The invention relates to the field of cellular radio telecommunications and, particularly, to controlling inter-system interference between cellular telecommunication systems sharing the same radio resources.
Due to an increase in the number of cellular telecommunication systems because of upcoming next generation cellular telecommunication systems, two cellular telecommunication systems may have to be allocated to share at least partly the same radio resources, e.g. frequency. For example, if an operator cannot acquire new frequency spectrum to operate a new evolution of the third generation cellular telecommunication system, the new cellular telecommunication system has to be allocated to share the same frequency band with a current second generation cellular telecommunication system, such as GSM (Global System for Mobile Communications). For example, GSM typically uses a frequency reuse factor of three or higher and, therefore, frequency resources may be allocated to the GSM cells such that neighboring cells do not use the same frequency band. The new evolution of the third generation cellular telecommunication system may, however, be configured to use a frequency reuse factor of one, i.e. to use the same or overlapping frequency bands in all cells, which results in interference between the two cellular telecommunication systems. Accordingly, there is a need for controlling the interference to avoid losses in quality of service in the cellular telecommunication systems.
According to an aspect of the present invention, a method, comprising: receiving, from a first cellular telecommunication system in an interference controller of a second cellular telecommunication system, interference level information, the interference level information describing levels of interference between neighboring cells of the first cellular telecommunication system; and utilizing, by the interference controller, the received interference level information in interference control, wherein communication links in the second cellular telecommunication system are controlled so as to control interference towards a target cell, is disclosed.
According to another aspect of the present invention, an apparatus comprising: an interface configured to receive interference level information from a first cellular telecommunication system, the interference level information describing levels of interference between neighboring cells of the first cellular telecommunication system; and a controller configured to utilize the received interference level in-formation in interference control, wherein communication links in a second cellular telecommunication system are controlled so as to control interference towards a target cell, is disclosed.
According to another aspect of the present invention, an apparatus, comprising: reception means configured to receive interference level information from a first cellular telecommunication system, the interference level information describing levels of interference between neighboring cells of the first cellular telecommunication system; and controller means configured to utilize the received interference level information in interference control, wherein communication links in a second cellular telecommunication system are controlled so as to control interference towards a target cell, is disclosed.
According to yet another aspect of the present invention, a computer program product embodied on a computer readable distribution medium as specified in claim 30, is disclosed.
Embodiments of the invention are defined in the dependent claims.
Embodiments of the present invention are described below, by way of example only, with reference to the accompanying drawings, in which
The following embodiments are exemplary. Although the specification may refer to “an”, “one”, or “some” embodiment(s) in several locations, this does not necessarily mean that each such reference is to the same embodiment(s), or that the feature only, applies to a single embodiment. Single features of different embodiments may also be combined to provide other embodiments.
A general architecture of a cellular telecommunication system providing voice and data transfer services to mobile terminals is illustrated in
The topology, i.e. the cellular structure, of a radio access network of the cellular telecommunication system may have been designed for a second generation cellular telecommunication system, such as the GSM (Global System for Mobile communications), GPRS (General Packet Radio service), and EDGE (Enhanced Data rates for GSM Evolution). However, an operator often utilizes the planned topology for a next generation cellular telecommunication system to avoid unnecessary work in the network design phase. Accordingly, the operator may arrange the next generation cellular telecommunication system to use the same base station sites and cell structures for both second and third generation cellular telecommunication systems. As a consequence, each base station 110 to 116 illustrated in
From now on, the second generation cellular telecommunication system will be referred to as a first cellular system, and the third generation cellular telecommunication system will be referred to as a second cellular system. Naturally, the two cellular telecommunication systems are not bound to be second and third generation systems but they can be any two cellular telecommunication systems having co-sited base stations.
According to an embodiment of the invention, an interference controller of the second cellular system may utilize interference properties calculated in the first cellular system for controlling the interference towards the first cellular system. Accordingly, the interference controller of the second cellular system may have a communication connection with the first cellular system so as to enable acquisition of the interference properties from the first cellular system.
Referring to
The first base station transceiver of the base station 112 may further comprise a processing unit 202 configured to perform digital operations for the signals transmitted and received by the first base station transceiver. The processing unit 202 may further be configured to control operations of the first base station transceiver. The processing unit may be configured by software, or the processing unit may be implemented by an ASIC (Application-specific integrated circuit), for example. In
The first base station transceiver of the base station 112 may further comprise an interface 204 to provide a communication connection towards other elements of the radio access network of the first cellular system. The interface may provide the first base station transceiver with a communication connection to a base station controller, for example.
The base station controller of the first cellular system is illustrated in
Table 1 indicates the degree of interference between pairs of cells 100 to 106 such that a higher number indicates higher degree if interference. In Table 1, each interference value indicates the estimated level of interference a cell defined by the vertical axis causes to a cell defined by the horizontal axis. For example, interference from cell 102 to cell 100 is 90, thereby being higher than interference from cell 102 to cell 106, which is 50. The actual values in the BIM may be scaled values. As known with respect to the GSM system, the BIM may be formed on the basis of neighboring cell level measurement reports provided by the mobile terminals. As known in the art, mobile terminals monitor signal levels of broadcast signals transmitted by base stations (on a broadcast control channel, BCCH) for the purposes of handover and frequency channel allocation, and report the detected reception signal levels to the base station controller via a serving base station. The base station controller then estimates interference between the cells from the received measurement reports and constructs the BIM. The BIM may be updated (recalculated) a few times in a day, for example.
As mentioned above, the second communication interface 210 provides the base station controller with the communication link to the interference controller of the second cellular system. The base station controller may transmit the interference level information, e.g. the BIM, to the interference controller of the second cellular system through the second communication interface 210. The interference controller illustrated in
The second transceiver part of the base station 112 includes an interface 216 to enable a communication connection with the interference controller through the second interface 218 of the interference controller, a processing unit 214 controlling the operation of the second transceiver, and a communication unit 212 to provide a communication connection between the second transceiver and mobile terminals served by the second transceiver.
In the example illustrated in
Let us now consider a general concept of interference control according to an embodiment of the invention with reference to
The process starts in block 400. In block 402, the base station controller calculates the BIM from neighboring cell measurement reports received from mobile terminals served by one or more base stations under the control of the base station controller. Each measurement report may include reception power levels of signals transmitted by neighboring base stations. This information is received periodically from mobile terminals, and the base station controller collects the measurement reports from the mobile terminals and constructs the BIM by combining and weighting the received measurement reports according to an algorithm. With respect to the interference control according to an embodiment of the invention, the BIM contains information on mutual interference levels between neighboring cells in case the cells have overlapping frequency bands. In other words, two cells do not necessarily interfere with each other in this embodiment even if the BIM indicates high interference between the cells, if the cells do not have overlapping frequency bands. Let us now assume that the BIM calculated by the base station controller has contents of Table 1 above.
In block 404, the BIM is transferred from the base station controller to the interference Controller of the second cellular system through a communication connection established between the first cellular system and second cellular system. In block 406, the interference controller of the second cellular system analyzes the received BIM and performs interference control so as to control interference caused by communication links in one or more cells of the second cellular system towards neighboring cells. The aim of the interference control according to the embodiments of the invention may be to control inter-system interference between the first and second cellular systems and/or intercell interference in the second cellular system. In an embodiment of the invention, the interference controller controls the communication links in the second cellular system such that the communication links do not degrade the performance of the neighboring cells, i.e. the interference controller takes pre-emptive measures to prevent interference from occurring between neighboring cells. In an alternative embodiment, the interference controller may initiate an interference control procedure so as to reduce interference towards a target cell in response to detecting potentially high interference towards the target cell from the BIM or in response to a request to reduce interference towards the target cell. The request may be originated from the target cell itself or from the base station controller, for example. In other words, one purpose of the interference control according to embodiments of the invention is to control interference levels beforehand, i.e. to prevent the interference levels from ever rising so high that they degrade the quality of communications. Another feature is that the interference is controlled upon occurrence of high interference in the target cell.
In the present example, Table 2 below illustrating the overlapping frequency bands may be formed from the frequency allocation illustrated in
In block 502, the interference controller detects from Table 2 that a target cell 100 (first cellular system) has been allocated with a frequency band which overlaps with frequency bands allocated to the second cellular system of the interfering cells 102 and 104. Accordingly, the interference controller deduces that the target cell 100 may suffer from inter-system interference unless taken into consideration for interference control purposes.
Then, the interference controller controls communication links in cells 102 and 104 so as to control the inter-system interference towards the target cell 100 which was determined to have a frequency band of the first cellular system overlapping with frequency bands of the interfering cells of the second cellular system. The interference control is performed in block 504. The inter-system interference may be controlled, for example, by controlling transmit power levels of communication links in the interfering cells 102 and 104 and/or controlling utilization of the overlapping frequency band.
In order to reduce the inter-system interference, the interference controller may decrease the transmit power level and restrict utilization of the overlapping frequency band. The reduction of the transmit power level typically results in lower data rates, i.e. data rates of the communication connections may be reduced so as to decrease the transmit power levels. With respect to the reduction of transmit power levels, the interference controller may control the interfering cells to reduce uplink and/or downlink transmit power levels by a certain degree which may be a function of the interference level from the cell 102 and/or 104 towards the target cell, indicated by the BIM. This may be applied to both established and new communication links in the interfering cells 102 and 104. With respect to the restriction of the utilization of the overlapping frequency band, the interference controller may allocate new communication connection to the frequency band(s) not overlapping with the frequency band allocated to the first cellular system in the target cell 100. Additionally (or alternatively), the interference controller may reallocate at least some of the established communication links to the frequency band(s) not overlapping with the frequency band allocated to the first cellular system in the target cell 100.
Blocks 502 and 504 may be applied to each cell having a frequency band of the second cellular system overlapping with a frequency band of a neighboring cell of the first cellular system.
Let us consider block 504 when establishing a new communication link in the second cellular system in one of the cells 102 and 104. Upon reception of a resource allocation request, the interference controller may check the utilization of a frequency band not overlapping with the frequency band of the first cellular system in cell 100. If the non-overlapping frequency band is available for allocation, the interference controller may allocate that frequency band for use in the communication link. If the interference controller has to allocate the overlapping frequency band to the communication link, the interference controller may first check the BIM and current interference level to determine the degree of interference towards the target cell 100. If the interference level does not exceed an allowable interference level, the interference controller allocates a frequency band from the overlapping frequency band to the communication link. However, the interference controller may apply a different transmit power control on the overlapping frequency band than the transmit power control on the non-overlapping frequency band. For example, the interference controller may apply a lower maximum transmit power level to the overlapping frequency band.
Accordingly, the interference controller may calculate from the BIM for each cell of the second cellular system a maximum allowed amount of traffic on the frequency band which overlaps with a frequency band of a cell or cells of the first cellular system. Then, the interference controller may monitor the amount of traffic and signal levels on the overlapping frequency band with respect to the maximum allowed amount of traffic and ensure that the maximum amount of traffic is not exceeded, i.e. the allowed interference level is not exceeded.
As a consequence, the interference controller according to the embodiment of the invention utilizes interference information received from another cellular telecommunication system in order to control inter-system interference between the cellular telecommunication system the interference controller controls and the other cellular telecommunication system from which the interference information is received. Therefore, the interference controller does not have to estimate the inter-system interference, but it can use the interference information calculated by the other cellular telecommunication system. The interference information may have to be calculated in any case for other purposes, such as the BIM calculated for radio resource allocation, in the other cellular telecommunication system. As a consequence, the inter-system interference control reduces complexity of the inter-system interference control by utilizing existing interference information.
The embodiment described above may be used for inter-system interference control at a cell level, or the embodiment may be applied to interference control of a group of connections in the cell interfering the target cell. In another embodiment of the invention, the inter-system interference control is implemented in the interference controller at a connection level by utilizing neighboring cell measurement reports of mobile terminals to supplement the received interference level information.
Let us still consider the case described above with reference to
In block 602, the interference controller receives one or more neighbor cell measurement reports from the mobile terminals 120 and 122 located in the cell 104 The measurement reports may be measurement reports used for handover purposes, in which a mobile terminal indicates reception signal levels of a broadcast signal received from neighboring base stations. The measurement reports may have the contents included in Tables 3 and 4 below. Table 3 illustrates the measurement report of a first mobile terminal 120, and Table 4 illustrates the measurement report of a second mobile terminal 122.
In this process, the interference controller is particularly interested in the reception signal level received by the mobile terminals from the target cell 100. In block 604, the interference controller extracts and determines the reception signal level of the target cell from the received one or more measurement reports. The interference controller may determine the reception signal level of the target cell from one measurement report only, or the interference controller may average the reception signal levels of a plurality of consecutive measurement reports so as to improve the accuracy of the reception signal level. With reference to Tables 3 and 4, the first mobile terminal 120 receives from the target cell, 100 a signal having a level of −110 dB, while the second mobile terminal 122 receives from the target cell 100 a signal having a level of −90 dB. The second terminal 122 located closer to the target cell 100 in this case receives from the target cell 100 a signal having considerably higher level than that of the first mobile terminal 120 (20 dB difference). Accordingly, the interference controller determines that the interference caused by the second mobile terminal 122 towards the target cell 100 should be controlled and controls in block 606 the communication connection between the base station 114 and the mobile terminal so as to reduce the interference the connection causes. The interference control of the communication connection may be performed as described above, e.g. by reducing transmit power levels and/or reallocating radio resources of the connection. Naturally, the same procedure may be implemented in case the second mobile terminal establishes a new communication connection.
On the other hand, the interference controller determines from the measurement reports received from the first mobile terminal 120 that the first mobile terminal 120 receives from the target base station 100 such a low-level signal that it is probable the first mobile terminal 120 causes no significant interference towards the target cell 100. Accordingly, the interference controller may determine to change no parameters of a communication connection associated with the first mobile terminal 100. Similarly, the interference controller may control individual communication connections in the cell determined to potentially cause interference towards the target cell. The interference controller may determine mobile terminals causing interference towards the target cell from the measurement reports received from the mobile terminals and control the communication connection of the determined mobile terminals so as to keep the interference towards the target cell at a desired level. The interference controller may determine the mobile terminals whose communication connection should be controlled so as to reduce the interference towards the target cell by selecting a number of mobile terminals indicating highest reception signal levels from the target cell or by comparing the reception signal levels related to the target cell with a threshold and selecting mobile terminals indicating reception signal level higher than the threshold. Naturally, other methods may be used for determining the mobile terminals causing the highest interference from the received measurement reports.
In another embodiment, the interference controller may use the BIM to control interference caused by downlink transmission and the measurement reports received from the mobile terminals to control interference caused by uplink transmission. In other words, the interference controller may control the transmission parameters and radio resources of a base station transmitter of an interfering cell, i.e. cell of the second cellular system having a frequency band overlapping with a frequency band of a cell of the first cellular system, according to the BIM and control transmission parameters and radio resources of a mobile terminal transmitter according to the measurement reports received from the mobile terminal transmitter. Referring to Tables 1, 2, and 3, the BIM in Table 1 indicates that cell 104 potentially causes interference towards cell 100 (the target cell), Table 2 indicates that at least part of the interference is inter-system interference, while the measurement reports of the first mobile terminal 120 in Table 3 indicate that the mobile terminal receives a very low-level signal from the target cell 100. Accordingly, the interference controller may determine from the BIM that the downlink transmission causes interference towards the target cell, while the uplink transmission of the first mobile terminal 120 does not. Accordingly, the interference controller may control the transmission parameters, e.g. transmit power level, and/or radio resources of the second transceiver of the base station 114 of the cell 104 so as to minimize interference caused by the downlink communication towards the target cell. On the other hand, the interference controller may allocate transmission parameters and radio resources related to the uplink communications without concerning of interference towards the target cell. In other words, the interference controller may control the first Mobile terminal to use the transmission parameters and radio resources without any limitation related to the inter-system interference. As another example, let us refer to Tables 1, 2, and 4 in relation to the second mobile terminal 122 residing in the same cell 104. Tables 1 and 2 indicate again that the cell 104 causes interference towards cell 100 (the target cell) and that at least part of the interference is inter-system interference, while the measurement reports of the second mobile terminal 122 in Table 4 indicate that the second mobile terminal 122 receives a high-level signal from the target cell 100. Accordingly, the interference controller may determine from the BIM that the downlink transmission causes interference towards the target cell 100 as does the uplink transmission of the second mobile terminal 122. Accordingly, the interference controller may control the transmission parameters, e.g. transmit power level, and/or radio resources of both second transceiver of the base station 114 of the cell 104 and the second mobile terminal 122 so as to minimize interference caused by the respective downlink and uplink communications towards the target cell. In another embodiment, the interference controller may measure traffic load in frequency bands overlapping between the first cellular system and second cellular system in different cells and scale the values of the BIM accordingly to improve the accuracy of the interference estimates in the BIM or, in general, interference information received from the first cellular system. Referring to
Then, the interference controller calculates the level of interference, i.e. combined power of signals in the overlapping frequency band of the cell of the second cellular system in block 702. For that purpose, the interference controller may calculate or estimate amount of data (or data rates) and/or transmit power levels of connections to which there is allocated radio resources from the overlapping frequency band. In practice, the interference controller may use the bandwidths and the transmit powers of connections in the overlapping frequency band to calculate the signal energy (or power) in the overlapping frequency band. Finally, the interference controller may scale (or combine) the corresponding value in the BIM with the calculated level of interference in block 704. The interference controller may find a scaling value matching the calculated level of interference so as to bring the scales of the calculated level of interference and the interference value in the BIM to correspond to each other and, then, scale the BIM value with the scaling value. The scaling values for different interference levels may be stored in a memory unit of the interference controller beforehand.
Above, the interference controller controls one or more communication links in cells of the second cellular system to control inter-system interference towards a target cell of the first cellular system by utilizing the interference information received from the first cellular system. In another embodiment of the invention, the interference controller controls inter-cell interference in the second cellular system by utilizing the interference information received from the first cellular system. In this embodiment, the target cell suffering from high interference is a cell of the second cellular system, and the source of the interference is another cell (or cells) of the second cellular system. The interference information received from the first cellular system may be used for inter-cell power control in the second cellular system, for example. A flow diagram of
As mentioned above, the target cell may transmit to the interference controller the notification of high interference and the instruction to reduce the interference towards the target cell. The target cell may also be provided with the BIM and, upon detection of degraded performance because of high external interference, a processing unit of the target cell may analyze the BIM to detect a number of neighboring cells causing the highest interference. Then, the processing unit of the target cell may transmit to interference controller(s) controlling the cells determined to cause the highest interference the notification of high interference and the instruction to reduce the interference towards the target cell. Accordingly, the instruction to reduce the interference towards the target cell is transmitted only to the cells determined to cause the highest interference and not to the other cells, thereby reducing unnecessary signaling and performance degradation in cells not causing any significant interference towards the target cell. Additionally, the target cell may transmit the notification of high interference and the instruction to reduce the interference towards the target cell to the cells of the first cellular system, if the target cell detects from the BIM and from the frequency resource allocation table (Table 2) that the cells of the first cellular system may also be the source of interference. In such a case, the BIM is used also for inter-system power control in which the base station(s) or the base station controller of the first cellular system reduces transmit power levels in the cells indicated by the target cell so as to reduce interference towards the target cell of the second cellular system.
Let us consider a case where a cell causes both inter-system interference and inter-cell interference towards a target cell. In such a case, if an interference controller controlling the cell interfering the target cell controls inter-system interference and inter-cell interference independently, the interference controller may end up reducing transmit power levels and/or restricting radio resources such that the grade of service in the interfering cell degrades more than is necessary to reduce the interference to an allowable level. If the interference controller detects that a cell is causing both inter-system interference and inter-cell interference towards the target cell, the interference system may first perform the interference control with respect to one type of interference and then check whether the interference control reduces the interference sufficiently also with respect to the other type of interference. For instance, the interference controller may first consider the inter-system interference and calculate interference control parameters from the received interference information (BIM, for example). Let us consider simple transmit power control parameters for simplicity. The interference controller may calculate how much the transmit powers should be reduced in the cell to reduce the interference towards the target cell to a sufficient level and then control the transmitters in the cell to reduce their transmit powers to such level. Then, the interference controller may consider the inter-cell interference by determining, whether the transmit power level reduction reduces the inter-cell interference towards the target cell to a tolerable level. If not, the interference controller may further reduce the transmit power levels in the cell. On the other hand, if the transmit power level reduction reduces the inter-cell interference towards the target cell to a tolerable level, the interference controller may determined not to further reduce the transmit power levels in order not to degrade the grade of service in the cell unnecessarily.
When the inter-cell power control according to embodiments of the invention is applied to the long-term evolution version of the UMTS, inter-cell power control commands between cells may be implemented by using an overload indicator transmitted to neighboring cells by a base station requesting the neighboring cells to reduce their transmit power levels. The overload indicator may be transmitted to the neighboring base stations over an X2 interface established between the base stations.
The processes or methods described in
The present invention is applicable to cellular or mobile telecommunication systems defined above but also to other suitable telecommunication systems. The cellular telecommunication system may have a fixed infrastructure providing wireless services to subscriber terminals and having the same cellular structure as another cellular telecommunication system from. The protocols used, the specifications of mobile telecommunication systems, their network elements and subscriber terminals, develop rapidly. Such development may require extra changes to the described embodiments. Therefore, all words and expressions should be interpreted broadly and they are intended to illustrate, not to restrict, the embodiment.
It will be obvious to a person skilled in the art that, as technology advances, the inventive concept can, be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
20075859 | Nov 2007 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2008/000135 | 11/28/2008 | WO | 00 | 5/17/2010 |