The present disclosure relates to an approach that provides a mesh of traffic controllers that communicate with each other to negotiate signal timing in order to packetize traffic with usable gaps between packets.
Traditional traffic control signals, such as traffic lights, are unaware of actual traffic conditions. Some traffic control signals include sensors so that the signal will not unnecessarily cycle if no one is waiting for the signal. These signals can also trigger a cycle event when a vehicle approaches a red (stop) light. However, traditional traffic control signals do not communicate with other traffic control signals based on the traffic on a given route common to the traffic control signals. In addition, traffic passing through traditional traffic control signals often becomes randomly distributed providing few gaps for perpendicular traffic to turn right at a red light. Moreover, traditional traffic control signals cycle signals based on a given cycle period and not based on where natural gaps occur in the traffic.
An approach is provided that gathers observational traffic data at traffic controller nodes. Each of the traffic controller nodes communicates observational traffic data other traffic controller nodes via a network. The traffic controller nodes negotiate traffic control parameters. The negotiating process receives timing proposals from the other traffic controller nodes included in the related set. The nodes analyze the proposed timings based on the traffic controller's gathered observational traffic data. The traffic controller node prepares responses in response to the analysis. The traffic controller node sends the negotiation responses to the other traffic controller nodes. The traffic controller node also adjusts its traffic control parameters that control the node's cycle times based on the analysis.
The foregoing is a summary and thus contains, by necessity, simplifications, generalizations, and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. Other aspects, inventive features, and advantages of the present invention, as defined solely by the claims, will become apparent in the non-limiting detailed description set forth below.
The present invention may be better understood, and its numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings, wherein:
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Aspects of the present invention are described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The following detailed description will generally follow the summary of the invention, as set forth above, further explaining and expanding the definitions of the various aspects and embodiments of the invention as necessary. To this end, this detailed description first sets forth a computing environment in
Northbridge 115 and Southbridge 135 connect to each other using bus 119. In one embodiment, the bus is a Direct Media Interface (DMI) bus that transfers data at high speeds in each direction between Northbridge 115 and Southbridge 135. In another embodiment, a Peripheral Component Interconnect (PCI) bus connects the Northbridge and the Southbridge. Southbridge 135, also known as the I/O Controller Hub (ICH) is a chip that generally implements capabilities that operate at slower speeds than the capabilities provided by the Northbridge. Southbridge 135 typically provides various busses used to connect various components. These busses include, for example, PCI and PCI Express busses, an ISA bus, a System Management Bus (SMBus or SMB), and/or a Low Pin Count (LPC) bus. The LPC bus often connects low-bandwidth devices, such as boot ROM 196 and “legacy” I/O devices (using a “super I/O” chip). The “legacy” I/O devices (198) can include, for example, serial and parallel ports, keyboard, mouse, and/or a floppy disk controller. The LPC bus also connects Southbridge 135 to Trusted Platform Module (TPM) 195. Other components often included in Southbridge 135 include a Direct Memory Access (DMA) controller, a Programmable Interrupt Controller (PIC), and a storage device controller, which connects Southbridge 135 to nonvolatile storage device 185, such as a hard disk drive, using bus 184.
ExpressCard 155 is a slot that connects hot-pluggable devices to the information handling system. ExpressCard 155 supports both PCI Express and USB connectivity as it connects to Southbridge 135 using both the Universal Serial Bus (USB) the PCI Express bus. Southbridge 135 includes USB Controller 140 that provides USB connectivity to devices that connect to the USB. These devices include webcam (camera) 150, infrared (IR) receiver 148, keyboard and trackpad 144, and Bluetooth device 146, which provides for wireless personal area networks (PANs). USB Controller 140 also provides USB connectivity to other miscellaneous USB connected devices 142, such as a mouse, removable nonvolatile storage device 145, modems, network cards, ISDN connectors, fax, printers, USB hubs, and many other types of USB connected devices. While removable nonvolatile storage device 145 is shown as a USB-connected device, removable nonvolatile storage device 145 could be connected using a different interface, such as a Firewire interface, etcetera.
Wireless Local Area Network (LAN) device 175 connects to Southbridge 135 via the PCI or PCI Express bus 172. LAN device 175 typically implements one of the IEEE 802.11 standards of over-the-air modulation techniques that all use the same protocol to wireless communicate between information handling system 100 and another computer system or device. Optical storage device 190 connects to Southbridge 135 using Serial ATA (SATA) bus 188. Serial ATA adapters and devices communicate over a high-speed serial link. The Serial ATA bus also connects Southbridge 135 to other forms of storage devices, such as hard disk drives. Audio circuitry 160, such as a sound card, connects to Southbridge 135 via bus 158. Audio circuitry 160 also provides functionality such as audio line-in and optical digital audio in port 162, optical digital output and headphone jack 164, internal speakers 166, and internal microphone 168. Ethernet controller 170 connects to Southbridge 135 using a bus, such as the PCI or PCI Express bus. Ethernet controller 170 connects information handling system 100 to a computer network, such as a Local Area Network (LAN), the Internet, and other public and private computer networks.
While
The Trusted Platform Module (TPM 195) shown in
Route processing commences at step 650 with the traffic controller node selecting the first route that travels through the signals managed by the traffic controller node. For example, a traffic controller node may be managing a north-bound route, a south-bound route, an east-bound route, and a west-bound route. Routes differ from queues in that traffic in a route is not necessarily stopped (queued) at a red light managed by the traffic controller node. At step 660, the traffic controller node uses its sensors and identifies the number of vehicles approaching a signal controlled by the traffic controller node as well as the average speed of the vehicles. At step 670, the traffic controller node saves this route data (vehicles and average speed) in the traffic controller node's route data (memory area 680). A decision is made by the traffic controller node as to whether there are any more routes that the traffic controller node is managing (decision 695). If there are additional routes that the traffic controller node is managing, then decision 695 branches to the “yes” branch which loops back to select and process the next route as described above. This looping continues until all routes managed by the traffic controller node have been processed and the traffic controller node stores the route data for each of the routes in memory area 680.
When all of the routes managed by the traffic controller node have been processed, then decision 695 branches to the “no” branch, whereupon, at predefined process 690, the traffic controller node computes a proposed timing to other controllers (see
At step 720, the traffic controller node selects the opposite direction route to the selected route in step 710 (e.g., if a north-bound route was selected in step 710, then the south-bound route is selected at step 720, etc.) At step 725, the traffic controller node identifies packets in the selected route that is managed by the traffic controller node. Again, the traffic controller node identifies packets so that there are gaps between packets that are large enough to ideally (if possible) allow cross traffic to flow without having to stop at a signal that is controlled by the traffic controller node. At step 730, the traffic controller node synchronizes the packet in the opposing direction routes (e.g., the north and south bound routes, etc.) so that (a) the traffic in the opposing direction routes pass each other at the intersection being managed by the traffic controller node and, (b) the gaps in the packets align at red lights so that, ideally, few if any vehicles are waiting at the red light when the perpendicular traffic routes (e.g., the east-west routes, etc.) are passing through the intersection. At step 740, the traffic controller node saves its ideal light timing in the traffic controller node's timing data (memory area 750). At step 760, the traffic controller node transmits its current observations (queue data and route data) to other traffic controller nodes (downstream traffic controller nodes 770 and upstream traffic controller nodes 775) and may also transmit the traffic controller node's ideal timing data to these other traffic controller nodes.
A decision is made as to whether this traffic controller node handles more routes (decision 780). If this traffic controller node handles more routes, then decision 780 branches to the “yes” branch whereupon, at step 785, the traffic controller node selects the next route (e.g., a perpendicular route to the one previously processed, etc.), and processing loops back to calculate timing data and transmit observations as described above. When all of the traffic controller node's routes have been processed, then decision 780 branches to the “no” branch whereupon, at predefined process 790, timing proposals are negotiated across the various traffic controller nodes included in the traffic control mesh (see
Starting with the middle negotiator, processing commences at 800 whereupon, at step 803, the middle negotiator receives timing proposals and/or counterproposals (collectively, “proposals”) from both upstream and downstream traffic controller nodes. At step 804, the middle negotiating traffic controller node analyzes the various proposals using this traffic controller node's analysis data 850. As shown at the bottom of
Returning to the processing shown in
Turning now to processing performed by upstream and downstream traffic controller nodes, processing performed by upstream traffic controller nodes is shown commencing at 801 while processing performed by downstream traffic controller nodes is shown commencing at 802. The particular steps performed by upstream/downstream traffic controller nodes are essentially the same, therefore the steps shown are the same for a node negotiating as either an upstream or downstream traffic controller node. Differences between the nodes operating as upstream or downstream are explained with reference to the particular steps discussed below.
At step 822 the traffic controller node (operating as an upstream or downstream node) sends a proposal to the middle negotiating traffic controller node. The proposal is based on the traffic controller node's analysis data which, as previously discussed, includes the traffic controller node's priority (as discussed in
Returning to the upstream/downstream processing shown in
Returning to
Priority processing commences at 900 whereupon, at step 905 the traffic controller node receives an initial or updated priority policy that can increase or decrease priority along various routes. The traffic controller node receives the priority policy from traffic policy and information provider 420. At step 910, the traffic controller node uses its sensors to identify an average vehicle wait time of a packet of vehicles passing through the intersection controlled by the traffic controller node on the various routes. At step 915, this wait time is attached to observational data corresponding to the packet. At step 920, the traffic controller node sends the packet wait data to upstream/downstream traffic controller nodes for the given route (nodes 925 and 930). At step 935, the traffic controller node receives packet wait data from other traffic controller nodes (upstream and downstream) on the given route.
At step 940, the traffic controller node applies an aging factor to the received packet wait data with the aging factor being based on the relative position (upstream, downstream, distance, etc.) of the traffic controller node from which the data was received. At step 945, the traffic controller node applies a weighting factor to the received packet wait data so that data with greater aging factors (older data, e.g., from more distant traffic controller nodes, etc.) is given less weight than data with less aging factors (newer data, e.g., from closer traffic controller nodes, etc.) At step 950, the traffic controller node combines the wait time observed at this traffic controller node with the weighted wait times received from other traffic controller nodes to update the traffic controller node's current priority value (e.g., increase the traffic controller node's priority value, decrease the traffic controller node's priority value, leave the traffic controller node's priority value unchanged, etc.). The traffic controller node stores its priority value in memory area 960.
As shown in
Processing of the historical data collection routine commences at 1000 whereupon, at step 1005, the traffic controller node collects the current observational data (the traffic controller node's queue data from memory area 630 and the traffic controller node's route data from memory area 680) that was identified by the traffic controller node's sensors. At step 1010, the traffic controller node appends a timestamp to the collected observational data. At step 1015, the traffic controller node stores the timestamped observational data in historical traffic data (data store 1025). At step 1020, the traffic controller node waits for the arrival of the next set of observational data. When more observational data arrives, processing loops back to collect and store the data as described above.
Processing of the traffic controller node's learning algorithm routine commences at 1050. This routine performs at the same time as the collection routine described above as the learning algorithm routine uses the historical traffic data gathered by the collection routine. At step 1055, the traffic controller node analyzes its historical traffic data based on timing factors such as the day of the week (DOW), time of day (TOD), etc. This analysis forms the traffic controller node's traffic trend analysis which is stored in memory area 1060. At step 1065, the traffic controller node shares its trend analysis data to other traffic controller nodes included in traffic control mesh 400 and, at step 1070, this traffic controller node receives trend analyses from the other traffic controller nodes included in the traffic control mesh. The collection of trend analyses from the various traffic controller nodes included in the traffic control mesh are used to formulate mesh route analysis 1075 which is an analysis of the various routes managed by the traffic control mesh. At step 1080, the traffic controller node waits for a period of time to elapse or for an update to arrive at historical traffic data (data store 1025), at which time processing loops back to step 1055 to perform the trend analysis processing as described above.
While particular embodiments of the present disclosure have been shown and described, it will be obvious to those skilled in the art that, based upon the teachings herein, that changes and modifications may be made without departing from this disclosure and its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of this disclosure. Furthermore, it is to be understood that the disclosure is solely defined by the appended claims. It will be understood by those with skill in the art that if a specific number of an introduced claim element is intended, such intent will be explicitly recited in the claim, and in the absence of such recitation no such limitation is present. For non-limiting example, as an aid to understanding, the following appended claims contain usage of the introductory phrases “at least one” and “one or more” to introduce claim elements. However, the use of such phrases should not be construed to imply that the introduction of a claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an”; the same holds true for the use in the claims of definite articles.