The present invention relates to an inter-HAPS communication and a high-capacity multi-cell HAPS, which construct a three-dimensionalized network of the fifth-generation communication.
There is conventionally known of a communication standard called the LTE-Advanced Pro (refer to Non-Patent Literature 2), which has been developed from the LTE (Long Term Evolution)-Advanced (refer to Non-Patent Literature 1) of the 3GPP that is a communication standard of a mobile communication system. In this LTE-Advanced Pro, specifications for providing communications to devices for the IoT (Internet of Things) in recent years have been formulated. Furthermore, the fifth-generation mobile communication coping with a simultaneous connection to a large number of terminal apparatuses (also called as “UE (user equipment)”, “mobile station”, “communication terminal”) such as devices for the IoT, a reduction of delay time, etc. is being studied (for example, refer to Non-Patent Literature 3).
Non-Patent Literature 1: 3GPP TS 36.300 V10.12.0 (2014-12).
Non-Patent Literature 2: 3GPP TS 36.300 V13.5.0 (2016-09).
Non-Patent Literature 3: G Romano, “3GPP RAN progress on “5G””, 3GPP, 2016.
In the foregoing mobile communications of the fifth generation or the like, there is a problem that it is desired to provide a highly robust communication system capable of stably realizing a three-dimensionalized network over a wide area, in which a propagation delay is low, a simultaneous connection with a large number of terminals in a wide-range area and a high-speed communication can be performed, and a system capacity per unit area is large, in radio communications with terminal apparatuses including devices for the IoT.
A communication system according to an aspect of the present invention is a communication system comprising a plurality of radio relay stations for relaying a radio communication between a terrestrial base station and a terminal apparatus. The plurality of radio relay stations include a plurality of first radio relay stations capable of communicating with each other, and each of the first radio relay stations is provided in a first floating object controlled so as to be located in a floating airspace with an altitude less than or equal to 100 [km] by an autonomous control or an external control so that a three-dimensional cell is formed in a predetermined cell-formation target airspace between the radio relay station and a ground level or a sea level.
In the foregoing communication system, the first floating object may be a solar plane that comprises a wing provided with a solar-power generation panel for generating an electric power to be supplied to the first radio relay station, and a rotationally drivable propeller provided in the wing.
In the foregoing communication system, the plurality of radio relay stations may include a second radio relay station for relaying a communication between the plurality of radio relay stations and the terrestrial base station, which is moored on the ground or the sea so as to be located in the floating airspace with the altitude less than or equal to 100 [km] so that a three-dimensional cell in the predetermined cell-formation target airspace between the ground level or the sea level. The second floating object may be an airship that comprises a battery for supplying electric power to the second radio relay station.
In the foregoing communication system, a communication between the second radio relay station and the terrestrial base station may be a wired communication, and a communication between the second radio relay station and the first radio relay station may be a communication using microwaves.
Further, in the foregoing communication system, the second floating object may be moored to be located in an upper airspace above a metropolitan area, and the first floating object may be controlled to be located in an upper airspace above a suburban area, a rural area or the sea where a density of terminal apparatuses is lower than that in the metropolitan area.
In the foregoing communication system, the plurality of radio relay stations may form a radio communication network configured with a two-dimensional or three-dimensional mesh topology. In the foregoing communication system, when any one of the plurality of radio relay stations fails, another radio relay station may back up and perform a radio relay.
In the foregoing communication system, a communication between the plurality of first radio relay stations may be a radio communication using a laser light. Here, each of the plurality of first radio relay stations may control a direction and intensity of the laser light according to a change of position relative to another neighboring first radio relay station. Each of the plurality of first radio relay stations may be controlled to switch another first radio relay station performing a communication using the laser light according to a change of position relative to another neighboring first radio relay station. Each of the plurality of first radio relay stations may control to reduce an intensity of the laser light in a time period of night.
In the foregoing communication system, a remote control apparatus may be provided to control a position of the first radio relay station installed in the first floating object, a direction and divergence angle of a beam formed by the first radio relay station.
In the foregoing communication system, an altitude of the cell-formation target airspace may be less than or equal to 10 [km]. The altitude of the cell-formation target airspace may be more than or equal to 50 [m] and less than or equal to 1 [km].
In the foregoing communication system, the first floating object provided with the first radio relay station may be located in a stratosphere with an altitude more than or equal to 11 [km] and less than or equal to 50 [km].
According to the present invention, in the foregoing mobile communications of the fifth generation or the like, a highly robust communication system capable of stably realizing a three-dimensionalized network over a wide area can be provided, in which a propagation delay is low, a simultaneous connection with a large number of terminals in a wide-range and a high-speed communication can be performed, and a system capacity per unit area is large, in radio communications with terminal apparatuses including devices for the IoT.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in
The airspace 50 in which the HAPSs 10 and 20 are located is, for example, a stratospheric airspace with altitude greater than 11 [km] and less than 50 [km]. The airspace 50 in which the HAPSs 10 and 20 are located may be an airspace in the altitude range of 15 [km] or more and 25 [km] or less where weather conditions are relatively stable, and may be an airspace with altitude of about 20 [km] in particular. Each of Hrsl and Hrsu in the figure indicates relative altitudes of the lower end and the upper end of the airspace 50 with reference to the ground level (GL), in which the HAPSs 10 and 20 are located.
The cell-formation target airspace 40 is a target airspace for forming a three-dimensional cell with one or more HAPSs according to the communication system of the present embodiment. The cell-formation target airspace 40 is an airspace in a predetermined altitude range (for example, altitude range of 50 [m] or more and 1000 [m] or less) located between the airspace 50 where the HAPSs 10 and 20 are located and a cell-formation area near the ground level covered by a base station 90 such as a conventional macro-cell base station. Each of Hcl and Hcu in the figure indicates relative altitudes of the lower end and the upper end of the cell-formation target airspace 40 with reference to the ground level (GL).
It is noted that, the cell-formation target airspace 40 where the three-dimensional cell of the present embodiment is formed may be an airspace over the sea, a river or a lake.
The radio relay stations of the HAPSs 10 and 20 respectively form beams 100 and 200 for a radio communication with the terminal apparatus that is a mobile station, toward the ground level. The terminal apparatus may be a communication terminal module incorporated in a drone 60 that is an aircraft such as a small helicopter capable of remotely steering, or may be a user terminal apparatus used by a user in the airplane 65. The areas through which the beams 100 and 200 pass in the cell-formation target airspace 40 are three-dimensional cells 41 and 42. The plurality of beams 100 and 200 adjacent to each other in the cell-formation target airspace 40 may be partially overlapped with each other.
Each of the radio relay stations of the HAPSs 10 and 20 is connected to a core network of a mobile communication network 80 via a feeder station (gateway) 70 that is a relay station installed on the ground or on the sea. A communication between the HAPSs 10 and 20 and the feeder station 70 may be performed by a radio communication using radio waves such as microwaves, or may be performed by an optical communication using a laser light or the like.
Each of the HAPSs 10 and 20 may autonomously control its own floating movement (flight) or a processing at the radio relay station, by executing a control program with a control section including a computer or the like incorporated in the inside of the HAPS. For example, each of the HAPSs 10 and 20 may acquire its own current position information (for example, GPS position information), position control information (for example, flight schedule information) stored in advance, and position information on another HAPS located in a peripheral space, etc., and autonomously control the floating movement (flight) and the processing in the radio relay station base on these information.
The floating movement (flight) of each HAPS 10 and 20 and processing in the radio relay stations may be controlled by a remote control apparatus 85 of a communication operator, which is disposed in a communication center or the like of the mobile communication network 80. In this case, the HAPSs 10 and 20 may include a communication terminal apparatus for control (for example, a mobile communication module) so that control information from the remote control apparatus 85 can be received, and terminal identification information (for example, IP address, telephone number, etc.) may be allocated to the terminal communication apparatus so as to be identified from the remote control apparatus 85. The MAC address of the communication interface may be used for identification of the communication terminal apparatus for control. Each of the HAPSs 10 and 20 may transmit information relating to the floating movement (flight) of the HAPS itself or the surrounding HAPS and the processing at the radio relay station, and information such as observation data acquired by various types of sensors or the like, to a predetermined destination such as the remote control apparatus 85.
In the cell-formation target airspace 40, there is a possibility that a spatial area where the beams 100 and 200 of the HAPSs 10 and 20 do not pass may occur, in which the three-dimensional cells 41 and 42 are not formed. In order to spatially complement this area, as shown in the configuration example of
By adjusting the positions of the HAPSs 10 and 20 and the divergence angle (beam width) etc. of the beams 100 and 200 without using the ATG station, the radio relay stations of the HAPSs 10 and 20 may form the beams 100 and 200 covering the overall upper end face of the cell-formation target airspace 40 so that three-dimensional cells are formed all over the cell-formation target airspace 40.
It is noted that, the three-dimensional cell formed by the HAPSs 10 and 20 may be formed so as to reach the ground level or the sea level so as to be able to communicate also with the terminal apparatus located on the ground or on the sea.
The solar plane-type HAPS 10 can float with lift force by, for example, performing a turning flight or performing a flight along a figure of “8”, and can float to stay in a predetermined range in the horizontal direction at a predetermined altitude. It is noted that, the solar plane-type HAPS 10 can also fly like a glider when the propeller 103 is not rotationally driven. For example, when electric power of the battery 106 is surplus by power generation of the solar panel 102, such as in daytime, the solar plane-type HAPS 10 rises to a high position. And when electric power cannot be generated by the solar panel 102 such as at night, the solar plane-type HAPS 10 can stop power supply from the battery 106 to the motor and can fly like a glider.
It is noted that, a solar panel having a photovoltaic power generation function may be provided on the top surface of the airship body 201, and an electric power generated by the solar panel is stored in the battery 204.
The 3D cell-formation antenna section 111 has antennas for forming radial beams 100 and 200 toward the cell-formation target airspace 40, and forms three-dimensional cells 41 and 42 in which a communication with the terminal apparatus can be performed. The transmission/reception section 112 has a transmission/reception duplexer (DUP: DUPlexer) and an amplifier, etc., and transmits radio signals to the terminal apparatuses located in the three-dimensional cells 41 and 42 and receives radio signals from the terminal apparatuses via the 3D cell-formation antenna section 111.
The feeder antenna section 113 has a directional antenna for performing a radio communication with the feeder station 70 on the ground or on the sea. The transmission/reception section 114 has a transmission/reception duplexer (DUP: DUPlexer) and an amplifier, etc., and transmits radio signals to the feeder station 70 and receives radio signals from the feeder station 70 via the 3D cell-formation antenna section 111.
The repeater section 115 relays signals of the transmission/reception section 112 which is transmitted to and received from the terminal apparatus and signals of the transmission/reception section 114 which is transmitted to and received from the feeder station 70. The repeater section 115 may have a frequency conversion function.
The monitoring control section 116 is configured with, for example, a CPU and a memory, etc., and monitors the operation processing status of each section and controls each section in the HAPSs 10 and 20, by executing the preinstalled program. The power source section 117 supplies an electric power outputted from the batteries 106 and 204 to each section in the HAPSs 10 and 20. The power source section 117 may have a function of storing an electric power generated by the solar-power generation panel, etc. and an electric power supplied from outside in the batteries 106 and 204.
The inter-HAPS communication section 125 communicates with other neighboring HAPSs 10 and 20 via a radio communication medium such as a laser light or a microwave. This communication enables a dynamic routing that dynamically relays a radio communication between the mobile communication network 80 and a terminal apparatus such as the drone 60, and can enhance a robustness of the mobile communication system by backing up and performing a radio relaying by the other HAPS when one of the HAPSs fails.
Although various types of radio communication media such as a laser light or a microwave can be used as a radio communication medium for the inter-HAPS communication, the radio communication medium may be selected according to an altitude where the HAPS is located. For example, when the HAPSs 10 and 20 are located at a relatively high altitude where an influence of clouds is small, the laser light may be used for the inter-HAPS communication. When the HAPSs 10 and 20 are located at a low altitude where the influence of clouds is large, the microwave that is not easily affected by the clouds may be used for the inter-HAPS communication.
The beam control section 126 controls a direction and intensity of a beam such as a laser light or a microwave used for the inter-HAPS communication, and performs a control so as to switch another HAPS (radio relay station) that performs communication by a beam such as a laser light or a microwave according to a change of position relative to another neighboring HAPS (radio relay station). This control may be performed based on, for example, a position and attitude of the HAPS itself, a position of the neighboring HAPS, etc. Information on the position and attitude of the HAPS itself may be acquired based on an output of a GPS receiver, a gyro sensor, an acceleration sensor, etc. incorporated in the HAPS, and information on the position of the neighboring HAPS may be acquired from the remote control apparatus 85 or another HAPS management server provided in the mobile communication network 80.
The modem section 118, for example, performs a demodulation processing and a decoding processing for a received signal received from the feeder station 70 via the feeder antenna section 113 and the transmission/reception section 114, and generates a data signal to be outputted to the base-station processing section 119. The modem section 118 performs an encoding processing and a modulation processing for the data signal received from the base-station processing section 119, and generates a transmission signal to be transmitted to the feeder station 70 via the feeder antenna section 113 and the transmission/reception section 114.
The base-station processing section 119, for example, has a function as an e-Node B that performs a baseband processing based on a method conforming to the standard of LTE/LTE-Advanced. The base-station processing section 119 may process in a method conforming to a future standard of mobile communication such as the fifth generation or the next generation after the fifth generation onwards.
The base station processing section 119, for example, performs a demodulation processing and a decoding processing for a received signal received from a terminal apparatus located in the three-dimensional cells 41 and 42 via the 3D cell-formation antenna section 111 and the transmission/reception section 112, and generates a data signal to be outputted to the modem section 118. The base-station processing section 119 performs an encoding processing and a modulation processing for the data signal received from the modem section 118, and generates a transmission signal to be transmitted to the terminal apparatus of the three-dimensional cells 41 and 42 via the 3D cell-formation antenna section 111 and the transmission/reception section 112.
The edge computing section 120 is configured with, for example, a compact computer, and can perform various types of information processing relating to a radio relay, etc., in the radio relay stations 110 and 210 of the HAPSs 10 and 20, by executing a preinstalled program.
The edge computing section 120, for example, determines a transmission destination of a data signal based on a data signal received from a terminal apparatus located in the three-dimensional cells 41 and 42, and performs a process of switching a relay destination of communication based on the determination result. More specifically, in case that the transmission destination of the data signal outputted from the base-station processing section 119 is a terminal apparatus located in the own three-dimensional cells 41 and 42, instead of passing the data signal to the modem section 118, the edge computing section 120 returns the data signal to the base-station processing section 119 and transmits the data signal to the terminal apparatus of the transmission destination located in the own three-dimensional cells 41 and 42. On the other hand, in case that the transmission destination of the data signal outputted from the base-station processing section 119 is a terminal apparatus located in another cell other than the own three-dimensional cells 41 and 42, the edge computing section 120 passes the data signal to the modem section 118 and transmits the data signal to the feeder station 70, and transmits the data signal to the terminal apparatus of the transmission destination located in the other cell of the transmission destination via the mobile communication network 80.
The edge computing section 120 may perform a process of analyzing information received from a large number of terminal apparatuses located in the three-dimensional cells 41 and 42. This analysis result may be transmitted to the large number of terminal apparatuses located in the three-dimensional cells 41 and 42, and may be transmitted to a server, etc. of the mobile communication network 80.
Uplink and downlink duplex methods for radio communication with a terminal apparatus via the radio relay stations 110 and 210 are not limited to a specific method, and may be, for example, a time division duplex method (Time Division Duplex: TDD) or a frequency division duplex method (Frequency Division Duplex: FDD). An access method for radio communication with a terminal apparatus via the radio relay stations 110 and 210 is not limited to a specific method, and may be, for example, FDMA (Frequency Division Multiple Access) method, TDMA (Time Division Multiple Access) method, CDMA (Code Division Multiple Access) method or OFDMA (Orthogonal Frequency Division Multiple Access). In the foregoing radio communication, a MIMO (Multi-Input and Multi-Output) technology may be used, which has functions of diversity/coding, transmission beam forming, spatial division multiplexing (SDM: Spatial Division Multiplexing), etc., and in which a transmission capacity per unit frequency can be increased by simultaneously using a plurality of antennas for both of transmission and reception. The MIMO technology may be an SU-MIMO (Single-User MIMO) technology in which one base station transmits a plurality of signals to one terminal apparatus at the same time/same frequency, and may be an MU-MIMO (Multi-User MIMO) technology in which one base station transmits signals to a plurality of different communication terminal apparatuses at the same time/same frequency or a plurality of different base stations transmit signals to one terminal apparatus at the same time/same frequency.
In the embodiment of
In
Since a communication cable section 127 of
It is noted that, although
Furthermore, in the communication system in the present embodiment, the plurality of solar plane-type HAPSs 10 are controlled to fly over suburban and rural areas (or the sea) where the density of terminal apparatuses is lower than in metropolitan areas. At least one of the plurality of HAPSs 10 can perform a radio communication with the aforementioned moored HAPS 21 using microwaves or the like that are not easily affected by a cloud 905. The inter-HAPS communication of the plurality of HAPSs 10 may be performed using a laser light as described above, for example. The plurality of HAPSs 10 are capable of constructing an ad hoc network in which the HAPS moves to an upper airspace above a necessary place and relays radio communications of terminal apparatuses according to the presence or density of terminal apparatuses such as drones 60 and terrestrial user apparatuses in the suburban and rural areas, or a time period, etc.
In
In the embodiment of
It is noted that, the process steps and configuration elements of the radio relay station of the radio relay apparatus, the feeder station, the remote control apparatus, terminal apparatus (user apparatus, mobile station, communication terminal) and the base station described in the present description can be implemented with various means. For example, these process steps and configuration elements may be implemented with hardware, firmware, software, or a combination thereof.
With respect to hardware implementation, means such as processing units or the like used for establishing the foregoing steps and configuration elements in entities (for example, radio relay station, feeder station, base station apparatus, radio relay station apparatus, terminal apparatus (user apparatus, mobile station, communication terminal), remote control apparatus, hard disk drive apparatus, or optical disk drive apparatus) may be implemented in one or more of an application-specific IC (ASIC), a digital signal processor (DSP), a digital signal processing apparatus (DSPD), a programmable logic device (PLD), a field programmable gate array (FPGA), a processor, a controller, a microcontroller, a microprocessor, a electronic device, other electronic unit, computer, or a combination thereof, which are designed so as to perform a function described in the present specification.
With respect to the firmware and/or software implementation, means such as processing units or the like used for establishing the foregoing configuration elements may be implemented with a program (for example, code such as procedure, function, module, instruction, etc.) for performing a function described in the present specification. In general, any computer/processor readable medium of materializing the code of firmware and/or software may be used for implementation of means such as processing units and so on for establishing the foregoing steps and configuration elements described in the present specification. For example, in a control apparatus, the firmware and/or software code may be stored in a memory and executed by a computer or processor. The memory may be implemented within the computer or processor, or outside the processor. Further, the firmware and/or software code may be stored in, for example, a medium capable being read by a computer or processor, such as a random-access memory (RAM), a read-only memory (ROM), a non-volatility random-access memory (NVRAM), a programmable read-only memory (PROM), an electrically erasable PROM (EEPROM), a FLASH memory, a floppy (registered trademark) disk, a compact disk (CD), a digital versatile disk (DVD), a magnetic or optical data storage unit, or the like. The code may be executed by one or more of computers and processors, and a certain aspect of functionalities described in the present specification may by executed by a computer or processor.
The description of embodiments disclosed in the present specification is provided so that the present disclosures can be produced or used by those skilled in the art. Various modifications of the present disclosures will be readily apparent to those skilled in the art and general principles defined in the present specification can be applied to other variations without departing from the spirit and scope of the present disclosures. Therefore, the present disclosures should not be limited to examples and designs described in the present specification and should be recognized to be in the broadest scope corresponding to principles and novel features disclosed in the present specification.
10, 11, 12 HAPS (solar plane type)
20 HAPS (airship type)
21 HAPS (moored airship type)
25 mooring line
30 ATG station
40 cell-formation target airspace
41, 42, 43 three-dimensional cell
50 airspace where HAPS is located
60 drone
65 airplane
70 feeder station
72 artificial satellite
75 microwave power supply station
80 mobile communication network
85 remote control apparatus
86 server apparatus
100, 200, 300 beam
101 main wing section
102 solar panel (solar-power generation panel)
103 propeller
104 connecting section
105 pod
106 battery
107 wheel
108 power receiving pod
110, 210 radio relay station
111 three-dimensional (3D) cell-formation antenna section
112 transmission/reception section
113 feeder antenna section
114 transmission/reception section
115 repeater section
116 monitoring control section
117 power source section
118 modem section
119 base-station processing section
120 edge computing section
125 inter-HAPS communication section
126 beam control section
127 communication cable section
Number | Date | Country | Kind |
---|---|---|---|
2017095412 | May 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/016573 | 4/24/2018 | WO | 00 |