This is a national stage of PCT application No. PCT/IB00/01180, filed on Aug. 3, 2000. Priority is claimed on that application, and on patent application No. 9918636.3 filed in Great Britain on Aug. 6, 1999.
This invention relates to a method and apparatus for performing inter-system handover between telecommunications systems, and especially to the handling of classmarks or like indicators.
In a mobile radio telecommunications system user's terminals communicate by radio with base stations which are connected to control units which control the operation of the mobile radio system and to the wider telecommunications network. The user terminal is often referred to as a mobile station (MS) which could be a mobile phone; however, the location of the MS could be fixed.
The location of the MS could be fixed (for example if it is providing radio communications for a fixed building) or the MS could be moveable (for example if it is a hand portable transceiver or “mobile phone”). When the MS is moveable it may move between cells of the cellular radio system. As it moves from one cell (the “old cell”) to another cell (the “new cell”) there is a need to hand it over from communication with the BS of the old cell to the BS of the new cell without dropping the call due to a break in communications between the mobile station and the network. This process is known as handover. A need can also arise to hand over a MS whose location is fixed, for example if atmospheric conditions affect its communications with the old BS and call quality can be improved by handing it over to another BS or if there is a need to free up capacity of the old BS.
In a conventional cellular radio system handover is controlled by the BSC. Handover can be initiated by the network dependent, for example, on the quality of the signalling between the MS and the old and new BSs.
When a mobile station first established connection with the radio system, which could happen when it is turned or moves into an area of radio coverage of one of the base stations, the mobile station may send a message to the radio system to report its capabilities so as to allow the system to properly accommodate the mobile station.
In the GSM (Global System for Mobile Telecommunications) telecommunications system the reporting of such capabilities is done by way of messages indicating classmark information. In the GSM system the classmark information is divided into three separate classmark parameters, each of which includes information related both to the radio system and to the core network. One of these parameters is the MS classmark 2 parameter. That parameter is sent to the network in the paging response message (which a mobile station sends in response to a paging request message from the GSM network) or in the CM (connection management) service request message. Another of the parameters is the MS classmark 3 parameter. That parameter is sent in response to an enquiry from the mobile switching centre (MSC) of the GSM network (which is generally only made when the information is needed, for example to find the mobile station's encryption capabilities), or spontaneously if the MS supports services indicated in classmark 3.
In the proposed UMTS (Universal Mobile Telecommunications System) telecommunications system it is proposed that the classmark information will be rearranged into only two parameters: an access network classmark parameter (known as the AN classmark) and a core network classmark parameter (known as the CN classmark). This has been proposed because in the proposed UMTS system there is to be a clearer distinction between the radio access network and the core network than there is in the GSM system, and because the UMTS system is not to be subject to the restrictions on message size for classmark parameters that are enforced in the GSM system. An additional difference is that certain information in the GSM classmark that is specific to the GSM system is not required in the UMTS classmark. Similarly, the UMTS classmark includes additional information that is not present in the GSM classmark.
When a new cellular network is being introduced it can take some time to install all the base-stations and associated apparatus. Therefore, there is a delay before the new network provides full geographical coverage.
It has been proposed to tackle this problem by allowing mobile stations using the new network to be handed over to cells of the old network when they move outside the coverage of the new network. For instance, when a mobile station moves from 30 to 31 in
To allow the UMTS system to be introduced smoothly and without significant disruption to current users of the GSM system it is proposed that the new UMTS system will be capable of a substantial level of interworking with the existing GSM system. One aspect of this is the aim to support inter-system handover of a mobile station between the GSM and UMTS systems. However, the differences in the treatment of classmarks between the GSM and UMTS systems presents a significant barrier to inter-system handover. In order to allow for inter-system handover between the UMTS system and the GSM system there is a need to address the differences between the GSM and UMTS classmark arrangements. One way that has been proposed to address these differences is for the mobile station to provide all its classmark information (for both GSM and UMTS) to the network in all circumstances. However, this would increase signalling load unnecessarily in cases when no inter-system handover is subsequently performed.
There is therefore a need for an improved method of dealing with data such as classmark information for facilitating inter-system handovers.
According to one aspect of the present invention there is provided a method for performing an inter-system handover of a user terminal in a telecommunications network comprising a first telecommunications system operable according to a first protocol and comprising a first service subsystem and a first access subsystem and a second telecommunications system operable according to a second protocol and comprising a second service subsystem and a second access subsystem; the user terminal storing capability data indicative of the user terminal's capabilities for communication with the service subsystems and the access subsystems; and the method comprising performing the following steps: the user terminal transmitting to the said one of the first and second access subsystems initial capability data indicative of the user terminal's capabilities for communication with the first service subsystem and the said one of the first and second access subsystems; the said one of the first and second access subsystems transmitting to the first service subsystem the initial capability data that is indicative of the user terminal's capabilities for communication with the first service subsystem; establishing the connection between the user terminal and the first service subsystem via the said one of the first and second access subsystems by means of the initial capability data; determining that a handover of the connection is to be performed from the first service subsystem to the second service subsystem or from the said one of the first and second access subsystems to the other of the first and second access subsystems; the user terminal transmitting to the network further capability data indicative of the user terminal's capabilities for communication with the second service subsystem or the other of the first and second access subsystems; and handing over the connection by means of the further capability data.
According to a second aspect of the present invention there is provided telecommunications apparatus comprising: a telecommunications network comprising a first telecommunications system operable according to a first protocol and comprising a first service subsystem and a first access subsystem and a second telecommunications system operable according to a second protocol and comprising a second service subsystem and a second access subsystem; and a user terminal for storing capability data indicative of the user terminal's capabilities for communication with the service subsystems and the access subsystems; the telecommunications apparatus being adapted to perform an inter-system handover by the following steps: the user terminal transmitting to the said one of the first and second access subsystems initial capability data indicative of the user terminal's capabilities for communication with the first service subsystem and the said one of the first and second access subsystems; the said one of the first and second access subsystems transmitting to the first service subsystem the initial capability data that is indicative of the user terminal's capabilities for communication with the first service subsystem; establishing the connection between the user terminal and the first service subsystem via the said one of the first and second access subsystems by means of the initial capability data; determining that a handover of the connection is to be performed from the first service subsystem to the second service subsystem or from the said one of the first and second access subsystems to the other of the first and second access subsystems; the user terminal transmitting to the network further capability data indicative of the user terminal's capabilities for communication with the second service subsystem or the other of the first and second access subsystems; and handing over the connection by means of the further capability data.
The capability data is preferably classmark information.
The said connection is suitably a traffic connection. The said connection is preferably capable of carrying traffic data such as a user's voice or data communications.
The method preferably comprises a step of causing the further capability data to be transmitted in anticipation of a handover, suitably to allow the handover itself to be performed more quickly whilst reducing any need to unnecessarily transmit the further capability data. The method may comprise the step of monitoring at least one condition indicative of a need for the said handover, and initiating the said transmission by the user terminal of the further capability data when the said condition is beyond a threshold. The said condition is suitably based on the signal to interference ratio of the connection, although other factors may be used instead or in addition. The said step of initiating the said transmission by the user terminal of the first capability data is preferably performed when the said signal to interference ratio falls below the threshold. Alternatively, or in addition, handover may be anticipated when other events in the system occur, for example when the user terminal detects transmissions from a nearby access subsystem of another system to that to which it is connected. If the user terminal is a mobile station of a cellular telephone network then such a circumstance may arise when the mobile station starts to measure neighbour cells belonging to another type of radio access system than the one it currently communicates with.
The method may comprise the step of monitoring at least one condition indicative of a need for the said handover, and initiating the handover when the said condition is beyond a second threshold. The second threshold is preferably beyond the first threshold, so that the further information may be transmitted in advance of the handover itself being initiated.
The service subsystems are suitably capable of providing telecommunication service to the user terminal. The service subsystems may be core networks. The access subsystems are suitably capable of providing the user terminal with access to the service subsystems. The access subsystems may be radio networks.
At least part of the connection is preferably over a radio link. The network is preferably a cellular telephone network. The first or second telecommunications system is suitably operable according to the GSM protocol or a derivative thereof. Then the user terminal suitably transmits information indicative of its capabilities for communication with the service subsystem or access subsystem of that telecommunications system as GSM classmark 2 and/or 3 parameters. The other telecommunications system is suitably operable according to the UMTS protocol or a derivative thereof. Then the user terminal suitably transmits information indicative of its capabilities for communication with the service subsystem or access subsystem of that telecommunications system as UMTS access network and/or core network classmarks.
The user terminal is preferably incapable of transmitting capability data indicative of its capabilities for communication with at least one of the service subsystems without transmitting capability data indicative of its capabilities for communication with the access subsystems of the same system as that service subsystem. That system may be operable according to the GSM protocol or a derivative thereof. That capability data may be transmissible as GSM classmark 2 and/or 3 parameters. The user terminal is preferably capable of transmitting capability data indicative of its capabilities for communication with the other one of the service subsystems without transmitting capability data indicative of its capabilities for communication with the access subsystems of the same system as that service subsystem. That system may be operable according to the UMTS protocol or a derivative thereof. That capability data may be transmissible as UMTS access network and/or core network classmarks.
The connection may be capable of bearing a telephone call. The user terminal may be a mobile station. The user terminal may be a radio telephone.
Other objects and features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are intended solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims.
The present invention will now be described by way of example with reference to the accompanying drawings, in which:
A mobile station can communicate with a core network via an RNC and a base station connected to that RNC. In soft handover (macrodiversity), the mobile station can send traffic communications via more than one base station. Those base stations may be connected to the same RNC or to different RNCs. If the base stations are connected to different RNCs then those RNCs communicate directly with each other via the lur interface to co-ordinate their actions and to combine signals received from the mobile station. One of those RNCs is designated as the serving RNC and the others as drift RNCs. Communications between the user and the core network go via the serving RNC only. Thus, whether the mobile station is in soft handover or not its connection to the CN is through a single RNC. It can also arise in other circumstances than macrodiversity that a BS is controlled by a drift RNC, with communications going via serving a serving RNC to the core network.
When a mobile station is operating entirely in the UMTS system the access network (AC)— for example the BS and RNC that it is using to gain access to a core network (CN)— that it is using, and the core network that it is using are both of the UMTS system. When a mobile station is operating entirely in the GSM system the access network and the core network (insofar as they are split for the GSM system) are both of the GSM system. As a result of inter-system handover a mobile station may operate with an access network and a core network of different systems. In the latter circumstance the difference in the treatment of classmark information between the GSM and UMTS systems must be overcome.
In the process of
In the event that there is a need for a handover to the GSM system steps 64 to 67 are performed. A classmark enquiry message (at 64) is sent from the UMTS RNC to the UE. The UE responds with a classmark change message (at 65) indicating its GSM classmark 2 and 3 parameters. The RNC then informs the CN of those parameters with a classmark update message (at 66). Since the CN is then aware of all the UE's classmark information needed for operation in accordance with the GSM system handover to the GSM system may then take place as indicated at 67.
The process of steps 64 to 66 may also be performed as a prelude to measurement of signal quality or other parameters of a local GSM system in order to allow a decision to be made on whether to hand over the UE from the UMTS to the GSM system. An alternative process that may be used in those circumstances is illustrated by steps 68 to 72. A classmark enquiry message (at 68) is sent from the UMTS RNC to the UE. The UE responds with a classmark change message (at 69) indicating its GSM classmark 2 and 3 parameters. The RNC then sends a relocation required message to the CN, indicating that handover is to be made to the GSM system and including the UE's GSM classmark 2 and 3 parameters (at 70). Since the CN is then aware of all the UE's classmark information needed for operation in accordance with the GSM system it can send a handover request (at 71) to the GSM BSS and handover to the GSM system may then take place as indicated at 72.
In the process of
It is assumed for
In the event that there is a need for a handover to the UMTS system steps 86 to 88 are performed. A classmark enquiry message (at 86) is sent from the GSM BSS to the UE. The UE responds with a classmark change message (at 87) indicating its UMTS AN classmark. This AN classmark information can then be forwarded transparently to the target RNC to which the UE is to be handed over as part of the handover/relocation process as illustrated at 88. Thus, the GSM network need have no involvement in the transfer of the UMTS AN classmark to the UMTS network. Instead of the classmark information being sent in response to the message at 86 the UE could spontaneously send the information in response to a circumstance detected by it. In that case no change to the GSM RR (radio resource) classmark enquiry would be needed.
In the process of
The parameters are preferably stored at the UMTS MSC (mobile switching centre).
When a handover to the GSM CN or to another GSM BSC is needed the UMTS CN already has all the classmark information needed so the handover can be performed (as illustrated at 95) without further classmark information being supplied by the UE.
When a handover to the UMTS RNC is needed the AN classmark information must be obtained from the UE. This is illustrated at steps 96 to 98. The BSS makes a classmark enquiry message (at 96) to the UE. It is also possible that the UE automatically sends the UMTS classmark to the BSS when it gets an order from the BSS to start measuring neighbouring UMTS cells. Then no specific classmark enquiry message would be needed. The UE returns a classmark change message (at 97) to the BSS, indicating its AN classmark. This AN classmark information can then be forwarded transparently to the target RNC to which the UE is to be handed over as part of the handover/relocation process as illustrated at 98.
In the process of
When a handover to the GSM BSS is needed the MSC of the GSM network already has the classmark information it needs to allow the handover to be performed.
When a handover to another (target) UMTS RNC is needed the AN classmark information can be forwarded transparently by the current RNC to the target RNC as part of the handover/relocation process as illustrated at 108.
In
In each of the examples of
Thus, at call setup only the classmark information necessary to allow the call to be set up is sent. Then, if it later becomes evident, for example to a serving RNC or BSC (base station controller), that handover to another system is required the serving access network requests the mobile station for any additional classmark information that is needed to allow the handover request to be completed.
Whilst the above scenario indicates the UE and the AN as being the entities responsible for determining the required classmark information at each stage, other entities could, of course, perform the necessary determinations,
The system described above thus permits potentially unnecessary signalling of classmark parameters to be avoided.
As described above, in some circumstances the above system requires signalling of additional required classmark information to be performed before inter-system handover can take place. This may increase the amount of time required for an inter-system handover to take place. To avoid at least some such delays the system could be arranged so that under certain conditions the additional required classmark information is signalled from the user equipment to the network before a decision to initiate a handover is made. Those conditions are preferably (but not necessarily) a based on the same factors used to determine when to initiate a handover, but with a threshold that is closer to the level experienced during normal operation of the system, so as to act to anticipate the possibility of a handover subsequently being required. For example, it may be that handover is initiated when the signal to interference ratio (SIR) on one or more links between a first base station and the mobile station falls below that on one or more links between a second base station and the mobile station by more than a predetermined amount x. In that case signalling of additional required classmark information may take place when the signal to interference ratio (SIR) on one or more links between the first base station and the mobile station falls below that on one or more links between the second base station and the mobile station by more than a predetermined amount which is less than x. Similar approaches may be taken when initiation of handover is determined on the basis of other factors such as the load on base stations or other pieces of network equipment, or received power levels fall to certain levels. The aim in each case is for the threshold at which transfer of the necessary classmark information takes place to be set at a level closer to that encountered in normal (e.g. high signal quality or low network load) use so that that threshold is reached before the threshold at which handover is triggered. Then, the necessary information can in many cases be available to the network when handover itself is initiated.
The mobile station could send the remaining classmark information that is needed to effect a handover spontaneously when it anticipates that a handover may occur or in response to a request from the network side. When a mobile station receives a message which causes it to measure neighbour cells belonging to a different type of radio access network, or when it itself detects signals from such a network. For example, the MS may be connected to the UTRAN and then at some point in time the RNC may decide that the MS should start to measure GSM neighbour cells and sends a measurement control message to the MS. The reception of this message could trigger the MS to send the GSM access network classmark to the UMTS RNC. This process is illustrated in
The principles described above are, of course, applicable in other networks than GSM and UMTS, although they are preferably applied in those networks or derivatives thereof. The principles described above could also be used for the transfer of information other than classmark information, although preferably information usable in the establishment of a call to an item of user equipment.
The present invention may include any feature or combination of features disclosed herein either implicitly or explicitly or any generalisation thereof, irrespective of whether it relates to the presently claimed invention. In view of the foregoing description it will be evident to a person skilled in the art that various modifications may be made within the scope of the invention.
For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Substitutions of elements from one described embodiment to another are also fully intended and contemplated. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Number | Date | Country | Kind |
---|---|---|---|
9918636.3 | Aug 1999 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB00/01180 | 8/3/2000 | WO | 00 | 5/3/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/11911 | 2/15/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5878343 | Robert et al. | Mar 1999 | A |
6041235 | Aalto | Mar 2000 | A |
6134443 | Spann et al. | Oct 2000 | A |
6591116 | Laurila et al. | Jul 2003 | B1 |
6771964 | Einola et al. | Aug 2004 | B1 |
6792283 | Roberts et al. | Sep 2004 | B1 |
6968190 | Suumaki et al. | Nov 2005 | B1 |
20020071480 | Marjelund et al. | Jun 2002 | A1 |
20030050063 | Faerber | Mar 2003 | A1 |
20030139184 | Singh et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
1024676 | Aug 2000 | EP |
2322021 | Aug 1998 | GB |
11-205842 | Jul 1999 | JP |
2001-016634 | Jan 2001 | JP |
WO 9637084 | Nov 1996 | WO |
WO 9806226 | Feb 1998 | WO |
WO 9933307 | Jul 1999 | WO |
WO 0060895 | Oct 2000 | WO |