During the operation of aircraft and other vehicles, lighting is important for both navigation and identification. Lighting units have traditionally been manually controlled and have required separate lighting units for spotlights and for wide-angle lights. Additionally, most lights are stationary while the area that needs to be illuminated may move, or the lights need to be relocated during movement of the vehicle to maintain the proper viewing area.
Various embodiments in accordance with the present disclosure will be described with reference to the drawings, in which:
Approaches in accordance with various embodiments can provide for improved operation of aircraft lighting, as well as applications in other vehicles and applications, with a fixed lighting assembly without moving parts. In particular, some examples use improved light housings and orientations to enable altering the directions the light is projected to, the width of the beams, as well as the intensity of the light emitted. These changes can be controlled manually or automatically, depending on the condition of the vehicle and the environment. The light can be switched into predetermined modes either automatically our selecting the mode by a user, and can be selected based on user preference, operational necessity, or for emergency use.
A fixed lighting assembly that is able to change between configurations, including from a floodlight to a spotlight and any configuration in between, allows for a substantial improvement in performance and safety of a vehicle. Additionally, the fixed lighting assembly includes the capability for the light beam to move across one or more axis to steer the light to a desired direction without the use of moving parts. Instead, the steering is performed using lenses, strategically placed LEDs, optics, and associated drivers to illuminate different areas and create a variety of beam shapes. Additionally, the brightness or intensity of the beam can also be changed without using moving parts. A control module may be used to automatically configure these changes. The fixed lighting assembly may be manually controlled to change to one or more preconfigured modes, such as a spotlight mode, flood light mode, landing mode, taxiing mode, etc. The preconfigured modes may be chosen automatically, or may be chosen using a dedicated switch by the user, therefore bypassing the control module. Depending on the situation, selection of the mode may be performed based on user preference, operational necessity, emergency use, or any other suitable condition.
Referring to
Lighting unit 100 is steerable and changeable between two or more modes. By way of example, modes may include a wide mode or a spot mode, among other options, such as a straight mode or a steering mode. In the straight mode, for example, one or more lights (e.g., lighting components, lighting devices, etc.) may be illuminated with a given intensity. However, in a steering mode, one or more lights may be illuminated with varying intensity along a particular direction, which may direct or otherwise focus the light in a particular direction while certain other lights are not illuminated or may be illuminated with a reduced intensity. Lighting unit 100 can be developed for use with an airplane or other flying device, and may be developed with both a landing light feature and a taxiing light feature. Lighting unit 100 is also steerable, allowing illumination across one or more axes. It should be appreciated that while embodiments may describe an airplane or a flying device, the present disclosure is not limited to such uses or configurations and may be used in a wide variety of applications, such as automobiles, fixed lighting systems, such as security or home lightings, and the like. Lighting unit 100 is configurable to allow for illumination ranging from a wide beam to a narrow spotlight beam, as well as other configurations. This ability to change configurations through the use of an adjustable beam allows for even more variations in directionality. The directionality allows for lighting unit 100 to put more light where it is needed, focusing light in a more efficient manner. It is therefore possible to concentrate more output in a single direction. Additionally, lower heat and lower amperage, or equal heat and equal amperage are achieved compared to a traditional lighting unit, but lighting unit 100 will also be able to send the light in different directions. Example embodiments regarding the adjustable beam are disclosed in Applicant's allowed U.S. Pat. No. 10,420,177, filed on Dec. 19, 2016, entitled “LED ILLUMINATION MODULE WITH FIXED OPTIC AND VARIABLE EMISSION PATTERN”, the entire disclosure of which is incorporated by reference herein. Additional example embodiments regarding the adjustable beam are disclosed in Applicant's allowed U.S. Pat. No. 10,400,994, filed on Dec. 19, 2016, entitled “LED ILLUMINATION MODULE WITH FIXED OPTIC AND VARIABLE EMISSION PATTERN”, the entire disclosure of which is incorporated by reference herein.
Lighting unit 100 is configured to steer the light beam across the at least one axis, such as a horizontal axis 180 or a vertical axis 190. Lighting unit 100 is able to project light to the left, to the right, and any position in between along the axis. Furthermore, with respect to vertical axis 190, lighting unit 100 may project lights to the top, to the bottom, or any positions in between. Having lighting unit 100 connected with a controller or a dedicated switching input, the light beam could be coupled with the steering of the aircraft while taxiing, on an airport surface, such as a runway. In certain instances, if the aircraft includes multiple lighting units 100, certain units could be paired with the steering of the aircraft, while other lighting units 100 could be directed in front of the aircraft. Coupling lighting units 100 with the steering of the aircraft allows the light to turn left or right as needed and illuminate an area of desired travel by a pilot without needing to manually direct the aircraft lighting system or change the direction of the airplane simply to illuminate a desired area.
Lighting unit 100 is contemplated to include one or more LEDs, LED dies, or other suitable light emitting components. Additionally, lighting unit 100 may include positioned optics and/or lenses that are able to project light to different areas. The light emitting source may be LED, high intensity discharge (HID), incandescent, or other suitable lighting source and may include visible, infrared, and/or other wavelengths. The optics may consist of polycarbonate, silicon, or any other suitable material, and lenses may be clear, diffused, parabolic, Fresnel, or other suitable design. Lighting unit 100 may also include firmware responsible for directing the lighting intensity adjustments and for interacting with and receiving commands via CAN bus, or other suitable methods, from a lighting controller. Additionally, lighting unit 100 may have the ability to perform an authentication with a control module to verify compatibility.
Still referring to
Referring to
Referring now to
Referring now to
Still referring to
Lighting unit can also be employed during taxiing of an aircraft. In certain circumstances, the direction of light beam can be turned as the vehicle is turning during taxiing. In other circumstances, lighting unit can be aimed toward another aircraft while taxiing to provide improved recognition of the aircraft. It should be understood that many airplanes have separate lights for landing and for taxiing. In most instances, landing lights are spotlights and taxi lights are floodlights. Lighting unit could replace the two separate landing and taxiing light with one light feature. Additionally, landing lights are usually located out on the wing tips of the airplane and are not generally effective at illuminating in front of the airplane. However, lighting unit allows the beam to be steered toward the centerline of the airplane, in order to illuminate the area in front. For example, responsive to a signal, one or more lighting devices may have their intensity increased or decreased. By decreasing intensity to certain devices, but increasing the intensity in others, the beam will appear to shift or otherwise be directed toward the desired area. Such shifting may occur by adjusting a voltage applied to the lighting device, among other options. Therefore, the need for a separate front light on the airplane is removed. In examples where lighting unit is incorporated onto a helicopter, lighting unit can steer across different axes as well as needed.
Referring now to
It is contemplated that directional steering of lighting unit is controlled by a control box. An automated controller is used to steer the beam of lighting unit. The automated controller is able to take input from the aircraft, which may be from avionics or from certain switches, such as a gear level or any other suitable input mechanism. Using the inputs, the automated controller can turn the lights on and off, steer the light, and perform any other available manipulation of lighting unit. For example, the control box may receive one or more signals from the aircraft, such as via a wired or wireless connection. By way of example, the control box may receive a signal indicative of the AOA of the aircraft and/or a signal regarding pitch changes. These signals may then be evaluated and converted to determine how to adjust illumination of the lighting devices of the lighting unit in order to maintain a desired output location. For example, a standard configuration may be established such that one or more beams is emitted at a particular angle, relative a vertical axis extending through a drive shaft. This particular angle may then be used to determine an illuminated area with respect to the one or more beams. Accordingly, adjustments to the aircraft position, such as a change in pitch, may be used to adjust the illumination of the lighting devices such that the illuminated area is maintained. One controller can control multiple lighting units on a vehicle, or each lighting unit on a vehicle may be controlled by a single controller. Without an operational input, lighting unit must be manually controlled by a switch or number of switches. Additionally, in the absence of a data input, lighting unit could be configured to operate in a safety mode, as determined by use case. Defaulting to a landing, or spotlight, mode is one exemplary example.
Lighting unit can be used with a lighting controller as disclosed in Applicant's filed U.S. patent application Ser. No. 17/172,826 filed on Feb. 10, 2021, entitled “Aircraft Lighting System and method,” the entire disclosure of which is incorporated by reference herein. The controller connected to lighting unit may receive avionics information and specific sensor information from the airplane, such as gear switch, throttle switch, or any other suitable sensor information. This information can be used to determine the operation of lighting unit at any given time, as well as enable steering of lighting unit according to the condition of the vehicle.
Lighting unit would be used with a combination of power inputs and/or Controller Area Network (CAN) bus controls to alter configurations during operation of the vehicle. The primary input to lighting unit would be via a constant power (+) and a common ground (−). A CAN hi/low pair of wires can then control lighting unit's mode via firmware on the light. Commands can be sent from a control module to lighting unit to adjust the output as desired. Additional dedicated power wires can deliver manual override control to lighting unit to “force” lighting unit to a manually selected state. Lighting unit may have 2 additional positive (+) wires for taxi (flood) or landing (spot) manual selections. The prioritization of these inputs can be configured via firmware on lighting unit to best suit the requirements of the vehicle. For safety, the landing (spot) manual selection utilizes circuitry to bypass any on-device microcontroller to ensure function in case of failure of the microcontroller.
Lighting unit may incorporate active cooling, which allows for illumination of all elements of lighting unit and higher, sustained output. For example, force-air cooling may be utilized to manage LED thermals, such as by including one or more fans within lighting unit to direct an air flow over different parts or over one or more finned heat sinks. Additionally, liquid cooling may be implemented, where a fluid (e.g., water, a refrigerant, etc.) may be pumped through tubing that is arranged proximate different components. Furthermore, passive cooling may also be utilized, such as various heat sinks. A Peltier cooler may be utilized.
Lighting unit may be produced in any number of designs in order to fit common aviation form factors. Lighting unit may fit it a common rectangular space. One size may include a width of four inches and a height of three and one fourth inches. However, lighting unit can be produced in any other form factor that may be required. Lighting unit may include standard aircraft round sizes commonly associated as PAR36, PAR46, and PAR64.
Additionally, lighting unit may be produced as any common size within the industry, or may be adapted to fit other unique sizes.
Lighting unit may include firmware and/or software in order to be fully operational. For example, the lighting unit may include different electronic components to facilitate operations, such as various processors or memories, which may be deployed as a system on chip (SoC) or in another implementation. Firmware may be utilized to initiate different aspects of the components and enable an operating system to load and execute one or more tasks. Various software systems may be deployed, which may be tuned or otherwise specified in accordance with a use case for the lighting unit. For example, different software implementations may be used for aerial vehicles as opposed to ground vehicles. Additionally, software may be utilized to allow other systems to communicate or otherwise interface with the lighting unit. The firmware and/or software may use wired CAN-based. Wireless CAN, ethernet, MOST, FlexRay or another suitable system may be used to control lighting unit.
The lighting unit may include six wires in the rear of the assembly to allow for operation. One wire is a common ground wire, a second wire is an aircraft ground wire, and two other wires are power wires, one for a taxi light switch and the other a landing light switch. The last two wires are small CAN bus wires which provide the instruction from the CAN controller to control the light output and enable steering of lighting unit. Other additional inputs may include an override for the pilot to switch on the taxi light state manually, or manually switch on the landing light.
It is contemplated that lighting unit may be suitable for use in a variety of applications where the ability to steer the light beam or vary the beam from a spotlight to a flood light may be beneficial. For example, lighting unit may be used in an automotive or marine application. Additionally, in examples where a larger lighting unit is used, directional control of the light beam may be across multiple axes, or to any specific coordinates within a given area. Further, lighting unit may be configured to be used for other lighting applications other than those that require forward illumination. The steering capability can be adapted to an aircraft position light or an aircraft anticollision light that is capable of being directed at or intensified to a specific direction when needed. Lighting unit can be used to intensify the lights on the aircraft as it becomes closer in proximity to another aircraft during flight, improving its visibility and therefore improving safety. Lighting unit can aim the projected beam toward another aircraft, regardless of proximity. Lighting unit can function as a steerable spotlight, both using the solid-state function as detail above or in conjunction with a mechanically steered base for greater range of motion. These features may also be utilized with any other type of vehicle including automobiles and marine vessels.
Lighting unit may be paired with a control module and optionally a mechanically steerable base. This steerable lighting capability may be used with a wireless tracking device, or other connected primary device, that pairs to the control module to aim or secondary lighting unit to the primary device. One application for this feature includes a fleet of aircraft to interconnect all of lighting units on every plane controlled by a single controller device. A further application includes a helmet-mounting cueing system for an aircraft pilot, such as a helicopter pilot, to point lighting unit in the direction the helmet is facing. This would provide a hands-free method of illuminating what the pilot is looking at in an automatic and intuitive manner. It is possible to position lighting unit at a traffic stop or other scene, where a police officer or emergency worker may wear a tracker that wirelessly connects to the control module. The control module may be located in a vehicle or another suitable location, such as one with a power source. The user may be able to wirelessly connect one or more lighting units to the controller. Lighting unit may operate in accordance with any number of programmed modes. One such mode may include tracking the police officer with a spotlight, keeping the officer and the surrounding area illuminated without further input from the user.
Various embodiments may be directed toward a steerable, changeable lighting device that may be incorporated into one or more mounting locations, such as locations associated with a movable vehicle (e.g., an aerial vehicle, a marine vehicle, a ground vehicle) or to a fixed location (e.g., a pole, a building, a structure, etc.). Such a system would provide a lighting unit that can operate in multiple operation modes, such as either a wide or a spot mode, while also introducing directionality of a light beam without incorporating additional moving parts, thereby simplifying operations, improving reliability, and enabling integration into a wider variety of locations. As a result, a greater percentage of a light output can be concentrated in a single direction or toward a single location responsive to one or more instructions, while still permitting operation in a wide or non-focused mode in other instances. Moreover, embodiments provide for lower heat, lower amperage operations.
Embodiments may be directed toward a lighting unit that includes one or more different lighting devices, which may include a set or array of LEDs, among other options. A control system may be utilized to steer or otherwise control light emission for the lighting unit, such that different intensities may be used at different lighting devices based on a given situation. For example, if the lighting unit had three columns of lights, to illuminate toward a far right side, the left column would be dimmed, the middle column would maintain an illumination level, and the right column may increase its illumination level. An emitted bream from the lighting unit would then appear to steer toward the right due to the adjustment in intensities for the lighting devices forming the units. It should be appreciated that various embodiments may also incorporate different lens configurations, among other design options, in order to further steer or otherwise focus light in a desired location. Accordingly, different columns or rows of lights, or individual lighting devices, may be pre-aimed or otherwise configured to direct a light beam in a predetermined position, and then based on a set intensity and/or behavior of associated lighting devices, may be used to steer or otherwise direct beams in a desired direction.
Various embodiments may enable a lighting unit that includes an LED die with a number of lighting devices or lighting elements spaced throughout the die. Optics associated with the die may be of a single piece injection, such as a single piece silicon injected lens. This die may then be incorporated into the unit that may include different dimensions or form factors based, at least in part, on a desired application. For example, different packages may include different components based on expected operating conditions, thereby enabling streamlined products for their particular applications.
This application claims priority to and the benefit of U.S. Provisional Application No. 63/357,846, titled “INTELLIGENT, STEERABLE, AND CONFIGURABLE LIGHT FOR AIRCRAFT,” filed Jul. 1, 2022, the full disclosure of which is hereby incorporated by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
63357846 | Jul 2022 | US |