku Jul 2009 A1
20090174843 Sakai et al. Jul 2009 A1
20090190072 Nagata et al. Jul 2009 A1
20090190079 Saitoh Jul 2009 A1
20090213298 Mimura et al. Aug 2009 A1
20090213305 Ohmuro et al. Aug 2009 A1
20090225380 Schwerdtner et al. Sep 2009 A1
20090244415 Ide Oct 2009 A1
20090278936 Pastoor et al. Nov 2009 A1
20090290203 Schwerdtner Nov 2009 A1
20100002296 Choi et al. Jan 2010 A1
20100034987 Fujii et al. Feb 2010 A1
20100040280 McKnight Feb 2010 A1
20100053771 Travis et al. Mar 2010 A1
20100091093 Robinson Apr 2010 A1
20100091254 Travis et al. Apr 2010 A1
20100128200 Morishita et al. May 2010 A1
20100149459 Yabuta et al. Jun 2010 A1
20100165598 Chen et al. Jul 2010 A1
20100177113 Gay et al. Jul 2010 A1
20100177387 Travis et al. Jul 2010 A1
20100182542 Nakamoto et al. Jul 2010 A1
20100188438 Kang Jul 2010 A1
20100188602 Feng Jul 2010 A1
20100205667 Anderson et al. Aug 2010 A1
20100214135 Bathiche et al. Aug 2010 A1
20100220260 Sugita et al. Sep 2010 A1
20100231498 Large et al. Sep 2010 A1
20100238376 Sakai et al. Sep 2010 A1
20100277575 Ismael et al. Nov 2010 A1
20100278480 Vasylyev Nov 2010 A1
20100283930 Park et al. Nov 2010 A1
20100289870 Leister Nov 2010 A1
20100289989 Adachi et al. Nov 2010 A1
20100295755 Broughton et al. Nov 2010 A1
20100295920 McGowan Nov 2010 A1
20100295930 Ezhov Nov 2010 A1
20100300608 Emerton et al. Dec 2010 A1
20100302135 Larson et al. Dec 2010 A1
20100309296 Harrold et al. Dec 2010 A1
20100321953 Coleman et al. Dec 2010 A1
20100328438 Ohyama et al. Dec 2010 A1
20110013417 Saccomanno et al. Jan 2011 A1
20110018860 Parry-Jones et al. Jan 2011 A1
20110019112 Dolgoff Jan 2011 A1
20110032483 Hruska et al. Feb 2011 A1
20110032724 Kinoshita Feb 2011 A1
20110043142 Travis et al. Feb 2011 A1
20110043501 Daniel Feb 2011 A1
20110044056 Travis et al. Feb 2011 A1
20110044579 Travis et al. Feb 2011 A1
20110051237 Hasegawa et al. Mar 2011 A1
20110187293 Travis Aug 2011 A1
20110187635 Lee et al. Aug 2011 A1
20110188120 Tabirian et al. Aug 2011 A1
20110216266 Travis Sep 2011 A1
20110221998 Adachi et al. Sep 2011 A1
20110228183 Hamagishi Sep 2011 A1
20110235359 Liu et al. Sep 2011 A1
20110241983 Chang Oct 2011 A1
20110242150 Song et al. Oct 2011 A1
20110242277 Do et al. Oct 2011 A1
20110242298 Bathiche et al. Oct 2011 A1
20110255303 Nichol et al. Oct 2011 A1
20110285927 Schultz et al. Nov 2011 A1
20110286222 Coleman Nov 2011 A1
20110292321 Travis et al. Dec 2011 A1
20110310232 Wilson et al. Dec 2011 A1
20110321143 Angaluri Dec 2011 A1
20120002121 Pirs et al. Jan 2012 A1
20120002136 Nagata et al. Jan 2012 A1
20120002295 Dobschal et al. Jan 2012 A1
20120008067 Mun et al. Jan 2012 A1
20120013720 Kadowaki et al. Jan 2012 A1
20120062991 Mich et al. Mar 2012 A1
20120063166 Panagotacos et al. Mar 2012 A1
20120075285 Oyagi et al. Mar 2012 A1
20120081920 Ie et al. Apr 2012 A1
20120086776 Lo Apr 2012 A1
20120086875 Yokota Apr 2012 A1
20120106193 Kim et al. May 2012 A1
20120127573 Robinson et al. May 2012 A1
20120147280 Osterman et al. Jun 2012 A1
20120154450 Aho et al. Jun 2012 A1
20120162966 Kim et al. Jun 2012 A1
20120169838 Sekine Jul 2012 A1
20120206050 Spero Aug 2012 A1
20120235891 Nishitani et al. Sep 2012 A1
20120236484 Miyake Sep 2012 A1
20120243204 Robinson Sep 2012 A1
20120243261 Yamamoto et al. Sep 2012 A1
20120293721 Ueyama Nov 2012 A1
20120294037 Holman et al. Nov 2012 A1
20120299913 Robinson et al. Nov 2012 A1
20120314145 Robinson Dec 2012 A1
20120327101 Blixt et al. Dec 2012 A1
20130039062 Vinther et al. Feb 2013 A1
20130100097 Martin Apr 2013 A1
20130101253 Popovich et al. Apr 2013 A1
20130107174 Yun et al. May 2013 A1
20130107340 Wong et al. May 2013 A1
20130128165 Lee et al. May 2013 A1
20130135588 Popovich et al. May 2013 A1
20130169701 Whitehead et al. Jul 2013 A1
20130242231 Kurata et al. Sep 2013 A1
20130278544 Cok Oct 2013 A1
20130293793 Lu Nov 2013 A1
20130294684 Lipton et al. Nov 2013 A1
20130300985 Bulda Nov 2013 A1
20130307831 Robinson Nov 2013 A1
20130307946 Robinson et al. Nov 2013 A1
20130321340 Seo et al. Dec 2013 A1
20130321599 Harrold et al. Dec 2013 A1
20130328866 Woodgate et al. Dec 2013 A1
20130335821 Robinson et al. Dec 2013 A1
20140009508 Woodgate et al. Jan 2014 A1
20140022619 Woodgate et al. Jan 2014 A1
20140036361 Woodgate et al. Feb 2014 A1
20140071382 Scardato Mar 2014 A1
20140098418 Lin Apr 2014 A1
20140111760 Guo et al. Apr 2014 A1
20140126238 Kao et al. May 2014 A1
20140132887 Kurata May 2014 A1
20140201844 Buck Jul 2014 A1
20140211125 Kurata Jul 2014 A1
20140232960 Schwartz et al. Aug 2014 A1
20140240344 Tomono et al. Aug 2014 A1
20140240828 Robinson et al. Aug 2014 A1
20140268358 Kusaka et al. Sep 2014 A1
20140286043 Sykora et al. Sep 2014 A1
20140289835 Varshaysky et al. Sep 2014 A1
20140340728 Taheri Nov 2014 A1
20140361990 Leister Dec 2014 A1
20140368602 Woodgate et al. Dec 2014 A1
20150055366 Chang et al. Feb 2015 A1
20150116212 Freed Apr 2015 A1
20150177447 Woodgate et al. Jun 2015 A1
20150177563 Cho et al. Jun 2015 A1
20150185398 Chang et al. Jul 2015 A1
20150205157 Sakai et al. Jul 2015 A1
20150268479 Woodgate et al. Sep 2015 A1
20150286061 Seo et al. Oct 2015 A1
20150286817 Haddad et al. Oct 2015 A1
20150301400 Kimura et al. Oct 2015 A1
20150346417 Powell Dec 2015 A1
20150346532 Do et al. Dec 2015 A1
20150378085 Robinson et al. Dec 2015 A1
20160103264 Lee et al. Apr 2016 A1
20160132721 Bostick May 2016 A1
20160147074 Kobayashi et al. May 2016 A1
20160154259 Kim et al. Jun 2016 A1
20160216420 Gaides et al. Jul 2016 A1
20160216540 Cho et al. Jul 2016 A1
20160224106 Liu Aug 2016 A1
20160238869 Osterman et al. Aug 2016 A1
20160334898 Kwak et al. Nov 2016 A1
20160349444 Robinson et al. Dec 2016 A1
20160356943 Choi et al. Dec 2016 A1
20160357046 Choi et al. Dec 2016 A1
20170003436 Inoue et al. Jan 2017 A1
20170031206 Smith et al. Feb 2017 A1
20170090103 Holman Mar 2017 A1
20170092187 Bergquist Mar 2017 A1
20170092229 Greenebaum et al. Mar 2017 A1
20170115485 Saito et al. Apr 2017 A1
20170123241 Su et al. May 2017 A1
20170139110 Woodgate et al. May 2017 A1
20170168633 Kwak et al. Jun 2017 A1
20170205558 Hirayama et al. Jul 2017 A1
20170236494 Sommerlade et al. Aug 2017 A1
20170269283 Wang et al. Sep 2017 A1
20170269285 Hirayama et al. Sep 2017 A1
20170329399 Azam Nov 2017 A1
20170336661 Harrold et al. Nov 2017 A1
20170339398 Woodgate et al. Nov 2017 A1
20170343715 Fang et al. Nov 2017 A1
20180014007 Brown Jan 2018 A1
20180052346 Sakai et al. Feb 2018 A1
20180082068 Lancioni et al. Mar 2018 A1
20180095581 Hwang et al. Apr 2018 A1
20180113334 Fang et al. Apr 2018 A1
20180188576 Xu et al. Jul 2018 A1
20180188603 Fang et al. Jul 2018 A1
20180196275 Robinson et al. Jul 2018 A1
20180210243 Fang et al. Jul 2018 A1
20180231811 Wu Aug 2018 A1
20180252949 Klippstein et al. Sep 2018 A1
20180259799 Kroon Sep 2018 A1
20180259812 Goda et al. Sep 2018 A1
20180321523 Robinson et al. Nov 2018 A1
20180321553 Robinson et al. Nov 2018 A1
20180329245 Robinson et al. Nov 2018 A1
20180364526 Finnemeyer et al. Dec 2018 A1
20190086706 Robinson et al. Mar 2019 A1
20190121173 Robinson et al. Apr 2019 A1
20190154896 Yanai May 2019 A1
20190196236 Chen et al. Jun 2019 A1
20190197928 Schubert et al. Jun 2019 A1
20190215509 Woodgate et al. Jul 2019 A1
20190227366 Harrold et al. Jul 2019 A1
20190235304 Tamada et al. Aug 2019 A1
20190250458 Robinson et al. Aug 2019 A1
20190293858 Woodgate et al. Sep 2019 A1
20190293983 Robinson et al. Sep 2019 A1
20190353944 Acreman et al. Nov 2019 A1
20200159055 Robinson et al. May 2020 A1
20200225402 Ihas et al. Jul 2020 A1
Foreign Referenced Citations (114)
Number Date Country
2222313 Jun 1998 CA
1142869 Feb 1997 CN
1377453 Oct 2002 CN
1454329 Nov 2003 CN
1466005 Jan 2004 CN
1487332 Apr 2004 CN
1696788 Nov 2005 CN
1823292 Aug 2006 CN
1826553 Aug 2006 CN
1866112 Nov 2006 CN
2872404 Feb 2007 CN
1307481 Mar 2007 CN
101029975 Sep 2007 CN
101049028 Oct 2007 CN
200983052 Nov 2007 CN
101114080 Jan 2008 CN
101142823 Mar 2008 CN
100449353 Jan 2009 CN
101364004 Feb 2009 CN
101598863 Dec 2009 CN
100591141 Feb 2010 CN
101660689 Mar 2010 CN
102147079 Aug 2011 CN
202486493 Oct 2012 CN
1910399 May 2013 CN
104133292 Nov 2014 CN
204740413 Nov 2015 CN
209171779 Jul 2019 CN
0653891 May 1995 EP
0721131 Jul 1996 EP
0830984 Mar 1998 EP
0833183 Apr 1998 EP
0860729 Aug 1998 EP
0939273 Sep 1999 EP
0656555 Mar 2003 EP
2003394 Dec 2008 EP
1394593 Jun 2010 EP
2451180 May 2012 EP
1634119 Aug 2012 EP
2405542 Feb 2005 GB
2418518 Mar 2006 GB
2428100 Jan 2007 GB
2482065 Jan 2012 GB
2486935 Sep 2013 GB
H01130783 Sep 1989 JP
H08211334 Aug 1996 JP
H08237691 Sep 1996 JP
H08254617 Oct 1996 JP
H08070475 Dec 1996 JP
H08340556 Dec 1996 JP
2000048618 Feb 2000 JP
2000200049 Jul 2000 JP
2001093321 Apr 2001 JP
2001281456 Oct 2001 JP
2002049004 Feb 2002 JP
2003215349 Jul 2003 JP
2003215705 Jul 2003 JP
2004319364 Nov 2004 JP
2005116266 Apr 2005 JP
2005135844 May 2005 JP
2005183030 Jul 2005 JP
2005259361 Sep 2005 JP
2006004877 Jan 2006 JP
2006031941 Feb 2006 JP
2006310269 Nov 2006 JP
3968742 Aug 2007 JP
H3968742 Aug 2007 JP
2007273288 Oct 2007 JP
2007286652 Nov 2007 JP
2008204874 Sep 2008 JP
2010160527 Jul 2010 JP
20110216281 Oct 2011 JP
2013015619 Jan 2013 JP
2013502693 Jan 2013 JP
2013540083 Oct 2013 JP
20030064258 Jul 2003 KR
20090932304 Dec 2009 KR
20110006773 Jan 2011 KR
20110017918 Feb 2011 KR
20110067534 Jun 2011 KR
20120011228 Feb 2012 KR
20120048301 May 2012 KR
20120049890 May 2012 KR
20130002646 Jan 2013 KR
20140139730 Dec 2014 KR
101990286 Jun 2019 KR
200528780 Sep 2005 TW
M537663 Mar 2017 TW
1994006249 Apr 1994 WO
1995020811 Aug 1995 WO
1995027915 Oct 1995 WO
1998021620 May 1998 WO
1999011074 Mar 1999 WO
2001027528 Apr 2001 WO
2001061241 Aug 2001 WO
2001079923 Oct 2001 WO
2005071449 Aug 2005 WO
2010021926 Feb 2010 WO
2011020962 Feb 2011 WO
2011022342 Feb 2011 WO
2011068907 Jun 2011 WO
2011149739 Dec 2011 WO
2012158574 Nov 2012 WO
2014011328 Jan 2014 WO
2015040776 Mar 2015 WO
2015057625 Apr 2015 WO
2015143227 Sep 2015 WO
2015157184 Oct 2015 WO
2015190311 Dec 2015 WO
2018035492 Feb 2018 WO
2018208618 Nov 2018 WO
2019055755 Mar 2019 WO
2019067846 Apr 2019 WO
2019147762 Aug 2019 WO
Non-Patent Literature Citations (152)
Entry
CN-201380026046.4 Chinese 1st Office Action of the State Intellectual Property Office of P.R. China dated Oct. 24, 2016.
CN-201380026058.7 Chinese 1st Office Action of the State Intellectual Property Office of P.R. China dated Nov. 2, 2016.
CN-201380063047.6 Chinese Office Action of the State Intellectual Property Office of P.R. China dated Oct. 9, 2016.
EP-11842021.5 Office Action dated Sep. 2, 2016.
EP-13790775.4 Office Action dated Aug. 29, 2016.
EP-13791437.0 European first office action dated Aug. 30, 2016.
EP-14754859.8 European Extended Search Report of European Patent Office dated Oct. 14, 2016.
3M™ ePrivacy Filter software professional version; http://www.cdw.com/shop/products/3M-ePrivacy-Filter-software-professional-version/3239412.aspx?cm_mmc=ShoppingFeeds-_-ChannelIntelligence-_-Software-_-3239412_3MT%20ePrivacy%20Filter%20software%20professional%20version_3MF-EPFPRO&cpncode=37-7582919&srccode=cii_10191459#PO; Copyright 2007-2016.
CN-200980150139.1 1st Office Action dated Nov. 2, 2014.
CN-200980150139.1 2nd Office Action dated May 4, 2015.
EP16860628.3 European Search Report dated Apr. 26, 2019.
Brudy et al., “Is Anyone Looking? Mitigating Shoulder Surfing on Public Displays through Awareness and Protection”, Proceedings of the International Symposium on Pervasive Displays, Jun. 4, 2014, XP055511160, pp. 1-6.
Lipton, “Stereographics: Developers' Handbook”, Stereographic Developers Handbook, Jan. 1, 1997, XP002239311, p. 42-49.
Marjanovic, M.,“Interlace, Interleave, and Field Dominance,” http://www.mir.com/DMG/interl.html, pp. 1-5 (2001).
PCT/DE98/02576 International search report and written opinion of international searching authority dated Mar. 4, 1999 (WO99/11074).
PCT/US2007/85475 International preliminary report on patentability dated May 26, 2009.
PCT/US2007/85475 International search report and written opinion dated Apr. 10, 2008.
PCT/US2009/060686 international preliminary report on patentability dated Apr. 19, 2011.
PCT/US2009/060686 international search report and written opinion of international searching authority dated Dec. 10, 2009.
PCT/US2011/061511 International Preliminary Report on Patentability dated May 21, 2013.
PCT/US2011/061511 International search report and written opinion of international searching authority dated Jun. 29, 2012.
PCT/US2012/037677 International search report and written opinion of international searching authority dated Jun. 29, 2012.
PCT/US2012/042279 International search report and written opinion of international searching authority dated Feb. 26, 2013.
PCT/US2012/052189 International search report and written opinion of the international searching authority dated Jan. 29, 2013.
PCT/US2013/041192 International search report and written opinion of international searching authority dated Aug. 28, 2013.
PCT/US2013/041228 International search report and written opinion of international searching authority dated Aug. 23, 2013.
PCT/US2013/041235 International search report and written opinion of international searching authority dated Aug. 23, 2013.
PCT/US2013/041237 International search report and written opinion of international searching authority dated May 15, 2013.
PCT/US2013/041548 International search report and written opinion of international searching authority dated Aug. 27, 2013.
PCT/US2013/041619 International search report and written opinion of international searching authority dated Aug. 27, 2013.
PCT/US2013/041655 International search report and written opinion of international searching authority dated Aug. 27, 2013.
PCT/US2013/041683 International search report and written opinion of international searching authority dated Aug. 27, 2013.
PCT/US2013/041697 International search report and written opinion of international searching authority dated Aug. 23, 2013.
PCT/US2013/041703 International search report and written opinion of international searching authority dated Aug. 27, 2013.
PCT/US2013/049969 International search report and written opinion of international searching authority dated Oct. 23, 2013.
PCT/US2013/063125 International search report and written opinion of international searching authority dated Jan. 20, 2014.
PCT/US2013/063133 International search report and written opinion of international searching authority dated Jan. 20, 2014.
PCT/US2013/077288 International search report and written opinion of international searching authority dated Apr. 18, 2014.
PCT/US2014/017779 International search report and written opinion of international searching authority dated May 28, 2014.
PCT/US2014/042721 International search report and written opinion of international searching authority dated Oct. 10, 2014.
PCT/US2014/057860 International Preliminary Report on Patentability dated Apr. 5, 2016.
PCT/US2014/057860 International search report and written opinion of international searching authority dated Jan. 5, 2015.
PCT/US2014/060312 International search report and written opinion of international searching authority dated Jan. 19, 2015.
PCT/US2014/060368 International search report and written opinion of international searching authority dated Jan. 14, 2015.
PCT/US2014/065020 International search report and written opinion of international searching authority dated May 21, 2015.
PCT/US2015/000327 International search report and written opinion of international searching authority dated Apr. 25, 2016.
PCT/US2015/021583 International search report and written opinion of international searching authority dated Sep. 10, 2015.
PCT/US2015/038024 International search report and written opinion of international searching authority dated Dec. 30, 2015.
PCT/US2016/027297 International search report and written opinion of international searching authority dated Jul. 26, 2017.
PCT/US2016/027350 International search report and written opinion of the international searching authority dated Jul. 25, 2016.
PCT/US2016/034418 International search report and written opinion of the international searching authority dated Sep. 7, 2016.
Robinson et al., U.S. Appl. No. 14/751,878 entitled “Directional privacy display” filed Jun. 26, 2015.
Robinson et al., U.S. Appl. No. 15/097,750 entitled “Wide angle imaging directional backlights” filed Apr. 13, 2016.
Robinson et al., U.S. Appl. No. 15/098,084 entitled “Wide angle imaging directional backlights” filed Apr. 13, 2016.
Robinson, U.S. Appl. No. 13/300,293 entitled “Directional flat illuminators” filed Nov. 18, 2011.
RU-2013122560 First office action dated Jan. 1, 2014.
RU-2013122560 Second office action dated Apr. 10, 2015.
Tabiryan et al., “The Promise of Diffractive Waveplates,” Optics and Photonics News, vol. 21, Issue 3, pp. 40-45 (Mar. 2010).
Travis, et al. “Backlight for view-sequential autostereo 3D”, Microsoft E&DD Applied Sciences, (date unknown), 25 pages.
Travis, et al. “Collimated light from a waveguide for a display,” Optics Express, vol. 17, No. 22, pp. 19714-19719 (2009).
Williams S P et al., “New Computational Control Techniques and Increased Understanding for Stereo 3-D Displays”, Proceedings of SPIE, SPIE, US, vol. 1256, Jan. 1, 1990, XP000565512, p. 75, 77, 79.
Robinson et al., U.S. Appl. No. 14/186,862 entitled “Directional Backlight” filed Feb. 21, 2014.
Robinson et al., U.S. Appl. No. 62/167,203 entitled “Wide angle imaging directional backlights” filed May 27, 2015.
Cootes et al., “Active Appearance Models”, IEEE Trans. Pattern Analysis and Machine Intelligence, 23(6):681-685, 2001.
Bar-Shalom et al., “Multitarget-Multisensor Tracking: Principles and Techniques”, IEEE Aerospace and Electronic Systems Magazine, 1995.
Simonyan et al., “Very Deep Convolutional Networks for Large-Scale Image Recognition”, ICLR 2015.
AU-2011329639 Australia Patent Examination Report No. 1 dated Mar. 6, 2014.
AU-2013262869 Australian Office Action of Australian Patent Office dated Feb. 22, 2016.
AU-2015258258 Australian Office Action of Australian Patent Office dated Jun. 9, 2016.
Bahadur, “Liquid crystals applications and uses,” World Scientific, vol. 1, pp. 178 (1990).
CA-2817044 Canadian office action dated Jul. 14, 2016.
CN-201180065590.0 Office first action dated Dec. 31, 2014.
CN-201180065590.0 Office second action dated Oct. 21, 2015.
CN-201180065590.0 Office Third action dated Jun. 6, 2016.
CN-201280034488.9 2d Office Action from the State Intellectual Property Office of P.R. China dated Mar. 22, 2016.
CN-201280034488.9 1st Office Action from the State Intellectual Property Office of P.R. China dated Jun. 11, 2015.
CN-201380026045.X Chinese First Office Action of Chinese Patent Office dated Aug. 29, 2016.
CN-201380026047.9 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Dec. 18, 2015.
CN-201380026047.9 Chinese 2d Office Action of the State Intellectual Property Office of P.R. dated Jul. 12, 2016.
CN-201380026050.0 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Jun. 3, 2016.
CN-201380026059.1 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Apr. 25, 2016.
CN-201380026076.5 Office first action dated May 11, 2016.
CN-201380049451.8 Chinese Office Action of the State Intellectual Property Office of P.R. dated Apr. 5, 2016.
CN-201380063055.0 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Jun. 23, 2016.
CN-201480023023.2 Office action dated Aug. 12, 2016.
EP-07864751.8 European Search Report dated Jun. 1, 2012.
EP-07864751.8 Supplementary European Search Report dated May 29, 2015.
EP-09817048.3 European Search Report dated Apr. 29, 2016.
EP-11842021.5 Office Action dated Dec. 17, 2014.
EP-11842021.5 Office Action dated Oct. 2, 2015.
EP-13758536.0 European Extended Search Report of European Patent Office dated Feb. 4, 2016.
EP-13790013.0 European Extended Search Report of European Patent Office dated Jan. 26, 2016.
EP-13790141.9 European Extended Search Report of European Patent Office dated Feb. 11, 2016.
EP-13790195.5 European Extended Search Report of European Patent Office dated Mar. 2, 2016.
EP-13790267.2 European Extended Search Report of European Patent Office dated Feb. 25, 2016.
EP-13790274.8 European Extended Search Report of European Patent Office dated Feb. 8, 2016.
EP-13790775.4 European Extended Search Report of European Patent Office dated Oct. 9, 2015.
EP-13790809.1 European Extended Search Report of European Patent Office dated Feb. 16, 2016.
EP-13790942.0 European Extended Search Report of European Patent Office dated May 23, 2016.
EP-13791332.3 European Extended Search Report of European Patent Office dated Feb. 1, 2016.
EP-13791437.0 European Extended Search Report of European Patent Office dated Oct. 14, 2015.
EP-13822472.0 European Extended Search Report of European Patent Office dated Mar. 2, 2016.
EP-13843659.7 European Extended Search Report of European Patent Office dated May 10, 2016.
EP-13844510.1 European Extended Search Report of European Patent Office dated May 13, 2016.
EP-13865893.5 European Extended Search Report of European Patent Office dated Oct. 4, 2016.
EP-16150248.9 European Extended Search Report of European Patent Office dated Jun. 16, 2016.
Ian Sexton et al: “Stereoscopic and autostereoscopic display-systems”,—IEEE Signal Processing Magazine, May 1, 1999 (May 1, 1999 ), pp. 85-99, XP055305471, Retrieved from the Internet: RL:http://ieeexplore.ieee.org/iel5/79/16655/00768575.pdf [retrieved on Sep. 26, 2016].
JP-2009538527 Reasons for rejection dated Jul. 17, 2012 with translation.
JP-200980150139.1 1st Office Action dated Feb. 11, 2014.
JP-200980150139.1 2d Office Action dated Apr. 5, 2015.
JP-2013540083 Notice of reasons for rejection of Jun. 30, 2015.
JP-2013540083 Notice of reasons for rejection with translation dated Jun. 21, 2016.
Kalantar, et al. “Backlight Unit With Double Surface Light Emission,” J. Soc. Inf. Display, vol. 12, Issue 4, pp. 379-387 (Dec. 2004).
KR-20117010839 1st Office action (translated) dated Aug. 28, 2015.
KR-20117010839 2d Office action (translated) dated Apr. 28, 2016.
Languy et al., “Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics”, Optics Letters, 36, pp. 2743-2745.
Adachi, et al. “P-228L: Late-News Poster: Controllable Viewing-Angle Displays using a Hybrid Aligned Nematic Liquid Crystal Cell”, ISSN, SID 2006 Digest, pp. 705-708.
Brudy et al., “Is Anyone Looking? Mitigating Shoulder Surfing on Public Displays through Awareness and Protection”, Proceedings of the International Symposium on Persuasive Displays (Jun. 3, 2014), pp. 1-6.
CN201780030715.3 Notification of the First Office Action dated Jan. 21, 2020.
EP-16860628.3 Extended European Search Report of European Patent Office dated Apr. 26, 2019.
EP-17799963.8 Extended European Search Report of European Patent Office dated Oct. 9, 2019.
Gass, et al. “Privacy LCD Technology for Cellular Phones”, Sharp Laboratories of Europe Ltd, Mobile LCD Group, Feb. 2007, pp. 45-49.
Ishikawa, T., “New Design for a Highly Collimating Turning Film”, SID 06 Digest, pp. 514-517.
PCT/US2016/058695 International search report and written opinion of the international searching authority dated Feb. 28, 2017.
PCT/US2017/032734 International search report and written opinion of the international searching authority dated Jul. 27, 2017.
PCT/US2018/031206 International search report and written opinion of the international searching authority dated Jul. 20, 2018.
PCT/US2018/031218 International Preliminary Report on Patentability dated Nov. 21, 2019.
PCT/US2018/031218 International search report and written opinion of the international searching authority dated Jul. 19, 2018.
PCT/US2018/051021 International search report and written opinion of the international searching authority dated Nov. 21, 2018.
PCT/US2018/051027 International search report and written opinion of the international searching authority dated Nov. 30, 2018.
PCT/US2018/053328 International search report and written opinion of the international searching authority dated Nov. 30, 2018.
PCT/US2018/059249 International search report and written opinion of the international searching authority dated Jan. 3, 2019.
PCT/US2018/059256 International search report and written opinion of the international searching authority dated Jan. 3, 2019.
PCT/US2019/014889 International search report and written opinion of the international searching authority dated May 24, 2019.
PCT/US2019/014902 International search report and written opinion of the international searching authority dated Jun. 25, 2019.
PCT/US2019/023659 International search report and written opinion of the international searching authority dated Jun. 10, 2019.
PCT/US2019/038409 International search report and written opinion of the international searching authority dated Sep. 19, 2019.
PCT/US2019/038466 International search report and written opinion of the international searching authority dated Nov. 5, 2019.
PCT/US2019/042027 International search report and written opinion of the international searching authority dated Oct. 15, 2019.
PCT/US2019/054291 International search report and written opinion of the international searching authority dated Jan. 6, 2020.
PCT/US2019/059990 International search report and written opinion of the international searching authority dated Feb. 28, 2020.
PCT/US2019/066208 International search report and written opinion of the international searching authority dated Feb. 27, 2020.
PCT/US2020/017537 International search report and written opinion of the international searching authority dated Apr. 29, 2020.
PCT/US2020/040686 International search report and written opinion of the international searching authority dated Nov. 20, 2020.
PCT/US2020/044574 International search report and written opinion of the international searching authority dated Oct. 21, 2020.
Weindorf et al., “Active Circular Polarizer OLED E-Mirror”, Proceedings of the Society for Information Display 25th Annual Symposium of Vehicle Displays, Livonia, MI, pp. 225-237, Sep. 25-26, 2018.
PCT/US2020/053863 International search report and written opinion of the international searching authority dated Mar. 12, 2021.
PCT/US2020/060155 International search report and written opinion of the international searching authority dated Feb. 5, 2021.
PCT/US2020/060191 International search report and written opinion of the international searching authority dated Feb. 8, 2021.
PCT/US2020/063638 International search report and written opinion of the international searching authority dated Mar. 2, 2021.
PCT/US2020/064633 International search report and written opinion of the international searching authority dated Mar. 15, 2021.
Robson, et al. “Spatial and temporal contrast-sensitivity functions of the visual system”, J. Opt. Soc. Amer., vol. 56, pp. 1141-1142 (1966).
Related Publications (1)
Number Date Country
20200098342 A1 Mar 2020 US
Provisional Applications (2)
Number Date Country
62246584 Oct 2015 US
62261151 Nov 2015 US
Continuations (1)
Number Date Country
Parent 15334023 Oct 2016 US
Child 16596957 US