INTERACTION OF AUDIO, VIDEO, EFFECTS AND ARCHITECTURAL LIGHTING WITH BOWLING SCORING SYSTEM AND METHODS OF USE

Information

  • Patent Application
  • 20150297976
  • Publication Number
    20150297976
  • Date Filed
    December 05, 2014
    10 years ago
  • Date Published
    October 22, 2015
    9 years ago
Abstract
An interactive bowling system using scoring systems and/or other computer infrastructures which interact with visual and/or audio effects within the bowling center. The system includes a management system having stored therein instructions to provide special effects associated with one or more events to one or more special effects components. Upon an occurrence of an event, the management system: determines that the occurrence of the event is associated with one or more special effects; and provides the instructions to the one or more special effects components to effectuate the special effects associated with the one or more events.
Description
FIELD OF THE INVENTION

The present disclosure relates to bowling systems and, more particularly, to interactive bowling systems using scoring systems and/or other computer infrastructures which interact with visual and/or audio effects within the bowling center.


BACKGROUND

Bowling is a very popular sport for both recreational bowlers and league bowlers. For recreational bowlers, bowling is a leisure activity which can be played at most any time of the day and throughout the year, regardless of weather. The game of bowling has also become very popular for families as well as adults of all ages.


Bowling has many different games including, for example, ten-pin, nine-pin, candlepin, duckpin, five-pin bowling and mini-bowling. Today, the sport of bowling is enjoyed throughout the world.


SUMMARY

In an aspect of the invention, a system comprises a management system having stored therein instructions to provide special effects associated with one or more events to one or more special effects components. Upon an occurrence of an event, the management system: determines that the occurrence of the event is associated with one or more special effects; and provides the instructions to the one or more special effects components to effectuate the special effects associated with the one or more events.


In another aspect of the invention, a system comprises one or more special effects components configured to provide special effects in response to an occurrence of one or more events that occurred in a bowling center. The system further comprises a management system programmed to: store one or more predefined events and associated special effects in a storage device; upon an occurrence of a detected event, make a determination that the detected event is one of the predefined events; and when it is determined that the detected event is one of the predefined events, provide instructions to the one or more special effects components to perform at least one of the predefined special effects associate with the detected event.


In an additional aspect of the invention, a method comprises: detecting an event at a bowling center; associating the event with special effects; and providing instructions to one or more special effects components in the bowling center to perform the special effects associated with the event.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention.



FIG. 1 shows a representative bowling center according to an embodiment.



FIG. 2 shows a representative bowling scoring and management system for implementing aspects of the present invention according to an embodiment.



FIG. 3 shows a representative system infrastructure according to an embodiment.



FIG. 4 shows another representative bowling center according to an embodiment.



FIG. 5 shows a sample process for providing one or more special effects in response to a bowling event according to an embodiment.





DETAILED DESCRIPTION

This disclosure is not limited to the particular systems, devices and methods described, as these may vary. The terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope.


As used in this document, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. As used in this document, the term “comprising” means “including, but not limited to.”


The present disclosure relates to bowling systems and, more particularly, to interactive bowling systems comprising scoring systems and/or other computer infrastructures of the bowling center which interacts with and/or manages special effects within the bowling center. This includes using the bowling scoring system to interact with the management and/or automation system to control and manage the audio, video, effects and architectural lighting, HVAC system, security system, security camera system, life safety system, video camera system and provide complete building management.


In one or more embodiments, the interactive bowling systems can be triggered by, for example, bowling events. As used herein, bowling events refer to, for example, a strike or a sequence of strikes, gutter balls, a high score (e.g., a perfect score), a score over a particular value (e.g., a score over 200), and other triggering events occurring on any lane or combination of lanes or within, generally, the bowling center. Advantageously, the events can be triggered automatically using, for example, an existing scoring system (scoring console) or other detection systems which include, but are not limited to, cameras, proximity, pressure and motion sensors, with connections to and managed by a central management system.


As used herein, special effects refer to, for example, any entertainment related effect that enhances the bowling game experience. These special effects can include, but are not limited to, video projection, flat panel video displays, LED video displays, multi-colored lighting, ultra-violet lighting, laser effects, audio effects, and/or fog/haze/CO2/snow/bubble/confetti effects, which may or may not contain cameras or sensors for interactivity with the bowler and/or the bowling ball. It should be understood by those of ordinary skill in the art that these special effects noted herein are merely illustrative examples, and that other effects, whether they are visual, audio or tactile, are contemplated by the present disclosure.


In embodiments, the present disclosure contemplates interacting special effects with a bowling scoring and management system and special effects control. In this way, the bowling scoring and/or management and special effects control systems of a bowling center can control and/or manage the special effects to be delivered within the bowling center. This provides an interactive experience having some meaningful environmental interaction based on information available to a bowling scoring system, management system and special effects control. This information can be, illustratively, detection of a person or bowling ball at a certain location within the bowling center (e.g., crossing over a foul line), scoring events such as a strike, a gutter ball, speed and tracking of a bowling ball, and other similar information.


Thus, the present disclosure relates to an interactive system including special effects used in bowling centers, managed by a bowling scoring and/or management system and/or special effects control. This allows the special effects content to respond to the scoring games and events occurring on the bowling lane and that are known and managed usually by the scoring system, management system and special effects controls and within the bowling center. The result is that the bowling scoring, management system and special effects control can drive and also affect the special effects content (either with or without a camera/detection device for interactivity with the bowler and/or bowling ball).


Referring to FIG. 1, in a sample embodiment, the control system can utilize a video projection system 10 to display special effects, video/still content or video/still images recorded in the bowling center onto bowling center surfaces and/or video displays. Bowling center surfaces can be, for example, floors 15, walls 25, ceilings 25, masking units 20, bowling pins 45, bowling lanes 55, and bowler approaches 35 in the bowling center, amongst other surfaces. It should be understood by those of ordinary skill in the art, though, that these bowling center surfaces are merely illustrative examples, and that projecting special effects on any surface within the bowling center are contemplated by the present disclosure, including, for example, any surface of any system that is used in the bowling center.


More specifically, in one or more embodiments, the special effects can include a video projector system 10 which includes, for example, one or more video projector units and/or automated video projection units configured to project video content onto a masking unit 20 at the end of the bowling lanes that is suitable to receive this content, with either front or rear projection systems, as well as projecting content onto the bowling lane 55 or approach area 35 or bowling pins 45, or any other surface or combination or surfaces in the bowling center 25 to add video content and/or effect to the bowling center environment. In one or more embodiments, the special effects may include a video projection system 10 that incorporates a camera or other detection device (see, e.g., FIG. 4 as described below) to identify people and/or objects that cross onto the video projection surface area, camera and/or sensor equipped areas and/or other locations within the bowling center. Such a detection device can enable the systems of the present disclosure, e.g., bowling scoring, management system and special effects control 100, to react and change the image, video content (or other special effect) being displayed by the video projection system 10 according to the motion of the person or object/objects in the video projection display area, or other similar events that may occur during bowling that can be observed by the detection devices.


In additional embodiments, the present disclosure may implement the use of multi-color lighting fixtures 30, e.g., LED lighting, automated light fixtures above the bowling lanes in which the multicolor lighting fixtures (e.g., LED lighting fixtures) project lighting effects onto the bowling lane surface 55, wall surface 25, masking unit 20, bowling pins 45, approach area 35 (or any other surfaces or lighting effects), changing the color appearance of the lane surface (or other surface of the bowling center or lighting effects) and creating a visual effect on the bowling lanes (or other surface of the bowling center or lighting effects), each of which can be controlled by a scoring system and/or centralized management system. The special effects can also include sound/audio systems 75 and other effects such as fog/haze/CO2/snow/bubble/confetti machines, rotating, moving, automated effects lights, lasers, architectural lighting, mirrored effects, etc., all of which are represented by reference numbers 10 and 30 as shown in FIG. 1.



FIG. 1, for example, also discloses linking of audio 75, architectural lighting 85, security camera system 90, HVAC system 95, video camera systems 40, security system 50, and life safety system 60 to management system 100. The interconnection of the scoring and management systems provides one central control system for controlling all, or nearly all, operational aspects of the bowling center into one, central control system.


As shown in FIG. 2, in embodiments, the bowling center includes a bowling scoring, management system and special effects control 100. The bowling scoring, management system and special effects control 100 comprises, for example, various features including a lane score computer, a centralized management system and special effect control, a redemption system, and representative computer infrastructure. These, and additional features, are discussed in greater detail in the following discussion.


Lane Score Computer

The lane-score-computer (also referred to as the scoring system) 200 is a computerized system that manages games on a lane, or a multiple lanes, as should be known to those of skill in the art. The scoring system 200 is discussed in more detail with reference to FIG. 3. In embodiments, the example described herein assumes one pair of lanes; although other configurations are also contemplated by the present invention. In embodiments, the scoring system 200 includes a main CPU 205 that is connected to:

    • I. A local monitor 210 (typically overhead display monitor above the lane). This monitor 210 can display bowling information including, for example, bowling scores and other bowling related information including messages, etc., to the bowler;
    • II. I/O devices 215 to interface with the pinspotting machines;
    • III. I/O devices 220 to collect information regarding when a ball is thrown, how many pins have fallen, if a foul has been detected, and other information available on the lane about the ball that was bowled; and
    • IV. I/O console device 225 configured to allow the scoring system to interact locally on the lane with the bowlers.


In embodiments, the I/O console device 225 includes, for example, a keypad (e.g., a touch screen or other similar input device) configured to receive inputs from a bowler or other user. For example, the bowler can enter the names of each bowler, as well as other pertinent information. In embodiments, the I/O console device 225 can also allow the bowler or other user to enter triggering events and associated special effects, in order to trigger the programmed special effects. For example, the bowler can enter a command via the I/O console device 225 indicating that the lights are to flash when, for example, a bowler has a strike or a gutter ball, the bowler passes over the foul line, or any combination of actions that can occur, as further described herein.


Centralized Management System and Special Effect Control

The centralized management system and special effects control 300 is a computerized system including one or more computers located at, for example, the counters and back office and/or the electrical and HVAC storage areas of the bowling center. The centralized management system and special effects control 300 is discussed in greater detail below with reference to FIG. 3.


In embodiments, for example, the centralized management system, special effects control 300 and scoring systems 200 communicate with each other. The centralized management system 300 can allow the manager/employees of the bowling center to manage the customers (bowlers) from check-in to check-out. One of the many functions performed by the management system 300 is to send the necessary information to set up the scoring system 200, which then takes care of the game being bowled on the lane. At the end of the game, the centralized management system 300 can collects the necessary information from the scoring system 200 in order to manage the game scores, rankings, payments, and other information related to the completed game. In addition, the central management and special effects control 100 provide the control and interface with the effects lighting systems 30, architectural lighting system 85, audio system 75, video system 10, security camera system 90, security system 50, life safety system 60, video camera system 40 and HVAC system 95.


Alternatively or additionally, the centralized management system 300 may operate in concert with an automation system configured to connect various aspects of the bowling system. For example, the automation system can provide an overall control for operating and managing all other systems within the bowling center, including receiving commands from the bowling system and various tracking/monitoring devices and executing preset responses. However, for discussion purposes, the functionality of the automation system will be described in relation to the management system 300 as discussed herein.


In one or more embodiments, the centralized management system 300 can control/manage any of the features of the present invention as described with regard to FIGS. 2 and 3. More specifically, a user can enter any combination of triggering events and associated special effects into the centralized management system 300 via the scoring system 200 as described above. Upon the occurrence of the triggering event(s), the centralized management system 300 can then instruct the video 10, lighting 30, video camera system 40 and audio 75 systems, for example, to provide the programmed special effects. Central management system 300 also provides the user interface for the security camera system 90, security system 50, life safety system 60, architectural lighting system 85 and HVAC system 95.


In additional embodiments, the triggering event can be provided by a bowler, for example, by inputting a desired triggering event or combination of triggering events into the scoring system 200. The bowler can also enter a desired special effect from a list of preprogrammed special effects. The scoring system 200 will, in turn, provide the programmed triggering events to the centralized management system 300. Upon the occurrence of the triggering event, which may be determined and/or monitored by the scoring system 200, or special effect control 300 e.g., a strike on a specific lane, the scoring system 200 will notify the centralized management system 300 of such triggering event, in which scenario, the centralized management system 300 will instruct the video system 10, lighting 30, audio 75, video camera system 40 for example, to provide the associated programmed special effects.


In additional embodiments, the central management systems provides the control interface for the HVAC system 95, security camera system 90 and architectural lighting 85, security system 50 and life safety system 60.


Redemption System

Integrated with the centralized management system and special effects control 300 and/or the scoring system 200 is a redemption device 500. The redemption device can deliver virtual tickets and/or tokens as images projected onto the lane surface 55, approach area 35, masking unit 20 or bowling pins 45 in any combination of the surfaces or areas. This includes virtual “colored pin” for games and redemption purposes with programmed interaction by the scoring system 200.


Representative Computer Infrastructure


FIG. 3 shows a representative computer infrastructure, which can be representative of a bowling scoring and/or management system and/or special effects control of the present disclosure. Illustratively, the computer infrastructure can be representative of either the scoring system 200 or centralized management system and special effects control 300.


To this extent, the computer infrastructure can include a server, media player or other computing system 12 that can perform the processes described herein. In particular, the server 12 can include, or be operably connected to, a computing device 14. The server 12 and/or computing device 14 can communicate over any communication link such as an intranet, a local area network (LAN), a wide area network (WAN) such as the Internet, serial, Ethernet or a digital multiplexed network (DMX) contact closure, ASCII, HEX, infrared, and other common communication protocols and techniques. For example, the scoring system 200 can communicate with the centralized management system 300 using an intranet, LAN, WAN, Internet, or other similar connection. The computing device 14 can be resident on a network infrastructure or computing device of a third party service provider provided and stored at a remote location.


The computing device 14 can also include a processor 20, memory 22A, an I/O interface 24, and a bus 26 for operably connecting the various components within the computing device. In addition, the computing device includes random access memory (RAM) 27A, a read-only memory (ROM) 27B, and an operating system (O/S) stored within memory such as memory 22A. The computing device 14 can be in communication with the external I/O device/resource 28 and the storage system 22B. The I/O device 28 can include any device that enables an individual to interact with the computing device 14 (e.g., user interface) or any device that enables the computing device 14 to communicate with one or more other computing devices using any type of communications link. The external I/O device/resource 28 may be for example, a handheld device, PDA, handset, keyboard, touch panel, smart phone, tablet computer, etc.


In general, the processor 20 executes computer program code (e.g., program control 44), which can be stored in the memory 22A and/or storage system 22B. The program control 44 provides the processes described herein. The program control 44 can be implemented as one or more program codes stored in memory 22A as separate or combined modules. Additionally, the program control 44 may be implemented as separate dedicated processors or a single or several processors to provide the function of these tools. While executing the computer program code, the processor 20 can read and/or write data to/from memory 22A, storage system 22B, and/or I/O interface 24. The bus 26 provides a communications link between each of the components in the computing device 14.


As will be appreciated by one skilled in the art, the techniques and processes as described herein may be embodied as a system, method or computer program product. Accordingly, aspects of the present disclosure may take the form of an entirely hardware embodiment, an entirely software-based embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects.


Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon. Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.


According to aspects of the present disclosure, the scoring system and/or a management system manages special effects content based on a certain triggering event. More specifically, in one or more embodiments, the special effects devices (e.g., video system 10 of FIG. 1) can be provided near the lanes or in other sections of the bowling center. The special effects devices can be managed directly by the centralized management system 300 through direct commands sent on a standard or proprietary protocol (e.g., serial communication, Ethernet, DMX). They can also be managed by a dedicated service separated from the centralized management system 300, intended, for example, as a dedicated server machine, running a specific software which receives inputs from the centralized management system 300 and translates these inputs into commands for each special effect device connected to it, also in this case using a defined communication protocol running for example on a standard network connection, or using proprietary protocols such as serial, Ethernet or DMX contact closure, ASCII, HEX, infrared and other similar protocols.


According to aspects of the present invention, management system manages HVAC system 95, security system 50, life safety system 60, security camera system 90 and architectural lighting 85 content based on an input from the bowling center manager/user/operator from the user interface (e.g., a touch panel interface) or by scheduled or programmed events. More specifically, in embodiments, the HVAC system 95, security system 50, life safety system 60, security camera system 90 and architectural lighting 85 of FIG. 1 can be provided throughout the bowling center. All of these systems can be managed directly by the centralized management system 300 through direct commands sent on a standard or proprietary protocol (serial communication, Ethernet, DMX, contact closure, ASCII, HEX, infrared). They can also be managed by a dedicated service separated from the centralized management system 300, intended for example as a dedicated server machine, running a specific software which receives inputs from the centralized management system 300 and translates these inputs into commands for each specific system connected to it, also in this case using a defined communication protocol running for example on a standard network connection, or using proprietary protocols such as serial, Ethernet, infrared, ASCII, HEX, contact closure or DMX or other similar protocol.


The centralized management system 300 can be an independent centralized computerized system able to know the specific “modality” of the bowling center at every moment. For example, the centralized management system 300 may always “know” the state of each lane such as open/close, how many bowlers are playing, which kind of game they are playing, if there are children using bumpers, if the lane is in open play or in League mode, and so on. The state of each lane can be set up manually by the front desk operator, manually by the bowlers on the lane through the bowler consoles of the scoring system 200, or automatically through a bowling modes feature.


The central management system can also know the “modality” of many other areas of the bowling center. These areas include and are not limited to the state of the HVAC system 95 with the ability to monitor and change the temperature in every HVAC zone/room by operating the thermostats by the central control system 300. In one or more embodiment, the central management system can also: control the audio system 75 with volume level and source in all zones; operate, view and monitor the security camera system 90; manage and operate the architectural lighting system 85 with power and dimming controls for the entire interior and exterior of the building and parking lot; monitor and operate the entire video system 10 with all video input sources, DVD players, media players, digital signage players and all video output displays; control and operate the effects lighting system 30 and all of the special effects devices. (including, for example, all fog/haze/CO2/snow/bubble/confetti machines, rotating, moving, automated effects lights, lasers, architectural lighting, mirrored effects, and other similar special effects); control and operate the video camera system 40; control and manage the security system 50; and control and manage the state of the life safety system 60 in connection with the state of the fire detection system. The state of each system in the bowling center can be set up manually either on-site or remotely or by scheduled events by the front desk operator, manager, bowling proprietor through the management system 300, or remote device bowler handheld device, PDA, handset, keyboard, touch panel, smart phone, tablet computer, or other similar computing device.


In one or more embodiments, “bowling modes” refers to a feature of the centralized management system 300 that allows a user to define and program on a predefined schedule a set of parameters related to each lane's status, such as the type of game (open play, league, tournament), status of optional accessories (bumpers, glow-in-the-dark lighting), availability of specific games, background grids or video animations on the lanes. This provides for a complete and automated customization of the bowling environment throughout the center and throughout the day, week, month or year. As an example, the bowling center can be set to automatically switch to glow-in-the-dark lighting, go to a specific volume level, switch any or all TV channels, run programmed advertising specials, dim architectural lighting levels, adjust thermostat heating/cooling levels at a certain time on certain days of the week, month or year e.g., every Friday starting from 10 PM or every Wednesday at 4 PM certain lanes are set for open play with children which are set to display only animations and games targeted to children with children's music. All of this control can be zone, area or room specific, or can be set to include the entire facility. This also includes management of the entire building with scheduled events for opening and closing procedures with control of architectural lighting 85, lighting 30, video system 10, HVAC system 95, audio 75, video camera system 40, security 50 and life safety 60 systems.


The scoring system 200, on the other hand, refers to the equipment related to the lanes, including a scoring CPU, a bowler console for interaction with bowlers, and monitor where scoring information is displayed (or other video content managed by the scoring system 100), an interface with the pinspotter equipment and a device for detecting the pin count and the speed of the ball. The scoring system 200 is responsible for storing a set of data related to the bowler (name, handicap, left-right handed) and for detecting and processing all game-related events on the lane (e.g., each bowler's scoring, how many frames have been played, etc.). In one or more embodiments, the scoring system 200 can be connected and integrated with the centralized management system 300, in such a way that data is continuously exchanged between these components. As an example, the centralized management system 300 can instruct the scoring system 200 by sending information related to what kind of games can be played or what the bowlers' names are, and the scoring system sends to the centralized management system 300 information related to the events happening on the lanes, such as the scoring of each bowler, how many strikes are done by a bowler or on a lane, and other similar information. These events can then be used to trigger a special effect or multiple effects.


In embodiments, the centralized management system 300 can use the inputs coming from the scoring system 200 to trigger the command for specific special effects, directly after a specific event happens (e.g., every time anyone in the center scores a strike, a flashing word “Strike!” is projected on the masking units, and/or a predefined light pattern is projected on the lanes by ceiling-mounted RGB LED lights or LED lane capping lights and architectural lighting change color and/or pattern or specific video/still images are displayed on bowling pins or any combination of special effects). To extend this feature, the present invention can be combined with the bowling modes to set a number of predefined commands that the centralized management system 300 can send to any of the special effects devices according to the state of the lanes and the events happening on each lane, sent in real time from the scoring system 200 or special effects controls 300.


In embodiments, the interaction between the centralized management system 300 and specific ongoing “events” determines the special effects as multi-colored lighting, laser effects, audio effects, fog, ad other similar special effects. Events may include the following examples, amongst others as described throughout the present disclosure.


Individual game events or a combination of events happening on one or more lanes, e.g., one strike, a series of strikes, a certain score, and other similar events may trigger a special effect. In this example, the scoring system 200 can detect these events and send this information to the centralized management system 300 that, after cross referencing the input with the “modality” of the center in that moment if bowling modes is active, generates some specific special effects (lighting, sound or video in any/all combination).


The system administrator (center proprietor, manager, or reception/front desk operator) can send some specific inputs to the centralized management system 300 through any terminal belonging to the centralized management system 300 (such as front desk reception terminals). In this example, the system administrator can communicate that all the customers on a specific lane are children. At this point, the centralized management system 300, using this specific data, will know exactly which specific special effects to generate based upon this information. These effects can be for a specific or combination of lanes. By way of example, if there are three strikes on three different lanes, the centralized management system 300 can trigger a fog effect on the lanes or a special lighting effect on the whole center.


The game players (bowlers) can send specific input directly to the scoring system 200 through the lane bowler console in order to provide a triggering event and special effect. For example, a player can choose that a certain color is projected on the lane after an occurrence of an event. In this example, the scoring system 200 will send this input to the centralized management system 300 that, cross referencing this information with the specific “modality” of the center in that moment, if active, will send a command to a projector, light fixture or special effect mounted on the lane to project a chosen video, still image, or color on the lane.


Accordingly, in one or more embodiments, the centralized management system 300, in addition to being the system that generates the “modality” of the bowling center, can also be the “collector” of all inputs that are obtained by the scoring system 200, tracking cameras 415, proximity sensors 100, pressure sensors 95, by the system administrator and/or by game players (again through the scoring system). Once collected, and depending on the specific combination, the centralized management system 300 can determine which specific special effects to generate on one lane, multiple lanes, at other locations within the bowling center and any combination thereof.


The central management system 300 and scoring system 200 can include additional input or triggers from the security system 50 and the life safety system 60. For example, the security system monitors activity within the bowling center. If the center is burglarized after normal operating hours, the security system detects the intrusion then contacts the authorities/police, owners and management. The central management system 300 can send signals to raise all of the architectural lighting levels in the architectural lighting system 85 and switch video camera system 40 on to record and capture additional video footage of the intrusion. The life safety system can be triggered by a fire alarm which then communicates with the central management system 300. The central management system can then mute the audio system 75, raise all architectural lighting 85 levels, shut off the effects lighting 30, video projection system 10, and trigger the scoring system 200 shut down the bowling equipment. Any additional equipment and or games in the arcade or other areas can also be shut down. Additional life safety systems can include panic stations 105 located in any part of the establishment and/or on the management system 300 user interfaces to notify authorities of trouble/burglaries/Adam alerts etc. When an event like these happen, all of the central management system 300 user interfaces (touch panels/controls) would provide details of the event. These events would have to be cleared before the normal operation of the establishment could proceed.


Representative Bowling Center


FIG. 4 shows another representative bowling center in accordance with aspects of the present invention. More specifically, FIG. 4 shows several components and interactions amongst the components in the bowling center. For example, FIG. 4 shows a front desk 400, back office 410, electrical room 435, either of which may store any combination of the components of the centralized management system 300. For example, in embodiments, the monitor and input devices of the centralized management system 300 may reside at the front desk 400; whereas, the servers for the centralized management system 300 may reside in the back office 410, the dimming and relay controls and additional lighting controls for the centralized management system 300 may reside in the electrical room 435, HVAC temperature sensors would reside in each zone or room of the bowling center (FIG. 4). HVAC thermostats general will reside in the electrical room 435.


Further, in the bowling center representation of FIG. 4, the scoring system 200 is shown to be paired with two lanes each, 200a, 200b. As shown, the scoring system 200 includes an input component, e.g., keypad or touch panel 200c, and a monitor 200d. Additionally, the input components can include an image capture device such as a camera for capturing an image of a bowler for inclusion and display by the scoring system 200 as well as, for example, posting to a website such as a social media web page related to the bowling center or the bowler themselves. Similarly, the input component can include a biometric reader, either as a separate component or, for example, integrated into a touch panel, to recall previously stored information related to a bowler such as demographic and personal information, previous performance statistics, preferred system settings, and other similar information.



FIG. 4 further shows the projection system 10, which can comprise lighting and other special effects as described herein. A tracking camera (system) 415 includes infrared lighting 425 is also provided, for example, overhead of the bowling lanes 200a, 200b. The tracking camera (system) 415 can be positioned at other locations of the bowling center and preferably has an overview of the bowling center, including the lanes 200a, 200b, the approach area 65 and foul line 65a, and other related areas. In one or more embodiments, the tracking camera system 415 can be a laser or other motion detection system that is positioned at the foul line 65a, to determine whether a bowler has stepped over the foul line during a bowling event or as trigger for any or all of the special effects.


In additional embodiments, the tracking system 415 can track movement of objects, e.g., bowling pins, bowling balls, as well as bowlers and other similar objects, and provide such information to the centralized management system 300. Also, pressure sensors 95 can detect bowlers and their location in the bowling center and provide this information to the centralized management system 300. Proximity sensors 100 can be used to track the location and speed of rolled bowling balls on lanes 200a and 200b. This information can also be sent to the centralized management system 300. The centralized management system 300 can use this information to determine if such event is a triggering event for a special effect, and, if so, then instruct the special effects component(s) to provide the associated special effects, e.g., lighting, fog, or other interactions. By way of example, the tracking camera (system) 415 and/or pressure sensors 95 can determine that a person is in the approach area 65 and, if another person on the adjacent lane is bowling, instruct the special effects component, e.g., projector, to project an image or word(s) on the approach requesting that the bowler wait unit the other bowler in the adjacent lane has released the bowling ball. The tracking camera system 415 and infrared lighting 425 can track a rolled bowling ball, communicate with the central management system and instruct the video system 10 to project video on and/or around rolled bowling ball down the lanes 200a and 200b. Proximity sensors 100 tracking the rolled bowling ball down the lane can instruct the central management system have the LED lane lights follow the ball down the lanes 200a and 200b. The pit area 70 can include special effect equipment such as pit lighting 420 e.g. LED, fluorescent, ultra-violet and or pin video projections 85 under the masking unit or pin deck 35 for additional tracking effects/visual effects/animations.


A plurality of overhead monitors 425 can also be provided in the bowling center. In embodiments, much like the other visual effects components of the present invention, these overhead monitors 425 can provide visual effects upon a triggering event, as controlled by the centralized management system 300. For example, the visual effects can be animations or other effects.


The bowling center of FIG. 4 also includes other bowling related components such as a ball return system 430. In embodiments, the visual and special effects can be provided on any surface of the bowling center, including the ball return system 430.


As shown in FIG. 4, the various components included within the bowling center may be operably connected via wired and/or wireless connections. For example, the scoring system 200 may have a wired connection to the centralized management system 300. However, one or more of the special effect components (such as the pit lighting 420) or one or more of the monitoring components (such as the tracking camera system 415) may be operably connected to the centralized management system 300 via a wireless connection.


Sample Process for Providing an Interactive Experience


FIG. 5 illustrates a sample process for using the techniques as described herein to provide an interactive bowling experience according to one or more embodiments. The centralized management system is initialized 502. As described above, an employee at the bowling center may start the initialization process by turning on or activating one or more lanes, as well as assigning the type of game to be played (e.g., open play or league play). The initialization process may be continued by one or more persons playing at the lane by entering their personal information into a lane score computing input device at the lane itself. For example, the user may enter their name (as well as the names of the other players), the players ages, whether any player requires special assistance (such as bumpers), and other related information. Additionally, as taught herein, the player can select one or more options for special effects to be presented during play. For example, the player can opt to turn off all special effects, select to have all special effects turned on, or select a specific combination of special effects to have presented during play.


Following initialization, the centralized management system may monitor 504 events occurring at that specific lane or lanes for any events to occur that are programmed to trigger a special effect. If the centralized management system determines 506 that no event has occurred (or no event has occurred that is programmed to trigger a special effect), the system can continue to monitor 504. However, if the centralized management system does determine 506 that an event has occurred, the system can further determine 508 which associated special effect is associated with that event. For example, if the event is a strike, the system may determine 308 that the lights at that lane are to flash, a sound effect is to be played, and a related image (e.g., an “X”) is to be displayed on the monitor. Additionally, or optionally, the system may determine 310 a specific location for the special effect to occur. For example, for a common event such as a strike, the system may determine 510 that the special effect is to be displayed only at the lane where the event occurred. However, for an event that rarely occurs (such as a perfect game), the system may determine 510 that the special effect should be displayed throughout the entire bowling center.


After determining 508 what special effect to present, as well as determining 510 where to present the special effect, the special effect is presented 512. As described above, the special effect may include one or more of video projections, flat panel video displays, LED video displays, multi-colored lighting, ultra-violet lighting, laser effects, audio effects, and/or fog/haze/CO2/snow/bubble/confetti effects and other similar special effects.


It should be noted that the process as shown in FIG. 5, and described above, is directed toward a single set of players at a particular bowling lane by way of example only. The techniques as described herein are to be understood as applicable to all aspects of the bowling center, as described above in greater detail. As such, the centralized management system is configured to monitor and respond to any and (potentially) all events that occur within the bowling center.


Additional Examples and Embodiments of the Invention

Referring again to FIGS. 1-4, in operation, a video signal can be delivered to the video projector system 10 such as a movie, TV channel, media server/player, internet device (Apple TV/Roku, etc. . . . ), PC, game console, DVD player, Blu-Ray player, camera system, smart phone, tablet PC, digital signage player or device, scoring system 200 with any of these video sources can be processed by computerized special effects equipment and instructed by the centralized management system 300. The video source can be managed by a computerized special effects equipment system and the centralized management system 300 so that each video projector or multiple projectors can display video and/or other effects in accordance with aspects of the present invention.


For example, each video projector can display a different portion of the original video signal so that the combination of the video projectors generates a bigger picture. This is referred to as a matrix video wall (i.e., a 3×3 display matrix can display a single video into an area 9 times larger than the single projector). This can be done by hard or soft edge blending of the video projectors. Inside a bowling center this technique can be used on the video mask to display a single and very large picture, video or any of the above video sources across all lanes in the bowling center, or an advertising banner moving/scrolling across all lanes in a bowling center (for example from lanes 1 to lane 30). A typical matrix video wall on a masking unit would be a 1×15 wall for the example 30 lanes. Any combination and sizes of matrix video walls are possible. Alternatively, one or more video screens may be used to provide a video wall for the making unit. For example, a 3×3 matrix of flat panel displays may be used to create a video wall in addition to or as an alternative to the video projectors as described above.


Further, in operation, the video projection system 10 can be an array of video projectors interspersed throughout the bowling center, e.g., over the bowling lanes in FIG. 4. This array of video projectors can use a camera device (or other detection device) (e.g., tracking camera 415) to identify people and objects that cross onto the video projection surface area and enable the system to react and change the image being displayed by the projectors according to the motion of the person or object/objects in the video projection display area. In embodiments, the array of video projectors is managed by the centralized management system 300. Many kinds of lighting fixtures can also be controlled by the centralized management system 300 to create lighting effects and “mood” within the bowling center. These lighting fixtures can be multi-color lighting fixtures, e.g., LED lighting, above the bowling lanes 55, approach area 65, pin deck 420, masking unit 45, architectural lighting 85, wall or any surface 25 in which the multi-color lighting fixtures, e.g., LED lighting, project lighting effects onto the lane surface 200a and 200b, approach 35, pins 45, masking unit 55, architectural lighting 85, wall or any surface 25 in the bowling center changing the color appearance of the surface and creating a nice visual effect on the surface in the bowling center, any of which are managed by the centralized management system 300.


Accordingly, in one or more embodiments, the present disclosure provides interaction of the projection and lighting effect systems used in bowling centers with the bowling scoring and management system 100 to allow the video content, audio and lighting content delivered by these systems to respond to many different events, including scoring games and events occurring on the bowling lane (and that are known and managed by the scoring system 200, tracking system 415, proximity sensors 100, pressure sensors 95). The result is that the bowling scoring and management system 100 can drive and also affect the video content delivered by the video projector system 10 (either with or without a camera/sensor/detection device for interactivity with the bowler and/or bowling ball) and/or video camera 40, architectural lighting 85, audio 75, lighting 30 systems in the bowling center.


This integration and interaction can be achieved in many different ways because video, audio and lighting systems can be provided with computerized control and standardized interfaces (i.e., the computerized system controlling the video projector is a computer and thus the computer software running on it can get input by the bowling scoring system through Ethernet). For example, the effects lighting control system may be a DMX controller that can be set up to interact with the bowling scoring and management system through a serial, infrared, ASCII, Hex, contact closure or Ethernet connection.


Examples of the interaction that are achieved by linking these devices to the bowling scoring and management systems include, amongst others and in no particular order of importance, the following features.

    • I. Extend any graphic, environment, or scoring data available within the bowling and scoring management system 100 to the bowling lane, approach and masking unit or other surfaces.
    • II. Allow bowlers to use the scoring consoles or a mobile device to choose content to be projected onto the bowling lane, approach, and masking unit or other surfaces. For example, there can be games within the scoring system that allow users to choose images or animations and project them on the lane surface (i.e. the bowling lane can look like grass, ice, a road, plasma, a night sky with stars, etc.).
    • III. Allow bowlers to create their own content through the scoring consoles or a mobile device and project it onto the lane (e.g., by using different patterns, brushes and stamps, etc. available kids can create their own picture on the lane, as if they were painting the lane).
    • IV. Project a welcome screen (or any type of digital content) onto the approach to welcome bowlers just arriving to the lane or other surfaces.
    • V. Any graphic, environment, or scoring data available within the bowling and scoring management system can be sent to the bowling lane, approach area and masking unit or other surfaces.
    • VI. Integrate with the redemption device 500 to deliver virtual tickets and/or tokens as images projected onto the lane surface.
    • VII. Display any advertising messages and images originating from the scoring and management system onto the bowling lane, approach, masking unit and/or to any/all video display.
    • VIII. Project a topographic image representing the oil pattern onto the bowling lane, approach or surface.
    • IX. Project a safety warning message or image onto the lane to warn bowlers not to cross the foul line and respect the bowling center rules.
    • X. Project a foul video clip animation as soon as the scoring system detects that the foul detector unit has been tripped by someone crossing the foul line.
    • XI. Extend any game managed by the scoring system to the bowling center surfaces, e.g., lane surface, so the competition between lanes can be visualized on the lane surface, through a histogram starting from the end of the lane and growing towards the approach area. At every ball thrown the corresponding histogram bar grows. The first lane whose bar reaches the approach area wins.
    • XII. Extend any game managed by the scoring system to the bowling center surfaces, e.g., lane surface, displaying the scene on the lane surface, all across the bowling center. (i.e., a train image enters on lane 1 and moves across all adjacent lanes, going back and forth several times, getting closer to the approach with every time. When the train stops, all doors open and from one of the train cars a “You Won!” banner is displayed).
    • XIII. Display scoring information directly on the lane or other bowling center surfaces, in addition to or instead of those shown on the monitors. For example:
      • i. Display nicknames, pictures and other data about the bowler on the lane, approach and/or masking unit;
      • ii. Display the score made with the latest ball thrown (i.e. “7” or “strike”) onto the lane, approach and/or masking unit;
      • iii. Celebrate remarkable scoring achievements with specific animations on the lane, approach and/or masking unit (i.e. “three strikes in a row”);
      • iv. Show bowler standings and recap data on the lanes and/or masking unit; and/or
      • v. Display an histogram on the lane, one bar per bowler with name and current score, to show intuitively how the match is proceeding and who's leading and following.
    • XIV. Allow bowlers to use the scoring consoles to create content images (avatar) that will follow the ball path down the lane.
    • XV. Integrate with a sound system to create specific sounds that react to the ball motion and/or graphical images. For example, a gutter ball is accompanied by a sound effect.
    • XVI. Integrate a spare finder projected onto the bowling lane to show bowlers where to throw the ball using arrows on the lane (extension of the spare finder in the scoring system).
    • XVII. Project the ball path onto the lane to help bowlers learn and improve their performance (e.g., use a different color for first and second ball, colored stripes displayed at specific positions on the lane, with the ball that has to pass in between).
    • XVIII. Keep the history of the ball paths and project them onto the lane to show how consistent the bowler is in their bowling patterns. Additionally, such a feature can be used for training purposes to improve a bowler's skills.
    • XIX. Improve safety in the bowling center by using the system to identify everything that does not look like a bowling ball that crosses the foul line onto the lane and warn bowlers by projecting visual and sonic alerts and stopping the pinspotting machine is the shape gets too close.
    • XX. Improve security and safety in the center by being able to view, monitor and operate the security camera system 90 by the central management system 300.
    • XXI. Improve the security and life safety by including a panic button 105 on the central management system 300 user interfaces or separate concealed button near interfaces to automatically alert authorities when there are potential issues or trouble in the bowling center.
    • XXII. Reduce the need for additional lighting, security system, HVAC controls by integrating them into the central management system 300.
    • XXIII. Reduce the energy consumption of the entire bowling center by integrating and scheduling the systems on/off times.
    • XXIV. Use of LED lighting in and on equipment and surfaces with integrated DMX/Art-Net or similar control with either wired or wireless connections. These include, but are not limited to, bowling balls, bowling pins, furniture, ball returns, pinspotters/pinsetters, masking units, bowling shoes, clothing, or other surfaces, fixtures and items within a bowling center.


The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.

Claims
  • 1. A system, comprising: a management system having stored therein instructions to provide special effects associated with one or more events to one or more special effects components,wherein, upon an occurrence of an event, the management system: determines that the occurrence of the event is associated with one or more special effects; andprovides the instructions to the one or more special effects components to effectuate the special effects associated with the one or more events.
  • 2. The system of claim 1, wherein the one or more special effects components provide special effects comprising at least one of video projection, multi-colored lighting, laser effects, audio effects, and fog/haze.
  • 3. The system of claim 2, wherein the one or more special effects components provide the special effects within a bowling center.
  • 4. The system of claim 1, wherein the management system is a centralized management system of a bowling center that centrally controls bowling activities within the bowling center and is configured to associate a detected or determined event with the one or more special effects.
  • 5. The system of claim 4, further comprising a scoring system which interacts with the centralized management system.
  • 6. The system of claim 5, wherein the scoring system provides game information to the centralized management system, which includes at least one bowling event which is determined by the centralized management system to be an event associated with the one or more special effects.
  • 7. The system of claim 6, wherein the scoring system is configured to permit a bowler to enter one or more programmed triggering events and associated special effects, which are provided to the centralized management system.
  • 8. The system of claim 1, further comprising a detection system which interacts with the management system.
  • 9. The system of claim 8, wherein the detection system is configured to detect movement of an object or a person, and provide detected movement to the management system, which associates the detected movement with the one or more events.
  • 10. The system of claim 1, wherein the management system instructs the one or more special effects components to change special effects due to motion of a bowling ball or bowler.
  • 11. The system of claim 1, wherein the one or more special effects components is a sound system which is integrated with the management system to create specific sounds in response to ball motion, bowler motion, or scoring events on a bowling lane.
  • 12. The system of claim 1 is integrated to a network advertising server and system and is configured to display advertising messages and videos onto the bowling lane, approach, wall, or masking unit.
  • 13. A system, comprising: one or more special effects components configured to provide special effects in response to an occurrence of one or more events that occurred in a bowling center; anda management system programmed to: store one or more predefined events and associated special effects in a storage device;upon an occurrence of a detected event, make a determination that the detected event is one of the predefined events; andwhen it is determined that the detected event is one of the predefined events, provide instructions to the one or more special effects components to perform at least one of the predefined special effects associate with the detected event.
  • 14. The system of claim 13, further comprising a scoring system configured to provide at least one of: provide data associated with the bowling game to the management system; andprovide an interface for a bowler to define the one or more predefined events and associated special effects and sending the defined one or more predefined events and associated special effects to the management system.
  • 15. A method, comprising: detecting an event at a bowling center;associating the event with special effects; andproviding instructions to one or more special effects components in the bowling center to perform the special effects associated with the event.
  • 16. The method of claim 15, wherein the special effects includes at least one of video projection, multi-colored lighting, laser effects, audio effects, and fog/haze.
  • 17. The method of claim 15, wherein the event is determined by a scoring system and provided to a management system for providing the instructions.
  • 18. The method of claim 17, wherein the associating of the event with the special effects is predefined by a user at the scoring system.
  • 19. The method of claim 17, wherein interaction with the management system is through a handheld mobile device.
  • 20. The method of claim 15, further comprising a computer program product comprising a computer usable storage medium having readable program code embodied in the storage medium the computer program product includes at least one component operable to perform at least the associating and the providing steps of claim 15.
CROSS REFERENCE TO RELATED APPLICATIONS

This applications claims benefit to U.S. Provisional Patent Application No. 61/981,978, filed Apr. 21, 2014, the disclosure of which is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
61981978 Apr 2014 US