Intelligent text-to-speech conversion

Information

  • Patent Grant
  • 8996376
  • Patent Number
    8,996,376
  • Date Filed
    Saturday, April 5, 2008
    16 years ago
  • Date Issued
    Tuesday, March 31, 2015
    9 years ago
Abstract
Techniques for improved text-to-speech processing are disclosed. The improved text-to-speech processing can convert text from an electronic document into an audio output that includes speech associated with the text as well as audio contextual cues. One aspect provides audio contextual cues to the listener when outputting speech (spoken text) pertaining to a document. The audio contextual cues can be based on an analysis of a document prior to a text-to-speech conversion. Another aspect can produce an audio summary for a file. The audio summary for a document can thereafter be presented to a user so that the user can hear a summary of the document without having to process the document to produce its spoken text via text-to-speech conversion.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention pertains to text-to-speech processing and, more particularly, to enhanced text-to-speech processing for improved document review.


2. Description of the Related Art


For various reasons, documents have been converted to speech (spoken text) using conventional text-to-speech processing. A user desiring to review a document can then listen to the resulting speech instead of having to read through the document. For users with impaired vision, listening to the resulting speech for a document is particularly important. Regardless of the reasons for listening to speech associated with a document, conventional text-to-speech processing is often not able to impart to the user (listener) contextual information about the text that is being spoken. Further, in recent years, documents have become more complex and more diversified. As a result, today's documents can have many different formats and contain various different document elements, including links, images, headings, tables, captions, footnotes, etc., which makes text-to-speech processing more challenging. Thus, there is a need to provide improved text-to-speech processing that can present contextual information to listeners.


For users desiring to listen to documents while on-the-go, text-to-speech processing can generate audio output that can be listened to while on-the-go. However, text-to-speech processing is processor-intensive, making it impractical for many portable devices that have limited processing power. Hence, there is also a need to manage creation, delivery and consumption of audio outputs that provide speech associated with documents.


SUMMARY OF THE INVENTION

The invention pertains for techniques for improved text-to-speech processing. The improved text-to-speech processing can convert text from an electronic document into an audio output that includes speech associated with the text as well as audio contextual cues.


The invention can be implemented in numerous ways, including as a method, system, device, or apparatus (including a computer readable medium or a graphical user interface). Several embodiments of the invention are discussed below.


As a computer-implemented method for converting text to speech, one embodiment of the invention can, for example, include at least: selecting a document to be converted to speech; parsing the selected document; converting text in the selected document to speech; and creating an audio file based on the converted text.


As a computer-implemented method for converting text to speech, another embodiment of the invention can, for example, include at least: identifying text elements in a document; determining which of the identified text elements will be spoken; determining an order in which the identified text elements will be spoken; determining at least one audio cue that will accompany the at least one of the spoken text elements; and associating the at least one determined audio cue with the at least one of the spoken text elements corresponding thereto.


As a computer implemented method for generating an audio summary for a document, one embodiment of the invention can, for example, include at least: parsing a document; generating an audio summary for the parsed document; and associating the audio summary to the parsed document.


As a method for presenting a text-based document in an audio fashion, one embodiment of the invention can, for example, include at least: providing a text document having at plurality of embedded text-to-speech markup tags; and converting the text document to an audio file using text-to-speech conversion and using the embedded text-to-speech tags.


As a text-to-speech conversion system, one embodiment of the invention can, for example, include at least: a text document having at plurality of embedded text-to-speech markup tags; and a text-to-speech converter configured to convert the text document to an audio file in accordance with the embedded text-to-speech tags.


As a computer readable storage medium including at least computer program code for converting text to speech tangibly embodied therein, one embodiment can, for example, include at least: computer program code for selecting a document to be converted to speech; computer program code for parsing the selected document; computer program code for converting text in the selected document to speech; and computer program code for creating an audio file based on the converted text, where the audio file includes at least one audio cue.


Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:



FIG. 1(
a) is a block diagram of a text-to-speech processing system according to one embodiment of the invention.



FIG. 1(
b) is a block diagram of a text-to-speech processing system according to another embodiment of the invention.



FIG. 1(
c) is a block diagram of a text-to-speech processing system according to another embodiment of the invention.



FIG. 2 is a flow diagram of a document to audio file conversion process according to one embodiment of the invention.



FIG. 3 is a flow diagram of a text-to-speech processing process according to one embodiment of the invention.



FIG. 4 is a flow diagram of a text-parsing process according to one embodiment of the invention.



FIG. 5 is a flow diagram of an audio summary generating process according to one embodiment of the invention.



FIG. 6 is a flow diagram of an audio summary file-tagging process according to one embodiment of the invention.



FIG. 7 is a flow diagram of an audio summary presentation process according to one embodiment of the invention.



FIG. 8 is a flow diagram of an audio summary presentation process according to one embodiment of the invention.



FIG. 9(
a) is a screenshot of an exemplary text document.



FIG. 9(
b) is a screenshot of an exemplary marked up text document that has been prepared for conversion to speech.





DETAILED DESCRIPTION OF THE INVENTION

The invention pertains for techniques for improved text-to-speech processing. The improved text-to-speech processing can convert text from an electronic document into an audio output that includes speech associated with the text as well as audio contextual cues.


One aspect of the invention provides audio contextual cues to the listener when outputting speech (spoken text) pertaining to a document. The audio contextual cues can be based on an analysis of a document prior to a text-to-speech conversion. In one embodiment, audio contextual cues can announce the context of a particular block of text, for example by saying “this is a title”, “this is a footnote”, etc. In other embodiment, audio contextual cues for the content of a document can also be imparted, for example, by any of: altering speed of the text as it is read, changing a voice used by the text-to-speech processor, playing a sound to announce a contextual change, speaking text while a background noise is played, changing the pitch of the voice speaking the text, playing a sound to indicate italicized or bolded text, playing a sound to indicate a misspelling or grammatical mistake, or altering volume of the voice speaking the text.


In one embodiment, the invention can process hyperlinks in a document in an intelligent manner. In one implementation, when a block of text includes a hyperlink, a text-to-speech processor can indicate (e.g., by auditory cue) to the user that a string of text (possibly a word or phrase) is a hyperlink. As one example, a low tone in the background can be played while a text-to-speech processor speaks the hyperlink. As another example, a tone or click can be played before and/or after the hyperlink. As still another example, a text-to-speech processor can use a distinct voice to let the user know that text being read is a hyperlink.


In one embodiment, audio contextual clues can be influenced by user preferences. Audio contextual cues can be, for example, set as user preferences in a software control panel associated with a text-to-speech processor.


According to another aspect of the invention, an audio summary can be generated for a file. The audio summary for a document can thereafter be presented to a user so that the user can hear a summary of the document without having to process the document to produce its spoken text via text-to-speech conversion.


Documents as used herein pertain to electronic documents. The electronic documents are electrically stored in an electronic file on a computer readable medium. For example, a document used herein can be of various different types and formats, including documents concerning text, word processing, presentation, webpage, electronic mail (e-mail), markup language, syndication, page description language, portable document format, etc.


Embodiments of the invention are discussed below with reference to FIGS. 1-9(b). However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments.



FIG. 1(
a) is a block diagram of a text-to-speech processing system 100 according to one embodiment of the invention. The text-to-speech processing system 100 includes a host computer 101, a portable media player 121, and a server computer 129. The host computer 101 can be connected to the portable media player 121, for example, by using a USB cable or other cable, or by using a wireless network connection such as WiFi or Bluetooth. The host computer 101 can connect to the server computer 129 over a network 127, for example the Internet. The host computer 101 can be connected to the network either by a cable, for example an Ethernet cable, or by using a wireless network connection. The host computer 101 can include a file system 105, which is used to access files 109 and directories 107 on the host computer 101.


The host computer 101 can also include one or more software applications, for example a media management application 113, a network application 115, and a text-to-speech conversion application 103 (or text-to-speech converter). The media management application 113 can be, for example iTunes™ software program, produced by Apple Inc. of Cupertino, Calif. The media management application 113 can be used to organize and present (e.g., play) media files 111. Media files 111 can include audio files such as MP3s, AACs or RSS feeds, video files, and any other media content file. The media management application 113 can also be used to manage the transfer of audio files 111 between the host computer 101 and the portable media player 121, for example by performing a synching operation between the host computer 101 and the portable media player 121. For ease of use on the portable media player 121, the audio files 111 can be stored in a predetermined organization. The predetermined organization can facilitate searching, navigation and/or playback of the audio files 111 on the portable media player 121. For example, like types of documents (e.g., emails, webpages, etc.) can be separately grouped. The network application 115 can include any of a wide variety of network capable applications including, but not limited to, Web browsers, e-mail applications, and terminal applications. Also, the network application 115 can be implemented as a module or part of the media management application 113.


The text-to-speech conversion application 103 can be used to convert electronic documents (e.g., text files) into audio files 111. Alternately, the text-to-speech conversion application 103 can be used generate speech output 119 (e.g., by using a speech synthesizer). The generated speech output 119 can be presented to a user 125 using an audio output device 117. The audio output device 117 can be a sound card, for example, or other built-in sound hardware such as an audio output device built into a motherboard. Speech output 119 can be presented to the user 125 by way of a speaker or headphones, for example. The text-to-speech conversion application 103 can interact with a network application to present a webpage or the contents of an e-mail mailbox to the user 125. In one embodiment, the text-to-speech conversion application 103 can be used to convert documents, including webpages, RSS feeds, e-mails, text files, PDFs, or other documents having text into audio files 111 at the host computer 101. The text-to-speech conversion application 103 can also be used to produce files 131 that reside on the server computer 129. The files 131 that reside on the server computer can include audio files as well as any of the documents mentioned above. The audio files 111 can, in one embodiment, be copied from the host computer 101 to the portable media player 121. Further, the portable media player 121 can be capable of presenting speech output 123 to the user 125.



FIG. 1(
b) is a block diagram of a text-to-speech processing system 150 according to one embodiment of the invention. The text-to-speech processing system 150 can be, for example, implemented by the text-to-speech conversion application 103 of FIG. 1(a).


The text-to-speech processing system 150 can include a text-to-speech analyzer 151. The text-to-speech analyzer 151 can analyze a document 153 and output a text-to-speech processing script 155. The document text-to-speech analyzer 151 can, for example, identify different elements of the document 153, such as the table of contents, publishing information, footnotes, endnotes, tables, figures, embedded video or audio, document abstract, hyperlinks, proprietary elements (e.g., such as Adobe Flash content or Apple QuickTime™ content), and document meta-information. The text-to-speech processing script 155 can then be created by the text-to-speech analyzer 151 with embedded audio context cues to be interpreted by a text-to-speech processor 157.


In one embodiment, the content of a document 153 to be converted to speech can be rearranged in the text-to-speech processing script 155 according to user preferences. For example, footnotes in the document 153 can be marked to be read in-line rather than at the bottom of the page, page numbers can be announced at the start of the page rather than at the end, a table of contents can be moved or omitted entirely, etc. The text-to-speech processor 157 can output an audio file 159 or can output speech 161 directly.


In one embodiment, in the case where the text-to-speech processor 157 output is converted into an audio file 159, audio chapter information can be inserted into the text-to-speech processing script 155 for conversion into chapter or track markers within the audio file (e.g., so a user can navigate within the audio file by skipping forward or backward by chapter).


The document text-to-speech processing script 155 can be stored for later use. For example, the document text-to-speech script 155 can be stored in a header of a file, in the directory that contains the file, or in some other linked file. In one embodiment, the document text-to-speech analyzer 151 can resolve hyperlinks, either for immediate processing or for later use. In this case, a user can set a preference instructing the document text-to-speech analyzer 151 how to resolve hyperlinks (e.g., how many levels of hyperlinks to resolve). Thus, references cited to within a document, for example in footnotes or endnotes, can be processed as well and inserted into the audio file 159 by the text-to-speech processor 157.


In one embodiment, a text-to-speech processing script 155 can be embedded in a document upon creation of the document, with the assumption that some users will want to have the document read to them rather than reading it themselves. Alternatively, a standardized markup language (e.g., a “text-to-speech markup language”) can be used during creation of a document, in order to allow the creator of the document to exercise creative control over future text-to-speech conversions. For example, a creator (author) of a document can, in advance, pick the voice that a text-to-speech processor will use to read a document. In another example, a creator can pre-select voices for the dialogue of characters in a document, such as a book. In a third example, a webmaster seeking to design a webpage accessible to the visually impaired can incorporate commands to be processed by a text-to-speech processor, rather than relying on a document text-to-speech analyzer to correctly interpret his webpage design.


In the above description, such as illustrated in FIG. 1(b), the document text-to-speech analyzer 151 and the text-to-speech processor 157 are shown as separate from each other. However, the text-to-speech analyzer 151 and text-to-speech processor 157 need not be separate. Further, the text-to-speech processing script 153 is also not required in other embodiments. Thus, in one embodiment, a single software application combining the functions of the text-to-speech analyzer 151 and the text-to-speech processor 157 can process a document 153 and output audio, either as speech output 161 (e.g., reading the document to the user on demand) or as an audio file 159 for later playback.



FIG. 1(
c) is a block diagram of a text-to-speech processing system 165 according to one embodiment of the invention. The text-to-speech processing system 165 can receive a document 167 at a file extractor 171 that can be used to retrieve and/or examine (i.e., open) the document 167. The file extractor 171 can include a variety of modules capable of processing different types of documents 167. For example, a file extractor 171 can include an HTML file extractor 173, a PDF file extractor 175, a text file extractor 177, and RSS extractor 179, and an e-mail extractor 181, as well as other modules for extracting other types of documents (Microsoft Word files, RTF files, etc.) The file extractor 171 can output the contents (including at least text) of an extracted file to a speech scripting generator 183. The speech scripting generator 183 can take text that has been extracted by a file extractor 171 and apply heuristics (e.g., rules) to markup the text with speech markup tags. The speech markup tags can indicate when different speech attributes (e.g., the speed to read text, the voice used, or the pitch of the voice used) are to be applied.


The speech scripting generator 183 can output instructions (i.e., a script) to an audio file creator 185 which can be used to create an audio file based on the script supplied by the speech scripting generator 183 as well as the speech of the extracted text. For example, the audio file creator 185 can incorporate a text-to-speech processor and a sound recording application, where the output of the text-to-speech processor is recorded and stored as an audio file. The audio file creator 185 can output a compressed audio file 187, for example an MP3 or AAC file. Alternately, the audio file creator 185 can output an uncompressed audio file, for example an AIFF or WAV file. In an alternate embodiment, the audio file creator 185 can output speech to present to a listener, for example by using an audio output device 117 as described above in reference to FIG. 1(a), instead of generating a compressed audio file 187.



FIG. 2 is a flow diagram of an audio file creation process 200 according to one embodiment of the invention. The audio file creation process 200 can be implemented using, for example, the text-to-speech processing system 100 of FIG. 1(a), the text-to-speech processing system 150 of FIG. 1(b), or the text-to-speech processing system 165 of FIG. 1(c).


The audio file creation process 200 begins by selecting 201 a document for conversion into an audio file. A document can be any electronic file or link that contains text. For example, the document can be a text file, a PDF file, a webpage, a hyperlink, an RSS feed, or an e-mail. Text files can be of any format, for example: plain text, RTF or other proprietary file formats generated by common word processing software; files formatted using a page description language such as a PostScript or PDF; files formatted using a markup language such as HTML or XML; or files formatted using a typesetting program such as TeX. The audio file creation process 200 continues by parsing 203 the selected document. Parsing 203 can involve examining, interpreting and/or identifying all the various elements of the selected document. For example, parsing 203 can be used to identify the various text elements in the selected document, including, but not limited to, author information, document title, header text, footer text, body text, table captions, picture captions, abstract text, footnotes, endnotes, table of contents, hyperlinks, and copyright information. In addition, parsing 203 can involve identifying supplemental elements that may be present in the selected document. Examples of supplemental elements are markup tags, typesetting information, binary code, embedded video, pictures, proprietary content such as Flash or QuickTime, and metadata. In one embodiment, when hyperlinks are present, one or more hyperlinks can be opened and resolved during the parsing 203 of the selected document. For example, if the selected document is an RSS feed, the parsing 203 can resolve a RSS URL for the RSS feed, and examine the text or webpage associated with the RSS URL. As another example, if the selected document pertains to e-mail, parsing 203 can include retrieving e-mails from a server.


Once the document has been parsed 203, the document text is converted 205 to speech consistent with the document parsing 203 using a text-to-speech processor, for example the text-to-speech processor 107 of FIG. 1(b). Different types of text elements can be converted to speech differently, using different speech cadence, inflection, or tone, or by indicating different types of text using auditory cues. The audio file creation process 200 continues by creating 207 an audio file using the speech created by the text-to-speech conversion of step 205, for example, by recording (i.e., storing) the output of the text-to-speech processor. Alternately, a text-to-speech processor can create 207 an audio file directly.


Next, the audio file can be transferred 209 to a media player application. In the case where the audio file is transferred to a media player application, the media player application can be a media management application for example iTunes™ software program, produced by Apple Inc. of Cupertino, Calif. Finally, the audio file can be transferred 211 to a portable media player, for example by performing a synching operation between the portable media player, (e.g., an iPod™ or other portable media player), and a personal computer. The transfer 211 of the audio file to the portable media player can be managed using the media management application. Alternately, the audio file can be transferred 211 to a media player application directly, without first performing step 209.


In one embodiment, the audio file can be compressed 213 before being transferred 209 to the media player application. Compression may be necessary because many standard audio files are created using “lossless” recording algorithms, which typically produce files that require a large amount of memory storage space. For example, in the audio interchange file format (.aiff), one minute of audio can require 10 MB or more of storage space. Thus, it is common to compress audio, for example, into a “lossy” file format, such as MP3 or AAC, which take up much less memory storage space. Alternately, in one embodiment, a compressed audio file can be created in step 207, thus eliminating the need for compression step 213.



FIG. 3 is a flow diagram of a text-to-speech processing process 300 according to one embodiment of the invention. The text-to-speech processing process 300 can replace and/or supplement the parsing step 203 and the text-to-speech conversion step 205 of FIG. 2.


The text to speech processing process 300 begins by identifying 301 text elements in a given document. The identifying 301 of text elements in a document can include, for example, parsing the document as described in block 203 of FIG. 2. Other elements in the document, such as supplemental elements, including pictures, embedded video, markup language tags, and metadata, can also be identified 301. The supplemental elements may also include text that is not normally presented to a reader when the document is displayed, such as copyright information or document revision information.


Next, the text-to-speech processing process 300 determines 303 which text elements will be spoken. Examples of text elements that can be spoken include, but are not limited to, titles, body text, footnotes, picture captions, table captions, and page numbers. Examples of text elements that might not be spoken include markup tags, tables of contents, and other text elements that may be difficult to convert to speech. Those particular text elements that are not to be spoken can be designated as non-spoken text elements during the determination 303. FIG. 4, as discussed below, is a flow diagram of a text-parsing process 400 according to one embodiment of the invention.


The text to speech processing process 300 continues by determining 305 the order in which to speak spoken elements. For example, the text-to-speech processing process 300 can determine 305 that footnotes contained in a document are to be spoken in line (i.e., spoken as they occur in the document). Other examples of text elements that may be spoken in a different order than they occur in the text document include page numbers, which can be spoken at the beginning of the page rather than at the end, author information, and endnotes. Next, audio cues that will accompany spoken elements can be determined 307. Audio cues include audio contextual cues that are presented to the listener in order to better convey the content of a particular document. As noted above, audio contextual cues can be as simple as announcing the context of a particular block of text, for example by saying “this is a title”, “this is a footnote”, etc. Audio contextual cues for the content of a document can also be imparted, for example, by altering the speed of the text as it is read, changing the voice used by the text-to-speech processor, playing a sound to announce a contextual change, speaking the text while a background noise is played, or altering the volume of the voice speaking the text.


Next, the spoken elements as determined in step 303 are associated 309 with the audio cues that were determined in step 307. The association 309 of the spoken elements and the audio cues can produce a tagged document or a speech script for use with a document.


In one embodiment, the invention can process hyperlinks in a document in an intelligent manner. In one implementation, when a block of text includes a hyperlink, a text-to-speech processor can indicate (e.g., by auditory cue) to the user that a string of text (possibly a word or phrase) is a hyperlink. As one example, a low tone in the background can be played while a text-to-speech processor speaks the hyperlink. As another example, a tone or click can be played before and/or after the hyperlink. As still another example, a text-to-speech processor can use a distinct voice to let the user know that text being read is a hyperlink. Besides auditory cues for denoting hyperlinks, hyperlinks can point to other documents and such other documents can be processed for text-to-speech and/or audio cues.



FIG. 4 is a flow diagram of a text-parsing process 400 according to one embodiment of the invention. The text-parsing process 490 can be used to resolve links (e.g., hyperlinks) in a document. For example, the text-parsing process 400 can be performed by the text-to-speech analyzer 151 of FIG. 1(b).


The text-parsing process 400 begins by selecting 401 text within an electronic document to be parsed. Next, a determination 403 determines if links (e.g., hyperlinks) in the selected text are to be resolved. For example, if a user can indicate (e.g., with a preference setting) whether links are to be resolved. Resolving a link can involve following the link to another document, following the link to another place on the same document, or simply determining where the link leads. In some cases, such as when the document being processed is a webpage, it may be undesirable to follow all links, since webpages sometimes contain numerous links. In other cases, it may be desirable to resolve one or more links in-line, such as when the webpage contains footnotes. Alternatively, the text-parsing process 400 may simply determine that a document contains one or more links without resolving any of the links. Thus the determination 403 can be used to determine which, if any, links are to be resolved in a particular document or block of text.


If the decision 403 determines that unresolved links are not to be resolved, the selected text is parsed 417 and the parsing process 400 ends. Parsing 417 can be, for example, the parsing 203 as described in reference to FIG. 2. On the other hand, if determination 403 determines that one or more unresolved links are to be resolved, then the text-parsing process 400 continues to decision 405 which determines if there are unresolved links in the selected text. If decision 405 determines that there are no unresolved links in the selected block of text, then the selected text is parsed 417 and the text-parsing process 400 ends. Alternatively, if decision 405 determines that there are unresolved links in the selected text, then the first unresolved link is resolved 407. Next, a decision 409 determines if the link that has been resolved 407 is a link to new text, such as a link to a footnote or a new document. If decision 409 determines that the resolved link is not a link to new text, for example if the link is a link (e.g., a bookmark) to a different section of the same document, then the text-parsing process 400 proceeds to decision 415. On the other hand, if decision 409 determines that the resolved link is a link to new text, a decision 411 determines if the new text is to be converted. In the case wherein the new link is a link to a new document, for example a different webpage, decision 411 can determine that the new text is not to be converted. Alternatively, in the case where the new link is a link to a footnote, decision 411 can determine that the text is to be converted. The decision of whether to convert a particular block of text can be, for example, predetermined by a user (i.e., by setting a preference setting) or predetermined by the designer of the program used to parse the document (i.e., set by default in a program). If decision 411 determines that the new text is to be converted, the new text is appended 413 to the text that was previously selected 401 to be parsed. At this point in the text-parsing process 400, the text that will eventually be parsed in step 417 includes the original text selected 401 and the new text appended 413.


Following block 413, following the decision 409 if the resolved link is not a link to new text, or following the decision 411 if the new text is not to be converted, a decision 415 determines if there are more unresolved links in the selected text. If decision 415 determines that there are more unresolved links, the text-parsing process 400 continues to decision 405 and subsequent blocks. If decision 415 determines that there are no more unresolved links, the text-parsing process 400 continues to block 417 where the selected text together with any appended new test can be parsed. Following block 417, the text-parsing process 400 can end.


In one embodiment of the invention, in the case where the new link is a link to a new document, the new document can be converted and stored as a separate audio file. Furthermore, links between one or more audio files created by, for example, the text-to-speech processing system of FIG. 1(b) can be inserted as chapter or section markers in the audio files. Later, when a user listening to an audio file created by a text-to-speech processor is notified (e.g., by an audio cue) that a hyperlink or link to another document has been reached, that user could, if desired, skip forward to that document.



FIG. 5 is a flow diagram of an audio summary generating process 500 according to one embodiment of the invention. The audio summary generating process 500 can be used to create an audio summary for a file. The resulting audio summary can be accessed without opening the file. In one embodiment, the audio summary is implemented as “audio metadata”, whereby metadata that is incorporated into a file is converted into speech. For example, many audio files, such as MP3 files or AAC files, contain metadata (i.e., data and that describes the data contained in the file). The audio summary generating process 500 can be used to convert the metadata contained in the MP3 or AAC file into an audio format (i.e., audio metadata) using a text-to-speech processor. One advantage of converting metadata into audio metadata is that a user can determine the contents of a file without having to look at or open that file.


The audio summary generating process 500 can begin by generating 501 an audio summary for a document. As examples, the document can be a music file, a text document, or a webpage. In the case of a music file, the generating of an audio summary can involve examining the metadata of the music file (typically contained in the file headers) and converting some or all of the metadata to audio. In the case of a text file, the generating 501 of the audio summary can include parsing the document to determine the author and title of the document. Further, in the case of the text file, the generating 501 of the audio summary can include identifying abstract or summary text and including audio for such text in the audio summary. In the case of a webpage, a generating 501 of the audio summary can include parsing the webpage for metadata, identifying title, author and/or abstract information for the webpage.


E-mail and RSS feeds typically include text and thus can also be considered documents. In the case of e-mail, the generating of the audio summary can include summarizing the contents of an e-mail inbox. For example, if an e-mail inbox contains five messages, the audio summary generating process can parse the headers of the five e-mails and compose a summary of the authors and subjects of the e-mails. Similarly, in the case of an RSS feed, the audio summary generating process can generate 501 a summary of the sources and subjects of new or updated RSS feeds.


In any event, after the audio summary is generated 501, the audio summary generating process 500 can link 503 the audio summary to the document. The linking 503 of the audio summary to the document can include, for example, embedding the audio summary into a header of a file containing the document. Alternately, the linking 503 of the audio summary to the document can store the audio summary in a directory associated with the document and provide a pointer (i.e., a software pointer) to the document.



FIG. 6 is a flow diagram of an audio summary file tagging process 600 according to one embodiment of the invention. The audio summary file tagging process 600 can be used to tag one or more files with audio summary data. The audio summary file tagging process 600 can be performed as a batch operation, for example, on a folder of files, an e-mail inbox, a collection of RSS feeds, or on an entire directory tree. In one implementation, the audio summary file tagging process 600 can occur during, for example, the generation 501 of an audio summary for a document as described above in reference to FIG. 5.


The audio summary file tagging process 600 begins by selecting 601 one or more files to be tagged with an audio summary. As mentioned above, the selection 601 of one or more files can include files within a folder or directory. Next, a first file is parsed 603. The file can be parsed 603, for example, using a text-to-speech analyzer 151 as described in FIG. 1(b). After the file is parsed 603, an audio summary for the file is generated 605. The audio summary can be generated 605, for example, as described above with reference to FIG. 5. After generating 605 the audio summary for the file, the audio summary file tagging process 600 continues by linking 607 the audio summary to the file. The linking 607 can be accomplished, for example as described above in reference to FIG. 5. Next, a decision 609 that determines if more files have been selected to summarize, such as in the case where multiple files have been selected to be tagged with audio summaries. If decision 609 determines that there are more files to summarize, then the audio summary file tagging process 600 continues to parse 611 a next selected file. After the next selected file is parsed 611, the audio summary file tagging process returns to repeat block 605 and subsequent blocks to produce the audio summary for the selected file. On the other hand, if decision 609 determines that there are no more files to summarize, then the audio summary file tagging process 600 ends.


In one embodiment, when a user selects a file (i.e., clicks on the file using a mouse) that contains an audio summary, a text-to-speech processor, for example the text-to-speech conversion application 103 of FIG. 1(a), presents an audio summary of the selected file. In another embodiment, when a user mouses over (i.e., manipulates a mouse to place a cursor over) a file, a text-to-speech processor presents the audio summary of the file that has been moused over. In a third embodiment, selecting or mousing over a file or document causes a media player application to play an audio summary associated with the selected document or file. In still another embodiment, a portable media player incorporates the capability to present an audio summary of a file when a user selects the file, for example, by using the user interface of the portable media player. In one embodiment, the audio summary can be generated on a personal computer and transferred to a portable media player for later presentation by the portable media player. In another embodiment, the audio summary can be presented using a text-to-speech processor operating on the portable media player.



FIG. 7 is a flow diagram of an audio summary presentation process 700 according to one embodiment of the invention. The audio summary presentation process 700 can be implemented by, for example, the host computer 101 of FIG. 1(a). Alternately, or in addition, the audio summary presentation process 700 can be implemented by the portable media player 121 of FIG. 1(a).


The audio summary presentation process 700 begins by receiving 701 a selection of text (e.g., document) to be summarized. In the case of a webpage, entering the webpage URL into a network browser can operate to select text to be summarized. In the case of a document or file, clicking or mousing over a file can operate to select text from an associated document. In the case of an e-mail application, opening an e-mail inbox can operate to select text of e-mails in the e-mail inbox. Similarly, in the case of an RSS reader, navigating to or opening a RSS reader application can operate to select text from one or more of the RSS feeds available to the RSS reader. Next, the audio summary presentation process obtains 703 an audio summary for the selected text. The audio summary can be created or, if already created and stored, the audio summary can be retrieved. Finally, the audio summary for the selected text is presented 705 to the user. For example, the host computer 101 or the portable media player 121 can play the audio summary for a user.



FIG. 8 is a flow diagram of an audio summary presentation process 800 according to one embodiment of the invention. The audio summary presentation process 800 can be used to apply the audio summary presentation process 700 of FIG. 7 to a group of files or documents. The audio summary presentation process 800 can be implemented by, for example, the host computer 101 of FIG. 1(a). Alternatively, or in addition, the audio summary presentation process 800 can be implemented by the portable media player 121 of FIG. 1(a).


The audio summary presentation process 800 begins by identifying 801 files of interest. The files of interest can pertain to text or documents of interest. For example, the identifying 801 can be initiated by selecting a folder or directory of files or navigating to a website. Next, a first file of interest is selected 803. After selecting 803 the file, an audio summary is obtained 805 for the selected file. The audio summary can be obtained 805 from memory or can be generated. Next, the audio summary is presented 807 for the selected file.


After presenting 807 the audio summary for the selected file, a decision 811 determines if more files to be processed to provide audio summaries are. Here, the decision 811 can be based on the files of interest identified in step 801. If there are more files to be processed, the audio summary presentation process 800 returns to block 803 where a next file can be selected and then similarly processed. On the other hand, if there are no more files to be processed, then the audio summary presentation process 800 ends.


In one embodiment, when a user selects a file (i.e., clicks on a file using a mouse) a directory that contains one or more audio summaries, a text-to-speech processor, for example the text-to-speech conversion application 103 of FIG. 1(a), presents an audio summary of the selected file. In another embodiment, the audio summary presentation process 800 can be used to create an audio summary of one or more files, e-mails, RSS feeds, etc., create an audio file of the audio summary, and later transfer the audio file of the audio summary to a portable media player for playback at the user's convenience. In this embodiment, the audio summary of the one or more files can be a separate audio file from the audio files that it summarizes. For example, in the case of an e-mail inbox, an audio summary can be made describing the contents of the user's inbox. In addition, each individual e-mail can be converted to audio and stored in one or more separate files. Alternatively, a single audio file can be created containing chapters, wherein one chapter contains an audio summary of the contents of the user's e-mail inbox and subsequent chapters contain text-to-speech conversions of the individual e-mails in the user's e-mail inbox.


It is noted that audio summaries can be embedded or linked to documents by any of the above processes at any stage of file creation or after files have been created. For example, an audio summary can be embedded into a webpage by the creator of the webpage. In another example, an audio summary can be embedded in a document (e.g., as metadata) upon creation of the document by the author of the document. Thus, in the case where a user purchases a media file on an online store, the producer of the media file may have already embedded an audio summary and/or audio metadata into the file.



FIG. 9(
a) is a screenshot of an exemplary document 900. The exemplary document 900 is a document that contains not only text but also a footnote 901, a quote 903, a hyperlink 905 and an image 907. The document also varies text sizes and has punctuation and formatting. The document 900 can be a webpage, a PDF document, or any other document type that can contain not only text but also specific components such as footnotes, quotes, hyperlinks and images.



FIG. 9(
b) is a screenshot of an exemplary marked up document 950 that has been prepared for conversion to speech. The exemplary marked up text document 950 can represent the exemplary document 900 of FIG. 9(a) after it has been marked up with instructions for subsequent spoken presentation by a voice synthesizer (e.g., a computerized voice used by a text-to-speech program to speak text.) The instructions embedded in the exemplary marked up text document 950 can be regarded as instructions corresponding to one implementation of a text-to-speech markup language described above in reference to FIG. 1(b) above. Further, exemplary text marked up document 950 can be regarded as an example of a text-to-speech processing script created by the text-to-speech analyzer 151 of FIG. 1(b). In the exemplary marked up text document 950, pauses can indicate punctuation, for example a voice synthesizer can insert long pause 951 to indicate two new lines, a short pause 953 to indicate a dash, a short pause 963 to indicate a font style change, and a long pause 967 to indicate extended punctuation, in this case a long string of asterisks. Long and short pauses can have different durations as set, for example, by a user preference. The exemplary marked up text document 950 also includes markup indicating changes in the speed at which the text-to-voice synthesizer will speak text. Rate increase 955 indicates parenthetical text. Rate increase 957 indicates a footnote. Rate decrease 965 indicates a link (e.g., hyperlink). The rate at which text is spoken can be set by the user as a user preference. The exemplary marked up text document 950 also includes voice synthesizer voice selections. Voice selection 959 indicates a male voice, designated Steve, will be used to speak the text contained in quotes. Voice selection 961 indicates that a voice, designated narrator, will be used to speak the text. Any number of different voices may be available, depending on the speech synthesizer. Alternatively, the parameters covering the voice produced by the text-to-speech synthesizer (e.g., pitch, speed, tone, accent, inflection, etc.) can be designated in the document, allowing for the creation of custom voices for a particular document. The exemplary marked up text document 950 also includes markup that directs text-to-speech processor to play sounds at particular times during the speaking of a document. In the exemplary marked up document 950, a command to play a sound 973 is used to indicate a link in the document, while a command to play a sound 969 is used to indicate an image in the document. The exemplary marked up text document 950 also depicts that the footnote text 971 is spoken inline where it is first referenced in the document and is not re-spoken at the end of the page.


The advantages of the invention are numerous. Different aspects, embodiments or implementations may, but need not, yield one or more of the following advantages. One advantage of certain embodiments of the invention is that improved quality of text-to-speech processing and improved identification of documents can be provided through the use of audio metadata. Another advantage of certain embodiments of the invention is that pauses, voice changes, and other audio cues can be presented to a user, thus improving the user experience when listening to text-to-speech output. This improved user experience when listening to text-to-speech output can be especially beneficial to a visually impaired listener, who can gain a fuller and more comprehensive understanding of a document's structure, format and content. Another advantage of certain embodiments of the invention is that audio summaries can for documents can be produced and presented. Another advantage of certain embodiments of the invention is that use of text-to-speech processing scripts allows separation of text-to-speech presentation software from text-to-speech processing software, which can reduce the need for complex text-to-speech processing applications on device providing speech presentation. For example, a device with minimal processing power can run a simple text-to-speech engine that follows a text-to-speech script that has been prepared on a more powerful device rather than having to perform the text-to-speech processing itself.


The various aspects, features, embodiments or implementations of the invention described above can be used alone or in various combinations.


Embodiments of the invention can, for example, be implemented by software, hardware, or a combination of hardware and software. Embodiments of the invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium generally include read-only memory and random-access memory. More specific examples of computer readable medium are tangible and include Flash memory, EEPROM memory, memory card, CD-ROM, DVD, hard drive, magnetic tape, and optical data storage device. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.


The many features and advantages of the present invention are apparent from the written description. Further, since numerous modifications and changes will readily occur to those skilled in the art, the invention should not be limited to the exact construction and operation as illustrated and described. Hence, all suitable modifications and equivalents may be resorted to as falling within the scope of the invention.

Claims
  • 1. A computer-implemented method of converting text to speech, the method comprising: selecting a document to be converted to speech, the selected document including base text and one or more links located within the base text;parsing the selected document, wherein the parsing comprises: resolving at least one of the one or more links in the selected document; andretrieving pre-existing text from one or more documents obtained by said resolving;appending at least a portion of the retrieved pre-existing text to the base text;generating speech by converting to speech the base text and the portion of the retrieved pre-existing text appended to the base text; andcreating an audio file based on the converted text, wherein the audio file includes at least one audio cue configured to be beneficial to visually impaired listeners.
  • 2. The computer-implemented method of claim 1, wherein the at least one audio cue is associated with a text element in the selected document.
  • 3. The computer-implemented method of claim 1, wherein the at least one audio cue is associated with a non-text element in the selected document.
  • 4. The computer-implemented method of claim 1, wherein parsing the selected document comprises: identifying one or more text elements in the selected document, including: determining a first subset of the one or more identified text elements, wherein the first subset of the one or more identified text elements includes one or more spoken text elements; anddetermining a second subset of the identified text elements, wherein the second subset of the identified text elements includes one or more non-spoken text elements,wherein the second subset of the one or more identified text elements is excluded from the first subset of the identified text elements; anddetermining an order in which to speak the first subset of the one or more identified text elements.
  • 5. The computer-implemented method of claim 1, further comprising: storing the created audio file at a host computer for use by a media management application operating on the host computer.
  • 6. The computer-implemented method of claim 5, further comprising: copying the audio file from the host computer to a portable media player where the audio file is stored on the portable media player in a predetermined organization.
  • 7. The computer-implemented method of claim 1, wherein the selected document is selected from the group consisting of: an audio file, a webpage, a PDF, a text file, an RSS feed, an e-mail, a list of e-mail headers, a list of hyperlinks, and metadata information.
  • 8. A computer-implemented method of generating an audio summary for a document, the method comprising: parsing a document to extract metadata from the document;generating an audio summary for the parsed document based on the extracted metadata; andassociating the audio summary with the parsed document, wherein the associating the audio summary to the parsed document includes at least embedding the audio summary into the parsed document.
  • 9. The computer-implemented method of claim 8, wherein generating the audio summary for the parsed document comprises summarizing the parsed document based on textual information contained in the document.
  • 10. The computer-implemented method of claim 8, further comprising: after associating the audio summary with the parsed document, receiving a user selection of the parsed document; andpresenting the audio summary for the parsed document.
  • 11. The computer-implemented method of claim 10, wherein the parsed document is selected from the group consisting of: an audio file, a webpage, a PDF, a text file, an RSS feed, an e-mail, a list of e-mail headers, a list of hyperlinks, and metadata information.
  • 12. The computer-implemented method of claim 10, wherein user selection of the parsed document occurs upon a mouse-over event or a mouse-click event.
  • 13. The computer-implemented method of claim 10, wherein user selection of the parsed document occurs when the parsed document is selected using a portable media player.
  • 14. The computer-implemented method of claim 8, wherein the audio summary includes audio content generated by converting at least a portion of the extracted metadata to speech.
  • 15. A computer-implemented method of generating an audio summary for a document, the method comprising: parsing a document to extract metadata from the document;generating an audio summary for the parsed document based on the extracted metadata; andassociating the audio summary with the parsed document by creating a software pointer from the parsed document to the audio summary, and embedding the software pointer into the parsed document.
  • 16. The computer-implemented method of claim 15, wherein the audio summary includes audio content generated by converting at least a portion of the extracted metadata to speech.
  • 17. A non-transitory computer readable storage medium including at least computer program code for converting text to speech, comprising: computer program code for selecting a document to be converted to speech, the selected document including base text and one or more links located within the base text;computer program code for parsing the selected document, wherein the computer program code for parsing comprises: computer program code for resolving at least one of the one or more links in the selected document; andcomputer program code for retrieving pre-existing text from one or more documents obtained by the said resolving;computer program code for appending at least a portion of the retrieved pre-existing text to the base text;computer program code for generating speech by converting to speech the base text and the portion of the retrieved pre-existing text appended to the base text; andcomputer program code for creating an audio file based on the converted text, wherein the audio file includes at least one audio cue configured to be beneficial to visually impaired listeners.
  • 18. The non-transitory computer readable storage medium as recited in claim 17, further comprising: computer program code for copying the audio file from a host computer to a portable media player where the audio file is stored on the portable media player in a predetermined organization.
US Referenced Citations (672)
Number Name Date Kind
3704345 Coker et al. Nov 1972 A
3828132 Flanagan et al. Aug 1974 A
3979557 Schulman et al. Sep 1976 A
4278838 Antonov Jul 1981 A
4282405 Taguchi Aug 1981 A
4310721 Manley et al. Jan 1982 A
4348553 Baker et al. Sep 1982 A
4653021 Takagi Mar 1987 A
4688195 Thompson et al. Aug 1987 A
4692941 Jacks et al. Sep 1987 A
4718094 Bahl et al. Jan 1988 A
4724542 Williford Feb 1988 A
4726065 Froessl Feb 1988 A
4727354 Lindsay Feb 1988 A
4776016 Hansen Oct 1988 A
4783807 Marley Nov 1988 A
4811243 Racine Mar 1989 A
4819271 Bahl et al. Apr 1989 A
4827520 Zeinstra May 1989 A
4829576 Porter May 1989 A
4833712 Bahl et al. May 1989 A
4839853 Deerwester et al. Jun 1989 A
4852168 Sprague Jul 1989 A
4862504 Nomura Aug 1989 A
4878230 Murakami et al. Oct 1989 A
4903305 Gillick et al. Feb 1990 A
4905163 Garber et al. Feb 1990 A
4914586 Swinehart et al. Apr 1990 A
4914590 Loatman et al. Apr 1990 A
4944013 Gouvianakis et al. Jul 1990 A
4955047 Morganstein et al. Sep 1990 A
4965763 Zamora Oct 1990 A
4974191 Amirghodsi et al. Nov 1990 A
4977598 Doddington et al. Dec 1990 A
4992972 Brooks et al. Feb 1991 A
5010574 Wang Apr 1991 A
5020112 Chou May 1991 A
5021971 Lindsay Jun 1991 A
5022081 Hirose et al. Jun 1991 A
5027406 Roberts et al. Jun 1991 A
5031217 Nishimura Jul 1991 A
5032989 Tornetta Jul 1991 A
5040218 Vitale et al. Aug 1991 A
5047614 Bianco Sep 1991 A
5057915 Kohorn et al. Oct 1991 A
5072452 Brown et al. Dec 1991 A
5091945 Kleijn Feb 1992 A
5127053 Koch Jun 1992 A
5127055 Larkey Jun 1992 A
5128672 Kaehler Jul 1992 A
5133011 McKiel, Jr. Jul 1992 A
5142584 Ozawa Aug 1992 A
5164900 Bernath Nov 1992 A
5165007 Bahl et al. Nov 1992 A
5179652 Rozmanith et al. Jan 1993 A
5194950 Murakami et al. Mar 1993 A
5197005 Shwartz et al. Mar 1993 A
5199077 Wilcox et al. Mar 1993 A
5202952 Gillick et al. Apr 1993 A
5208862 Ozawa May 1993 A
5216747 Hardwick et al. Jun 1993 A
5220639 Lee Jun 1993 A
5220657 Bly et al. Jun 1993 A
5222146 Bahl et al. Jun 1993 A
5230036 Akamine et al. Jul 1993 A
5235680 Bijnagte Aug 1993 A
5267345 Brown et al. Nov 1993 A
5268990 Cohen et al. Dec 1993 A
5282265 Rohra Suda et al. Jan 1994 A
RE34562 Murakami et al. Mar 1994 E
5291286 Murakami et al. Mar 1994 A
5293448 Honda Mar 1994 A
5293452 Picone et al. Mar 1994 A
5297170 Eyuboglu et al. Mar 1994 A
5301109 Landauer et al. Apr 1994 A
5303406 Hansen et al. Apr 1994 A
5309359 Katz et al. May 1994 A
5317507 Gallant May 1994 A
5317647 Pagallo May 1994 A
5325297 Bird et al. Jun 1994 A
5325298 Gallant Jun 1994 A
5327498 Hamon Jul 1994 A
5333236 Bahl et al. Jul 1994 A
5333275 Wheatley et al. Jul 1994 A
5345536 Hoshimi et al. Sep 1994 A
5349645 Zhao Sep 1994 A
5353377 Kuroda et al. Oct 1994 A
5377301 Rosenberg et al. Dec 1994 A
5384892 Strong Jan 1995 A
5384893 Hutchins Jan 1995 A
5386494 White Jan 1995 A
5386556 Hedin et al. Jan 1995 A
5390279 Strong Feb 1995 A
5396625 Parkes Mar 1995 A
5400434 Pearson Mar 1995 A
5404295 Katz et al. Apr 1995 A
5412756 Bauman et al. May 1995 A
5412804 Krishna May 1995 A
5412806 Du et al. May 1995 A
5418951 Damashek May 1995 A
5424947 Nagao et al. Jun 1995 A
5434777 Luciw Jul 1995 A
5444823 Nguyen Aug 1995 A
5455888 Iyengar et al. Oct 1995 A
5469529 Bimbot et al. Nov 1995 A
5471611 McGregor Nov 1995 A
5475587 Anick et al. Dec 1995 A
5479488 Lenning et al. Dec 1995 A
5491772 Hardwick et al. Feb 1996 A
5493677 Balogh Feb 1996 A
5495604 Harding et al. Feb 1996 A
5502790 Yi Mar 1996 A
5502791 Nishimura et al. Mar 1996 A
5515475 Gupta et al. May 1996 A
5536902 Serra et al. Jul 1996 A
5537618 Boulton et al. Jul 1996 A
5555343 Luther Sep 1996 A
5574823 Hassanein et al. Nov 1996 A
5577241 Spencer Nov 1996 A
5578808 Taylor Nov 1996 A
5579436 Chou et al. Nov 1996 A
5581655 Cohen et al. Dec 1996 A
5584024 Shwartz Dec 1996 A
5596676 Swaminathan et al. Jan 1997 A
5596994 Bro Jan 1997 A
5608624 Luciw Mar 1997 A
5613036 Strong Mar 1997 A
5617507 Lee et al. Apr 1997 A
5619694 Shimazu Apr 1997 A
5621859 Schwartz et al. Apr 1997 A
5621903 Luciw et al. Apr 1997 A
5642464 Yue et al. Jun 1997 A
5642519 Martin Jun 1997 A
5644727 Atkins Jul 1997 A
5664055 Kroon Sep 1997 A
5675819 Schuetze Oct 1997 A
5682539 Conrad et al. Oct 1997 A
5687077 Gough, Jr. Nov 1997 A
5696962 Kupiec Dec 1997 A
5701400 Amado Dec 1997 A
5706442 Anderson et al. Jan 1998 A
5710886 Christensen et al. Jan 1998 A
5712957 Waibel et al. Jan 1998 A
5715468 Budzinski Feb 1998 A
5721827 Logan et al. Feb 1998 A
5727950 Cook et al. Mar 1998 A
5729694 Holzrichter et al. Mar 1998 A
5732390 Katayanagi et al. Mar 1998 A
5734791 Acero et al. Mar 1998 A
5737734 Schultz Apr 1998 A
5748974 Johnson May 1998 A
5749081 Whiteis May 1998 A
5759101 Von Kohorn Jun 1998 A
5790978 Olive et al. Aug 1998 A
5794050 Dahlgren et al. Aug 1998 A
5794182 Manduchi et al. Aug 1998 A
5794207 Walker et al. Aug 1998 A
5794237 Gore, Jr. Aug 1998 A
5799276 Komissarchik et al. Aug 1998 A
5822743 Gupta et al. Oct 1998 A
5825881 Colvin, Sr. Oct 1998 A
5826261 Spencer Oct 1998 A
5828999 Bellegarda et al. Oct 1998 A
5835893 Ushioda Nov 1998 A
5839106 Bellegarda Nov 1998 A
5845255 Mayaud Dec 1998 A
5857184 Lynch Jan 1999 A
5860063 Gorin et al. Jan 1999 A
5862223 Walker et al. Jan 1999 A
5864806 Mokbel et al. Jan 1999 A
5864844 James et al. Jan 1999 A
5867799 Lang et al. Feb 1999 A
5873056 Liddy et al. Feb 1999 A
5875437 Atkins Feb 1999 A
5884323 Hawkins et al. Mar 1999 A
5895464 Bhandari et al. Apr 1999 A
5895466 Goldberg et al. Apr 1999 A
5899972 Miyazawa et al. May 1999 A
5913193 Huang et al. Jun 1999 A
5915249 Spencer Jun 1999 A
5930769 Rose Jul 1999 A
5933822 Braden-Harder et al. Aug 1999 A
5936926 Yokouchi et al. Aug 1999 A
5940811 Norris Aug 1999 A
5941944 Messerly Aug 1999 A
5943670 Prager Aug 1999 A
5948040 DeLorme et al. Sep 1999 A
5956699 Wong et al. Sep 1999 A
5960422 Prasad Sep 1999 A
5963924 Williams et al. Oct 1999 A
5966126 Szabo Oct 1999 A
5970474 LeRoy et al. Oct 1999 A
5974146 Randle et al. Oct 1999 A
5982891 Ginter et al. Nov 1999 A
5987132 Rowney Nov 1999 A
5987140 Rowney et al. Nov 1999 A
5987404 Della Pietra et al. Nov 1999 A
5987440 O'Neil et al. Nov 1999 A
5999908 Abelow Dec 1999 A
6016471 Kuhn et al. Jan 2000 A
6023684 Pearson Feb 2000 A
6024288 Gottlich et al. Feb 2000 A
6026345 Shah et al. Feb 2000 A
6026375 Hall et al. Feb 2000 A
6026388 Liddy et al. Feb 2000 A
6026393 Gupta et al. Feb 2000 A
6029132 Kuhn et al. Feb 2000 A
6038533 Buchsbaum et al. Mar 2000 A
6052656 Suda et al. Apr 2000 A
6055514 Wren Apr 2000 A
6055531 Bennett et al. Apr 2000 A
6064960 Bellegarda et al. May 2000 A
6070138 Iwata May 2000 A
6070139 Miyazawa et al. May 2000 A
6070147 Harms et al. May 2000 A
6076051 Messerly et al. Jun 2000 A
6076088 Paik et al. Jun 2000 A
6078914 Redfern Jun 2000 A
6081750 Hoffberg et al. Jun 2000 A
6081774 de Hita et al. Jun 2000 A
6088731 Kiraly et al. Jul 2000 A
6094649 Bowen et al. Jul 2000 A
6105865 Hardesty Aug 2000 A
6108627 Sabourin Aug 2000 A
6119101 Peckover Sep 2000 A
6122616 Henton Sep 2000 A
6125356 Brockman et al. Sep 2000 A
6144938 Surace et al. Nov 2000 A
6173261 Arai et al. Jan 2001 B1
6173279 Levin et al. Jan 2001 B1
6188999 Moody Feb 2001 B1
6195641 Loring et al. Feb 2001 B1
6205456 Nakao Mar 2001 B1
6208971 Bellegarda et al. Mar 2001 B1
6233559 Balakrishnan May 2001 B1
6233578 Machihara et al. May 2001 B1
6246981 Papineni et al. Jun 2001 B1
6260024 Shkedy Jul 2001 B1
6266637 Donovan et al. Jul 2001 B1
6275824 O'Flaherty et al. Aug 2001 B1
6285786 Seni et al. Sep 2001 B1
6308149 Gaussier et al. Oct 2001 B1
6311189 deVries et al. Oct 2001 B1
6317594 Gossman et al. Nov 2001 B1
6317707 Bangalore et al. Nov 2001 B1
6317831 King Nov 2001 B1
6321092 Fitch et al. Nov 2001 B1
6334103 Surace et al. Dec 2001 B1
6356854 Schubert et al. Mar 2002 B1
6356905 Gershman et al. Mar 2002 B1
6366883 Campbell et al. Apr 2002 B1
6366884 Belllegarda et al. Apr 2002 B1
6421672 McAllister et al. Jul 2002 B1
6434524 Weber Aug 2002 B1
6446076 Burkey et al. Sep 2002 B1
6449620 Draper et al. Sep 2002 B1
6453292 Ramaswamy et al. Sep 2002 B2
6460029 Fries et al. Oct 2002 B1
6466654 Cooper et al. Oct 2002 B1
6477488 Bellegarda Nov 2002 B1
6487534 Thelen et al. Nov 2002 B1
6499013 Weber Dec 2002 B1
6501937 Ho et al. Dec 2002 B1
6505158 Conkie Jan 2003 B1
6505175 Silverman et al. Jan 2003 B1
6505183 Loofbourrow et al. Jan 2003 B1
6510417 Woods et al. Jan 2003 B1
6513063 Julia et al. Jan 2003 B1
6523061 Halverson et al. Feb 2003 B1
6523172 Martinez-Guerra et al. Feb 2003 B1
6526382 Yuschik Feb 2003 B1
6526395 Morris Feb 2003 B1
6532444 Weber Mar 2003 B1
6532446 King Mar 2003 B1
6546388 Edlund et al. Apr 2003 B1
6553344 Bellegarda et al. Apr 2003 B2
6556983 Altschuler et al. Apr 2003 B1
6584464 Warthen Jun 2003 B1
6598039 Livowsky Jul 2003 B1
6601026 Appelt et al. Jul 2003 B2
6601234 Bowman-Amuah Jul 2003 B1
6604059 Strubbe et al. Aug 2003 B2
6615172 Bennett et al. Sep 2003 B1
6615175 Gazdzinski Sep 2003 B1
6615220 Austin et al. Sep 2003 B1
6622121 Crepy et al. Sep 2003 B1
6625583 Silverman et al. Sep 2003 B1
6631346 Karaorman et al. Oct 2003 B1
6633846 Bennett et al. Oct 2003 B1
6647260 Dusse et al. Nov 2003 B2
6650735 Burton et al. Nov 2003 B2
6654740 Tokuda et al. Nov 2003 B2
6665639 Mozer et al. Dec 2003 B2
6665640 Bennett et al. Dec 2003 B1
6665641 Coorman et al. Dec 2003 B1
6684187 Conkie Jan 2004 B1
6691064 Vroman Feb 2004 B2
6691111 Lazaridis et al. Feb 2004 B2
6691151 Cheyer et al. Feb 2004 B1
6697780 Beutnagel et al. Feb 2004 B1
6697824 Bowman-Amuah Feb 2004 B1
6701294 Ball et al. Mar 2004 B1
6711585 Copperman et al. Mar 2004 B1
6718324 Edlund et al. Apr 2004 B2
6721728 McGreevy Apr 2004 B2
6735632 Kiraly et al. May 2004 B1
6742021 Halverson et al. May 2004 B1
6757362 Cooper et al. Jun 2004 B1
6757718 Halverson et al. Jun 2004 B1
6766320 Wang et al. Jul 2004 B1
6778951 Contractor Aug 2004 B1
6778952 Bellegarda Aug 2004 B2
6778962 Kasai et al. Aug 2004 B1
6778970 Au Aug 2004 B2
6792082 Levine Sep 2004 B1
6807574 Partovi et al. Oct 2004 B1
6810379 Vermeulen et al. Oct 2004 B1
6813491 McKinney Nov 2004 B1
6829603 Chai et al. Dec 2004 B1
6832194 Mozer et al. Dec 2004 B1
6842767 Partovi et al. Jan 2005 B1
6847966 Sommer et al. Jan 2005 B1
6847979 Allemang et al. Jan 2005 B2
6851115 Cheyer et al. Feb 2005 B1
6859931 Cheyer et al. Feb 2005 B1
6895380 Sepe, Jr. May 2005 B2
6895558 Loveland May 2005 B1
6901399 Corston et al. May 2005 B1
6912499 Sabourin et al. Jun 2005 B1
6924828 Hirsch Aug 2005 B1
6928614 Everhart Aug 2005 B1
6931384 Horvitz et al. Aug 2005 B1
6937975 Elworthy Aug 2005 B1
6937986 Denenberg et al. Aug 2005 B2
6964023 Maes et al. Nov 2005 B2
6980949 Ford Dec 2005 B2
6980955 Okutani et al. Dec 2005 B2
6985865 Packingham et al. Jan 2006 B1
6988071 Gazdzinski Jan 2006 B1
6996531 Korall et al. Feb 2006 B2
6999927 Mozer et al. Feb 2006 B2
7020685 Chen et al. Mar 2006 B1
7027974 Busch et al. Apr 2006 B1
7036128 Julia et al. Apr 2006 B1
7050977 Bennett May 2006 B1
7058569 Coorman et al. Jun 2006 B2
7062428 Hogenhout et al. Jun 2006 B2
7069560 Cheyer et al. Jun 2006 B1
7092887 Mozer et al. Aug 2006 B2
7092928 Elad et al. Aug 2006 B1
7093693 Gazdzinski Aug 2006 B1
7100117 Chwa et al. Aug 2006 B1
7127046 Smith et al. Oct 2006 B1
7127403 Saylor et al. Oct 2006 B1
7136710 Hoffberg et al. Nov 2006 B1
7137126 Coffman et al. Nov 2006 B1
7139714 Bennett et al. Nov 2006 B2
7139722 Perrella et al. Nov 2006 B2
7152070 Musick et al. Dec 2006 B1
7177798 Hsu et al. Feb 2007 B2
7185276 Keswa Feb 2007 B2
7197460 Gupta et al. Mar 2007 B1
7200559 Wang Apr 2007 B2
7203646 Bennett Apr 2007 B2
7216073 Lavi et al. May 2007 B2
7216080 Tsiao et al. May 2007 B2
7225125 Bennett et al. May 2007 B2
7233790 Kjellberg et al. Jun 2007 B2
7233904 Luisi Jun 2007 B2
7266496 Wang et al. Sep 2007 B2
7277854 Bennett et al. Oct 2007 B2
7290039 Lisitsa et al. Oct 2007 B1
7299033 Kjellberg et al. Nov 2007 B2
7310600 Garner et al. Dec 2007 B1
7324947 Jordan et al. Jan 2008 B2
7349953 Lisitsa et al. Mar 2008 B2
7376556 Bennett May 2008 B2
7376645 Bernard May 2008 B2
7379874 Schmid et al. May 2008 B2
7386449 Sun et al. Jun 2008 B2
7389224 Elworthy Jun 2008 B1
7392185 Bennett Jun 2008 B2
7398209 Kennewick et al. Jul 2008 B2
7403938 Harrison et al. Jul 2008 B2
7409337 Potter et al. Aug 2008 B1
7415100 Cooper et al. Aug 2008 B2
7418392 Mozer et al. Aug 2008 B1
7426467 Nashida et al. Sep 2008 B2
7427024 Gazdzinski et al. Sep 2008 B1
7447635 Konopka et al. Nov 2008 B1
7454351 Jeschke et al. Nov 2008 B2
7467087 Gillick et al. Dec 2008 B1
7475010 Chao Jan 2009 B2
7483894 Cao Jan 2009 B2
7487089 Mozer Feb 2009 B2
7496498 Chu et al. Feb 2009 B2
7496512 Zhao et al. Feb 2009 B2
7502738 Kennewick et al. Mar 2009 B2
7508373 Lin et al. Mar 2009 B2
7522927 Fitch et al. Apr 2009 B2
7523108 Cao Apr 2009 B2
7526466 Au Apr 2009 B2
7529671 Rockenbeck et al. May 2009 B2
7529676 Koyama May 2009 B2
7539656 Fratkina et al. May 2009 B2
7546382 Healey et al. Jun 2009 B2
7548895 Pulsipher Jun 2009 B2
7552055 Lecoeuche Jun 2009 B2
7555431 Bennett Jun 2009 B2
7558730 Davis et al. Jul 2009 B2
7571106 Cao et al. Aug 2009 B2
7596606 Codignotto Sep 2009 B2
7599918 Shen et al. Oct 2009 B2
7620549 Di Cristo et al. Nov 2009 B2
7624007 Bennett Nov 2009 B2
7634409 Kennewick et al. Dec 2009 B2
7636657 Ju et al. Dec 2009 B2
7640158 Detlef et al. Dec 2009 B2
7640160 Di Cristo et al. Dec 2009 B2
7647225 Bennett et al. Jan 2010 B2
7657424 Bennett Feb 2010 B2
7672841 Bennett Mar 2010 B2
7676026 Baxter, Jr. Mar 2010 B1
7684985 Dominach et al. Mar 2010 B2
7693715 Hwang et al. Apr 2010 B2
7693717 Kahn et al. Apr 2010 B2
7693720 Kennewick et al. Apr 2010 B2
7698131 Bennett Apr 2010 B2
7702500 Blaedow Apr 2010 B2
7702508 Bennett Apr 2010 B2
7707027 Balchandran et al. Apr 2010 B2
7707032 Wang et al. Apr 2010 B2
7707267 Lisitsa et al. Apr 2010 B2
7711565 Gazdzinski May 2010 B1
7711672 Au May 2010 B2
7716056 Weng et al. May 2010 B2
7720674 Kaiser et al. May 2010 B2
7720683 Vermeulen et al. May 2010 B1
7725307 Bennett May 2010 B2
7725318 Gavalda et al. May 2010 B2
7725320 Bennett May 2010 B2
7725321 Bennett May 2010 B2
7729904 Bennett Jun 2010 B2
7729916 Coffman et al. Jun 2010 B2
7734461 Kwak et al. Jun 2010 B2
7747616 Yamada et al. Jun 2010 B2
7752152 Paek et al. Jul 2010 B2
7756868 Lee Jul 2010 B2
7774204 Mozer et al. Aug 2010 B2
7783486 Rosser et al. Aug 2010 B2
7801729 Mozer Sep 2010 B2
7809570 Kennewick et al. Oct 2010 B2
7809610 Cao Oct 2010 B2
7818176 Freeman et al. Oct 2010 B2
7822608 Cross, Jr. et al. Oct 2010 B2
7826945 Zhang et al. Nov 2010 B2
7831426 Bennett Nov 2010 B2
7840400 Lavi et al. Nov 2010 B2
7840447 Kleinrock et al. Nov 2010 B2
7853574 Kraenzel et al. Dec 2010 B2
7873519 Bennett Jan 2011 B2
7873654 Bernard Jan 2011 B2
7881936 Longé et al. Feb 2011 B2
7890652 Bull et al. Feb 2011 B2
7912702 Bennett Mar 2011 B2
7917367 Di Cristo et al. Mar 2011 B2
7917497 Harrison et al. Mar 2011 B2
7920678 Cooper et al. Apr 2011 B2
7925525 Chin Apr 2011 B2
7930168 Weng et al. Apr 2011 B2
7949529 Weider et al. May 2011 B2
7949534 Davis et al. May 2011 B2
7974844 Sumita Jul 2011 B2
7974972 Cao Jul 2011 B2
7983915 Knight et al. Jul 2011 B2
7983917 Kennewick et al. Jul 2011 B2
7983997 Allen et al. Jul 2011 B2
7986431 Emori et al. Jul 2011 B2
7987151 Schott et al. Jul 2011 B2
7996228 Miller et al. Aug 2011 B2
8000453 Cooper et al. Aug 2011 B2
8005679 Jordan et al. Aug 2011 B2
8015006 Kennewick et al. Sep 2011 B2
8024195 Mozer et al. Sep 2011 B2
8036901 Mozer Oct 2011 B2
8041570 Mirkovic et al. Oct 2011 B2
8041611 Kleinrock et al. Oct 2011 B2
8055708 Chitsaz et al. Nov 2011 B2
8065155 Gazdzinski Nov 2011 B1
8065156 Gazdzinski Nov 2011 B2
8069046 Kennewick et al. Nov 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8078473 Gazdzinski Dec 2011 B1
8082153 Coffman et al. Dec 2011 B2
8095364 Longé et al. Jan 2012 B2
8099289 Mozer et al. Jan 2012 B2
8107401 John et al. Jan 2012 B2
8112275 Kennewick et al. Feb 2012 B2
8112280 Lu Feb 2012 B2
8117037 Gazdzinski Feb 2012 B2
8131557 Davis et al. Mar 2012 B2
8140335 Kennewick et al. Mar 2012 B2
8165886 Gagnon et al. Apr 2012 B1
8166019 Lee et al. Apr 2012 B1
8190359 Bourne May 2012 B2
8195467 Mozer et al. Jun 2012 B2
8204238 Mozer Jun 2012 B2
8205788 Gazdzinski et al. Jun 2012 B1
8285551 Gazdzinski Oct 2012 B2
8285553 Gazdzinski Oct 2012 B2
8290778 Gazdzinski Oct 2012 B2
8290781 Gazdzinski Oct 2012 B2
8296146 Gazdzinski Oct 2012 B2
8296153 Gazdzinski Oct 2012 B2
8301456 Gazdzinski Oct 2012 B2
8311834 Gazdzinski Nov 2012 B1
8370158 Gazdzinski Feb 2013 B2
8371503 Gazdzinski Feb 2013 B2
8374871 Ehsani et al. Feb 2013 B2
8447612 Gazdzinski May 2013 B2
20010047264 Roundtree Nov 2001 A1
20020002461 Tetsumoto Jan 2002 A1
20020032564 Ehsani et al. Mar 2002 A1
20020046025 Hain Apr 2002 A1
20020069063 Buchner et al. Jun 2002 A1
20020077817 Atal Jun 2002 A1
20020103641 Kuo et al. Aug 2002 A1
20020110248 Kovales et al. Aug 2002 A1
20020164000 Cohen et al. Nov 2002 A1
20020198714 Zhou Dec 2002 A1
20030078766 Appelt et al. Apr 2003 A1
20030194080 Michaelis et al. Oct 2003 A1
20040135701 Yasuda et al. Jul 2004 A1
20040236778 Junqua et al. Nov 2004 A1
20050055212 Nagao Mar 2005 A1
20050055403 Brittan Mar 2005 A1
20050071332 Ortega et al. Mar 2005 A1
20050080625 Bennett et al. Apr 2005 A1
20050091118 Fano Apr 2005 A1
20050094475 Naoi May 2005 A1
20050102614 Brockett et al. May 2005 A1
20050108001 Aarskog May 2005 A1
20050114124 Liu et al. May 2005 A1
20050119897 Bennett et al. Jun 2005 A1
20050143972 Gopalakrishnan et al. Jun 2005 A1
20050165607 DiFabbrizio et al. Jul 2005 A1
20050182629 Coorman et al. Aug 2005 A1
20050196733 Budra et al. Sep 2005 A1
20050222973 Kaiser Oct 2005 A1
20050288936 Busayapongchai et al. Dec 2005 A1
20060018492 Chiu et al. Jan 2006 A1
20060095848 Naik May 2006 A1
20060106592 Brockett et al. May 2006 A1
20060106594 Brockett et al. May 2006 A1
20060106595 Brockett et al. May 2006 A1
20060117002 Swen Jun 2006 A1
20060122834 Bennett Jun 2006 A1
20060143007 Koh et al. Jun 2006 A1
20070055529 Kanevsky et al. Mar 2007 A1
20070058832 Hug et al. Mar 2007 A1
20070088556 Andrew Apr 2007 A1
20070100790 Cheyer et al. May 2007 A1
20070106674 Agrawal et al. May 2007 A1
20070118378 Skuratovsky May 2007 A1
20070135949 Snover et al. Jun 2007 A1
20070174188 Fish Jul 2007 A1
20070185917 Prahlad et al. Aug 2007 A1
20070230729 Naylor et al. Oct 2007 A1
20070244702 Kahn et al. Oct 2007 A1
20070282595 Tunning et al. Dec 2007 A1
20080015864 Ross et al. Jan 2008 A1
20080021708 Bennett et al. Jan 2008 A1
20080034032 Healey et al. Feb 2008 A1
20080052063 Bennett et al. Feb 2008 A1
20080120112 Jordan et al. May 2008 A1
20080129520 Lee Jun 2008 A1
20080140657 Azvine et al. Jun 2008 A1
20080141180 Reed et al. Jun 2008 A1
20080221903 Kanevsky et al. Sep 2008 A1
20080228496 Yu et al. Sep 2008 A1
20080247519 Abella et al. Oct 2008 A1
20080249770 Kim et al. Oct 2008 A1
20080300878 Bennett Dec 2008 A1
20080319763 Di Fabbrizio et al. Dec 2008 A1
20090006100 Badger et al. Jan 2009 A1
20090006343 Platt et al. Jan 2009 A1
20090030800 Grois Jan 2009 A1
20090055179 Cho et al. Feb 2009 A1
20090058823 Kocienda Mar 2009 A1
20090076796 Daraselia Mar 2009 A1
20090077165 Rhodes et al. Mar 2009 A1
20090100049 Cao Apr 2009 A1
20090112677 Rhett Apr 2009 A1
20090150156 Kennewick et al. Jun 2009 A1
20090157401 Bennett Jun 2009 A1
20090164441 Cheyer Jun 2009 A1
20090171664 Kennewick et al. Jul 2009 A1
20090187577 Reznik et al. Jul 2009 A1
20090248182 Logan et al. Oct 2009 A1
20090287583 Holmes Nov 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090299745 Kennewick et al. Dec 2009 A1
20090299849 Cao et al. Dec 2009 A1
20090307162 Bui et al. Dec 2009 A1
20100005081 Bennett Jan 2010 A1
20100023320 Di Cristo et al. Jan 2010 A1
20100036660 Bennett Feb 2010 A1
20100042400 Block et al. Feb 2010 A1
20100088020 Sano et al. Apr 2010 A1
20100138215 Williams Jun 2010 A1
20100145700 Kennewick et al. Jun 2010 A1
20100204986 Kennewick et al. Aug 2010 A1
20100217604 Baldwin et al. Aug 2010 A1
20100228540 Bennett Sep 2010 A1
20100235341 Bennett Sep 2010 A1
20100257160 Cao Oct 2010 A1
20100262599 Nitz Oct 2010 A1
20100277579 Cho et al. Nov 2010 A1
20100280983 Cho et al. Nov 2010 A1
20100286985 Kennewick et al. Nov 2010 A1
20100299142 Freeman et al. Nov 2010 A1
20100312547 van Os et al. Dec 2010 A1
20100318576 Kim Dec 2010 A1
20100332235 David Dec 2010 A1
20100332348 Cao Dec 2010 A1
20110047072 Ciurea Feb 2011 A1
20110060807 Martin et al. Mar 2011 A1
20110082688 Kim et al. Apr 2011 A1
20110112827 Kennewick et al. May 2011 A1
20110112921 Kennewick et al. May 2011 A1
20110119049 Ylonen May 2011 A1
20110125540 Jang et al. May 2011 A1
20110130958 Stahl et al. Jun 2011 A1
20110131036 Di Cristo et al. Jun 2011 A1
20110131045 Cristo et al. Jun 2011 A1
20110143811 Rodriguez Jun 2011 A1
20110144999 Jang et al. Jun 2011 A1
20110161076 Davis et al. Jun 2011 A1
20110161309 Lung et al. Jun 2011 A1
20110175810 Markovic et al. Jul 2011 A1
20110184730 LeBeau et al. Jul 2011 A1
20110218855 Cao et al. Sep 2011 A1
20110231182 Weider et al. Sep 2011 A1
20110231188 Kennewick et al. Sep 2011 A1
20110264643 Cao Oct 2011 A1
20110279368 Klein et al. Nov 2011 A1
20110306426 Novak et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120016678 Gruber et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120022787 LeBeau et al. Jan 2012 A1
20120022857 Baldwin et al. Jan 2012 A1
20120022860 Lloyd et al. Jan 2012 A1
20120022868 LeBeau et al. Jan 2012 A1
20120022869 Lloyd et al. Jan 2012 A1
20120022870 Kristjansson et al. Jan 2012 A1
20120022874 Lloyd et al. Jan 2012 A1
20120022876 LeBeau et al. Jan 2012 A1
20120023088 Cheng et al. Jan 2012 A1
20120034904 LeBeau et al. Feb 2012 A1
20120035908 LeBeau et al. Feb 2012 A1
20120035924 Jitkoff et al. Feb 2012 A1
20120035931 LeBeau et al. Feb 2012 A1
20120035932 Jitkoff et al. Feb 2012 A1
20120042343 Laligand et al. Feb 2012 A1
20120137367 Dupont et al. May 2012 A1
20120173464 Tur et al. Jul 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120271676 Aravamudan et al. Oct 2012 A1
20120311583 Gruber et al. Dec 2012 A1
20130110518 Gruber et al. May 2013 A1
20130110520 Cheyer et al. May 2013 A1
Foreign Referenced Citations (47)
Number Date Country
681573 Apr 1993 CH
3837590 May 1990 DE
0138061 Sep 1984 EP
0138061 Apr 1985 EP
0218859 Apr 1987 EP
0262938 Apr 1988 EP
0293259 Nov 1988 EP
0299572 Jan 1989 EP
0313975 May 1989 EP
0314908 May 1989 EP
0327408 Aug 1989 EP
0389271 Sep 1990 EP
0411675 Feb 1991 EP
0559349 Sep 1993 EP
0559349 Sep 1993 EP
0570660 Nov 1993 EP
0863453 Sep 1998 EP
1245023 Oct 2002 EP
2 109 295 Oct 2009 EP
2293667 Apr 1996 GB
06 019965 Jan 1994 JP
2001 125896 May 2001 JP
2002 024212 Jan 2002 JP
2003517158 May 2003 JP
2009 036999 Feb 2009 JP
10-2007-0057496 Jun 2007 KR
10-0776800 Nov 2007 KR
10-2008-001227 Feb 2008 KR
10-0810500 Mar 2008 KR
10 2008 109322 Dec 2008 KR
10 2009 086805 Aug 2009 KR
10-0920267 Oct 2009 KR
10-2010-0032792 Apr 2010 KR
10 2011 0113414 Oct 2011 KR
WO 9502221 Jan 1995 WO
WO 9726612 Jul 1997 WO
WO 9841956 Sep 1998 WO
WO 9901834 Jan 1999 WO
WO 9908238 Feb 1999 WO
WO 9956227 Nov 1999 WO
WO 0060435 Oct 2000 WO
WO 0060435 Oct 2000 WO
WO 02073603 Sep 2002 WO
WO 2006129967 Dec 2006 WO
WO 2008085742 Jul 2008 WO
WO 2008109835 Sep 2008 WO
WO 2011088053 Jul 2011 WO
Non-Patent Literature Citations (404)
Entry
Glass, J., et al., “Multilingual Spoken-Language Understanding in the MIT Voyager System,” Aug. 1995, http://groups.csail.mit.edu/sls/publications/1995/speechcomm95-voyager.pdf, 29 pages.
Goddeau, D., et al., “A Form-Based Dialogue Manager for Spoken Language Applications,” Oct. 1996, http://phasedance.com/pdf/icslp96.pdf, 4 pages.
Goddeau, D., et al., “Galaxy: A Human-Language Interface to On-Line Travel Information,” 1994 International Conference on Spoken Language Processing, Sep. 18-22, 1994, Pacific Convention Plaza Yokohama, Japan, 6 pages.
Meng, H., et al., “Wheels: A Conversational System in the Automobile Classified Domain,” Oct. 1996, httphttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3022, 4 pages.
Phoenix Solutions, Inc. v. West Interactive Corp., Document 40, Declaration of Christopher Schmandt Regarding the MIT Galaxy System dated Jul. 2, 2010, 162 pages.
Seneff, S., et al., “A New Restaurant Guide Conversational System: Issues in Rapid Prototyping for Specialized Domains,” Oct. 1996, citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16 . . . rep . . . , 4 pages.
Vlingo InCar, “Distracted Driving Solution with Vlingo InCar,” 2:38 minute video uploaded to YouTube by Vlingo Voice on Oct. 6, 2010, http://www.youtube.com/watch?v=Vqs8XfXxgz4, 2 pages.
Zue, V., “Conversational Interfaces: Advances and Challenges,” Sep. 1997, http://www.cs.cmu.edu/˜dod/papers/zue97.pdf, 10 pages.
Zue, V. W., “Toward Systems that Understand Spoken Language,” Feb. 1994, ARPA Strategic Computing Institute, © 1994 IEEE, 9 pages.
Alfred App, 2011, http://www.alfredapp.com/, 5 pages.
Ambite, JL., et al., “Design and Implementation of the CALO Query Manager,” Copyright © 2006, American Association for Artificial Intelligence, (www.aaai.org), 8 pages.
Ambite, JL., et al., “Integration of Heterogeneous Knowledge Sources in the CALO Query Manager,” 2005, The 4th International Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE), Agia Napa, Cyprus, ttp://www.isi.edu/people/ambite/publications/integration—heterogeneous—knowledge—sources—calo—query—manager, 18 pages.
Belvin, R. et al., “Development of the HRL Route Navigation Dialogue System,” 2001, In Proceedings of the First International Conference on Human Language Technology Research, Paper, Copyright © 2001 HRL Laboratories, LLC, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.6538, 5 pages.
Berry, P. M., et al. “PTIME: Personalized Assistance for Calendaring,” ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Publication date: Jul. 2011, 40:1-22, 22 pages.
Butcher, M., “EVI arrives in town to go toe-to-toe with Siri,” Jan. 23, 2012, http://techcrunch.com/2012/01/23/evi-arrives-in-town-to-go-toe-to-toe-with-siri/, 2 pages.
Chen, Y., “Multimedia Siri Finds and Plays Whatever You Ask for,” Feb. 9, 2012, http://www.psfk.com/2012/02/multimedia-siri.html, 9 pages.
Cheyer, A. et al., “Spoken Language and Multimodal Applications for Electronic Realties,” © Springer-Verlag London Ltd, Virtual Reality 1999, 3:1-15, 15 pages.
Cutkosky, M. R. et al., “PACT: An Experiment in Integrating Concurrent Engineering Systems,” Journal, Computer, vol. 26 Issue 1, Jan. 1993, IEEE Computer Society Press Los Alamitos, CA, USA, http://dl.acm.org/citation.cfm?id=165320, 14 pages.
Elio, R. et al., “On Abstract Task Models and Conversation Policies,” http://webdocs.cs.ualberta.ca/˜ree/publications/papers2/ATS.AA99.pdf, 10 pages.
Ericsson, S. et al., “Software illustrating a unified approach to multimodality and multilinguality in the in-home domain,” Dec. 22, 2006, Talk and Look: Tools for Ambient Linguistic Knowledge, http://www.talk-project.eurice.eu/fileadmin/talk/publications—public/deliverables—public/D1—6.pdf, 127 pages.
Evi, “Meet Evi: the one mobile app that provides solutions for your everyday problems,” Feb. 8, 2012, http://www.evi.com/, 3 pages.
Feigenbaum, E., et al., “Computer-assisted Semantic Annotation of Scientific Life Works,” 2007, http://tomgruber.org/writing/stanford-cs300.pdf, 22 pages.
Gannes, L., “Alfred App Gives Personalized Restaurant Recommendations,” allthingsd.com, Jul. 18, 2011, http://allthingsd.com/20110718/alfred-app-gives-personalized-restaurant-recommendations/, 3 pages.
Gautier, P. O., et al. “Generating Explanations of Device Behavior Using Compositional Modeling and Causal Ordering,” 1993, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8394, 9 pages.
Gervasio, M. T., et al., Active Preference Learning for Personalized Calendar Scheduling Assistancae, Copyright © 2005, http://www.ai.sri.com/˜gervasio/pubs/gervasio-iui05.pdf, 8 pages.
Glass, A., “Explaining Preference Learning,” 2006, http://cs229.stanford.edu/proj2006/Glass-ExplainingPreferenceLearning.pdf, 5 pages.
Gruber, T. R., et al., “An Ontology for Engineering Mathematics,” In Jon Doyle, Piero Torasso, & Erik Sandewall, Eds., Fourth International Conference on Principles of Knowledge Representation and Reasoning, Gustav Stresemann Institut, Bonn, Germany, Morgan Kaufmann, 1994, http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html, 22 pages.
Gruber, T. R., “A Translation Approach to Portable Ontology Specifications,” Knowledge Systems Laboratory, Stanford University, Sep. 1992, Technical Report KSL 92-71, Revised Apr. 1993, 27 pages.
Gruber, T. R., “Automated Knowledge Acquisition for Strategic Knowledge,” Knowledge Systems Laboratory, Machine Learning, 4, 293-336 (1989), 44 pages.
Gruber, T. R., “(Avoiding) the Travesty of the Commons,” Presentation at NPUC 2006, New Paradigms for User Computing, IBM Almaden Research Center, Jul. 24, 2006. http://tomgruber.org/writing/avoiding-travestry.htm, 52 pages.
Gruber, T. R., “Big Think Small Screen: How semantic computing in the cloud will revolutionize the consumer experience on the phone,” Keynote presentation at Web 3.0 conference, Jan. 27, 2010, http://tomgruber.org/writing/web30jan2010.htm, 41 pages.
Gruber, T. R., “Collaborating around Shared Content on the WWW,” W3C Workshop on WWW and Collaboration, Cambridge, MA, Sep. 11, 1995, http://www.w3.org/Collaboration/Workshop/Proceedings/P9.html, 1 page.
Gruber, T. R., “Collective Knowledge Systems: Where the Social Web meets the Semantic Web,” Web Semantics: Science, Services and Agents on the World Wide Web (2007), doi:10.1016/j.websem.2007.11.011, keynote presentation given at the 5th International Semantic Web Conference, Nov. 7, 2006, 19 pages.
Gruber, T. R., “Where the Social Web meets the Semantic Web,” Presentation at the 5th International Semantic Web Conference, Nov. 7, 2006, 38 pages.
Gruber, T. R., “Despite our Best Efforts, Ontologies are not the Problem,” AAAI Spring Symposium, Mar. 2008, http://tomgruber.org/writing/aaai-ss08.htm, 40 pages.
Gruber, T. R., “Enterprise Collaboration Management with Intraspect,” Intraspect Software, Inc., Instraspect Technical White Paper Jul. 2001, 24 pages.
Gruber, T. R., “Every ontology is a treaty—a social agreement—among people with some common motive in sharing,” Interview by Dr. Miltiadis D. Lytras, Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, Issue 3, 2004, http://www.sigsemis.org 1, 5 pages.
Gruber, T. R., et al., “Generative Design Rationale: Beyond the Record and Replay Paradigm,” Knowledge Systems Laboratory, Stanford University, Dec. 1991, Technical Report KSL 92-59, Updated Feb. 1993, 24 pages.
Gruber, T. R., “Helping Organizations Collaborate, Communicate, and Learn,” Presentation to NASA Ames Research, Mountain View, CA, Mar. 2003, http://tomgruber.org/writing/organizational-intelligence-talk.htm, 30 pages.
Gruber, T. R., “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience,” Presentation at Semantic Technologies conference (SemTech08), May 20, 2008, http://tomgruber.org/writing.htm, 40 pages.
Gruber, T. R., Interactive Acquisition of Justifications: Learning “Why” by Being Told “What” Knowledge Systems Laboratory, Stanford University, Oct. 1990, Technical Report KSL 91-17, Revised Feb. 1991, 24 pages.
Gruber, T. R., “It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing,” (c) 2000, 2003, http://www.cidoc-crm.org/docs/symposium—presentations/gruber—cidoc-ontology-2003.pdf, 21 pages.
Gruber, T. R., et al., “Machine-generated Explanations of Engineering Models: A Compositional Modeling Approach,” (1993) In Proc. International Joint Conference on Artificial Intelligence, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.930, 7 pages.
Gruber, T. R., “2021: Mass Collaboration and the Really New Economy,” TNTY Futures, the newsletter of The Next Twenty Years series, vol. 1, Issue 6, Aug. 2001, http://www.tnty.com/newsletter/futures/archive/v01-05business.html, 5 pages.
Gruber, T. R., et al.,“NIKE: A National Infrastructure for Knowledge Exchange,” Oct. 1994, http://www.eit.com/papers/nike/nike.html and nike.ps, 10 pages.
Gruber, T. R., “Ontologies, Web 2.0 and Beyond,” Apr. 24, 2007, Ontology Summit 2007, http://tomgruber.org/writing/ontolog-social-web-keynote.pdf, 17 pages.
Gruber, T. R., “Ontology of Folksonomy: A Mash-up of Apples and Oranges,” Originally published to the web in 2005, Int'l Journal on Semantic Web & Information Systems, 3(2), 2007, 7 pages.
Gruber, T. R., “Siri, a Virtual Personal Assistant—Bringing Intelligence to the Interface,” Jun. 16, 2009, Keynote presentation at Semantic Technologies conference, Jun. 2009. http://tomgruber.org/writing/semtech09.htm, 22 pages.
Gruber, T. R., “TagOntology,” Presentation to Tag Camp, www.tagcamp.org, Oct. 29, 2005, 20 pages.
Gruber, T. R., et al., “Toward a Knowledge Medium for Collaborative Product Development,” In Artificial Intelligence in Design 1992, from Proceedings of the Second International Conference on Artificial Intelligence in Design, Pittsburgh, USA, Jun. 22-25, 1992, 19 pages.
Gruber, T. R., “Toward Principles for the Design of Ontologies Used for Knowledge Sharing,” In International Journal Human-Computer Studies 43, p. 907-928, substantial revision of paper presented at the International Workshop on Formal Ontology, Mar. 1993, Padova, Italy, available as Technical Report KSL 93-04, Knowledge Systems Laboratory, Stanford University, further revised Aug. 23, 1993, 23 pages.
Guzzoni, D., et al., “Active, A Platform for Building Intelligent Operating Rooms,” Surgetica 2007 Computer-Aided Medical Interventions: tools and applications, pp. 191-198, Paris, 2007, Sauramps Médical, http://Isro.epfl.ch/page-68384-en.html, 8 pages.
Guzzoni, D., et al., “Active, A Tool for Building Intelligent User Interfaces,” ASC 2007, Palma de Mallorca, http://Isro.epfl.ch/page-34241.html, 6 pages.
Guzzoni, D., et al., “Modeling Human-Agent Interaction with Active Ontologies,” 2007, AAAI Spring Symposium, Interaction Challenges for Intelligent Assistants, Stanford University, Palo Alto, California, 8 pages.
Hardawar, D., “Driving app Waze builds its own Siri for hands-free voice control,” Feb. 9, 2012, http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/, 4 pages.
Intraspect Software, “The Intraspect Knowledge Management Solution: Technical Overview,” http://tomgruber.org/writing/intraspect-whitepaper-1998.pdf, 18 pages.
Julia, L., et al., Un éditeur interactif de tableaux dessinés àmain levée (An Interactive Editor for Hand-Sketched Tables), Traitement du Signal 1995, vol. 12, No. 6, 8 pages. No English Translation Available.
Karp, P. D., “A Generic Knowledge-Base Access Protocol,” May 12, 1994, http://lecture.cs.buu.ac.th/˜f50353/Document/gfp.pdf, 66 pages.
Lemon, O., et al., “Multithreaded Context for Robust Conversational Interfaces: Context-Sensitive Speech Recognition and Interpretation of Corrective Fragments,” Sep. 2004, ACM Transactions on Computer-Human Interaction, vol. 11, No. 3, 27 pages.
Leong, L., et al., “CASIS: A Context-Aware Speech Interface System,” IUI'05, Jan. 9-12, 2005, Proceedings of the 10th international conference on Intelligent user interfaces, San Diego, California, USA, 8 pages.
Lieberman, H., et al., “Out of context: Computer systems that adapt to, and learn from, context,” 2000, IBM Systems Journal, vol. 39, Nos. 3/4, 2000, 16 pages.
Lin, B., et al., “A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History,” 1999, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.272, 4 pages.
McGuire, J., et al., “SHADE: Technology for Knowledge-Based Collaborative Engineering,” 1993, Journal of Concurrent Engineering: Applications and Research (CERA), 18 pages.
Milward, D., et al., “D2.2: Dynamic Multimodal Interface Reconfiguration,” Talk and Look: Tools for Ambient Linguistic Knowledge, Aug. 8, 2006, http://www.ihmc.us/users/nblaylock/Pubs/Files/talk—d2.2.pdf, 69 pages.
Mitra, P., et al., “A Graph-Oriented Model for Articulation of Ontology Interdependencies,” 2000, http://ilpubs.stanford.edu:8090/442/1/2000-20.pdf, 15 pages.
Moran, D. B., et al., “Multimodal User Interfaces in the Open Agent Architecture,” Proc. of the 1997 International Conference on Intelligent User Interfaces (IUI97), 8 pages.
Mozer, M., “An Intelligent Environment Must be Adaptive,” Mar./Apr. 1999, IEEE Intelligent Systems, 3 pages.
Mühlhäuser, M., “Context Aware Voice User Interfaces for Workflow Support,” Darmstadt 2007, http://tuprints.ulb.tu-darmstadt.de/876/1/PhD.pdf, 254 pages.
Naone, E., “TR10: Intelligent Software Assistant,” Mar.-Apr. 2009, Technology Review, http://www.technologyreview.com/printer—friendly—article.aspx?id=22117, 2 pages.
Neches, R., “Enabling Technology for Knowledge Sharing,” Fall 1991, AI Magazine, pp. 37-56, (21 pages).
Nöth, E., et al., “Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 5, Sep. 2000, 14 pages.
Rice, J., et al., “Monthly Program: Nov. 14, 1995,” The San Francisco Bay Area Chapter of ACM SIGCHI, http://www.baychi.org/calendar/19951114/, 2 pages.
Rice, J., et al., “Using the Web Instead of a Window System,” Knowledge Systems Laboratory, Stanford University, http://tomgruber.org/writing/ksl-95-69.pdf, 14 pages.
Rivlin, Z., et al., “Maestro: Conductor of Multimedia Analysis Technologies,” 1999 SRI International, Communications of the Association for Computing Machinery (CACM), 7 pages.
Sheth, A., et al., “Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships,” Oct. 13, 2002, Enhancing the Power of the Internet: Studies in Fuzziness and Soft Computing, SpringerVerlag, 38 pages.
Simonite, T., “One Easy Way to Make Siri Smarter,” Oct. 18, 2011, Technology Review, http://www.technologyreview.com/printer—friendly—article.aspx?id=38915, 2 pages.
Stent, A., et al., “The CommandTalk Spoken Dialogue System,” 1999, http://acl.Idc.upenn.edu/P/P99/P99-1024.pdf, 8 pages.
Tofel, K., et al., “SpeakTolt: A personal assistant for older iPhones, iPads,” Feb. 9, 2012, http://gigaom.com/apple/speaktoit-siri-for-older-iphones-ipads/, 7 pages.
Tucker, J., “Too lazy to grab your TV remote? Use Siri instead,” Nov. 30, 2011, http://www.engadget.com/2011/11/30/too-lazy-to-grab-your-tv-remote-use-siri-instead/, 8 pages.
Tur, G., et al., “The CALO Meeting Speech Recognition and Understanding System,” 2008, Proc. IEEE Spoken Language Technology Workshop, 4 pages.
Tur, G., et al., “The-CALO-Meeting-Assistant System,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 6, Aug. 2010, 11 pages.
Vlingo, “Vlingo Launches Voice Enablement Application on Apple App Store,” Vlingo press release dated Dec. 3, 2008, 2 pages.
YouTube, “Knowledge Navigator,” 5:34 minute video uploaded to YouTube by Knownav on Apr. 29, 2008, http://www.youtube.com/watch?v=QRH8eimU—20on Aug. 3, 2006, 1 page.
YouTube,“Send Text, Listen to and Send E-Mail ‘By Voice’ www.voiceassist.com,” 2:11 minute video uploaded to YouTube by VoiceAssist on Jul. 30, 2009, http://www.youtube.com/watch?v=0tEU61nHHA4, 1 page.
YouTube,“Text'nDrive App Demo—Listen and Reply to your Messages by Voice while Driving!,” 1:57 minute video uploaded to YouTube by TextnDrive on Apr. 27, 2010, http://www.youtube.com/watch?v=WaGfzoHsAMw, 1 page.
YouTube, “Voice on the Go (BlackBerry),” 2:51 minute video uploaded to YouTube by VoiceOnTheGo on Jul. 27, 2009, http://www.youtube.com/watch?v=pJqpWgQS98w, 1 page.
International Search Report and Written Opinion dated Nov. 29, 2011, received in International Application No. PCT/US2011/20861, which corresponds to U.S. Appl. No. 12/987,982, 15 pages. (Thomas Robert Gruber).
Bussler, C., et al., “Web Service Execution Environment (WSMX),” Jun. 3, 2005, W3C Member Submission, http://www.w3.org/Submission/WSMX, 29 pages.
Cheyer, A., “About Adam Cheyer,” Sep. 17, 2012, http://www.adam.cheyer.com/about.html, 2 pages.
Cheyer, A., “A Perspective on AI & Agent Technologies for SCM,” VerticalNet, 2001 presentation, 22 pages.
Domingue, J., et al., “Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services,” Jun. 9-10, 2005, position paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, 6 pages.
Guzzoni, D., et al., “A Unified Platform for Building Intelligent Web Interaction Assistants,” Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Computer Society, 4 pages.
Roddy, D., et al., “Communication and Collaboration in a Landscape of B2B eMarketplaces,” VerticalNet Solutions, white paper, Jun. 15, 2000, 23 pages.
Martin, D., et al., “The Open Agent Architecture: A Framework for building distributed software systems,” Jan.-Mar. 1999, Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, http://adam.cheyer.com/papers/oaa.pdf, 38 pages.
Acero, A., et al., “Environmental Robustness in Automatic Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages.
Acero, A., et al., “Robust Speech Recognition by Normalization of The Acoustic Space,” International Conference on Acoustics, Speech, and Signal Processing, 1991, 4 pages.
Ahlbom, G., et al., “Modeling Spectral Speech Transitions Using Temporal Decomposition Techniques,” IEEE International Conference of Acoustics, Speech, and Signal Processing (ICASSP'87), Apr. 1987, vol. 12, 4 pages.
Aikawa, K., “Speech Recognition Using Time-Warping Neural Networks,” Proceedings of the 1991 IEEE Workshop on Neural Networks for Signal Processing, Sep. 30 to Oct. 1, 1991, 10 pages.
Anastasakos, A., et al., “Duration Modeling in Large Vocabulary Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages.
Anderson, R. H., “Syntax-Directed Recognition of Hand-Printed Two-Dimensional Mathematics,” In Proceedings of Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, © 1967, 12 pages.
Ansari, R., et al., “Pitch Modification of Speech using a Low-Sensitivity Inverse Filter Approach,” IEEE Signal Processing Letters, vol. 5, No. 3, Mar. 1998, 3 pages.
Anthony, N. J., et al., “Supervised Adaption for Signature Verification System,” Jun. 1, 1978, IBM Technical Disclosure, 3 pages.
Apple Computer, “Guide Maker User's Guide,” © Apple Computer, Inc., Apr. 27, 1994, 8 pages.
Apple Computer, “Introduction to Apple Guide,” © Apple Computer, Inc., Apr. 28, 1994, 20 pages.
Asanović, K., et al., “Experimental Determination of Precision Requirements for Back-Propagation Training of Artificial Neural Networks,” In Proceedings of the 2nd International Conference of Microelectronics for Neural Networks, 1991, www.ICSI.Berkeley.EDU, 7 pages.
Atal, B. S., “Efficient Coding of LPC Parameters by Temporal Decomposition,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'83), Apr. 1983, 4 pages.
Bahl, L. R., et al., “Acoustic Markov Models Used in the Tangora Speech Recognition System,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14, 1988, vol. 1, 4 pages.
Bahl, L. R., et al., “A Maximum Likelihood Approach to Continuous Speech Recognition,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1983, 13 pages.
Bahl, L. R., et al., “A Tree-Based Statistical Language Model for Natural Language Speech Recognition,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, Issue 7, Jul. 1989, 8 pages.
Bahl, L. R., et al., “Large Vocabulary Natural Language Continuous Speech Recognition,” In Proceedings of 1989 International Conference on Acoustics, Speech, and Signal Processing, May 23-26, 1989, vol. 1, 6 pages.
Bahl, L. R., et al, “Multonic Markov Word Models for Large Vocabulary Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 1, No. 3, Jul. 1993, 11 pages.
Bahl, L. R., et al., “Speech Recognition with Continuous-Parameter Hidden Markov Models,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14, 1988, vol. 1, 8 pages.
Banbrook, M., “Nonlinear Analysis of Speech from a Synthesis Perspective,” A thesis submitted for the degree of Doctor of Philosophy, The University of Edinburgh, Oct. 15, 1996, 35 pages.
Belaid, A., et al., “A Syntactic Approach for Handwritten Mathematical Formula Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, No. 1, Jan. 1984, 7 pages.
Bellegarda, E. J., et al., “On-Line Handwriting Recognition Using Statistical Mixtures,” Advances in Handwriting and Drawings: A Multidisciplinary Approach, Europia, 6th International IGS Conference on Handwriting and Drawing, Paris—France, Jul. 1993, 11 pages.
Bellegarda, J. R., “A Latent Semantic Analysis Framework for Large-Span Language Modeling,” 5th European Conference on Speech, Communication and Technology, (EUROSPEECH'97), Sep. 22-25, 1997, 4 pages.
Bellegarda, J. R., “A Multispan Language Modeling Framework for Large Vocabulary Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 6, No. 5, Sep. 1998, 12 pages.
Bellegarda, J. R., et al., “A Novel Word Clustering Algorithm Based on Latent Semantic Analysis,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, 4 pages.
Bellegarda, J. R., et al., “Experiments Using Data Augmentation for Speaker Adaptation,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages.
Bellegarda, J. R., “Exploiting Both Local and Global Constraints for Multi-Span Statistical Language Modeling,” Proceeding of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'98), vol. 2, May 12-15, 1998, 5 pages.
Bellegarda, J. R., “Exploiting Latent Semantic Information in Statistical Language Modeling,” In Proceedings of the IEEE, Aug. 2000, vol. 88, No. 8, 18 pages.
Bellegarda, J. R., “Interaction-Driven Speech Input—A Data-Driven Approach to the Capture of Both Local and Global Language Constraints,” 1992, 7 pages, available at http://old.sigchi.org/bulletin/1998.2/bellegarda.html.
Bellegarda, J. R., “Large Vocabulary Speech Recognition with Multispan Statistical Language Models,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 1, Jan. 2000, 9 pages.
Bellegarda, J. R., et al., “Performance of the IBM Large Vocabulary Continuous Speech Recognition System on the ARPA Wall Street Journal Task,” Signal Processing VII: Theories and Applications, © 1994 European Association for Signal Processing, 4 pages.
Bellegarda, J. R., et al., “The Metamorphic Algorithm: A Speaker Mapping Approach to Data Augmentation,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 8 pages.
Black, A. W., et al., “Automatically Clustering Similar Units for Unit Selection in Speech Synthesis,” In Proceedings of Eurospeech 1997, vol. 2, 4 pages.
Blair, D. C., et al., “An Evaluation of Retrieval Effectiveness for a Full-Text Document-Retrieval System,” Communications of the ACM, vol. 28, No. 3, Mar. 1985, 11 pages.
Briner, L. L., “Identifying Keywords in Text Data Processing,” In Zelkowitz, Marvin V., ED, Directions and Challenges,15th Annual Technical Symposium, Jun. 17, 1976, Gaithersbury, Maryland, 7 pages.
Bulyko, I., et al., “Joint Prosody Prediction and Unit Selection for Concatenative Speech Synthesis,” Electrical Engineering Department, University of Washington, Seattle, 2001, 4 pages.
Bussey, H. E., et al., “Service Architecture, Prototype Description, and Network Implications of a Personalized Information Grazing Service,” INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Jun. 3-7, 1990, http://slrohall.com/publications/, 8 pages.
Buzo, A., et al., “Speech Coding Based Upon Vector Quantization,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. Assp-28, No. 5, Oct. 1980, 13 pages.
Caminero-Gil, J., et al., “Data-Driven Discourse Modeling for Semantic Interpretation,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, May 7-10, 1996, 6 pages.
Cawley, G. C., “The Application of Neural Networks to Phonetic Modelling,” PhD Thesis, University of Essex, Mar. 1996, 13 pages.
Chang, S., et al., “A Segment-based Speech Recognition System for Isolated Mandarin Syllables,” Proceedings TENCON '93, IEEE Region 10 conference on Computer, Communication, Control and Power Engineering, Oct. 19-21, 1993, vol. 3, 6 pages.
Conklin, J., “Hypertext: An Introduction and Survey,” COMPUTER Magazine, Sep. 1987, 25 pages.
Connolly, F. T., et al., “Fast Algorithms for Complex Matrix Multiplication Using Surrogates,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1989, vol. 37, No. 6, 13 pages.
Deerwester, S., et al., “Indexing by Latent Semantic Analysis,” Journal of the American Society for Information Science, vol. 41, No. 6, Sep. 1990, 19 pages.
Deller, Jr., J. R., et al., “Discrete-Time Processing of Speech Signals,” © 1987 Prentice Hall, ISBN: 0-02-328301-7, 14 pages.
Digital Equipment Corporation, “Open VMS Software Overview,” Dec. 1995, software manual, 159 pages.
Donovan, R. E., “A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers,” 2001, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6398, 4 pages.
Frisse, M. E., “Searching for Information in a Hypertext Medical Handbook,” Communications of the ACM, vol. 31, No. 7, Jul. 1988, 8 pages.
Goldberg, D., et al., “Using Collaborative Filtering to Weave an Information Tapestry,” Communications of the ACM, vol. 35, No. 12, Dec. 1992, 10 pages.
Gorin, A. L., et al., “On Adaptive Acquisition of Language,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), vol. 1, Apr. 3-6, 1990, 5 pages.
Gotoh, Y., et al., “Document Space Models Using Latent Semantic Analysis,” In Proceedings of Eurospeech, 1997, 4 pages.
Gray, R. M., “Vector Quantization,” IEEE ASSP Magazine, Apr. 1984, 26 pages.
Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” In Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, 34 pages.
Helm, R., et al., “Building Visual Language Parsers,” In Proceedings of CHI'91 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 8 pages.
Hermansky, H., “Perceptual Linear Predictive (PLP) Analysis of Speech,” Journal of the Acoustical Society of America, vol. 87, No. 4, Apr. 1990, 15 pages.
Hermansky, H., “Recognition of Speech in Additive and Convolutional Noise Based on Rasta Spectral Processing,” In proceedings of IEEE International Conference on Acoustics, speech, and Signal Processing (ICASSP'93), Apr. 27-30, 1993, 4 pages.
Hoehfeld M., et al., “Learning with Limited Numerical Precision Using the Cascade-Correlation Algorithm,” IEEE Transactions on Neural Networks, vol. 3, No. 4, Jul. 1992, 18 pages.
Holmes, J. N., “Speech Synthesis and Recognition—Stochastic Models for Word Recognition,” Speech Synthesis and Recognition, Published by Chapman & Hall, London, ISBN 0 412 534304, © 1998 J. N. Holmes, 7 pages.
Hon, H.W., et al., “CMU Robust Vocabulary-Independent Speech Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-91), Apr. 14-17, 1991, 4 pages.
IBM Technical Disclosure Bulletin, “Speech Editor,” vol. 29, No. 10, Mar. 10, 1987, 3 pages.
IBM Technical Disclosure Bulletin, “Integrated Audio-Graphics User Interface,” vol. 33, No. 11, Apr. 1991, 4 pages.
IBM Technical Disclosure Bulletin, “Speech Recognition with Hidden Markov Models of Speech Waveforms,” vol. 34, No. 1, Jun. 1991, 10 pages.
Iowegian International, “FIR Filter Properties,” dspGuro, Digital Signal Processing Central, http://www.dspguru.com/dsp/tags/fir/properties, downloaded on Jul. 28, 2010, 6 pages.
Jacobs, P. S., et al., “Scisor: Extracting Information from On-Line News,” Communications of the ACM, vol. 33, No. 11, Nov. 1990, 10 pages.
Jelinek, F., “Self-Organized Language Modeling for Speech Recognition,” Readings in Speech Recognition, edited by Alex Waibel and Kai-Fu Lee, May 15, 1990, © 1990 Morgan Kaufmann Publishers, Inc., ISBN: 1-55860-124-4, 63 pages.
Jennings, A., et al., “A Personal News Service Based on a User Model Neural Network,” IEICE Transactions on Information and Systems, vol. E75-D, No. 2, Mar. 1992, Tokyo, JP, 12 pages.
Ji, T., et al., “A Method for Chinese Syllables Recognition based upon Sub-syllable Hidden Markov Model,” 1994 International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 4 pages.
Jones, J., “Speech Recognition for Cyclone,” Apple Computer, Inc., E.R.S., Revision 2.9, Sep. 10, 1992, 93 pages.
Katz, S. M., “Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35, No. 3, Mar. 1987, 3 pages.
Kitano, H., “PhiDM-Dialog, An Experimental Speech-to-Speech Dialog Translation System,” Jun. 1991 Computer, vol. 24, No. 6, 13 pages.
Klabbers, E., et al., “Reducing Audible Spectral Discontinuities,” IEEE Transactions on Speech and Audio Processing, vol. 9, No. 1, Jan. 2001, 13 pages.
Klatt, D. H., “Linguistic Uses of Segmental Duration in English: Acoustic and Perpetual Evidence,” Journal of the Acoustical Society of America, vol. 59, No. 5, May 1976, 16 pages.
Kominek, J., et al., “Impact of Durational Outlier Removal from Unit Selection Catalogs,” 5th ISCA Speech Synthesis Workshop, Jun. 14-16, 2004, 6 pages.
Kubala, F., et al., “Speaker Adaptation from a Speaker-Independent Training Corpus,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages.
Kubala, F., et al., “The Hub and Spoke Paradigm for CSR Evaluation,” Proceedings of the Spoken Language Technology Workshop, Mar. 6-8, 1994, 9 pages.
Lee, K.F., “Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX System,” Apr. 18, 1988, Partial fulfillment of the requirements for the degree of Doctor of Philosophy, Computer Science Department, Carnegie Mellon University, 195 pages.
Lee, L., et al., “A Real-Time Mandarin Dictation Machine for Chinese Language with Unlimited Texts and Very Large Vocabulary,” International Conference on Acoustics, Speech and Signal Processing, vol. 1, Apr. 3-6, 1990, 5 pages.
Lee, L, et al., “Golden Mandarin(II)-An Improved Single-Chip Real-Time Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary,” 0-7803-0946-4/93 © 1993IEEE, 4 pages.
Lee, L, et al., “Golden Mandarin(II)-An Intelligent Mandarin Dictation Machine for Chinese Character Input with Adaptation/Learning Functions,” International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 5 pages.
Lee, L., et al., “System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters,” International Conference on Computer Processing of Chinese & Oriental Languages, vol. 5, Nos. 3 & 4, Nov. 1991, 16 pages.
Lin, C.H., et al., “A New Framework for Recognition of Mandarin Syllables With Tones Using Sub-syllabic Unites,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-93), Apr. 27-30, 1993, 4 pages.
Linde, Y., et al., “An Algorithm for Vector Quantizer Design,” IEEE Transactions on Communications, vol. 28, No. 1, Jan. 1980, 12 pages.
Liu, F.H., et al., “Efficient Joint Compensation of Speech for the Effects of Additive Noise and Linear Filtering,” IEEE International Conference of Acoustics, Speech, and Signal Processing, ICASSP-92, Mar. 23-26, 1992, 4 pages.
Logan, B., “Mel Frequency Cepstral Coefficients for Music Modeling,” In International Symposium on Music Information Retrieval, 2000, 2 pages.
Lowerre, B. T., “The-HARPY Speech Recognition System,” Doctoral Dissertation, Department of Computer Science, Carnegie Mellon University, Apr. 1976, 20 pages.
Maghbouleh, A., “An Empirical Comparison of Automatic Decision Tree and Linear Regression Models for Vowel Durations,” Revised version of a paper presented at the Computational Phonology in Speech Technology workshop, 1996 annual meeting of the Association for Computational Linguistics in Santa Cruz, California, 7 pages.
Markel, J. D., et al., “Linear Prediction of Speech,” Springer-Verlag, Berlin Heidelberg New York 1976, 12 pages.
Morgan, B., “Business Objects,” (Business Objects for Windows) Business Objects Inc., DBMS Sep. 1992, vol. 5, No. 10, 3 pages.
Mountford, S. J., et al., “Talking and Listening to Computers,” The Art of Human-Computer Interface Design, Copyright © 1990 Apple Computer, Inc. Addison-Wesley Publishing Company, Inc., 17 pages.
Murty, K. S. R., et al., “Combining Evidence from Residual Phase and MFCC Features for Speaker Recognition,” IEEE Signal Processing Letters, vol. 13, No. 1, Jan. 2006, 4 pages.
Murveit H. et al., “Integrating Natural Language Constraints into HMM-based Speech Recognition,” 1990 International Conference on Acoustics, Speech, and Signal Processing, Apr. 3-6, 1990, 5 pages.
Nakagawa, S., et al., “Speaker Recognition by Combining MFCC and Phase Information,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Mar. 14-19, 2010, 4 pages.
Niesler, T. R., et al., “A Variable-Length Category-Based N-Gram Language Model,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, May 7-10, 1996, 6 pages.
Papadimitriou, C. H., et al., “Latent Semantic Indexing: A Probabilistic Analysis,” Nov. 14, 1997, http://citeseerx.ist.psu.edu/messages/downloadsexceeded.html, 21 pages.
Parsons, T. W., “Voice and Speech Processing,” Linguistics and Technical Fundamentals, Articulatory Phonetics and Phonemics, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 5 pages.
Parsons, T. W., “Voice and Speech Processing,” Pitch and Formant Estimation, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 15 pages.
Picone, J., “Continuous Speech Recognition Using Hidden Markov Models,” IEEE ASSP Magazine, vol. 7, No. 3, Jul. 1990, 16 pages.
Rabiner, L. R., et al., “Fundamental of Speech Recognition,” © 1993 AT&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 17 pages.
Rabiner, L. R., et al., “Note on the Properties of a Vector Quantizer for LPC Coefficients,” The Bell System Technical Journal, vol. 62, No. 8, Oct. 1983, 9 pages.
Ratcliffe, M., “ClearAccess 2.0 allows SQL searches off-line,” (Structured Query Language), ClearAcess Corp., MacWeek Nov. 16, 1992, vol. 6, No. 41, 2 pages.
Remde, J. R., et al., “SuperBook: An Automatic Tool for Information Exploration-Hypertext?,” In Proceedings of Hypertext'87 papers, Nov. 13-15, 1987, 14 pages.
Reynolds, C. F., “On-Line Reviews: A New Application of the HICOM Conferencing System,” IEE Colloquium on Human Factors in Electronic Mail and Conferencing Systems, Feb. 3, 1989, 4 pages.
Rigoll, G., “Speaker Adaptation for Large Vocabulary Speech Recognition Systems Using Speaker Markov Models,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'89), May 23-26, 1989, 4 pages.
Riley, M. D., “Tree-Based Modelling of Segmental Durations,” Talking Machines Theories, Models, and Designs, 1992 © Elsevier Science Publishers B.V., North-Holland, ISBN: 08-444-89115.3, 15 pages.
Rivoira, S., et al., “Syntax and Semantics in a Word-Sequence Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'79), Apr. 1979, 5 pages.
Rosenfeld, R., “A Maximum Entropy Approach to Adaptive Statistical Language Modelling,” Computer Speech and Language, vol. 10, No. 3, Jul. 1996, 25 pages.
Roszkiewicz, A., “Extending your Apple,” Back Talk—Lip Service, A+ Magazine, The Independent Guide for Apple Computing, vol. 2, No. 2, Feb. 1984, 5 pages.
Sakoe, H., et al., “Dynamic Programming Algorithm Optimization for Spoken Word Recognition,” IEEE Transactins on Acoustics, Speech, and Signal Processing, Feb. 1978, vol. ASSP-26 No. 1, 8 pages.
Salton, G., et al., “On the Application of Syntactic Methodologies in Automatic Text Analysis,” Information Processing and Management, vol. 26, No. 1, Great Britain 1990, 22 pages.
Savoy, J., “Searching Information in Hypertext Systems Using Multiple Sources of Evidence,” International Journal of Man-Machine Studies, vol. 38, No. 6, Jun. 1993, 15 pages.
Scagliola, C., “Language Models and Search Algorithms for Real-Time Speech Recognition,” International Journal of Man-Machine Studies, vol. 22, No. 5, 1985, 25 pages.
Schmandt, C., et al., “Augmenting a Window System with Speech Input,” IEEE Computer Society, Computer Aug. 1990, vol. 23, No. 8, 8 pages.
Schütze, H., “Dimensions of Meaning,” Proceedings of Supercomputing'92 Conference, Nov. 16-20, 1992, 10 pages.
Sheth B., et al., “Evolving Agents for Personalized Information Filtering,” In Proceedings of the Ninth Conference on Artificial Intelligence for Applications, Mar. 1-5, 1993, 9 pages.
Shikano, K., et al., “Speaker Adaptation Through Vector Quantization,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'86), vol. 11, Apr. 1986, 4 pages.
Sigurdsson, S., et al., “Mel Frequency Cepstral Coefficients: An Evaluation of Robustness of MP3 Encoded Music,” In Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR), 2006, 4 pages.
Silverman, K. E. A., et al., “Using a Sigmoid Transformation for Improved Modeling of Phoneme Duration,” Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 15-19, 1999, 5 pages.
Tenenbaum, A.M., et al., “Data Structure Using Pascal,” 1981 Prentice-Hall, Inc., 34 pages.
Tsai, W.H., et al., “Attributed Grammar-A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-10, No. 12, Dec. 1980, 13 pages.
Udell, J., “Computer Telephony,” BYTE, vol. 19, No. 7, Jul. 1, 1994, 9 pages.
van Santen, J. P. H., “Contextual Effects on Vowel Duration,” Journal Speech Communication, vol. 11, No. 6, Dec. 1992, 34 pages.
Vepa, J., et al., “New Objective Distance Measures for Spectral Discontinuities in Concatenative Speech Synthesis,” In Proceedings of the IEEE 2002 Workshop on Speech Synthesis, 4 pages.
Verschelde, J., “MATLAB Lecture 8. Special Matrices in MATLAB,” Nov. 23, 2005, UIC Dept. of Math., Stat . . . & C.S., MCS 320, Introduction to Symbolic Computation, 4 pages.
Vingron, M. “Near-Optimal Sequence Alignment,” Deutsches Krebsforschungszentrum (DKFZ), Abteilung Theoretische Bioinformatik, Heidelberg, Germany, Jun. 1996, 20 pages.
Werner, S., et al., “Prosodic Aspects of Speech,” Université de Lausanne, Switzerland, 1994, Fundamentals of Speech Synthesis and Speech Recognition: Basic Concepts, State of the Art, and Future Challenges, 18 pages.
Wikipedia, “Mel Scale,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Mel—scale, 2 pages.
Wikipedia, “Minimum Phase,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Minimum—phase, 8 pages.
Wolff, M., “Poststructuralism and the ARTFUL Database: Some Theoretical Considerations,” Information Technology and Libraries, vol. 13, No. 1, Mar. 1994, 10 pages.
Wu, M., “Digital Speech Processing and Coding,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture-2 course presentation, University of Maryland, College Park, 8 pages.
Wu, M., “Speech Recognition, Synthesis, and H.C.I.,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture-3 course presentation, University of Maryland, College Park, 11 pages.
Wyle, M. F., “A Wide Area Network Information Filter,” In Proceedings of First International Conference on Artificial Intelligence on Wall Street, Oct. 9-11, 1991, 6 pages.
Yankelovich, N., et al., “Intermedia: The Concept and the Construction of a Seamless Information Environment,” Computer Magazine, Jan. 1988, © 1988 IEEE, 16 pages.
Yoon, K., et al., “Letter-to-Sound Rules for Korean,” Department of Linguistics, The Ohio State University, 2002, 4 pages.
Zhao, Y., “An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 15 pages.
Zovato, E., et al., “Towards Emotional Speech Synthesis: A Rule Based Approach,” 2 pages.
International Search Report dated Nov. 9, 1994, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 8 pages. (Robert Don Strong).
International Preliminary Examination Report dated Mar. 1, 1995, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 5 pages (Robert Don Strong).
International Preliminary Examination Report dated Apr. 10, 1995, received in International Application No. PCT/US1993/12637, which corresponds to U.S. Appl. No. 07/999,354, 7 pages (Alejandro Acero).
International Search Report dated Feb. 8, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 7 pages (Yen-Lu Chow).
International Preliminary Examination Report dated Feb. 28, 1996, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow).
Written Opinion dated Aug. 21, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow).
International Search Report dated Nov. 8, 1995, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 6 pages (Peter V. De Souza).
International Preliminary Examination Report dated Oct. 9, 1996, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 4 pages (Peter V. De Souza).
Agnäs, MS., et al., “Spoken Language Translator: First-Year Report,” Jan. 1994, SICS (ISSN 0283-3638), SRI and Telia Research AB, 161 pages.
Allen, J., “Natural Language Understanding,” 2nd Edition, Copyright © 1995 by The Benjamin/Cummings Publishing Company, Inc., 671 pages.
Alshawi, H., et al., “CLARE: A Contextual Reasoning and Cooperative Response Framework for the Core Language Engine,” Dec. 1992, SRI International, Cambridge Computer Science Research Centre, Cambridge, 273 pages.
Alshawi, H., et al., “Declarative Derivation of Database Queries from Meaning Representations,” Oct. 1991, Proceedings of the BANKAI Workshop on Intelligent Information Access, 12 pages.
Alshawi H., et al., “Logical Forms in the Core Language Engine,” 1989, Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, 8 pages.
Alshawi, H., et al., “Overview of the Core Language Engine,” Sep. 1988, Proceedings of Future Generation Computing Systems, Tokyo, 13 pages.
Alshawi, H., “Translation and Monotonic Interpretation/Generation,” Jul. 1992, SRI International, Cambridge Computer Science Research Centre, Cambridge, 18 pages, http://www.cam.sri.com/tr/crc024/paperps.Z 1992.
Appelt, D., et al., “Fastus: A Finite-state Processor for Information Extraction from Real-world Text,” 1993, Proceedings of IJCAI, 8 pages.
Appelt, D., et al., “SRI: Description of the JV-FASTUS System Used for MUC-5,” 1993, SRI International, Artificial Intelligence Center, 19 pages.
Appelt, D., et al., SRI International Fastus System MUC-6 Test Results and Analysis, 1995, SRI International, Menlo Park, California, 12 pages.
Archbold, A., et al., “A Team User's Guide,” Dec. 21, 1981, SRI International, 70 pages.
Bear, J., et al., “A System for Labeling Self-Repairs in Speech,” Feb. 22, 1993, SRI International, 9 pages.
Bear, J., et al., “Detection and Correction of Repairs in Human-Computer Dialog,” May 5, 1992, SRI International, 11 pages.
Bear, J., et al., “Integrating Multiple Knowledge Sources for Detection and Correction of Repairs in Human-Computer Dialog,” 1992, Proceedings of the 30th annual meeting on Association for Computational Linguistics (ACL), 8 pages.
Bear, J., et al., “Using Information Extraction to Improve Document Retrieval,” 1998, SRI International, Menlo Park, California, 11 pages.
Berry, P., et al., “Task Management under Change and Uncertainty Constraint Solving Experience with the CALO Project,” 2005, Proceedings of CP'05 Workshop on Constraint Solving under Change, 5 pages.
Bobrow, R. et al., “Knowledge Representation for Syntactic/Semantic Processing,” From: AAA—80 Proceedings. Copyright © 1980, AAAI, 8 pages.
Bouchou, B., et al., “Using Transducers in Natural Language Database Query,” Jun. 17-19, 1999, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, 17 pages.
Bratt, H., et al., “The SRI Telephone-based ATIS System,” 1995, Proceedings of ARPA Workshop on Spoken Language Technology, 3 pages.
Bulyko, I. et al., “Error-Correction Detection and Response Generation in a Spoken Dialogue System,” © 2004 Elsevier B.V., specom.2004.09.009, 18 pages.
Burke, R., et al., “Question Answering from Frequently Asked Question Files,” 1997, AI Magazine, vol. 18, No. 2, 10 pages.
Burns, A., et al., “Development of a Web-Based Intelligent Agent for the Fashion Selection and Purchasing Process via Electronic Commerce,” Dec. 31, 1998, Proceedings of the Americas Conference on Information system (AMCIS), 4 pages.
Carter, D., “Lexical Acquisition in the Core Language Engine,” 1989, Proceedings of the Fourth Conference of the European Chapter of the Association for Computational Linguistics, 8 pages.
Carter, D., et al., “The Speech-Language Interface in the Spoken Language Translator,” Nov. 23, 1994, SRI International, 9 pages.
Chai, J., et al., “Comparative Evaluation of a Natural Language Dialog Based System and a Menu Driven System for Information Access: a Case Study,” Apr. 2000, Proceedings of the International Conference on Multimedia Information Retrieval (RIAO), Paris, 11 pages.
Cheyer, A., et al., “Multimodal Maps: An Agent-based Approach,” International Conference on Cooperative Multimodal Communication, 1995, 15 pages.
Cheyer, A., et al., “The Open Agent Architecture,” Autonomous Agents and Multi-Agent systems, vol. 4, Mar. 1, 2001, 6 pages.
Cheyer, A., et al., “The Open Agent Architecture: Building communities of distributed software agents” Feb. 21, 1998, Artificial Intelligence Center SRI International, Power Point presentation, downloaded from http://www.ai.sri.com/˜oaa/, 25 pages.
Codd, E. F., “Databases: Improving Usability and Responsiveness—‘How About Recently’,” Copyright © 1978, by Academic Press, Inc., 28 pages.
Cohen, P.R., et al., “An Open Agent Architecture,” 1994, 8 pages. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.480.
Coles, L. S., et al., “Chemistry Question-Answering,” Jun. 1969, SRI International, 15 pages.
Coles, L. S., “Techniques for Information Retrieval Using an Inferential Question-Answering System with Natural-Language Input,” Nov. 1972, SRI International, 198 Pages.
Coles, L. S., “The Application of Theorem Proving to Information Retrieval,” Jan. 1971, SRI International, 21 pages.
Constantinides, P., et al., “A Schema Based Approach to Dialog Control,” 1998, Proceedings of the International Conference on Spoken Language Processing, 4 pages.
Cox, R. V., et al., “Speech and Language Processing for Next-Millennium Communications Services,” Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 24 pages.
Craig, J., et al., “Deacon: Direct English Access and Control,” Nov. 7-10, 1966 AFIPS Conference Proceedings, vol. 19, San Francisco, 18 pages.
Dar, S., et al., “DTL's DataSpot: Database Exploration Using Plain Language,” 1998 Proceedings of the 24th VLDB Conference, New York, 5 pages.
Davis, Z., et al., “A Personal Handheld Multi-Modal Shopping Assistant,” 2006 IEEE, 9 pages.
Decker, K., et al., “Designing Behaviors for Information Agents,” The Robotics Institute, Carnegie-Mellon University, paper, Jul. 6, 1996, 15 pages.
Decker, K., et al., “Matchmaking and Brokering,” The Robotics Institute, Carnegie-Mellon University, paper, May 16, 1996, 19 pages.
Dowding, J., et al., “Gemini: A Natural Language System for Spoken-Language Understanding,” 1993, Proceedings of the Thirty-First Annual Meeting of the Association for Computational Linguistics, 8 pages.
Dowding, J., et al., “Interleaving Syntax and Semantics in an Efficient Bottom-Up Parser,” 1994, Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, 7 pages.
Epstein, M., et al., “Natural Language Access to a Melanoma Data Base,” Sep. 1978, SRI International, 7 pages.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results,” Classes/Subclasses Manually Reviewed for the Search of US Patent No. 7,177,798, Mar. 22, 2013, 1 page.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results,” List of Publications Manually reviewed for the Search of US Patent No. 7,177,798, Mar. 22, 2013, 1 page.
Ferguson, G., et al., “TRIPS: An Integrated Intelligent Problem-Solving Assistant,” 1998, Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) and Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), 7 pages.
Fikes, R., et al., “A Network-based knowledge Representation and its Natural Deduction System,” Jul. 1977, SRI International, 43 pages.
Gambäck, B., et al., “The Swedish Core Language Engine,” 1992 NOTEX Conference, 17 pages.
Glass, J., et al., “Multilingual Language Generation Across Multiple Domains,” Sep. 18-22, 1994, International Conference on Spoken Language Processing, Japan, 5 pages.
Green, C. “The Application of Theorem Proving to Question-Answering Systems,” Jun. 1969, SRI Stanford Research Institute, Artificial Intelligence Group, 169 pages.
Gregg, D. G., “DSS Access on the WWW: An Intelligent Agent Prototype,” 1998 Proceedings of the Americas Conference on Information Systems-Association for Information Systems, 3 pages.
Grishman, R., “Computational Linguistics: An Introduction,” © Cambridge University Press 1986, 172 pages.
Grosz, B. et al., “Dialogic: A Core Natural-Language Processing System,” Nov. 9, 1982, SRI International, 17 pages.
Grosz, B. et al., “Research on Natural-Language Processing at SRI,” Nov. 1981, SRI International, 21 pages.
Grosz, B., et al., “TEAM: An Experiment in the Design of Transportable Natural-Language Interfaces,” Artificial Intelligence, vol. 32, 1987, 71 pages.
Grosz, B., “Team: A Transportable Natural-Language Interface System,” 1983, Proceedings of the First Conference on Applied Natural Language Processing, 7 pages.
Guida, G., et al., “NLI: A Robust Interface for Natural Language Person-Machine Communication,” Int. J. Man-Machine Studies, vol. 17, 1982, 17 pages.
Guzzoni, D., et al., “Active, A platform for Building Intelligent Software,” Computational Intelligence 2006, 5 pages. http://www.informatik.uni-trier.de/˜ley/pers/hd/g/Guzzoni:Didier.
Guzzoni, D., “Active: A unified platform for building intelligent assistant applications,” Oct. 25, 2007, 262 pages.
Guzzoni, D., et al., “Many Robots Make Short Work,” 1996 AAAI Robot Contest, SRI International, 9 pages.
Haas, N., et al., “An Approach to Acquiring and Applying Knowledge,” Nov. 1980, SRI International, 22 pages.
Hadidi, R., et al., “Students′ Acceptance of Web-Based Course Offerings: An Empirical Assessment,” 1998 Proceedings of the Americas Conference on Information Systems (AMCIS), 4 pages.
Hawkins, J., et al., “Hierarchical Temporal Memory: Concepts, Theory, and Terminology,” Mar. 27, 2007, Numenta, Inc., 20 pages.
He, Q., et al., “Personal Security Agent: KQML-Based PKI,” The Robotics Institute, Carnegie-Mellon University, paper, Oct. 1, 1997, 14 pages.
Hendrix, G. et al., “Developing a Natural Language Interface to Complex Data,” ACM Transactions on Database Systems, vol. 3, No. 2, Jun. 1978, 43 pages.
Hendrix, G., “Human Engineering for Applied Natural Language Processing,” Feb. 1977, SRI International, 27 pages.
Hendrix, G., “Klaus: A System for Managing Information and Computational Resources,” Oct. 1980, SRI International, 34 pages.
Hendrix, G., “Lifer: A Natural Language Interface Facility,” Dec. 1976, SRI Stanford Research Institute, Artificial Intelligence Center, 9 pages.
Hendrix, G., “Natural-Language Interface,” Apr.-Jun. 1982, American Journal of Computational Linguistics, vol. 8, No. 2, 7 pages.
Hendrix, G., “The Lifer Manual: A Guide to Building Practical Natural Language Interfaces,” Feb. 1977, SRI International, 76 pages.
Hendrix, G., et al., “Transportable Natural-Language Interfaces to Databases,” Apr. 30, 1981, SRI International, 18 pages.
Hirschman, L., et al., “Multi-Site Data Collection and Evaluation in Spoken Language Understanding,” 1993, Proceedings of the workshop on Human Language Technology, 6 pages.
Hobbs, J., et al., “Fastus: A System for Extracting Information from Natural-Language Text,” Nov. 19, 1992, SRI International, Artificial Intelligence Center, 26 pages.
Hobbs, J., et al.,“Fastus: Extracting Information from Natural-Language Texts,” 1992, SRI International, Artificial Intelligence Center, 22 pages.
Hobbs, J., “Sublanguage and Knowledge,” Jun. 1984, SRI International, Artificial Intelligence Center, 30 pages.
Hodjat, B., et al., “Iterative Statistical Language Model Generation for Use with an Agent-Oriented Natural Language Interface,” vol. 4 of the Proceedings of HCI International 2003, 7 pages.
Huang, X., et al., “The SPHINX-II Speech Recognition System: An Overview,” Jan. 15, 1992, Computer, Speech and Language, 14 pages.
Issar, S., et al., “CMU's Robust Spoken Language Understanding System,” 1993, Proceedings of EUROSPEECH, 4 pages.
Issar, S., “Estimation of Language Models for New Spoken Language Applications,” Oct. 3-6, 1996, Proceedings of 4th International Conference on Spoken language Processing, Philadelphia, 4 pages.
Janas, J., “The Semantics-Based Natural Language Interface to Relational Databases,” © Springer-Verlag Berlin Heidelberg 1986, Germany, 48 pages.
Johnson, J., “A Data Management Strategy for Transportable Natural Language Interfaces,” Jun. 1989, doctoral thesis submitted to the Department of Computer Science, University of British Columbia, Canada, 285 pages.
Julia, L., et al., “http://www.speech.SRI.com/demos/ATIS.html,” 1997, Proceedings of AAAI, Spring Symposium, 5 pages.
Kahn, M., et al., “CoABS Grid Scalability Experiments,” 2003, Autonomous Agents and Multi-Agent Systems, vol. 7, 8 pages.
Kamel, M., et al., “A Graph Based Knowledge Retrieval System,” © 1990 IEEE, 7 pages.
Katz, B., “Annotating the World Wide Web Using Natural Language,” 1997, Proceedings of the 5th RIAO Conference on Computer Assisted Information Searching on the Internet, 7 pages.
Katz, B., “A Three-Step Procedure for Language Generation,” Dec. 1980, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 42 pages.
Kats, B., et al., “Exploiting Lexical Regularities in Designing Natural Language Systems,” 1988, Proceedings of the 12th International Conference on Computational Linguistics, Coling'88, Budapest, Hungary, 22 pages.
Katz, B., et al., “REXTOR: A System for Generating Relations from Natural Language,” In Proceedings of the ACL Oct. 2000 Workshop on Natural Language Processing and Information Retrieval (NLP&IR), 11 pages.
Katz, B., “Using English for Indexing and Retrieving,” 1988 Proceedings of the 1st RIAO Conference on User-Oriented Content-Based Text and Image (RIAO'88), 19 pages.
Konolige, K., “A Framework for a Portable Natural-Language Interface to Large Data Bases,” Oct. 12, 1979, SRI International, Artificial Intelligence Center, 54 pages.
Laird, J., et al., “SOAR: An Architecture for General Intelligence,” 1987, Artificial Intelligence vol. 33, 64 pages.
Langly, P., et al.,“A Design for the Icarus Architechture,” SIGART Bulletin, vol. 2, No. 4, 6 pages.
Larks, “Intelligent Software Agents: Larks,” 2006, downloaded on Mar. 15, 2013 from http://www.cs.cmu.edu/larks.html, 2 pages.
Martin, D., et al., “Building Distributed Software Systems with the Open Agent Architecture,” Mar. 23-25, 1998, Proceedings of the Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 23 pages.
Martin, D., et al., “Development Tools for the Open Agent Architecture,” Apr. 1996, Proceedings of the International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 17 pages.
Martin, D., et al., “Information Brokering in an Agent Architecture,” Apr. 1997, Proceedings of the second International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 20 pages.
Martin, D., et al., “PAAM ′98 Tutorial: Building and Using Practical Agent Applications,” 1998, SRI International, 78 pages.
Martin, P., et al., “Transportability and Generality in a Natural-Language Interface System,” Aug. 8-12, 1983, Proceedings of the Eight International Joint Conference on Artificial Intelligence, West Germany, 21 pages.
Matiasek, J., et al., “Tamic-P: A System for NL Access to Social Insurance Database,” Jun. 17-19, 1999, Proceeding of the 4th International Conference on Applications of Natural Language to Information Systems, Austria, 7 pages.
Michos, S.E., et al., “Towards an adaptive natural language interface to command languages,” Natural Language Engineering 2 (3), © 1994 Cambridge University Press, 19 pages.
Milstead, J., et al., “Metadata: Cataloging by Any Other Name . . . ” Jan. 1999, ONLINE, Copyright © 1999 Information Today, Inc., 18 pages.
Minker, W., et al., “Hidden Understanding Models for Machine Translation,” 1999, Proceedings of ETRW on Interactive Dialogue in Multi-Modal Systems, 4 pages.
Modi, P. J., et al., “CMRadar: A Personal Assistant Agent for Calendar Management,” © 2004, American Association for Artificial Intelligence, Intelligent Systems Demonstrations, 2 pages.
Moore, R., et al., “Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing for ATIS,” 1995, SRI International, Artificial Intelligence Center, 4 pages.
Moore, R., “Handling Complex Queries in a Distributed Data Base,” Oct. 8, 1979, SRI International, Artificial Intelligence Center, 38 pages.
Moore, R., “Practical Natural-Language Processing by Computer,” Oct. 1981, SRI International, Artificial Intelligence Center, 34 pages.
Moore, R., et al., “SRI's Experience with the ATIS Evaluation,” Jun. 24-27, 1990, Proceedings of a workshop held at Hidden Valley, Pennsylvania, 4 pages.
Moore, et al., “The Information Warefare Advisor: An Architecture for Interacting with Intelligent Agents Across the Web,” Dec. 31, 1998 Proceedings of Americas Conference on Information Systems (AMCIS), 4 pages.
Moore, R., “The Role of Logic in Knowledge Representation and Commonsense Reasoning,” Jun. 1982, SRI International, Artificial Intelligence Center, 19 pages.
Moore, R., “Using Natural-Language Knowledge Sources in Speech Recognition,” Jan. 1999, SRI International, Artificial Intelligence Center, 24 pages.
Moran, D., et al., “Intelligent Agent-based User Interfaces,” Oct. 12-13, 1995, Proceedings of International Workshop on Human Interface Technology, University of Aizu, Japan, 4 pages. http://www.dougnnoran.com/dmoran/PAPERS/oaa-iwhit1995.pdf.
Moran, D., “Quantifier Scoping in the SRI Core Language Engine,” 1988, Proceedings of the 26th annual meeting on Association for Computational Linguistics, 8 pages.
Motro, A., “Flex: A Tolerant and Cooperative User Interface to Databases,” IEEE Transactions on Knowledge and Data Engineering, vol. 2, No. 2, Jun. 1990, 16 pages.
Murveit, H., et al., “Speech Recognition in SRI's Resource Management and ATIS Systems,” 1991, Proceedings of the workshop on Speech and Natural Language (HTL'91), 7 pages.
OAA, “The Open Agent Architecture 1.0 Distribution Source Code,” Copyright 1999, SRI International, 2 pages.
Odubiyi, J., et al., “SAIRE—a scalable agent-based information retrieval engine,” 1997 Proceedings of the First International Conference on Autonomous Agents, 12 pages.
Owei, V., et al., “Natural Language Query Filtration in the Conceptual Query Language,” © 1997 IEEE, 11 pages.
Pannu, A., et al., “A Learning Personal Agent for Text Filtering and Notification,” 1996, The Robotics Institute School of Computer Science, Carnegie-Mellon University, 12 pages.
Pereira, “Logic for Natural Language Analysis,” Jan. 1983, SRI International, Artificial Intelligence Center, 194 pages.
Perrault, C.R., et al., “Natural-Language Interfaces,” Aug. 22, 1986, SRI International, 48 pages.
Pulman, S.G., et al., “Clare: A Combined Language and Reasoning Engine,” 1993, Proceedings of JFIT Conference, 8 pages. URL: http://www.cam.sri.com/tr/crc042/paper.ps.Z.
Ravishankar, “Efficient Algorithms for Speech Recognition,” May 15, 1996, Doctoral Thesis submitted to School of Computer Science, Computer Science Division, Carnegie Mellon University, Pittsburg, 146 pages.
Rayner, M., et al., “Adapting the Core Language Engine to French and Spanish,” May 10, 1996, Cornell University Library, 9 pages. http://arxiv.org/abs/cmp-lg/9605015.
Rayner, M., “Abductive Equivalential Translation and its application to Natural Language Database Interfacing,” Sep. 1993 Dissertation paper, SRI International, 163 pages.
Rayner, M., et al., “Deriving Database Queries from Logical Forms by Abductive Definition Expansion,” 1992, Proceedings of the Third Conference on Applied Natural Language Processing, ANLC'92, 8 pages.
Rayner, M., “Linguistic Domain Theories: Natural-Language Database Interfacing from First Principles,” 1993, SRI International, Cambridge, 11 pages.
Rayner, M., et al., “Spoken Language Translation With Mid-90's Technology: A Case Study,” 1993, EUROSPEECH, ISCA, 4 pages. http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1993.html#RaynerBCCDGKKLPPS93.
Rudnicky, A.I., et al., “Creating Natural Dialogs in the Carnegie Mellon Communicator System,”.
Russell, S., et al., “Artificial Intelligence, A Modern Approach,” © 1995 Prentice Hall, Inc., 121 pages.
Sacerdoti, E., et al., “A Ladder User's Guide (Revised),” Mar. 1980, SRI International, Artificial Intelligence Center, 39 pages.
Sagalowicz, D., “A D-Ladder User's Guide,” Sep. 1980, SRI International, 42 pages.
Sameshima, Y., et al., “Authorization with security attributes and privilege delegation Access control beyond the ACL,” Computer Communications, vol. 20, 1997, 9 pages.
San-Segundo, R., et al., “Confidence Measures for Dialogue Management in the CU Communicator System,” Jun. 5-9, 2000, Proceedings of Acoustics, Speech, and Signal Processing (ICASSP'00), 4 pages.
Sato, H., “A Data Model, Knowledge Base, and Natural Language Processing for Sharing a Large Statistical Database,” 1989, Statistical and Scientific Database Management, Lecture Notes in Computer Science, vol. 339, 20 pages.
Schnelle, D., “Context Aware Voice User Interfaces for Workflow Support,” Aug. 27, 2007, Dissertation paper, 254 pages.
Sharoff, S., et al., “Register-domain Separation as a Methodology for Development of Natural Language Interfaces to Databases,” 1999, Proceedings of Human-Computer Interaction (INTERACT'99), 7 pages.
Shimazu, H., et al., “CAPIT: Natural Language Interface Design Tool with Keyword Analyzer and Case-Based Parser,” NEC Research & Development, vol. 33, No. 4, Oct. 1992, 11 pages.
Shinkle, L., “Team User's Guide,” Nov. 1984, SRI International, Artificial Intelligence Center, 78 pages.
Shklar, L., et al., “Info Harness: Use of Automatically Generated Metadata for Search and Retrieval of Heterogeneous Information,” 1995 Proceedings of CAiSE'95, Finland.
Singh, N., “Unifying Heterogeneous Information Models,” 1998 Communications of the ACM, 13 pages.
SRI2009, “SRI Speech: Products: Software Development Kits: EduSpeak,” 2009, 2 pages, available at http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak.shtml.
Starr, B., et al., “Knowledge-Intensive Query Processing,” May 31, 1998, Proceedings of the 5th KRDB Workshop, Seattle, 6 pages.
Stern, R., et al. “Multiple Approaches to Robust Speech Recognition,” 1992, Proceedings of Speech and Natural Language Workshop, 6 pages.
Stickel, “A Nonclausal Connection-Graph Resolution Theorem-Proving Program,” 1982, Proceedings of AAAI'82, 5 pages.
Sugumaran, V., “A Distributed Intelligent Agent-Based Spatial Decision Support System,” Dec. 31, 1998, Proceedings of the Americas Conference on Information systems (AMCIS), 4 pages.
Sycara, K., et al., “Coordination of Multiple Intelligent Software Agents,” International Journal of Cooperative Information Systems (IJCIS), vol. 5, Nos. 2 & 3, Jun. & Sep. 1996, 33 pages.
Sycara, K., et al., “Distributed Intelligent Agents,” IEEE Expert, vol. 11, No. 6, Dec. 1996, 32 pages.
Sycara, K., et al., “Dynamic Service Matchmaking Among Agents in Open Information Environments ,” 1999, SIGMOND Record, 7 pages.
Sycara, K., et al., “The RETSINA MAS Infrastructure,” 2003, Autonomous Agents and Multi-Agent Systems, vol. 7, 20 pages.
Tyson, M., et al., “Domain-Independent Task Specification in the TACITUS Natural Language System,” May 1990, SRI International, Artificial Intelligence Center, 16 pages.
Wahlster, W., et al., “Smartkom: multimodal communication with a life-like character,” 2001 EUROSPEECH—Scandinavia, 7th European Conference on Speech Communication and Technology, 5 pages.
Waldinger, R., et al., “Deductive Question Answering from Multiple Resources,” 2003, New Directions in Question Answering, published by AAAI, Menlo Park, 22 pages.
Walker, D., et al., “Natural Language Access to Medical Text,” Mar. 1981, SRI International, Artificial Intelligence Center, 23 pages.
Waltz, D., “An English Language Question Answering System for a Large Relational Database,” © 1978 ACM, vol. 21, No. 7, 14 pages.
Ward, W., et al., “A Class Based Language Model for Speech Recognition,” © 1996 IEEE, 3 pages.
Ward, W., et al., “Recent Improvements in the CMU Spoken Language Understanding System,” 1994, ARPA Human Language Technology Workshop, 4 pages.
Ward, W., “The CMU Air Travel Information Service: Understanding Spontaneous Speech,” 3 pages.
Warren, D.H.D., et al., “An Efficient Easily Adaptable System for Interpreting Natural Language Queries,” Jul.-Dec. 1982, American Journal of Computational Linguistics, vol. 8, No. 3-4, 11 pages.
Weizenbaum, J., “ELIZA—A Computer Program for the Study of Natural Language Communication Between Man and Machine,” Communications of the ACM, vol. 9, No. 1, Jan. 1966, 10 pages.
Winiwarter, W., “Adaptive Natural Language Interfaces to FAQ Knowledge Bases,” Jun. 17-19, 1999, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, 22 pages.
Wu, X. et al., “KDA: A Knowledge-based Database Assistant,” Data Engineering, Feb. 6-10, 1989, Proceeding of the Fifth International Conference on Engineering (IEEE Cat. No. 89CH2695-5), 8 pages.
Yang, J., et al., “Smart Sight: A Tourist Assistant System,” 1999 Proceedings of Third International Symposium on Wearable Computers, 6 pages.
Zeng, D., et al., “Cooperative Intelligent Software Agents,” The Robotics Institute, Carnegie-Mellon University, Mar. 1995, 13 pages.
Zhao, L., “Intelligent Agents for Flexible Workflow Systems,” Oct. 31, 1998 Proceedings of the Americas Conference on Information Systems (AMCIS), 4 pages.
Zue, V., et al., “From Interface to Content: Translingual Access and Delivery of On-Line Information,” 1997, EUROSPEECH, 4 pages.
Zue, V., et al., “Jupiter: A Telephone-Based Conversational Interface for Weather Information,” Jan. 2000, IEEE Transactions on Speech and Audio Processing, 13 pages.
Zue, V., et al., “Pegasus: A Spoken Dialogue Interface for On-Line Air Travel Planning,” 1994 Elsevier, Speech Communication 15 (1994), 10 pages.
Zue, V., et al., “The Voyager Speech Understanding System: Preliminary Development and Evaluation,” 1990, Proceedings of IEEE 1990 International Conference on Acoustics, Speech, and Signal Processing, 4 pages.
Related Publications (1)
Number Date Country
20090254345 A1 Oct 2009 US