This invention relates generally to a corona ignition system, and a method of controlling corona discharge and arc formation provided by the corona ignition system.
Corona discharge ignition systems provide an alternating voltage and current, reversing high and low potential electrodes in rapid succession. These systems include a corona igniter with an electrode charged to a high radio frequency voltage potential and creating a strong radio frequency electric field in a combustion chamber. The electric field causes a portion of a mixture of fuel and air in the combustion chamber to ionize and begin dielectric breakdown, facilitating combustion of the fuel-air mixture. During typical operation of the corona ignition system, the electric field is ideally controlled so that the fuel-air mixture maintains dielectric properties and corona discharge occurs, also referred to as a non-thermal plasma. The ionized portion of the fuel-air mixture forms a flame front which then becomes self-sustaining and combusts the remaining portion of the fuel-air mixture. The corona discharge has a low current and can provide a robust ignition without requiring a high amount of energy and without causing significant wear to physical components of the ignition system.
In a corona ignition system, good ignition characteristics are due to the corona discharge spreading over a large volume in a large number of filaments or streamers. If too much energy is applied to the corona igniter, it is possible for the corona discharge to extend from the high voltage source far enough to reach a grounded engine component. When this happens, a conductive path, referred to as an arc, is formed to the grounded component. The arc formation comprises a relatively high current flow and thus concentrates the ignition energy into a very limited volume, reducing ignition efficiency. It is typically desirable to avoid this situation. Conversely, it is difficult to be certain that a corona igniter is fed with enough energy to produce a large enough corona, as there is no direct method of obtaining the volume of the corona discharge.
One aspect of the invention provides a corona ignition system for controlling volume and duration of corona discharge on an inter-event basis. The system includes a corona igniter receiving energy and providing corona discharge during a plurality of corona events. Each corona event comprises a duration of time extending continuously from a start time to a stop time.
A driver circuit provides the energy to the corona igniter during the corona events, and the energy includes at least one of a predetermined voltage level and a predetermined current level. The driver circuit also obtains information relating to the corona discharge of at least one of the corona events. This information includes at least one of: timing of an occurrence of the arc formation relative to the start time of the corona event, duration between two consecutive occurrences of the arc formations, number of occurrences of the arc formations over a period of time during the corona event, timing of an occurrence of the arc formation relative to the stop time of the corona event, total number of occurrences of the arc formations during the corona event, and at least one of the voltage level and the current level provided to the corona igniter at the stop time of the corona event.
A control unit receives the information relating to the corona discharge from the driver circuit, and adjusts at least one of the stored predetermined voltage level and the predetermined current level based on the information relating to the corona discharge. The driver circuit then applies at least one of the adjusted predetermined voltage level and the adjusted predetermined current level to the corona igniter during at least one subsequent corona event. The adjusted levels are not provided before the stop time of the at least one corona event from which the information was obtained.
Another aspect of the invention provides a corona ignition system wherein the driver circuit detects any occurrence of an arc formation and provides no energy to the corona igniter for a duration of time immediately after any occurrence of the are formation. The duration of time wherein no energy is provided to the corona igniter is predetermined, and the control unit adjusts this predetermined duration of time based on the information relating to the corona discharge. The driver circuit then applies the adjusted predetermined duration of time to at least one subsequent corona event. The adjusted duration is not applied before the stop time of the at least one corona event from which the information was obtained.
Yet another aspect of the invention provides a corona ignition system wherein the duration of the corona event is predetermined, and the control unit adjusts the predetermined duration of the corona event based on the information relating to the corona discharge. The adjusted duration of the corona event is not applied before the stop time of the at least one corona event from which the information was obtained.
Another aspect of the invention provides a method of controlling a corona ignition system on an inter-event basis. The method comprises providing energy to a corona igniter during a plurality of corona events, wherein the energy includes at least one of a predetermined voltage level and a predetermined current level, and each corona event includes a continuous duration of time extending from a start time to a stop time. The method also includes obtaining information relating to the corona discharge of at least one of the corona events; and adjusting at least one of the predetermined voltage level and the predetermined current level based on the information relating to the corona discharge. The method next includes applying at least one of the adjusted predetermined voltage level and the adjusted predetermined current level to the corona igniter during at least one subsequent corona event and not before the stop time of the at least one corona event from which the information was obtained.
Yet another aspect of the invention provides a method of controlling a corona ignition system on an inter-event basis, wherein including the step of detecting any occurrence of an are formation, and providing no energy to the corona igniter for a duration of time immediately after any occurrence of the arc formation. The duration of time wherein no energy is provided to the corona igniter after each occurrence of the are formation is predetermined. The method further includes adjusting the predetermined duration of time wherein no energy is provided to the corona igniter based on the information relating to the corona discharge; and applying the adjusted predetermined duration of time in at least one subsequent corona event and not before the stop time of the at least one corona event from which the information was obtained.
Another aspect of the invention provides a method of controlling a corona ignition system on an inter-event basis, wherein the duration of the corona event extending from the start time to the stop time is predetermined. The method includes adjusting the duration of the corona event based on the information relating to the corona discharge; and applying the adjusted duration of time to at least one subsequent corona event and not before the stop time of the at least one corona event from which the information was obtained.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
One aspect of the invention provides a corona ignition system for an internal combustion engine. The system includes a corona igniter 20 providing corona discharge 22, an engine control system 24, a control unit 26, a power supply 28, and a driver circuit 30. An exemplary system is generally shown in
In the exemplary system, the engine control system 24 initiates the start of a corona event in order to ignite a mixture of fuel and air in a combustion chamber 32 of the internal combustion engine. Each corona event is a single continuous duration of time extending from a start time to a stop time, during which the corona igniter 20 receives energy and provides the corona discharge 22. The control unit 26 typically reads the predetermined duration of the corona event from a table or map stored in the control unit 26 or the engine control system 24. Initially, the predetermined duration is set as a function of engine parameters or operating conditions in the combustion chamber 32. Typically, the duration of the corona event ranges from 20 to 3,500 microseconds. However, the predetermined duration stored in the control unit 26 or engine control system 24 can be adjusted based on information relating to the corona discharge of a previous corona event, in order to enhance the corona discharge 22, which will be discussed further below.
The engine control system 24 starts the corona event at the start time by conveying an enable signal 34 to the control unit 26, which actives the control unit 26. In this example, the engine control system 24 also stops the corona event by conveying a signal to the control unit 26 at the stop time, which deactivates the control unit 26. These steps are repeated for each corona event. In the embodiment of
In response to the enable signal 34, the control unit 26 turns on the driver circuit 30 by conveying a command signal 36 to the driver circuit 30. The control unit 26 also conveys a power control signal 38 to the power supply 28, instructing the power supply 28 to provide the energy to the driver circuit 30, which ultimately reaches the corona igniter 20, at a predetermined voltage level and a predetermined current level. Thus, the control unit 26 controls the energy provided to the corona igniter 20. In the exemplary system, the predetermine voltage level ranges from 100V to 1500V and the predetermined current level ranges from 0.5 to 15 A. Ideally, the corona igniter 20 receives the high radio frequency voltage and current and provides a strong radio frequency electric field, i.e. the corona discharge 22, in the combustion chamber 32. In the system of
The control unit 26 typically reads the predetermined voltage level and the predetermined current level from a table or map stored in the control unit 26 or the engine control system 24. Initially, the predetermined voltage level and the predetermined current level are based on engine parameters or operating conditions in the combustion chamber 32. However, the predetermined levels stored in the control unit 26 or engine control system 24 are adjusted based on information relating to the corona discharge of a previous corona event, in order to enhance the corona discharge 22, which will be discussed further below.
The driver circuit 30 receives the energy from the power supply 28 at the predetermined voltage level and the predetermined current level. In response to the command signal 36 from the control unit 26, the driver circuit 30 provides the energy to the corona igniter 20 at the predetermined voltage level and the predetermined current level. The corona igniter 20 receives the energy from the driver circuit 30, and emits the corona discharge 22. In an ideal situation, the corona discharge 22 would rapidly form in the combustion chamber 32, grow to a maximum volume, which is the largest possible volume without reaching a grounded component, and remain at the maximum volume until the end of the corona event. Thus, the corona discharge 22 would provide a high quality ignition by igniting a large volume of the air-fuel mixture in the combustion chamber 32.
However, at some point during the corona event, the corona igniter 20 typically receives too much energy, causing the corona discharge 22 grow too large and reach a grounded component, such as a wall 42 of the combustion chamber 32 or a piston 44 reciprocating in the combustion chamber 32. At this time, a conductive path, referred to as an arc formation, forms between the corona igniter 20 and the grounded component. In other words, the corona discharge 22 transforms into the are formation. The corona discharge 22 is preferred over the are formation because it has a lower current and spreads over a larger volume, and thus is able to provide a higher quality ignition of the fuel-air mixture.
In one embodiment, any occurrence of an arc formation in the combustion chamber 32 is immediately detected by the driver circuit 30. However, an arc formation is not necessarily detected as the corona event can occur without any are formations. An exemplary method used to detect the onset of any arc formation is described in U.S. patent application Ser. No. 13/438,116. This method does not rely on measuring current, voltage, or impedance parameters related to the corona discharge 22. Rather, the method detects the arc formation by identifying a variation in an oscillation period of the resonant frequency, and provides a positive detection in nanoseconds or microseconds, and typically less than 2 μs. Accordingly, it is an easily implemented method allowing for very rapid feedback indicating the occurrence of arc formation. However, other methods can be used to detect the arc formation.
When the driver circuit 30 detects any occurrence of the arc formation, the driver circuit 30 conveys a feedback signal 46 to the control unit 26 indicating the occurrence of the arc formation.
The control unit 26 typically reads the predetermined duration of time during which no energy is provided to the corona igniter 20 from a table or map stored in the control unit 26 or the engine control system 24. Initially, the predetermined duration of time is based on engine parameters or operating conditions in the combustion chamber 32. In one embodiment, this duration ranges from ten to hundreds of microseconds. However, the predetermined duration of time stored in the control unit 26 or engine control system 24 can be adjusted based on information relating to the corona discharge of a previous corona event, in order to enhance the corona discharge 22, which will be discussed further below.
An exemplary method used to shut off the energy provided to the corona igniter 20 for the short duration of time is described in U.S. patent application Ser. No. 13/438,127. Although nothing is done to prevent the first occurrence of the arc formation, upon the first detection, the system takes action to prevent future arc formations. In the exemplary method, the energy is immediately shut off in response to the arc formation, rather than reduced, because the voltage required to maintain the arc formation is much less than the voltage required to maintain the corona discharge 22, and thus reducing the voltage applied to the corona igniter 20 will most likely not dissipate the are formation.
After the duration of time wherein no energy is provided to the corona igniter 20 and the arc formation dissipates, the control unit 26 again instructs the driver circuit 30 to provide energy to the corona igniter 20 and restore the corona discharge 22. The energy is provided to the igniter until the arc formation occurs again. The steps of detecting the arc formation, shutting of the energy, and re-applying the energy to the corona igniter 20 can be repeated throughout each corona event. However, as described above, engine conditions may dictate that the step of shutting off the energy after any occurrence of an arc formation is omitted, and the inter-event control system and method otherwise proceeds as described.
Upon detection of the arc formation, the driver circuit 30 obtains information about the arc formation and relating to the corona discharge 22. This information can be obtained either during or after the corona event. The information is more than just a “yes or no” result, and it is used to infer information about the volume and duration of the corona discharge 22. The information relating to the corona discharge 22 includes at least one of the following characteristics: timing of an occurrence of the arc formation relative to the start time of the corona event, duration between two consecutive occurrences of the arc formations, number of occurrences of the arc formations over a period of time during the corona event, timing of an occurrence of the arc formation relative to the stop time of the corona event, total number of occurrences of the arc formations during the corona event, and at least one of the voltage level and the current level provided to the corona igniter 20 at the stop time of the corona event. The driver circuit 30 preferably obtains the information relating to the corona discharge 22 of each corona event. In the case where the step of shutting off the energy supply after detection of arc formation is omitted, the possible information relating to the corona discharge is limited to at least one of the following characteristics: timing of an occurrence of the arc formation relative to the start time of the corona event, timing of an occurrence of the arc formation relative to the stop time of the corona event, and at least one of the voltage level and the current level provided to the corona igniter 20 at the stop time of the corona event.
The driver circuit 30 then conveys the information relating to the corona discharge 22 in the feedback signal 46 to the control unit 26. This can be the same feedback signal 46 sent in response to the detection of the arc formation, or a separate signal. For example one feedback signal 46 indicating the occurrence of arc formation can be sent during the corona event, and another feedback signal 46 including the information relating to the corona discharge 22 can be sent after the corona event. At least one feedback signal 46 is typically sent at the end of the corona event, which includes the timing of an occurrence of the arc formation relative to the stop time of the corona event, total number of occurrences of the arc formations during the corona event, and the voltage level and the current level provided to the corona igniter 20 at the stop time of the corona event.
The control unit 26 then uses the information relating to the corona discharge 22, including information about the arc formations, to adjust the predetermined values stored in the tables or maps, which are applied to future corona events, in order to increase the volume and duration of the corona discharge 22 formed in future corona events, i.e. inter-event control. For example, the control unit 26 can use the information relating to the corona discharge 22 of at least one of the corona events to adjust the predetermined voltage and current levels provided to the corona igniter 20 in at least one subsequent corona event. The control unit 26 can also use the information from at least one of the corona events to adjust the predetermined duration of time wherein no energy is provided to the corona igniter 20 in at least one subsequent corona event. The control unit 26 can also use the information from at least one of the corona events to adjust the duration between the start time and the stop time of at least one subsequent corona event. The energy levels or duration of the corona events are adjusted to achieve the maximum volume and duration of the corona discharge 22 in the subsequent corona events.
When the control unit 26 uses the information to determine whether the energy provided to the corona igniter 20 should be increased or decreased, the control unit 26 instructs the power supply 28 to adjust the energy provided to the driver circuit 30, based on the information obtained, and thus reduce the likelihood of are formations, at least until the very end of the corona event. In other words, in order to enhance the size and/or duration of the corona discharge 22, the control unit 26 conveys the power control signal 38 to the power supply 28 instructing the power supply 28 to adjust the energy provided to the driver circuit 30 and ultimately to the corona igniter 20, based on the information relating to the corona discharge 22. The control unit 26 can also adjust the timing of the command signal 36 to the driver circuit 30, in order to adjust the duration of time during which the driver circuit 30 provides energy or does not provide energy to the corona igniter 20.
If the feedback signal 46 to the control unit 26 indicates multiple are formations occurred early in the corona event, and repeated throughout the corona event, for example traces 1-3 of
In cases where the first occurrence of an arc formation is at the very end of the corona event, for example traces 5-8 of
Typically, at least one of the voltage level and the current level are adjusted by a factor depending on the information relating to the corona discharge 22. The factor can be based on the information from one of the corona events, or a plurality of the corona events. For example, if the arc formation is detected at or close to the start time of the corona event, or if the duration between consecutive occurrences of the arc formation is short, then the voltage level is reduced by a larger factor than if the arc formation is detected toward the end of the corona event or if only one arc formation is detected.
In response to the information relating to the corona discharge 22, the duration of time wherein no energy is provided to the corona igniter 20 can also be adjusted by a factor based on the information relating to the corona discharge 22. This factor can be based on the information from one of the corona events, or a plurality of the corona events, and it can be the same or different from the factors used to adjust the voltage and current levels. For example, if the first occurrence of the arc formation is very close to the start time, or if successive arc formations are close together, then the duration of time wherein no energy is provided to the corona igniter 20 is increased by a larger factor.
The system and method of the present invention can optionally include control on an intra-event basis. In this embodiment, the control unit 26 obtains the information relating to the corona discharge 22, including information about the arc formations, during the corona event, and adjusts at least one of the voltage level, current level, and time durations during the same corona event, to increase the quality of the corona discharge 22 during that same corona event. For example, after an arc formation is detected, and after the duration of time wherein no energy is provided to the corona igniter 20, the method includes providing an adjusted energy level to the corona igniter 20 to form a stronger corona discharge 22 and limit the arc formation during the same corona event. If another occurrence of arc formation is detected, the control unit 26 again ceases the energy provided to the corona igniter 20 and adjusts the energy subsequently provided to the corona igniter 20 during the same corona event.
In yet another embodiment, the system and method of the present invention controls the corona discharge 22 on an intra-event and inter-event basis. For example, when the voltage level is adjusted one or more times during a corona event using the intra-event control method, the voltage level at the end of the corona event typically provides a strong corona discharge 22. Thus, the control unit 26 obtains the voltage level at the end of the corona event, and adjusts the predetermined voltage level stored in the map or table level to match it. The adjusted predetermined voltage level is then applied to the corona igniter 20 during at least one subsequent corona event to provide the strong corona discharge 22. The same steps can be conducted to adjust the predetermined current level or duration of time wherein no energy is provided to the corona igniter 20.
The control unit 26 sends a command signal 36 to the driver circuit 30 to enable the corona discharge 22, and a timer is started. The timer measures the duration of the active corona discharge 22 before an arc formation is detected. The timer stops when the corona discharge 22 ends, in which case the enable signal 34 from the engine control system 24 ends the corona event, or when arc formation is detected, in which case a feedback signal 46 is transmitted to the control unit 26.
In the system
The timer is stopped upon detection of the arc formation, and thus provides the duration of corona discharge 22 before arc formation. The driver circuit 30 may also be turned off using the command signal 36, such that the energy applied to the corona igniter 20 is turned off, and timing of this shutdown begins, referred to as timer shutdown. The duration of the shutdown may be fixed, may be taken from a map depending on operating conditions, or may be adapted according to the arc formations previously detected. The arc formations are recorded for feedback and diagnostic purposes and the factor is modified according to a suitable function, for example as shown in
The control signal to the power supply 28 instructs the power supply 28 to provide a voltage level reduced according to the factor, subject to externally-set minimum and maximum limits. This reduces the voltage level applied to the corona igniter 20 and hence lowers the voltage obtained at the igniter tip 40 when the driver circuit 30 is re-energized. When the shutdown timer completes, the corona igniter 20 is re-enabled and operation of the corona igniter 20 continues. The enable signal 34 eventually causes the corona discharge 22 to shut off and the inter-event processing takes place, as shown in the left branch of
After the corona event, the final values of voltage level, current level, and/or shutdown time, as well as the recorded number and timing of arc formations detected, are provided to the control unit 26 through the feedback signal 46 and to the engine control system 24 through a feedback interface 48. This data is processed and used to modify the starting values used in the next corona event, as shown in the left branch of
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims.
This U.S. divisional patent application claims the benefit of U.S. divisional patent application Ser. No. 15/095,436, filed Apr. 11, 2016, U.S. utility patent application Ser. No. 14/138,249, filed Dec. 23, 2013, which claims the benefit of U.S. provisional patent application No. 61/740,781, filed Dec. 21, 2012, and U.S. provisional patent application No. 61/740,796, filed Dec. 21, 2012, the entire contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
9318881 | Burrows | Apr 2016 | B2 |
20110139135 | Makarov et al. | Jun 2011 | A1 |
20120180742 | Burrows | Jul 2012 | A1 |
20120249006 | Burrows | Oct 2012 | A1 |
20120249163 | Burrows | Oct 2012 | A1 |
20140137840 | McAlister | May 2014 | A1 |
20140174392 | Burrows | Jun 2014 | A1 |
20150171602 | Burrows | Jun 2015 | A1 |
20150311680 | Burrows | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
19829058 | Jan 2000 | DE |
2000110697 | Apr 2000 | JP |
2010216463 | Sep 2010 | JP |
2011522165 | Jul 2011 | JP |
2011529154 | Dec 2011 | JP |
2012140970 | Jul 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20170314523 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
61740781 | Dec 2012 | US | |
61740796 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15095436 | Apr 2016 | US |
Child | 15651562 | US | |
Parent | 14138249 | Dec 2013 | US |
Child | 15095436 | US |