The application claims priority under 35 U.S.C. § 119 to French Patent Application No. 1900080, filed on Jan. 4, 2019, the entirety of which is incorporated by reference herein.
The invention relates to an inter-blade platform seal. Such a seal is disposed between a blade and an inter-blade platform separate from the blade, and aims at limiting the circulation of air between the blade and the inter-blade platform. Such a seal is in particular used, but not exclusively, in the turbomachine fans, between the fan blades and the inter-blade platforms.
In a turbomachine, the blade platforms of the fan must ensure several functions. Aerodynamically, these platforms have the primary function of delimiting the air flowpath. In addition, they must also be capable of withstanding significant forces by deforming as little as possible and remaining secured to the disk that carries them.
In order to meet these different requirements, some configurations have been proposed in which the platforms have a first part, i.e. the flowpath wall, that allows defining the air flowpath and ensuring the retention of the platform when the engine is rotating, and a second part, i.e. the box, that allows limiting the deformations of the first part under the effects of the centrifugal forces and maintaining the platform in position when the engine is stopped.
A clearance is arranged between the platforms and the blades to allow said blades to have a limited displacement during the various phases of operation of the engine. However, the performance requirements of the turbomachines are reflected in a good control of the tightness at the root of the blades. To that end, the clearance is plugged by a seal made of elastomeric material fixed along the lateral edges of the platform and bearing against the adjacent blade.
A linear inter-blade platform seal as described in the document FR2987086 is known, having a length, comprising a linear base intended to be fixed to the inter-blade platform, and a linear lip extending from the linear base, said linear lip having a circumferential end configured to contact a wall on the side of an intrados or a wall on the side of an extrados of a blade. This type of seal extends along the intrados or extrados of a blade, including the leading edge and/or the trailing edge.
In the configurations where the blades are subjected to large movements, in particular because of the centrifugal forces, the seals must be designed and finely positioned to ensure permanent plating against the blades, and thus maintain a good tightness. However, it is difficult to find an optimized solution at any point of operation. Indeed, the seal must be at the same time flexible enough to accompany the movement of the blades, but also stiff enough not to turn over or tear off. The materials making it possible to meet these conditions can be expensive, and involve complex shapes, and therefore complex implementation. In addition, in case of large movement of the blades, this type of known seal may in some locations not properly fit the blade in the areas of sharp discontinuity or with small radius of curvature, such as in the vicinity of the leading edge or of the trailing edge of the blade. As a result, air flows between the blade and the inter-blade platform in these areas. The tightness of the air (or gas) flowpath is therefore not optimal, which deteriorates the performances of the turbomachine.
There is therefore a need for an inter-blade platform seal that allows at least partly overcoming the drawbacks mentioned above.
The present disclosure relates to a seal for an inter-blade platform intended to extend circumferentially about an axis and to be mounted between two axial ends of the inter-blade platform, the seal comprising at least a first part configured to be in contact with a first blade circumferentially adjacent to a first circumferential end of the platform, and at least a second part configured to be in contact with a second blade circumferentially adjacent to a second circumferential end of the platform; the first part and second parts of the seal being configured to be linked to each other such that a displacement in one circumferential direction of one of the first or second part of the seal causes a displacement of the other of the first or second part of the seal in the same direction, when the first part and second parts of the seal are linked to each other.
It is understood that the seal extends along a preferred direction, i.e. the axial direction. This axial direction is not necessarily rectilinear, and is preferably configured to follow the contours of the blade, in particular in the vicinity of the discontinuities of the blade. The length of the seal is thus defined and measured parallel to this axial direction, between the two axial ends of the platform. It is understood that the circumferential direction, or lateral direction, is a direction transverse to the axial direction. When the seal is mounted on a platform which is in turn mounted on a wheel of a turbomachine fan, the circumferential direction is a direction tangent to the wheel, and perpendicular to the axis of rotation of the fan.
The platform seal includes two parts distinct from each other. When the seal is mounted on a platform, the two parts of the seal are linked to each other such that the seal extends on either side of the platform in the circumferential direction, from the first circumferential end of the platform up to the second circumferential end of the platform. Thus, the first part ensures the tightness between the platform and the intrados of a blade, and the second part ensures the tightness between said platform and the extrados of a second blade, adjacent to the first blade. By “linked to each other”, or secured to each other, is meant that they are in contact with each other, that is to say, communicate with each other for example by being fixed to each other, such that a motion in the circumferential direction of one of the first and second parts causes a displacement, by reaction, of the other of the first and second parts. In other words, the movement of one of the first and second parts in the circumferential direction cannot be done without movement of the other of the first and second parts in this direction.
Consequently, during a movement of the blades, for example due to the centrifugal forces, a first blade tends to crush the first part of the seal, thus ensuring the tightness between said first blade and the platform. In addition, a second blade, adjacent to the first one and moving in the same direction as the first blade, tends to move away from the platform. However, the force exerted by the first blade on the first part of the seal is transmitted to the second part of the seal, which can thus follow the motion of the second blade. The second part of the seal can therefore ensure the tightness between the platform and the second blade. Consequently, the seal of the present disclosure can follow the global motion of the blades, thus making it possible to improve the tightness at the root of the blades, and thus to improve the performances of the turbomachine.
In some embodiments, the first part of the seal comprises a first contact portion made of elastomeric material, the first contact portion being configured to be in contact with the first circumferential end of the platform and the first blade adjacent to the first circumferential end of the platform, and the second part of the seal comprises a second contact portion made of elastomeric material, the second contact portion being configured to be in contact with the second circumferential end of the platform and the second blade adjacent to the second circumferential end of the platform.
The first and second contact portions are configured to be in contact with the platform and a blade adjacent to said platform. The first and second contact portions are therefore disposed at the circumferential ends of the seal, and over the entire length of the latter in the axial direction. With the first and second contact portions made of elastomeric material, the circumferential ends of the seal are locally more flexible than the portions of the seal other than the contact portions. The contact portions make it possible to better fit the contour of the blades, in particular in the areas of sharp discontinuity or with a small radius of curvature of the blade.
In some embodiments, the first part of the seal comprises a first structural portion, and the second part of the seal comprises a second structural portion, the first structural portion and the second structural portion being configured to be assembled to each other.
The structural portions allow ensuring the rigidity of the seal, and also transmitting the forces exerted on the first contact portion at a circumferential end of the seal to the second contact portion at the other circumferential end of the seal.
Furthermore, when the platform is mounted in a turbomachine fan, the first structural portion and the second structural portion can be fixed to each other radially under a flowpath wall of the platform. The flowpath wall of the platform is the wall that allows delimiting the flowpath of the air entering the fan. By “radially under a flowpath wall of the platform”, is meant that the structural portions are disposed on a radially inner face of the flowpath wall of the platform when the platform is mounted in a fan. The structural portions are therefore disposed on one side of the flowpath wall opposite to the side of the flowpath wall where the air flows. The Fixing operation of the first structural portion with the second structural portion is therefore carried out radially under the flowpath wall. According to this configuration, a displacement of the first part of the seal generates a displacement of the second part of the seal, the seal thus moving in block by radially sliding under the flowpath wall of the platform.
In some embodiments, each of the first and second structural portions comprises a metal material.
The fact that the first and second structural portions comprise a metal material allows improving the rigidity of the seal, and also ensuring more effectively the circumferential displacement of the seal on either side of the platform. The first and second structural portions may be for example in the form of a metal plate slid radially under the flowpath wall of the platform.
In some embodiments, the first contact portion, respectively the second contact portion, is fixed to the first structural portion, respectively to the second structural portion, by being bonded along the latter.
Preferably, the first contact portion, respectively the second contact portion, is bonded over the entire length, in the axial direction, of the first structural portion, respectively of the second structural portion.
Alternatively, the first and second contact portions may include a groove extending along said portion in the axial direction, the groove being able to nest with one end of the structural portion. The structural portion may also be embedded in the elastomer, so that the structural portion also includes an elastomer, integral with the contact portions. These fixing modes allow a simple assembly of the different parts of the seal.
In some embodiments, in a cross-section parallel to the circumferential direction, the first and second contact portions have a rectangular shape, one side of the rectangle being configured to be in contact with an adjacent blade, another side being configured to be in contact with the platform.
The first and second contact portions are preferably configured to be disposed partly radially under the flowpath wall. The shape and disposition of the first and second contact portions allow facilitating their sliding radially under the flowpath wall, and thus facilitating the displacement of the seal on either side of the platform.
In some embodiments, at least one of the first and second structural portions comprises at least one tab extending in the circumferential direction, one circumferential end of said tab being configured to come into contact with the other of the first and second structural portions.
By “tab” is meant a plate having a larger dimension in the circumferential direction than in the axial direction. In other words, the tab of the first and/or second structural portion does not extend over the entire length, in the axial direction, of the seal. When the first part and the second part of the seal are assembled, the circumferential end of the tab of the first structural portion, for example, comes into contact with the second structural portion. The forces exerted by a blade at a circumferential end of the seal are then transmitted to the other end of the seal via the tab.
The first structural portion, for example, may also include two tabs, or more, the circumferential ends of each of them coming into contact with the second structural portion. Thus, when the first part and the second part of the seal are assembled, the seal is in the form of a plate comprising windows. The structure of the structural portions comprising tabs allows facilitating the assembly of the two parts of the seal, in particular the insertion of each of the structural portions under the flowpath wall. Moreover, the shape and the number of the tabs are not limited, and can be adapted according to the structure of the platform on which the seal is mounted.
In some embodiments, each of the first and second structural portions comprises at least one tab extending in the circumferential direction, a circumferential end of said tab being configured to come into contact with a circumferential end of the tab of the other of the first and second structural portions.
Preferably, each of the first and second structural portions comprises the same number of tabs. Each tab of the first or second structural portion is disposed so as to face a tab of the other of the first or second structural portion when the first and second parts of the seal are assembled. The axial ends of each of these tabs are thus in contact with each other when the first and second parts of the seal are assembled.
In some embodiments, the first part of the seal comprises at least a first attachment part fixed to a tab of the first structural portion, and the second part of the seal comprises at least a second attachment part fixed to a tab of the second structural portion, the first and second attachment parts being configured to cooperate together so as to assemble the first part of the seal to the second part of the seal.
The first attachment part and the second attachment part are preferably fixed under the tab of the first and the second structural portion respectively, that is to say on a radially inner face of these structural portions when the seal is mounted on a platform, itself mounted on a turbomachine fan. The attachment parts may be fixed by being added onto the tabs, for example by welding, or be molded or machined into a block, in the same material as the first and second structural portions.
The first and second attachment parts allow the first and second parts of the seal to be assembled and fixed such that said first part and said second part of the seal are linked to each other. The first attachment part may be for example a female attachment part, and the second attachment part may be a male attachment part that is fixed, for example by clipping, on the female attachment part.
There may be as many attachment parts as tabs. More specifically, when each of the first and second structural portions includes two tabs, a first tab of the first structural portion may include a first attachment part, and a first tab of the second structural part may include a second attachment part configured to be fixed to the first attachment part. Similarly, a second tab of the first structural portion may include a first attachment part, and a second tab of the second structural part may include a second attachment part configured to be assembled to the first attachment part.
In some embodiments, the assembly between the first attachment part and the second attachment part is reversible. This thus offers the possibility of easily separating the first and second parts of the seal, for maintenance or replacement of the latter.
The present disclosure also relates to an inter-blade platform comprising a seal according to any one of the previous embodiments, the first part of the seal being fixed to the second part of the seal.
In some embodiments, the platform comprises a box delimited by a flowpath wall to define an air flowpath, the box comprising at least one lateral passage configured to accommodate a tab of a first and/or or a second structural portion of the seal.
The box allows maintaining in position the flowpath wall, and also limiting its deformations under the effect of centrifugal forces. The box also includes a bottom surface that can bear on a fan disk. The passages existing in the box are orifices disposed radially under the flowpath wall, preferably adjacent thereto, and the dimensions of which allow the passage of the tab(s) of the structural portions of the seal. The presence of these passages allows the assembly of the first and second parts of the seal, and makes possible the communication of the first and second parts of the seal via the tabs, and thus the displacement of the seal extending on either side of the platform in a circumferential direction, radially under the flowpath wall.
The present disclosure also relates to a rotor comprising a disk at the periphery of which a plurality of blades and a plurality of inter-blade platforms are mounted according to any one of the previous embodiments, each platform being disposed between each pair of adjacent blades.
The present disclosure also relates to a turbomachine and particularly a turbojet engine comprising a rotor according to the previous embodiment.
The invention and its advantages will be better understood upon reading the detailed description below of various embodiments of the invention given by way of non-limiting examples. This description refers to the pages of appended figures, in which:
In the present disclosure, the term “axial” and its derivatives are defined in relation to the main direction of the considered seal and platform; the term “circumferential” and its derivatives are defined in relation to the direction that extends about the axial direction; the terms “radial”, “internal”, “external” and their derivatives are for their part defined in relation to the main axis of the turbomachine, when the platform is mounted on a disk which is in turn mounted in the turbomachine; finally, the terms “above”, “below”, “lower”, “upper” and their derivatives are defined in relation to the radial direction facing the axis about which the turbomachine extends. Also, unless otherwise indicated, the same reference signs in different figures refer to the same characteristics.
The fan 2 further comprises a plurality of blades 20 of curvilinear profile (only four blades 20 have been represented in
Finally, the fan 2 comprises a plurality of added platforms 30, each platform 30 being mounted in the interval that extends circumferentially between two adjacent fan blades 20, in the vicinity of the root 20a thereof, in order to delimit, on the internal side, an annular flowpath for entering air in the fan 2, the flowpath being delimited on the external side by a fan casing (not represented).
As illustrated in
The seal 10 comprises a first part 10a and a second part 10b, separate from the first part 10a. The first part 10a comprises a first contact portion 12a, and a first structural portion 14a, fixed to each other, for example by bonding. Similarly, the second part 10b comprises a second contact portion 12b, and a second structural portion 14b, fixed to each other, for example by bonding. The contact portions 12a, 12b each comprise an elastomeric material, and are provided to be in contact, respectively, with the circumferential end 32a of the platform 30 and a blade adjacent to said circumferential end 32a, and the circumferential end 32b of the platform 30 and a blade adjacent to said circumferential end 32b.
The structural portions 14a, 14b each comprise a metal material, for example an aluminum alloy, and may also include a carbon composite. Alternatively, the structural portions may include an elastomer having an embedded part made of aluminum alloy or be entirely metallic, made of aluminum or titanium alloy. In the example illustrated in
Furthermore, the seal 10 includes a first attachment part 16a fixed to a tab 140a of the first structural portion 14a, and a second attachment part 16b fixed to a tab 140b of the second structural part 14b. These attachment parts 16a, 16b are fixed on a radially inner face of the seal 10, when the latter is mounted on a fan platform 30. In
When the first and second parts 10a, 10b of the seal 10 are brought closer to each other, the second branch 162a2 of the first pin part 162a slides along the hook 162b2 of the second pin part 162b, by elastically deforming so as to come closer to the first branch 162a1. When the first and second parts 10a, 10b of the seal 10 are brought further closer to each other, such that the circumferential ends 141a and 141b of the tabs 140a, 140b abut against each other along a contact surface 141, the end of the second branch 162a2 of the first pin part 162a passes over the hook end 162b2 by again moving away from the first branch 162a1, when the first pin part 162a returns to its initial shape. The first and second attachment parts 16a, 16b are thus in the locked position, and the first and second parts 10a, 10b are then joined to each other. It is also possible to separate the two parts 10a, 10b from each other, by exerting a force on the first part 10a in the axial direction X, so as to release the second branch 162a2 from the hook 162b2.
When the first and second parts 10a, 10b of the seal 10 are brought closer to each other, an inclined wall of the first notched part 172a slides along an inclined wall of the second notched part 172b, by both deforming elastically. When the first and second parts 10a, 10b of the seal 10 are brought further closer to each other, such that the circumferential ends 141a and 141b of the tabs 140a, 140b abut against each other according to the contact surface 141, the first step 172a1 passes over the second step 172b1, such that the first and second notched parts are hooked to each other. The first and second attachment parts 17a, 17b are thus in the locked position, and the first and second parts 10a, 10b are then joined to each other.
Although the present invention has been described with reference to specific exemplary embodiments, it is obvious that modifications and changes can be made to these examples without departing from the general scope of the invention as defined by the claims. Particularly, individual characteristics of the various illustrated/mentioned embodiments can be combined in additional embodiments. Consequently, the description and drawings should be considered in an illustrative rather than restrictive sense.
Number | Date | Country | Kind |
---|---|---|---|
1900080 | Jan 2019 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
3712757 | Goodwin | Jan 1973 | A |
5161949 | Brioude | Nov 1992 | A |
6217283 | Ravenhall | Apr 2001 | B1 |
7942636 | Evans | May 2011 | B2 |
7950900 | Mulcaire | May 2011 | B2 |
8535013 | Care | Sep 2013 | B2 |
9228444 | Evans | Jan 2016 | B2 |
9869323 | Ravier | Jan 2018 | B2 |
20080018056 | Evans | Jan 2008 | A1 |
20100322772 | Hoyland | Dec 2010 | A1 |
20160305439 | Alarcon | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2987086 | Aug 2013 | FR |
1276106 | Jun 1972 | GB |
2489222 | Sep 2012 | GB |
2489222 | Sep 2012 | GB |
Entry |
---|
Search Report dated Sep. 19, 2019, in corresponding French Patent Application No. 1900080 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20200217217 A1 | Jul 2020 | US |