This invention was not made at a U.S. Government research facility. Ms. Moses, and her co-inventors, developed this invention while server as volunteer researchers during the Aspiring Scientist Summer Internship Program. Ms. Moses, and her co-inventors, retains all commercial interests herewith.
The following is a tabulation of some prior art that presently appears relevant:
1. Field of the Invention
This invention relates in general to wheeled walking aids for disabled persons (CPC A61H 3/04). In one embodiment, the invention relates to assisting pedestrians traverse a variety of surfaces, including inclines, stairs, and uneven terrain. In another embodiment, the invention can sense and monitor the environment and the device's user, such as enhancing user's hearing, detecting, and preventing, potential falls by the user through advanced sensors, telecommunications and computer processing. In a third embodiment, the invention can assist pedestrians to carry loads or even carry a pedestrian over a variety of surfaces through advanced sensors, telecommunications and computer processing.
2. Background Art
As the United States population ages, there is a critical need for new technologies that assist walking, climbing stairs, traversing inclined surfaces, and carrying items. In 2013, four million people Americans were over the age of 65. The size of America's elderly population continues to grow. In addition, the number of Americans who need assistance to walk, such as those afflicted with disease or injuries, continues to increase. Today, the elderly and infirm can use a variety of portable walkers. However, walkers currently on the market are difficult to use walking uphill or downhill or even impair a pedestrian's ability to traverse such terrain. Also, such walkers do not monitor the pedestrian's balance and can do little to help the pedestrian avoid dangerous falls.
Prior Art relies on a variety of modalities to assist users with injuries or disabilities to walk or travel. These modalities can be classified into two broad categories, walkers with semi-enclosed frames and wheeled platforms or wheelchairs. Both of these categories of prior art include free-wheeling and power-assisted designs.
Prior art that offer free-wheeling and power-assisted or self-propelled designs often employ retractable motorized drive trains or motorized wheels. As a result, walkers, wheeled platforms or wheelchairs with retractable drive trains or wheels are often heavy which impairs the device's maneuverability and stability. Further, such retractable designs are impractical for traversing uneven surfaces, particularly stairways and inclines, which limits their effectiveness.
Prior art do not provide a practical means to assist users traversing uneven surfaces or ascending or descending inclines, such as stairways. For example, a prior art device designed to assist users to ascend of descend stairs accomplishes this by raising and lowering the walker's front and back legs via an actuator to ensure an upright vertical position of the walker. When a user pushes or rolls the walker to the base of a stairway, the walker is difficult to move since it must be lifted above each stair step, which is impractical for a user who needs a walker to lean on to walk in the first place. Further, a user can fall backwards when lifting a walker while attempting to ascend each step. When a user decides to descend a stairway, the user pushes or rolls the walker to the top of the stairway and then pushes the walker beyond the first step until it falls to the next step below. This quickly becomes a precarious and unstable position for the user since the user can easily lose balance and fall forward over the walker and down the stairs.
Recently, a few power-assisted walkers, wheeled platforms or wheelchairs have employed select sensors or computer processing units to assist in navigation, obstacle identification and avoidance. Such capabilities do very little to assist a user who is losing balance or who cannot keep pace with a self-propelled device. Prior art fails to sense the user's stability in relation to the device and nearby terrain. Further, prior art is insufficient in dynamically adjusting itself to increase its user's stability to prevent falls.
Virtually no prior art uses a combination of advanced sensing capabilities, computer processing, and wireless communications to supplement users ability to sense the environment and interact with it.
While some walkers offer the ability to convert to a wheeled platform or wheelchair, few, if any, offer the ability to carry cargo. Further, virtually no prior art uses a combination of advanced sensing capabilities, computer processing, and wireless communications to supplement users' ability to sense the environment and interact with it.
The Intelliwalker was invented to assist individuals, who are having difficulty walking, maintain their mobility by providing a computerized, powered, and user-controlled walker through advanced sensing, stability control, communications, and user-centric interface design. This invention is a self-propelled, robotic walker connected to advanced sensors that aids the elderly or those needing assistance and can detect if the user is losing balance, the walker is moving too fast, can provide sensory clues to the user about the environment and performance of the walker, can adapt to different surfaces (flat, inclined, uneven), and can be operated in a semi-autonomous modality.
The Intelliwalker incorporates motorized wheels and a removable tread (a.k.a., track) interface to assist users traverse flat, uneven, or inclined surfaces. The invention can travel forward or backward and climb stairs. The invention includes sensors (e.g., laser, Global Positioning System, accelerometer, tactile pressure detector, ultrasonic, microphone, tilt) that can track the user's position in relation to the Intelliwalker, the force and direction of pressure the user places on Intelliwalker, the relative position of the Intelliwalker from a vertical position, and the speed the Intelliwalker is traveling. The invention also includes sound sensors to enhance the user's hearing.
The Intelliwalker is compatible with sensors built in shoes, wristbands, watches, and smartphones or other devices using wireless data transmission (e.g., Bluetooth, IEEE 802.11, RFID) to track a user's movement, pace, balance, and direction, and can be used to calibrate the walker to better assist the user. For instance, the Intelliwalker can integrate with sensors built in shoes to track a person's steps and pace and use this information to calibrate the invention to better assist the user. Most importantly, the Intelliwalker also can detect the relative balance of its user through pressure sensors in the user's shoes and compare the data to the Intelliwalker's pressure data to regulate its actions (e.g., modify its center of gravity, accelerate or decelerate, or shut down) based on the feedback from its onboard sensors and sensors worn by users.
Finally, the Intelliwalker can be programmed and enhanced for other purposes, such as carrying items, carrying people, and being remotely operated.
Accordingly, several advantages of one or more aspects of the Intelliwalker are as follows:
While this invention can be embodied in many different forms, the following descriptions herein are specific embodiments. The present disclosure is to be considered as an exemplification of the principle of the invention intended merely to explain and illustrate the invention, and is not intended to limit the invention in any way to embodiments illustrated.
Movement and Self-Propulsion:
Relative Position Detection:
Speed and Balance:
Pressure Sensing Feedback:
Remote Operation and Connectivity:
Audible Sound Enhancement:
Components
The foregoing description merely explains and illustrates the invention and the invention is not limited thereto, inasmuch as those skilled in the art, having the present disclosure before them will be able to make modifications and variations therein without departing from the scope of the invention.
General Claims:
This application claims the benefit of provisional patent application Ser. No. 62/097,020, filed 2014 Dec. 26 by the present inventor, which is hereby incorporated by reference in its entireties into this application.
Number | Date | Country | |
---|---|---|---|
62097020 | Dec 2014 | US |