The embodiments discussed herein relate to a system and apparatus for enhancing the functionality and utility of an authentication process for web applications.
Many software development kits (SDKs) for web applications require some type of authentication mechanism. One potential authentication mechanism is known as OAuth (open authentication). However, OAuth has limited functionality, so that it could be beneficial to provide enhancements to OAuth.
Meanwhile, developers of Database.com Java SDK (JSDK) client applications want an easy way to authenticate their existing users into their applications. It is desired this development be kept simple, with as much complexity as possible hidden away.
Another problem exists. In the past, for a user switching between multiple web applications, there was a lack of persistence. That user would at times have to log out and re-log in to each web application, or set up a database to manage the user data for the separate web applications. A developer must be concerned about multiple instances of an application, and replicating authentication across all of those instances.
Consequently, a mechanism for resolving these issues is desired.
The approaches described in this section are approaches that could be pursued, but not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the present invention.
Environment 10 is an environment in which an on-demand database service coupled with a document management system exists. User system 12 may be any machine or system that is used by a user to access a database user system. For example, any of user systems 12 can be a handheld computing device, a mobile phone, a laptop computer, a workstation, and/or a network of computing devices. As illustrated in
An on-demand database service, such as system 16, is a pre-established database system that is made available to outside users that do not need to necessarily be concerned with building and/or maintaining the database system, but instead may be available for their use when the users need the database system (e.g., on the demand of the users). Some on-demand database services may store information from one or more tenants into tables of a common database image to form a multi-tenant database system (MTS). Accordingly, “on-demand database service 16” and “system 16” will be used interchangeably herein. A database image may include one or more database objects. A relational database management system (RDMS) or the equivalent may execute storage and retrieval of information against the database object(s). Application platform 18 may be a framework that allows the applications of system 16 to run, such as the hardware and/or software, e.g., the operating system. In an embodiment, on-demand database service 16 may include an application platform 18 that enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 12, or third party application developers accessing the on-demand database service via user systems 12.
The users of user systems 12 may differ in their respective capacities, and the capacity of a particular user system 12 might be entirely determined by permissions (permission levels) for the current user. For example, where a salesperson is using a particular user system 12 to interact with system 16, that user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 16, that user system has the capacities allotted to that administrator. In an embodiment, a hierarchical role based model is not used. However, in systems with a hierarchical role model, users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level.
Network 14 is any network or combination of networks of devices that communicate with one another. For example, network 14 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. As the most common type of computer network in current use is a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the “Internet” with a capital “I,” that network will be used in many of the examples herein. However, it should be understood that the networks that the present invention might use are not so limited, although TCP/IP is a frequently implemented protocol.
User systems 12 might communicate with system 16 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used, user system 12 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP messages to and from an HTTP server at system 16. Such an HTTP server might be implemented as the sole network interface between system 16 and network 14, but other techniques might be used as well or instead. In some implementations, the interface between system 16 and network 14 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least as for the users that are accessing that server, each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.
In an embodiment, system 16, shown in
One arrangement for elements of system 16 is shown in
Several elements in the system shown in
According to an embodiment, each user system 12 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like. Similarly, system 16 (and additional instances of an MTS, where more than one is present) and all of their components might be operator configurable using application(s) including computer code to run using a central processing unit such as processor system 17, which may include an Intel Pentium® processor or the like, and/or multiple processor units. A computer program product embodiment includes a machine-readable storage medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the embodiments described herein. Computer code for operating and configuring system 16 to intercommunicate and to process webpages, applications and other data and media content as described herein are preferably downloaded and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will also be appreciated that computer code for implementing embodiments of the present invention can be implemented in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, Java™, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems, Inc.).
According to one embodiment, each system 16 is configured to provide webpages, forms, applications, data and media content to user (client) systems 12 to support the access by user systems 12 as tenants of system 16. As such, system 16 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to include a computer system, including processing hardware and process space(s), and an associated storage system and database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database object described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
User system 12, network 14, system 16, tenant data storage 22, and system data storage 24 were discussed above in
Application platform 18 includes an application setup mechanism 38 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 22 by save routines 36 for execution by subscribers of one or more tenant process spaces 104 managed by tenant management process 110 for example. Invocations to such applications may be coded using PL/SOQL 34 that provides a programming language style interface extension to API 32. Invocations to applications may be detected by one or more system processes, which manage retrieving application metadata 116 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
Each application server 100 may be communicably coupled to database systems, e.g., having access to system data 25 and tenant data 23, via a different network connection. For example, one application server 1001 might be coupled via the network 14 (e.g., the Internet), another application server 100N-1 might be coupled via a direct network link, and another application server 100N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers 100 and the database system. However, it will be apparent to one skilled in the art that other transport protocols may be used to optimize the system depending on the network interconnect used.
In certain embodiments, each application server 100 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 100. In one embodiment, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers 100 and the user systems 12 to distribute requests to the application servers 100. In one embodiment, the load balancer uses a least connections algorithm to route user requests to the application servers 100. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain embodiments, three consecutive requests from the same user could hit three different application servers 100, and three requests from different users could hit the same application server 100. In this manner, system 16 is multi-tenant, wherein system 16 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
Developers of on-demand database services want an easy way to authenticate users into applications connecting to their services. For example, developers of Database.com Java SDK (JSDK) applications want an easy way to authenticate their existing users into their applications. Java SDK applications use Salesforce.com user accounts for authentication and identity management of users. As such, each user of Salesforce.com can be a potential user of a JSDK application. Database.com is designed for use by developers, along with Force.com. Both are platforms that support custom development based on the Salesforce.com platform. As stated, it is desired this development be kept simple, with as much complexity as possible hidden away from that developer. Accordingly, the embodiments disclosed herein provide a pre-built framework that implements an improved authorization flow. Within this framework, a developer does not have to write any specific code to make the authorization flow work.
As shown in
Using these APIs, a client application 312 could obtain user information or OAuth credentials from other non-Force applications, such as but not limited to Twitter or Facebook. That developer can use Force.com 304 as a “source of truth” about one or more users.
Thus, the embodiments discussed herein have facets of a “single sign-on” arrangement, but are not completely in a single sign-on mode. Once a user is authenticated, Force.com 304 maintains a session for that user. Whatever data objects that user stores as part of that session, the embodiments discussed herein extend those data objects.
The embodiments described herein comprise at least the following advantages.
Allow existing Salesforce.com users to authenticate into an application through a simple framework integration;
Provide a means for the developer to find out if there is currently an authenticated user and find basic information about that user;
Provide the ability to remember a user in a session-like manner, while still minding the concerns of a highly scalable application;
Provide the ability for a developer to pull additional information about a user and make that user information available alongside standard basic user information;
Allow the user to log out of a web application and optionally also log them out of Salesforce.com at the same time;
Provide extensible user data and the necessary API hooks thereto; and
Provide developers a choice of server side v. encrypted cookie as a means of storing user data.
OAuth Background
OAuth (Open Authentication) is an open standard for authentication. OAuth allows users to share their private resources (e.g. photos, videos, contact lists) stored within one web application with another web application without having to hand out their credentials, typically UserID and password. OAuth allows users to hand out authentication tokens instead of credentials to their data hosted by a given service provider. Each authentication token grants access to a specific web application for specific resources and for a defined duration. This allows a user to grant a third party web application access to their information stored with another service provider, without sharing their access permissions or the full extent of their data. OAuth is a specific protocol that is widely used in SDKs of various web applications. However, OAuth has various limitations which are addressed by the embodiments disclosed herein.
Example of OAuth
OAuth can be explained using an example. Suppose that web application X wants to obtain data about user U from web application Y.
Now suppose that the user U doesn't like the web application X having access to his data. The user U could change his password for web application Y. However, that user U cannot revoke password access to just a single web application Y which would block future access-attempts by that web application X. Instead, it would be necessary for that user to separately change passwords in all his different web applications.
As shown in
Also as shown in
Within the following explanation, an example of a resource host 408 will be Twitter, and an example of a resource owner will be a person named Bill.
As shown in
Once the resource owner 404 is happy, the resource owner 404 sends back an authentication code, which says “you redirected user Bill to me, and Bill passed the authentication process, so here's an authentication code for Bill”. Then, ultimately, the client application will send another request back to resource host 408 asking for an authentication token for the user Bill. It will do so by including its client credentials and its authentication code, as shown in step (4). After the authentication token 420 is received back and stored, anytime the client application wishes to access resources from the resource host 408, the client application only needs to give the authentication token 420. As such, the client application 312 can now perform such accesses repeatedly.
Extending Beyond OAuth
As shown in
At this point, the client application still may not know much about the user Bill, other than that he is who he says he is, and is a Salesforce.com user in some context. That's why, after all the handshaking of
Thus, the embodiments disclosed herein are not limited only to generic access of a user's data as with OAuth, but instead can provide various types of customized access to that user data, after authentication. One example of this could be an authentication token to another web application such as Twitter.
Servlet Filter V. Spring Security
There are two flavors in which the Force.com OAuth Security Framework can be used. These are generic servlet filters, and Spring Security filters.
The generic filter is intended for use with servlet-based web applications that do not operate using any specific security framework, either Spring Security or other. A developer of a client application (e.g. 312) can use the API hooks build into the Force.com SDK 316 to create Servlet filter mappings that can include this generic filter for requests that need to be secured. The generic filter will perform OAuth flow and route the user to the Salesforce.com login page if necessary. Once authenticated, the user's request will be chained to downstream filters and ultimately to the requested servlet/page. The generic filter will also remember the user and update thread local connector config to be used by Force Connector.
For applications that use Spring Security, the embodiments herein provide an integration that allows easy use of Force.com as an authentication provider. Spring Security is a Java framework that provides advanced authentication, authorization and other security features for, among other things, web applications.
The embodiments discussed herein differ depending on which integration point is used, but the core components that handle the authorization handshake remain the same. The ForceOAuthConnector is the class that handles most of the heavy lifting in terms of the authorization handshake. The required consumer key and consumer secret are either passed in to the connector, or injected in by Spring Security. These values are configured through the ForceServiceConnector, which is a module that is shared across the Force.com Java SDK. Once the user is authenticated, their Session ID and API endpoint is stored in thread local variables. Any code using the shared connections can use these credentials to connect to the APIs.
As discussed earlier with respect to
Once the user is authenticated, the UserDataRetrievalService is invoked. This service can make a call to the partner API to retrieve basic information about the user. If the developer has implemented an extension to user data retrieval, that extension is automatically invoked. The already created SecurityContext object 428 can have the user data added to it.
Servlet Flow
There are three outcomes from a request that is sent through the servlet filter:
1) The user is recognized because a cookie or session containing their SecurityContext was found. In such a case, that user's data is set up to be available during the downstream request
2) The user is not recognized: They are sent to the authorization url to begin the OAuth handshake. There are two outcomes from this: they either need to enter credentials on the login screen or they already have a Force.com session and can be immediately directed back, often without user knowledge that the redirect even took place.
3) The token request can be sent to obtain the Session ID, API endpoint, and authentication (refresh) token 420. The user's data is then set up to be available during the downstream request.
Spring Security Flow
Spring Security follows a similar flow to the simple servlet filter, but because of the nature of the Spring Security framework, the work is distributed across a few classes. The main workers in Spring Security integration are:
The first 4 in the above list are standard API hooks in the Spring Security flow. The last one is a customization exclusive to the Force.com SDK 316 that takes care of storing data to ForceSecurityContextHolder and ForceServiceConnector.
At a high level, flow starts at the Authentication Process Filter. This extends the Spring Abstract Authentication Processing Filter to allow for a url like ‘/login’ that automatically directs the user into the OAuth flow and to the login page. The embodiments herein also override the attemptAuthentication method, and instead branch into the OAuth flow. This is Spring's API hook that can be called once the framework has decided that the user is attempting to access a page that requires authentication. At the end of attemptAuthentication, Spring's authentication manager is triggered which has its Authentication Provider registered. The authentication provider then pulls data out of the SecurityContext that is created by the OAuth flow and finishes populating Spring's authentication data by creating principals and setting the user's role.
The “remember me” services are called by a standard Spring Security filter, RememberMeFilter. This is used to provide remember me functionality, usually (but not always) through cookies. Assuming the use of cookies, the “remember me” services can implement the cookie logic that looks for and decrypts the SecurityContext information from a browser cookie. However, it is again noted that the embodiments discussed herein contemplate a non-cookie arrangement.
The connection storage filter is set to be called after the “remember me” filter, which is the last filter in the integration process. That is, since the connection storage filter is responsible for storing and remove the authentication data in the thread local backed holder classes, it is important that it be executed last. This ensures that whether the user is authenticated through OAuth or instead is remembered, the proper storage always happens and it is always cleaned up afterwards.
Within Spring Security, users can be defined utilizing, for example, XML files. Specifically, Spring Security allows for making a list of web applications, including what user roles have what specific access within those web applications. Thus, Spring Security can define a whole custom set of roles and assign those roles to users, using XML files. Examples of such roles can include user, administrator, manager, etc.
However, Spring Security doesn't dictate or stipulate how the users get defined. Conversely, the embodiments described herein can be used to define how the users get defined. For example, within the present embodiments, it is possible to take any piece of Force.com data, and assign that data into roles. Spring Security by itself could not achieve this, as it does not and cannot know how Force.com defines data structures. Meanwhile, as will be discussed in more detail hereinafter, the embodiments described herein allow for customizing of different types of specific user roles.
The Authentication success handler is responsible for ensuring that the proper redirect happens after the OAuth flow is finished. It also allows for a default success URL to be set. Upon logout, the Logout Success Handler clears out the cookies.
Statelessness and Scalability
Any application which wants to use the Force.com SDK requires a high degree of scalability. As stated earlier, the embodiments disclosed herein are architected in order to promote scalability.
There can be at least two types of scaling, horizontal and vertical. Horizontal scaling is much more important than vertical scaling. Within a typical server farm, vertical scaling is merely adding more resources, more CPUs, more memory to a single server. Meanwhile, an example of horizontal scaling would be adding more servers.
Horizontal scaling requires either 1) statelessness, or 2) replicating state among all horizontal servers in the server farm. Option 2) is more complex, so only option 1) will be considered herein.
Server Side V. Cookies
There are two ways of maintaining the session using the embodiments discussed herein: 1) server side sessions, and 2) browser cookies.
The embodiments discussed herein result in allowing full, almost “remember me” level of functionality. This allows keeping the application server completely stateless. Thus, the embodiments discussed herein achieve their results statelessly, which is important for scalability.
All critical information needed about a user can be located for example within an encrypted cookie, which is stored client-side and usually associated with a particular browser.
Once a user authenticates, it is beneficial to remember that user so that the authorization handshake doesn't have to be repeated for each request. At a minimum, this requires remembering the Session ID and API endpoint. However, it is desired to make a best effort to remember that user data available as well.
The default behavior is to store the data in browser cookies so that the application instance stays completely stateless. This involves storing three separate cookies: Session ID, API endpoint, and a serialized and encrypted representation of the SecurityContext object.
The other option is not use cookies, but instead use server side sessions. The session approach still uses a cookie for Session ID and API endpoint, but stores the SecurityContext object in a session.
In both approaches, the framework relies on the stored SecurityContext only as a cache. An API call can always be made to retrieve this data so no real action is taken if this data doesn't exist. Instead, the cookies containing the Session ID and API endpoint are relied upon more. It is always possible to pull the Session ID and endpoint from the cookies. If a SecurityContext that matches the values from the cookies is found it can be utilized. Otherwise, the cookie information can be used to make an API call that looks up the user data.
If a cookie is being used for storage of the SecurityContext, the object is serialized and then encrypted using AES. The AES key is unique per application and can be generated as part of the deployment process.
Session-based SecurityContext storage is available, but it is not recommended for use unless sticky sessions are available, or an application can be run with a very small number of instances. This goes somewhat against the idea of scalability. However, the viability of the session approach would increase if a shared session cache were to be built.
Once a SecurityContext is retrieved or loaded it can be stored in a thread local variable and made available via static methods on the SecurityContexHolder.
Cookies: Positives and Negatives
Cookies are good for remaining stateless, which in turn increases scalability. As stated, any application which wants to use the database.com or Force.com SDK requires a high degree of scalability.
Intelligent load balancers (ILBs) are an alternative that allows scaling when instances cannot be kept stateless. However, sticky load balancing can slow processing down a bit. When ILBs are used, it becomes possible to use server side sessions to store user data.
It is possible for a user to switch between server side sessions and cookies mid-use, but to do so, the user must close and then re-start sessions, and must also do a type of cascaded or “rolling” re-start. This is inconvenient and inefficient.
Encryption cookies: if encryption key gets compromised, the corresponding cookie data could get compromised. Also, as the cookie grows in size, it must be sent up/down each time, therefore slowing transmission.
Shared Session Cache
It is possible to eliminate cookies by doing a server side session, but not writing locally to the application memory, but instead use a shared session cache. This makes maintaining statelessness on a server much easier. Each server writes to a specific session cache. This way, it is possible to still horizontally scale the servers. A critic might say that this merely pushes the problem to scaling the cache only, rather than scaling the entire server farm. However, shared session cache mechanisms are commercially available which are adept at managing the process.
Without a shared session cache, a server farm must spend extensive processor resources and bandwidth replicating data back and forth horizontally between the various servers.
Developer-Defined User Information (DDUI)
In recognition of the difficulty in predicting what user data JSDK developers may want, the embodiments described herein provide an extension point that allows the definition of custom logic to retrieve user data in addition to the default OAuth data set. This is accomplished by providing an abstract CustomSecurityContext that developers can extend to store customized developer-defined user information/data or DDUI 328. There is an API hook in the framework discussed herein which can call a CustomUserDataRetriever. This is another abstract class that a developer can extend to implement the logic that can create, populate, and return their CustomSecurityContext object. This can be called after a successful authentication such as that shown in
One special-case data item that the SecurityContext can provide is a user's role. When using Spring Security, the role that is given to Spring can be whatever is set on the SecurityContext. Once set, the role can be used with Spring's default page access restriction behavior and by the Spring Security taglibs. A developer can also implement any behavior they need to for the role value as part of the user data retrieval extension mechanism. This allows flexibility in case there is a need to define roles in a custom way.
If not overridden, the default behavior is for the name of the user's profile to be their role. The embodiments herein can also expose roles that can be customized on a per-application basis and allow administrative control over how users are mapped to those roles.
However, within the embodiments discussed herein, the developer-defined user information (DDUI) 328 need not be confined only to “role” data. Instead, DDUI 328 could be “atmosphere” information, an extremely simple example being the color blue. A developer could use the Force SDK and the DDUI 328 to so that for a specific user who fits a certain profile, the backgrounds of all web applications accessible by that user would be blue. This example of blue is not necessarily the most practical or valuable use of DDUI 328, but instead is provided merely to quick and simple illustration that is easy to understand.
Moving to an example that is more realistic, a business-specific web application could for example pull a primary account that a user works on. That account data would be rendered in header of a web application. A possible guideline for the DDUI 328 could be data that is needed often, but where the client application 312 does not want to be continually querying.
Another example of DDUI is data that is contained within credentials of other systems. For example, it would be possible to create a custom Force.com object in the form of a mashup of web applications such as Force.com, Twitter, and Facebook. It would be possible to use the DDUI to store OAuth tokens from e.g. Twitter and Facebook in a custom Force.com object. In that mashup, a developer could extract select customized user data from these well known web applications, thereby providing a semi-seamless integrated experience for a user. This is because that user does not need to manually switch between the various web applications, but instead have customized data present that is available and convenient without any switching.
It is important to note that there are efficiency issues with how DDUI should be used. For example, a developer would not want include a large list of leads within DDUI, because of the potential size of that list. If the DDUI were too large, it would slow down the client application. Thus, it may be suitable to include only frequently looked-up leads with DDUI. Another example of this would be to not store an entire dictionary within DDUI, but instead store only words that are frequently looked-up.
Regarding a possible range of size of the DDUI, a particular developer's best practices would determine the most efficient use of data sizes and amounts for the DDUI. The embodiments discussed herein do not contemplate specific limits or constraints on the DDUI, preferring to instead leave that to the developer's discretion. If the size of the DDUI gets too large, there becomes too much data, and too much storage on the server, which bogs down server requests.
Assuming the cookie and non server-side embodiment, one possible example of a constraint could be a hard limit on cookie size, for example 4K. In such a case, DDUI could not exceed 4K in size.
DDUI 328 could be helpful in the hands of a creative application developer whose client application 312 sits on top of the Force.com SDK 316, such as is shown in
The intent is to give a developer of web applications using the enhanced Force.com SDK discussed herein enough room to be creative. As such, DDUI sizes do not introduce any security issues, but instead may introduce performance issues.
In the foregoing specification, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. Thus, the sole and exclusive indicator of what is the invention, and is intended by the applicants to be the invention, is the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction. Any definitions expressly set forth herein for terms contained in such claims shall govern the meaning of such terms as used in the claims. Hence, no limitation, element, property, feature, advantage or attribute that is not expressly recited in a claim should limit the scope of such claim in any way. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
This continuation application claims the benefit of U.S. patent application Ser. No. 16/042,983, entitled “INTER-APPLICATION MANAGEMENT OF USER CREDENTIAL DATA”, filed Jul. 23, 2018, now U.S. Pat. No. 10,432,635, with an issue date of Oct. 1, 2019, which is a continuation of U.S. patent application Ser. No. 15/197,728, entitled “INTER-APPLICATION MANAGEMENT OF USER CREDENTIAL DATA”, filed Jun. 29, 2016, now U.S. Pat. No. 10,033,740, issued Jul. 24, 2018, which is a continuation of U.S. patent application Ser. No. 13/178,511, entitled “INTER-APPLICATION MANAGEMENT OF USER CREDENTIAL DATA”, filed Jul. 8, 2011, now U.S. Pat. No. 9,405,896, issued Aug. 2, 2016, which further claims the benefit of U.S. Provisional Application No. 61/474,538 entitled “Security Framework for a Multi-Tenant Database System”, filed Apr. 12, 2011, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker et al. | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
6907546 | Haswell | Jun 2005 | B1 |
7289976 | Kihneman et al. | Oct 2007 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7620655 | Larsson et al. | Nov 2009 | B2 |
7761885 | Labrou | Jul 2010 | B2 |
8365150 | Wong | Jan 2013 | B2 |
8479144 | Nakatani | Jul 2013 | B2 |
8640202 | Roy | Jan 2014 | B2 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020022986 | Coker et al. | Feb 2002 | A1 |
20020029161 | Brodersen et al. | Mar 2002 | A1 |
20020029376 | Ambrose et al. | Mar 2002 | A1 |
20020035577 | Brodersen et al. | Mar 2002 | A1 |
20020042264 | Kim | Apr 2002 | A1 |
20020042843 | Diec | Apr 2002 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel et al. | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramaniam et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020152102 | Brodersen et al. | Oct 2002 | A1 |
20020161734 | Stauber et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robins | Nov 2002 | A1 |
20030004971 | Gong et al. | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane | Apr 2003 | A1 |
20030066032 | Ramachadran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker | Apr 2003 | A1 |
20030088545 | Subramaniam et al. | May 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030191743 | Brodersen et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040177113 | Nguyen | Sep 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan, Jr. et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20060020679 | Hinton | Jan 2006 | A1 |
20060168054 | Burkhart | Jul 2006 | A1 |
20090177744 | Marlow et al. | Jul 2009 | A1 |
20090328174 | Cen | Dec 2009 | A1 |
20100083359 | Readshaw | Apr 2010 | A1 |
20100131530 | Gibson | May 2010 | A1 |
20100198730 | Ahmed | Aug 2010 | A1 |
20100293094 | Kolkowitz | Nov 2010 | A1 |
20100306547 | Fallows | Dec 2010 | A1 |
20110035417 | Cohen | Feb 2011 | A1 |
20110093813 | Watanabe | Apr 2011 | A1 |
20120102455 | Ambat | Apr 2012 | A1 |
20120173490 | Gould | Jul 2012 | A1 |
20120185930 | Desai et al. | Jul 2012 | A1 |
20120197957 | De Voogd | Aug 2012 | A1 |
20120239578 | Kang | Sep 2012 | A1 |
20120266229 | Simone | Oct 2012 | A1 |
20160344719 | Simone | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
112988171 | Jun 2021 | CN |
Entry |
---|
Final Office Action for U.S. Appl. No. 16/391,084 dated Apr. 21, 2021, 7 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 15/197,728 dated Apr. 25; 2018, 5 pages. |
Final Office Action for U.S. Appl. No. 13/178,511 dated Apr. 30, 2015, 13 pages. |
Final Office Action for U.S. Appl. No. 13/178,511 dated May 21, 2014, 10 pages. |
Final Office Action for U.S. Appl. No. 15/197,728 dated Jul. 13, 2017, 12 pages. |
Final Office Action for U.S. Appl. No. 15/225,751 dated Jul. 14, 2017, 9 pages. |
Hardt, D., Ed. “The OAuth 2.0 Authorization Framework” Standards Track, Oct. 2012, 77 pages. |
Non-Final Office Action for U.S. Appl. No. 13/178,511 dated Aug. 13, 2015, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 13/178,511 dated Oct. 10, 2014, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 13/178,511 dated Oct. 24, 2013, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 15/197,728 dated Dec. 29, 2016, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 15/197,728 dated Nov. 15, 2017, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/225,751 dated Dec. 29, 2016, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 16/042,983 dated Feb. 7, 2019, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/178,511 dated Mar. 25, 2016, 13 pages. |
Notice of Allowance for U.S. Appl. No. 15/197,728 dated Mar. 28, 2018, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/225,751 dated Nov. 22, 2017, 9 pages. |
Notice of Allowance for U.S. Appl. No. 16/042,983 dated Jun. 5, 2019, 8 pages. |
Winterfeldt, David. Simple Spring Security Webapp. 2008. Spring by Example Part IV. Web. Oct. 17, 2013. |
Number | Date | Country | |
---|---|---|---|
20200204552 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
61474538 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16042983 | Jul 2018 | US |
Child | 16588466 | US | |
Parent | 15197728 | Jun 2016 | US |
Child | 16042983 | US | |
Parent | 13178511 | Jul 2011 | US |
Child | 15197728 | US |