1. Field of the Disclosure
The present disclosure relates to the field of remote controls and, more particularly, to an intelligent remote control suitable for use in conjunction with a multimedia distribution network.
2. Description of the Related Art
Prior art multimedia distribution networks often provide customer premises equipment (CPE), including a remote control useful for controlling a set-top box (STB) or other multimedia handling device (MHD). Prior art remote controls may rely on unidirectional communication over an infrared (IR) link.
In a particular embodiment, a disclosed IRC provides bi-directional communication with an STB or other MHD as well as enhanced processing capabilities. The IRC may include user profiles, which may be locally stored on the IRC and which may be synchronized with the MHD.
An IRC may be a stand-alone device, or it may be an existing device adapted or re-adapted for use as an IRC. For example, a mobile telephone, smart phone, personal digital assistant (PDA), laptop computer, or other mobile device may be programmed to act as an IRC. A portable IRC may have a unique identifier (UID), which in some cases may be a globally unique identifier (GUID). A GUID enables a device to be uniquely identified from any other similar device. If a device has only a local UID, it is primarily or solely useful only with a primary MHD or a small set of MHDs at a user's primary location. However, by employing a GUID instead of a local UID, an IRC may be configured for use with any compatible MHD, including MHDs at other locations. For example, a user may visit a friend's home and use an IRC, which includes his own stored preferences, to access his friend's MHD. In other embodiments, an IRC may not store its profile locally. Instead, the user's profile may be stored on a central server accessible by compatible MHDs. In these embodiments, the MHD may use the IRC's GUID as a key for finding and downloading a “roaming” user profile.
In another aspect, a disclosed IRC has the ability to receive remote notifications. For example, an option in a user profile may be an election to receive certain notifications. Available notifications may include, for example, program notifications, emergency notifications, and caller identification (CID) forwarding. For example, a user may want to watch a television program live, but wants to be doing something else in the interim. The user can elect to receive a notification five minutes before the show starts as a reminder. Notifications could also be provided when a particular program ends, or an alarm could simply be set for a pre-selected time. If the MHD has multimedia content analysis capabilities, as described, for example, in commonly assigned and co-pending U.S. patent application Ser. No. 12/342,384, entitled Distributed Content Analysis Network, filed Dec. 23, 2008, incorporated by reference herein, a user can, for example, instruct the MHD to recognize the sportscaster on a local news station, and then receive a notification when the sports segment of the evening news starts. In another example, a user could elect to receive a text message whenever a favorite television show is broadcast, or when movies featuring a favorite actor are broadcast. Another option is the ability to receive forwarded CID information. For example, many Internet protocol television (IPTV) subscribers also subscribe to Voice over IP (VOIP) service, and may receive CID notifications on the television screen. These CID notifications could be forwarded to the IRC. Finally, an MHD could be programmed to recognize a broadcast from the U.S. Emergency Alert System (EAS) and provide a notification of the alert.
In some embodiments, a disclosed IRC may include a user-selectable display mode. Because an IRC may have a display screen, user interface screens that would otherwise be displayed on the television or other display device can be sent to the IRC. This may prevent the need of interrupting the flow of a program to interact with an electronic programming guide (EPG) or other MHD functions. The display mode can be selected from one of three available modes. First, display screen only, in which case the user interface is displayed only on the display screen of the IRC. Second, television display only, in which case the user interface is displayed only on the television or similar display device. Third, dual display, in which case the user interface is displayed on both screens.
Another useful feature of a disclosed IRC is the ability to share locally-created multimedia content with an MHD. For example, many mobile phones and other handheld devices are equipped with digital cameras useful for taking pictures and recording videos. Because some MHDs have digital video recorder (DVR) capabilities, including the ability to receive pictures and video, it may be desirable to send content created on the IRC to the MHD. The provision of a bi-directional communication link in accordance with the present disclosure enables the sharing of pictures and videos created on the IRC with the MHD.
An IRC will now be described with more particular reference to the attached drawings. In the following description, details are set forth by way of example to facilitate discussion of the disclosed subject matter. It should be apparent to a person of ordinary skill in the field, however, that the disclosed embodiments are exemplary and not exhaustive of all possible embodiments. Throughout this disclosure, a hyphenated form of a reference numeral refers to a specific instance of an element and the un-hyphenated form of the reference numeral refers to the element generically or collectively. Thus, for example, widget 12-1 refers to an instance of a widget class, which may be referred to collectively as widgets 12 and any one of which may be referred to generically as a widget 12.
Turning now to the drawings,
The elements of MCDN 100 illustrated in
As depicted in
Access network 130 demarcates clients 120 and service provider 121, and provides connection path(s) between clients 120 and service provider 121. In some embodiments, access network 130 is an Internet protocol (IP) compliant network. In some embodiments, access network 130 is, at least in part, a coaxial cable network. It is noted that in some embodiments of MCDN 100, access network 130 is owned and/or operated by service provider 121. In other embodiments, a third party may own and/or operate at least a portion of access network 130.
In IP-compliant embodiments of access network 130, access network 130 may include a physical layer of unshielded twist pair cables, fiber optic cables, or a combination thereof. MCDN 100 may include digital subscribe line (DSL) compliant twisted pair connections between clients 120 and a node (not depicted) in access network 130 while fiber, cable or another broadband medium connects service provider resources to the node. In other embodiments, the broadband cable may extend all the way to clients 120.
As depicted in
In
Thus, the content provided by service provider 121 encompasses multimedia content that is scheduled in advance for viewing by clients 120 via access network 130. Such multimedia content, also referred to herein as “scheduled programming,” may be selected using an EPG, such as EPG 316 described below with respect to
Acquired content is provided to content delivery server 160 via backbone network 170 and switching network 140. Content may be delivered from content delivery server 160 to clients 120 via switching network 140 and access network 130. Content may be compressed, encrypted, modulated, demodulated, and otherwise encoded or processed at content acquisition resources 180, content delivery server 160, or both. Although
Although service provider 121 is depicted in
Applications provided by application server 150 may be downloaded and hosted on other network resources including, for example, content delivery server 160, switching network 140, and/or on clients 120. Application server 150 is configured with a processor and storage media (not shown in
Further depicted in
In
Clients 120 as depicted in
Clients 120 are further shown with their respective remote control 128, which is configured to control the operation of MHD 125 by means of a user interface (not shown in
MHD 125 is enabled and configured to process incoming multimedia signals to produce audio and visual signals suitable for delivery to display 126 and any optional external speakers (not depicted). Incoming multimedia signals received by MHD 125 may be compressed and/or encrypted, digital or analog, packetized for delivery over packet switched embodiments of access network 130 or modulated for delivery over cable-based access networks. In some embodiments, MHD 125 may be implemented as a stand-alone STB suitable for use in a co-axial or IP-based MCDN.
In the embodiment depicted in
In embodiments suitable for use in IP based content delivery networks, MHD 125, as depicted in
Video and audio streams 332 and 334, as output from transport unit 330, may include audio or video information that is compressed, encrypted, or both. A decoder unit 340 is shown as receiving video and audio streams 332 and 334 and generating native format video and audio streams 342 and 344. Decoder 340 may employ any of various widely distributed video decoding algorithms including any of the Motion Pictures Expert Group (MPEG) standards, Windows Media Video (WMV) standards including WMV 9, which has been standardized as Video Codec-1 (VC-1) by the Society of Motion Picture and Television Engineers. Similarly decoder 340 may employ any of various audio decoding algorithms including Dolby® Digital, Digital Theatre System (DTS) Coherent Acoustics, and Windows Media Audio (WMA).
The native format video and audio streams 342 and 344 as shown in
Storage 310 encompasses persistent and volatile media, fixed and removable media, and magnetic and semiconductor media. Storage 310 is operable to store instructions, data, or both. Storage 310 as shown includes sets or sequences of instructions, namely, an operating system 312, a remote control application program identified as RC module 314, EPG 316, and channel monitoring 318. Operating system 312 may be a UNIX or UNIX-like operating system, a Windows® family operating system, or another suitable operating system. In some embodiments, storage 310 is configured to store and execute instructions provided as services to client 120 by application server 150, as mentioned previously.
User profile 332 includes channel preferences and channel permissions. In some embodiments, user profile 332 may be selected from among three types of profiles. The first type of profile is called the “default profile,” which is a pre-defined profile based on features/channels subscribed to. This is the default configuration of the IRC. The second type of profile is a “regular profile,” which is a content-restricted profile. A regular profile will include some subscribed channels, but will be restricted from accessing channels and programs that are potentially offensive (based, for example, on rating). Users with access to a regular profile may further customize the profile to exclude channels or other content they are not interested in. The third type of profile is called an “advanced profile.” An advanced profile has access to all stations and content, and may start out with everything made available by the default profile. An advanced user may customize the profile to exclude channels or other content he or she is not interested in. After a regular profile or advanced profile is customized, it may be saved as the default profile for that particular IRC, though the original default profile may be saved in a backup location in case the user wants to reset the IRC to its original configuration. Storage 310 also includes user preferences 334, which may store additional user preferences such as languages, closed captioning, and preferred format.
EPG 316 represents a guide to the multimedia content provided to client 120 via MCDN 100, and may be shown to the user as an element of the user interface. The user interface may include a plurality of menu items arranged according to one or more menu layouts, which enable a user to operate MHD 125. The user may operate the user interface, including EPG 316, using remote control 128 (see
MHD receives a multimedia content stream from access network 130 through gateway 123. This content stream may be provided to display 126. In some embodiments, bi-directional link 420 may enable MHD 125 to also provide multimedia content to IRC 128, so that user can view the content when temporarily away from display 126.
In the embodiment shown, a switch 127 between display 126 and MHD 125 is in its “off” position. This arrangement illustrates that with bi-directional link 420 user 430 may use IRC 128 to interact with an EPG 316 (
Although
Storage 730 may encompass both volatile and non-volatile memory, or some combination thereof. An operating system 739 is provided to provide low-level functions, and may be a commonly-used embedded operating system such as Unix, Linux, Microsoft Windows® Embedded, or VxWorks®. User profiles 732 is a local copy of user profile 332 provided by MHD 125. User preferences 734 is a local copy of user preferences 334 in MHD 125. User profiles 732 and user preferences 734 may be synchronized with MHD 125 upon connection or as necessary. Authentication data 736 may include data that identifies IRC 128 to MHD 125. This may be a UID 738 assigned to IRC 128. Authentication data 736 may also include data identifying a specific user profile. In some cases, a UID may be a GUID, meaning that the UID is globally unique. A GUID would permit IRC 128 to be used with any compatible MHD 125. For example, a user who owns IRC 128 may visit a friend who has a compatible MHD 125 able to access MCDN 100. With a GUID, IRC 128 may be enabled to interface with compatible MHD 125, and the user may then access programs according to his stored preferences.
To the maximum extent allowed by law, the scope of the present disclosure is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited to the specific embodiments described in the foregoing detailed description.
Number | Name | Date | Kind |
---|---|---|---|
5541571 | Ochs et al. | Jul 1996 | A |
5561712 | Nishihara | Oct 1996 | A |
5705997 | Park | Jan 1998 | A |
5724106 | Autry et al. | Mar 1998 | A |
6094156 | Henty | Jul 2000 | A |
6169943 | Simon et al. | Jan 2001 | B1 |
6415094 | Wissman | Jul 2002 | B1 |
6476825 | Croy et al. | Nov 2002 | B1 |
6498567 | Grefenstette et al. | Dec 2002 | B1 |
6704040 | Sato | Mar 2004 | B2 |
6819867 | Mayer, Jr. et al. | Nov 2004 | B2 |
6873824 | Flick | Mar 2005 | B2 |
6992263 | Baker et al. | Jan 2006 | B1 |
6992612 | Pessina et al. | Jan 2006 | B2 |
7142932 | Spira et al. | Nov 2006 | B2 |
7610555 | Klein et al. | Oct 2009 | B2 |
20020021352 | Sato | Feb 2002 | A1 |
20020070712 | Arul | Jun 2002 | A1 |
20020098835 | Flick | Jul 2002 | A1 |
20030015302 | Pessina et al. | Jan 2003 | A1 |
20030025802 | Mayer, Jr. et al. | Feb 2003 | A1 |
20030070168 | Stone | Apr 2003 | A1 |
20030095156 | Klein et al. | May 2003 | A1 |
20030193427 | Schroeder et al. | Oct 2003 | A1 |
20030206394 | Ossia | Nov 2003 | A1 |
20040008287 | Johnston et al. | Jan 2004 | A1 |
20040054757 | Ueda et al. | Mar 2004 | A1 |
20040106427 | Collavo et al. | Jun 2004 | A1 |
20040124637 | Shah | Jul 2004 | A1 |
20040203975 | Chen et al. | Oct 2004 | A1 |
20040224602 | Kislevitz et al. | Nov 2004 | A1 |
20050028208 | Ellis et al. | Feb 2005 | A1 |
20050068789 | Bauer | Mar 2005 | A1 |
20050137720 | Spira et al. | Jun 2005 | A1 |
20060135216 | Collavo et al. | Jun 2006 | A1 |
20060259864 | Klein et al. | Nov 2006 | A1 |
20060293102 | Kelsey | Dec 2006 | A1 |
20070183746 | Haeuser et al. | Aug 2007 | A1 |
20070220553 | Branam et al. | Sep 2007 | A1 |
20070238481 | Gaucherot | Oct 2007 | A1 |
20070256100 | Jeong | Nov 2007 | A1 |
20080057886 | Feher | Mar 2008 | A1 |
20080057929 | Min | Mar 2008 | A1 |
20080084389 | Mac | Apr 2008 | A1 |
20080134256 | DaCosta | Jun 2008 | A1 |
20080180572 | Pickett et al. | Jul 2008 | A1 |
20080244144 | Choi | Oct 2008 | A1 |
20090121660 | Rawls-Meehan | May 2009 | A1 |
20090153288 | Hope et al. | Jun 2009 | A1 |
20090153289 | Hope et al. | Jun 2009 | A1 |
20090253520 | Lewis-Picard | Oct 2009 | A1 |
20090270085 | Jones et al. | Oct 2009 | A1 |
20090298535 | Klein et al. | Dec 2009 | A1 |
20100162294 | Yin et al. | Jun 2010 | A1 |
20100169505 | Noguchi et al. | Jul 2010 | A1 |
20110219419 | Reisman | Sep 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20100218214 A1 | Aug 2010 | US |