The present invention relates generally to storage systems for medications for delivery and use in a field application.
It is often desirable to treat large numbers of individuals or animals, referred to herein generally as subjects, with a substance, such as a medication or other material, with speed, efficiency, and accuracy. One such system is disclosed in U.S. Pat. No. 7,056,307 (the “'307 patent”), which is incorporated herein by reference in its entirety. This system discloses a highly accurate pump, reservoir bottle and syringe, where the pump delivers precise dosages of fluid medication from the reservoir bottle to the syringe for delivery. A system computer determines the dosage to be injected to a given animal (generally determined by animal weight, medical history, medication records, and other pertinent information), and instructs the pump controller (which can be a computer) to dispense the calculated amount of fluid. The pump then dispenses the proper amount of fluid (possibly in several doses, under the control of the system computer) to the syringe for injection into the animal by an operator or technician. The '307 system, or a comparable dosage controlled injection system provides for ready administration of medications in accurate amounts and time-stamping the administration of the dose.
Much of the equipment in the '307 system can be housed in a easily transportable portable carrier, such as a backpack or belt mounted holster system for use in the field, such as a feedlot in the pastures. The system computer interfaces the field deployed equipment by wireless communication from a wireless device associated with the field components. In this fashion, animal data (such as a stored weight of the animal, medical history, ownership information) and dosage information can be exchanged between the system and field deployed components. The system computer could be located in the transportable carrier if the needed animal data was stored in memory accessible by the system computer, for instance, needed animal data could be retrieved from a data storage in the system computer or from data storage located on the animal itself, such as stored in an RFID tag located on the animal. Other aspects of the controlled injection system include a sensor for monitoring the status of the syringe (U.S. provisional application No. 61/039,158, hereby incorporated by reference) and improved spool valve for filling the syringe, as disclosed in U.S. provisional application No. 61/038,351, also incorporated by reference).
For field dispensal of medications dependent on the animal's weight, a portable battery operated or mechanical scale can be incorporated in the '307 system, with the system receiving the weight either electronically or from manual operator input. In a feedlot environment, a scale is generally available and can be incorporated into the controlled injection system (i.e. communicate with the host computer, either manual input or electronic input).
At times it is desirable or necessary to mass vaccinate animals in the field or on a feedlot, such as vaccination of cattle in response to a condition or in response to a disease indicator. Multiple medications may be needed for administration in harsh environments and under confusing adverse conditions. In these situations, medications must be delivered in large volumes and exposed to ambient conditions. A system is needed to protect medication from environmental conditions, and to assist in the identification and tracking of the medications administered or remaining to be administered.
One embodiment of the invention includes a memory containing sleeve that is associated with a medication vial or bottle. The memory sleeve stores relevant information concerning the medication and can communicate with a computer system to transmit the stored information, and, in certain embodiments, the stored information may be updated. Stored information can comprise medicine identification, security status, temperature status, volume available, date first used, or any other desired characteristic. In one embodiment the memory sleeve may be a ring-shaped, electronically active system that fits over the lip of the medication source vial and grips the narrower neck of the vial when properly seated and locked in position. This sleeve may incorporate a wireless communications device and a non-volatile memory storage device, as well as means (either direct or indirect) for determining the amount of medication being used or remaining. An appropriate socket for direct, wired communication (e.g., USB, serial, and/or the like) may optionally be included in the sleeve for communication with onboard components. The memory sleeve may include a screen for input/output purposes, such as a screen on a calculator driven by battery or solar powered, or a touch screen for direct input.
In one embodiment the invention includes an insulating jacket or sleeve for the medicine reservoir, providing thermal stability for the contained fluids as well as protection from light energy degradation. In another embodiment, the two sleeves in combination are include in the scope of the invention.
These and other features and advantages of the invention will be apparent to those skilled in the art from the following detailed description of an embodiment, taken together with the accompanying figures and claims.
a illustrates an exploded view of an embodiment of three components taught in the present invention.
b illustrates an embodiment of the three components ready for deployment.
a illustrates a Memory Sleeve that totally encompasses the lip of the source vial.
b illustrates a Memory Sleeve that seals the Temperature Sleeve to improve the latter's temperature stabilization capabilities.
a illustrates an alternate embodiment of the present invention.
b illustrates an embodiment of a locking architecture for the Memory Sleeve.
a illustrates an embodiment of the present invention.
b illustrates an alternate embodiment of the present invention.
c illustrates an alternate embodiment of the present invention.
The particulars shown herein are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention. In this regard, structural details of the invention in more detail than is necessary for the fundamental understanding of the invention have been excluded, the description taken with the drawings and/or examples making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
The present invention teaches the deployment of dual-sleeve structure that addresses thermal stability and monitoring of vial fluids. Either sleeve can be used alone or in combination with the other.
The insulating sleeve 1002 is shown as a cylinder that surrounds the vial. The insulating sleeve provides temperature stabilization by providing thermal insulation within a relatively thin package. In a preferred embodiment, the present invention incorporates thermal insulation technology developed by NanoPore Incorporated of New Mexico (and assigned to NanoPore Insulation LLC) and commercially sold as NanoPore HP150 or NanoTherm vacuum insulation. A preferred application is the material in the form of a vacuum insulation panel or VIP. VIPs are made by sealing the thermal insulation in a barrier film under vacuum. The barrier film (a polymer or metal film) is formed into a pouch which the panel insert is put inside before the unit is evacuated and heat sealed. The sealed edges of the barrier film creates a flap of film which extends out from the edges of the panel which can be folded and taped against the panel in use. The VIP structure creates a three layer structure: an inside layer 1005 formed by a semi-pliable or pliable thin material, such as a polymer or metal film, a similar pliable material forming the outer layer 1006 that is opaque to radiation, including infrared radiation, to reduce radiant energy transfer from the medicine source, and an interstitial matrix 1004 of nanoporous material with ultra low thermal conductivity due to exploitation of the Knudsen Effect. It can be appreciated that the inner and outer layers which encapsulate the inner nanoporous matrix can form a contiguous, continuous surface and may thus be identical. While the Nanopore VIP is preferred due to the long term temperature stability it provides, other common insulating materials could be used for sleeve construction, particularly where long term exposure is not anticipated.
As shown in
The present invention embraces a memory sleeve 1001 that is to be affixed to the source vial, here shown as affixed to the upper portion of the source vial.
Other geometric variations are possible, for instance, the memory sleeve may be a semi-planar surface attached to the vial, such as glued to the bottom of the vial (either interior to the memory sleeve, exterior to the memory sleeve, or with a memory sleeve that lacks a bottom.
b shows an alternate approach to configuration of the memory sleeve. In this example, the memory sleeve is seated around the narrowest part of the source vial 1003, but the diameter of this sleeve 2002 is increased and its relative position, in relation to the insulating sleeve 1002, is adjusted so that the memory sleeve 2001 effectively seals against the insulating sleeve 1002.
Whereas the annular body of the memory sleeve 1001 (which may be fabricated from plastics, polymers, composites, or any environmentally suitable material in which the active components being herein described may be mounted and, if necessary, sealed from the outside world) is depicted as an undifferentiated solid, it is understood that it can be formed with cavities and mounting hardware and/or fastener anchor points as well as wiring or cabling between different possible components, as needed. The memory device 3002 is shown inhabiting a suitably formed cavity inside the annulus into which the device is positioned so as to be able to withstand shock and vibration to the limits specified for the medication dispensing system.
One common component of the memory sleeve is illustrated in
Information may be placed in the memory sleeve at the pharmaceutical manufacturer's plant (where the vials are filled), or by communication with the host computer in an injection system (as later described). The memory should be readable by the host computer controlling the injection system. Additional information that may be stored in the memory sleeve includes, but is not limited to: (1) the date and time, provided automatically by the host computer; (2) the date code of the medication; (3) the lot number of the medication; (4) the amount of medication contained in the source vial; (5) the name or ID of the medication; (6) the manufacturer of the medication (automatically provided by the software from its internal database if it is a brand name medication rather than a generic product); (7) identification of the technician assembling the sleeves and vials; (8) a security status; and (9) a temperature status.
Various other components may be included in the memory sleeve, such as a processor, wireless communication devices (including blue tooth communication or cell phone components). Other components that may be included in the sleeve include a temperature sensor such as produced by Measurement Computing of Norton, Mass. whereby temperature logging can be used to monitor the temperature profile during transportation and storage of the vial. The temperature sensor should be positioned on the exterior of the bottle, preferably between the insulating jacket and exterior bottle surface. To conserve power, a temperature sensitive label (such as Thermax label from Thermographic Measurements Ltd in Australia) may be affixed to the vial and visual inspection of the label will indicate whether a predetermined temperature has been exceeded. Alternatively, the temperature label may be queried using a LED and light receptor to determine (based on the reflected light from the label) whether the temperature range has been violated.
Another component that may be included is an integrity circuit that would detect if the vial seal had been tampered with. The integrity circuit can simply be a circuit detecting resistance, voltage or current across a foil hermetic seal or a conductor embedded in the seal of the vial. Other sensors can be combined with active RFID tags, including humidity, shock/vibration, light, radiation, and pressure sensors as needed. Additionally, a flow meter may be included in the sleeve to calculate fluid flows, but this is not preferred, as an ultrasonic flowmeter would be preferred (to avoid placing a meter within the vial itself) and current versions are power consumers. The memory sleeve may also include an information display screen 3003 that is capable of displaying key information about the contents/status of the vial. Connections between any of the various components are not shown for the sake of simplifying the figure.
The memory sleeve may be affixed to the vial in a number of fashions. For example,
In a preferred embodiment, the memory sleeve is permanently attached to the vial by pharmaceutical manufacturing facility where the vial is filled and the sleeve's memory can be populated with relevant data by the manufacturer. In this embodiment, the memory sleeve is intended to be a single use device, and discarded with the vial.
The memory sleeve and vial can be incorporated as the reservoir bottle in an computer controlled injection system such as that disclosed in the '307 patent. In an computer controlled system, (vial with memory sleeve, pump, syringe, computer to control pump, all operatively connected) the operator would identify the vial to be used in the system to the host computer (such as by wanding the vial for RFID communications) or by establishing communications between the host computer and memory sleeve. Communications can be established by cable connections between the vial and computer (including Plug and Play type automatic recognition) or by inputting a vial ID into the host computer and having the host recognize the vial through wireless communications, or other methods (such as activating the vial (for instance, by allowing battery power to components) and having the host search for an active vial). Once communications are established between the memory sleeve and host computer, the host system can query the memory sleeve for relevant information stored in the sleeve memory (medication, integrity of vial, temperature constraints, age, etc) to insure that the proper medication is being selected and the efficacy of the medication.
Once specifics are verified, the vial can be loaded into a suitable dispensing mechanism for incorporation into the injection system (e.g. the fluid lines must be attached to the vial). Once the medication is available for dispensing, the sleeve memory, in conjunction with the host computer, can tract medication used from the vial, or medication remaining to be dispensed. This tracking can take several forms. For instance, the sleeve memory may only have the initial volume of medication stored in sleeve memory. In this event, the host computer would have to track usage against the initial volume (usage can be determined from the highly accurate system pump) to determine the amount remaining in the vial. The amount remaining (or alternatively, the amount used) can be used to determine if a new vial needs to be loaded, or, if the vial will not be exhausted in a single setting, to store volume information with a vial ID in the host computer's memory for later use of the vial.
Alternatively, if the sleeve has memory that is alterable by the host system, the host computer can send and store information on the vials fluids to the sleeve memory. For instance, after each dispensing of fluid, the host could store in sleeve memory the amount of fluid remaining in the vial (or the amount used). Note that the amount of fluid remaining in the vial must account for fluid in the lines—to account for line fluid, the system may have an initiation sequence where the lines are primed (by the pump) and the host computer tracks the volumes in the lines form the operation of the pump. Alternatively, the line volume may be a predetermined quantity, and the host computer can account for this known volume.
As described, the injection system has a host computer and a highly accurate pump, that fluidly connects a syringe with a vial and the memory sleeve that communicates with the host computer—communication may be one way or two way. A commonly employed memory in the sleeve is an RFID tag. Each RFID device is considered to have non-volatile memory, although the memory may not be alterable by the host computer. For instance, the RFID tag may only contain a vial identifier. In this instance, in conjunction with the host computer and host system database, information on the fluid remaining in the vial can be tracked by the host system if the system database contained information on the vial's initial fluid volume. Because the RFID tag's signature is tied to the initial data set entered for a given source vial, and because the RFID is also tied to all aliquots and doses extracted from the source vial, the host computer can determine the state of the source vial at any time. While the data is no longer physically associated with the source vial, but rather is associated with the source vial “virtually” in respect to a database relation, the net result produces the remaining volume.
Use with the Insulating Sleeve
In a field application, such as in a feedlot or pasture setting, the insulating sleeve is a valuable addition to the system. It should also be recognized that field deployment of many source vials can pose a considerable challenge for thermal management, whereas the passive thermal management achieved by using a insulating sleeve for each vial may keep stabilized temperatures for up to eight hours under even the most extreme outdoor temperatures.
An insulating sleeve may not be needed if the medication is not sensitive to temperature extremes, or in the event that the vials are stored in an insulated storage container or refrigerated (or heated) container and the injection system is connectable to the relevant storage device.
The vial or reservoir system allows for recognition of the “vial” (contents and status of contents for use in a controlled injection system. Recognition of the vial will reduce the possibility of operator error in administering the incorrect medication, as the host computer (or the screen on the vial or both ) can alert the operator of the error in vial ID, or that the vial is compromised (temperature, security status, or other monitored condition). Hence, the intelligent vial (vial with memory sleeve) in conjunction with the controlled injection system, allows for accurate administration of effective medications to animals, such as cattle. Further, with a disposal vial and memory sleeve, where the sleeve is permanently attached to the vial (permanent attachment means that removal would damage the functionality of the sleeve's electrical/electronic components, or removal would be detected by the sleeve) and the sleeve is programmed by the pharmaceutical manufacturer or his agent, then integrity of the medication is assured throughout the process, from manufacturing to injection.
As described, the memory sleeve is shown as a collar, but this is simply one embodiment. Other shapes are possible. The device is intended to be used in a multi-dosage environment, and typically a vial will be in the preferred range of 250 cc and larger. In the preferred embodiment, the memory sleeves is disposable, but it may be designed to be removable for a vial and re-used. In this event, the contents of the memory device would have to be reinitialized for a new use, so that the non-volatile memory device now contains information specific to the new vial of medicine with which the memory sleeve is now associated and to which it is physically attached. Further enhancements of the various embodiments of the present invention include (1) generalizing two-way communication between the memory sleeve and the generic system to be enhanced, (2) acquiring and communicating precise information about the usage of medicine being extracted from the source; and (3) the extraction and/or display of the remaining medicine and status of the medicine (e.g. temperature exceeded) within the source vial. It should be noted that the display of information could involve the actual integration of a small display screen as part of the Memory Sleeve architecture.
In an embodiment, when preparing a source vial for use with the present invention, a memory sleeve is fitted first onto the mouth and neck of the vial, and then the vial is slipped, bottom-first, into a temperature sleeve.
While a particular embodiment of the invention has been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.
this invention claims the priority benefit of U.S. provisional application No. 60/915,827 filed on May 3, 2007, and which application is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60915827 | May 2007 | US |