This application claims the priority to Chinese Patent Application No. 201510100986.4, titled “INTELLIGENT SOLAR PHOTOVOLTAIC MODULE CIRCUIT AND CONTROL/PROTECTION METHOD THEREFOR” and filed with the State Intellectual Property Office of the People's Republic of China on Mar. 9, 2015, which is incorporated herein by reference in its entirety.
The present disclosure relates to the field of photovoltaic device, and in particular to a control/protection method for an intelligent solar photovoltaic module circuit.
Generally, in a photovoltaic power station, there is always a MPPT conversation circuit at the direct current (DC) side of a grid-connected inverter to solve the problem of mismatch. A conventional centralized grid-connected photovoltaic inverter and a string type grid-connected photovoltaic inverter each includes the MPPT conversion circuit.
In recent years, to solve the problem of mismatch between solar photovoltaic modules, an alternating current (AC) module and an intelligent module appear. Main structures of an AC module and an intelligent module, together with a conventional solar photovoltaic module for comparison, are shown in
The AC module is high in cost for its complicated circuit structure and more electronic components. And the intelligent module can achieve the objective of mismatch optimization and communication.
The structure of a normal intelligent module is shown in
The objective of the present disclosure is to provide an intelligent solar photovoltaic module circuit which not only has no influence on other solar photovoltaic modules in a string but also has existing functions of power optimization and communication when cutting off an output of a single solar photovoltaic module in a photovoltaic power station with intelligent modules.
In order to attain the foregoing objective, the technical solutions provided in the present disclosure are described as follows. An intelligent solar photovoltaic module circuit includes:
multiple photovoltaic strings connected in series, where each of the photovoltaic strings includes an intelligent photovoltaic module unit and a MPPT functional module connected in series with the intelligent photovoltaic module unit;
a CPU memory module configured to receive and analyze a state of the intelligent photovoltaic module unit; and
a control module electrically connected with the CPU memory module and configured to control a MPPT function, where
each of the photovoltaic strings is connected with a switch transistor configured to short-circuit the intelligent photovoltaic module unit or disconnect the photovoltaic string from other photovoltaic strings, and the switch transistor is controlled by the control module.
Preferably, each of the photovoltaic strings includes one switch transistor; an anode of the switch transistor is connected with an anode of the intelligent photovoltaic module unit, a cathode of the switch transistor is connected with a cathode of the photovoltaic module, and a control electrode of the switch transistor is connected with an output end of the control module; and the photovoltaic module unit in any one of the photovoltaic strings is short-circuited in a case that the switch transistor in the photovoltaic string is turned on.
Preferably, each MPPT functional module includes: an adjusting switch, where a cathode of the adjusting switch is connected with an anode of the photovoltaic module unit and the adjusting switch is configured to adjust a duty ratio; a first diode and a second diode, where anodes of the first diode and the second diode are connected with a cathode of the photovoltaic module unit; an induction coil connected between a cathode of the first diode and a cathode of the second diode; and a capacitor, where one end of the capacitor is connected between the induction coil and the cathode of the second diode and the other end of the capacitor is connected with the cathode of the photovoltaic module unit, and the cathode of the first diode is connected with an anode of an adjusting switch. The switch transistor includes a first switch transistor and a second switch transistor, an anode of the first switch transistor is connected with a connecting end at which the induction coil and the capacitor are connected, and a cathode of the first switch transistor is connected with the cathode of the second diode; a cathode of the second switch transistor is connected with the cathode of the photovoltaic module unit, and an anode of the second switch transistor is connected with the anode of the second diode; and the photovoltaic module unit in any one of the photovoltaic strings is disconnected in a case that the first switch transistor and the second diode in the photovoltaic string are turned off.
It is also provided a control/protection method for the intelligent solar photovoltaic module circuit according to the disclosure, the control/protection method includes:
detecting, by the CPU memory module, whether a fault appears or maintenance is required in the intelligent photovoltaic module unit;
outputting, by the CPU memory module, a signal to the control module in a case that the fault appears or the maintenance is required; and
outputting, by the control module, a signal to the switch transistor to short-circuit the intelligent photovoltaic module unit or disconnect the photovoltaic string from other photovoltaic strings.
Advantageous effects of the present disclosure are described as follows. Firstly, an MPPT structure is simplified, thereby reducing the application of power electronic devices, improving the efficiency and decreasing the cost; secondly, even if a single solar photovoltaic module is disconnected due to a fault, the output of the entire string is not affected, thereby greatly increasing the utilization rate of photoelectricity.
The present disclosure will be described in detail as follows in conjunction with the embodiments shown in accompany drawings.
As shown in
When a photovoltaic module unit has a fault or requires for maintenance, whether a photovoltaic module unit is short-circuited between the anode and the cathode of the photovoltaic module unit is controlled by controlling a switch transistor T. When the switch transistor T is turned on, the photovoltaic module unit is short-circuited between the anode and the cathode of the photovoltaic module unit, and there is no output to the outside by the photovoltaic module unit. Referring to
As shown in
By controlling the first switch transistor and the second switch transistor to be turned off, a single photovoltaic module unit can be isolated from the entire string without affecting the operating state of the entire string. Referring to
A control/protection method for the intelligent solar photovoltaic module circuit according to the above two embodiments includes: detecting, by the CPU memory module, whether a fault appears or maintenance is required in the intelligent photovoltaic module unit; outputting, by the CPU memory module, a signal to the control module in a case that the fault appears or the maintenance is required; and outputting, by the control module, a signal to the switch transistor to short-circuit the intelligent photovoltaic module unit or disconnect the photovoltaic string from other photovoltaic strings.
The foregoing embodiments are only to describe technical concepts and features of the disclosure. Those skilled in the art may understand content of the disclosure and perform implementation based on the above embodiments. The embodiments are not meant to limit the protection scope of the disclosure. All equivalent alternations or modifications made according to the spirit of the disclosure should fall within the protection scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201510100986.4 | Mar 2015 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2015/099482 | 12/29/2015 | WO | 00 |