The roller coaster is a popular amusement ride developed for amusement parks and modern theme parks. Most roller coasters are made up of a track that rises and falls in intricate patterns; sometimes with one or more inversions (the most common being loops) that turn the rider briefly upside down. The track does not necessarily have to be a complete circuit (i.e. a “shuttle”). Most coasters have cars for two, four, or six passengers each, in which the passengers sit to travel around the track. Multiple cars are usually hooked together to form a train.
The train design offers riders sitting in the front car a very different experience from those sitting in the rear car. While the riders in the rear car do not get an unobstructed view, the riders in the front car must wait for the rear car to clear the top of the hill before beginning the acceleration which makes the ride enjoyable; particularly on the first drop, or lift hill which is described below.
The cars on a typical roller coaster are not self-powered. Instead, a standard full-circuit lift-powered coaster is pulled up with a chain or cable along the lift hill to the first peak of the coaster track. Then potential energy becomes kinetic energy as the cars race down the first downward slope. Kinetic energy is converted back into potential energy as the train moves up again to the second peak. This is necessarily lower as some mechanical energy is lost due to friction.
Alternatively, the train may be set into motion by a launch mechanism (flywheel launch, linear induction motors, linear synchronous motors, hydraulic launch, compressed air launch, drive tire, etc.). Some coasters move back and forth along the same section of track; these roller coasters are called shuttles because of this motion and usually run the circuit once with riders moving forwards and then backwards through the same course. Some roller coasters are powered by a kind of locomotive. A brake run at the end of the circuit is the most common method of bringing the roller coaster ride to a stop.
To date, there have been two main types of roller coasters: steel roller coasters and wooden roller coasters. Steel coasters are known for their smooth ride and often convoluted shapes with frequent inversions. Wooden coasters are fondly looked at by coaster enthusiasts for their rough ride and the air-time produced by negative G-forces when the coaster car reaches the top of some hills along the ride.
Coasters come in a multitude of designs. Some designs take their cue from how the rider is positioned to experience the ride. Traditionally, coaster riders sit facing forward in the coaster car, while newer coaster designs have ignored this tradition in the quest for building more exciting, unique ride experiences for the riders. Some coasters seat the passenger in a body-less frame, with the passenger's legs dangling in the air and providing a less obstructed view of the ground, thus providing an extra scare to the passengers. Another variation involves cars that have the riders in a standing position (though still heavily strapped in). Finally, some roller coasters spend some or all of their travel time with the passengers sitting in the opposite direction to their travel, so they cannot see what direction the coaster will travel next. In addition to changing the rider's viewpoint, coaster designs also focus on track styles to make the ride fresh and different from other coasters.
Traditional coasters, however fresh and different from other coasters, do not provide riders with a unique experience from ride to ride. Each coaster is usually confined by the rigidity of the track and the cars. Therefore, what is needed is an amusement attraction which improves on the prior art by providing an experience that is interactive, varies from ride to ride, not hindered by its connection to other “cars” while still providing the speed and thrills, vis-à-vis inversion, sought after by riders.
In a first embodiment, the invention provides an apparatus capable of transporting a rider, specifically for an amusement ride. The apparatus is constructed in the form of a substantially hollow sphere which rides along the ground, which is preferably inclined, a track, or a predetermined path (being substantially flat but with guide rails or walls along its sides). An inner carriage, to which the rider's seat is attached, moves independently of the sphere and maintains a substantially constant attitude while sphere rolls. The inner carriage can be formed in varying shapes such as a sphere, hemisphere, semicircle, circle or a tubular skeletal frame. More particularly, the novel vehicle includes a spherical outer shell having a first diameter, a spherical or hemispherical inner shell having a second diameter less than the first diameter, a plurality of spherical rollers, each of which has a diameter substantially equal to one-half the difference between the first diameter and the second diameter. The inner shell is positioned within a hollow interior of the spherical outer shell and shares a common center therewith so that the inner shell is concentrically disposed relative to the spherical outer shell. The rollers of the plurality of spherical rollers are disposed in spaced apart relation to one another in a space that separates the spherical outer shell from the inner shell so that the outer and inner shells may rotate about the common center independently of one another. At least one passenger seat is disposed within the inner shell. In a first embodiment, a passenger steers the vehicle by shifting his or her weight while supported by the passenger seat. In a second embodiment, the passenger seat is mounted for lateral displacement and the passenger steers the vehicle by manually causing the passenger seat to displace in a preselected lateral direction. In a third embodiment, a hollow casing is fixedly secured to the inner shell and a weight is slideably mounted within the hollow casing. A handle is adapted to be engaged by a passenger seated in the passenger seat; the handle is engaged to the weight so that movement of the handle effects movement of the weight. Accordingly, when the spherical outer shell is rolling on a surface, a passenger seated in the passenger seat may control the direction of rolling by manipulating the handle. The handle is pivotally secured to the casing at a first pivot point that is between a proximal and a distal end of the handle and the handle is pivotally secured to the weight at a second pivot point at a distal end of the handle. The passenger manipulates a proximal end of the handle and causes the handle to pivot about the first pivot point, thereby causing sliding displacement of the weight in the hollow casing and thereby enabling the passenger to steer the vehicle. In a fourth embodiment, the vehicle is adapted to follow a path of travel defined by a plurality of downwardly inclined guide rails that capture the spherical outer shell and allow it to roll along a path of travel defined by the guide rails. The guide rails may be arrayed in a triangular or square configuration to capture the spherical outer shell.
In another embodiment the sphere is constructed from two matching hemispheres. The sphere can be opaque, having a view screen inside to project images to the rider(s), substantially transparent, louvered, or perforated to allow vision there through. In a more specific embodiment the sphere is louvered or perforated such that its rotation creates the illusion, to the rider(s), that the sphere is invisible. The sphere can be equipped with shock absorbent pads placed on its surface to prevent direct contact with the ground or track to prevent damage, or scratching.
In another embodiment, a plurality of rollers disposed on the side of the inner carriage opposite the seat maintain contact with the inner surface of the sphere, this helps the carriage maintain the proper attitude as the sphere rolls. The rollers are any device, or configuration, that allows the inner carriage to substantially maintain the proper attitude and illustrative devices include wheels, ball bearings and casters. A control mechanism can vary, i.e. brake, the rotation of the rollers; thereby creating friction on the inner surface of the hollow sphere and changing the path of the sphere.
In another embodiment, the invention includes a drive mechanism and at least one drive wheel that engages the inner surface of the sphere. Rotation of the drive wheel against the inner surface of the sphere causes the apparatus to roll. The drive wheel(s) may be one, or all, of the rollers. Examples of drive mechanisms include electric motors and human-powered pedal devices.
In another embodiment, the invention includes a weight mounted within the sphere with a control adapted for altering the position of the weight, most commonly laterally. The lateral movement of the weight alters the combined center of gravity of the sphere, carriage and rider(s); thereby altering the sphere's path of travel.
In yet another embodiment, the seat is adapted for lateral movement. The lateral movement of the seat alters the combined center of gravity of the sphere and changes the sphere's path of travel.
For a fuller understanding of the invention, reference should be made to the following detailed description, taken in connection with the accompanying drawings, in which:
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings, which form a part hereof, and within which are shown by way of illustration specific embodiments by which the invention may be practiced. It is to be understood that other embodiments may be utilized and changes may be made without departing from the scope of the invention.
Outer Sphere
The sphere of one embodiment is constructed from a solid material (steel, aluminum, carbon composite) which may be opaque. The shell can then be perforated or louvered. The sphere of this embodiment has sufficient integrity to roll directly on the track or ground. Moreover, the louvered surface of sphere 12 can be adapted to effectively make the sphere seem transparent to the rider (and to an observer) once it is rolling. That is, to the eye of the rider, the sphere seems to disappear because the solid portions of the sphere move so rapidly in the rider's field of view that the eye integrates the scene beyond the sphere surface. This creates a “thrill sensation” of seeming to be riding in space with only the seating structure in the stationary field of view.
The outer surface of sphere 12 can be further equipped with a shock absorbent material, such as rubber or other composite, for contact with the ground surface. The shock absorbent material of one embodiment protrudes (about 0.25 to 1.0 inches) from the sphere and will be surface that makes contact with the track. In addition to making a better ride, the shock absorbent material eliminates scratching of the sphere, for embodiments in which the sphere is transparent, which might otherwise cause loss of visibility.
Sphere 12 can be made of a combination of two substantially hollow hemispheres separated by a tubular support structure. It also allows for customizing the weight (mass) of vehicle 10. The interior seat structure rides on the inner surface of the inner carriage and the whole vehicle rolls on the exterior surface of the outer sphere.
Methods of constructing spherical devices capable of accepting a human passenger can be incorporated into the invention. Illustrative spherical devices that can be modified for use include U.S. Pat. No. 5,791,254 to Mares et al., International Patent Publication WO 2006/021,572, U.S. Pat. No. 4,272,093 to Filice et al.; which are incorporated herein by reference.
Inner Carriage
In one embodiment, inner carriage 14 maintains a substantially constant attitude as sphere rolls 12 due to a plurality of rollers 18 disposed on the side of the inner carriage opposite seat 16. Rollers 18 are any device, or configuration, that allows inner carriage 16 to substantially maintain the proper attitude by moving independently of sphere 12 and illustrative devices include wheels, ball bearings and casters. A control mechanism can alter the rotation of the rollers (i.e. brake); thereby creating friction on the inner surface of the hollow sphere and changing the path of sphere 12.
For example, in
In another embodiment, the invention includes a drive mechanism and at least one drive wheel that engages the inner surface of the sphere. Rotation of the drive wheel against the inner surface of the sphere causes the apparatus to roll. The drive wheel(s) may be one, or all, of the rollers. Examples of drive mechanisms include electric motors and human-powered pedal devices.
Steering Mechanisms
Riders have the ability to “steer” vehicle 10 as it rolls. This ability allows a truly interactive amusement ride where the rider determines the path and possibly the duration of the ride. “Steering” is accomplished by a combination of altering the center of combined mass of vehicle 10 (sphere 12 and carriage 14) and friction with the surface on which it travels.
In one embodiment, shown in
This configuration can also be adapted for a cylindrical (or “log”) embodiment (not shown). A massive bench (upon which the riders collectively sit) is adapted to slide left or right. The bench is on rollers or on sliding surfaces. Assuming that the upper bodies of the riders are constrained from movement using current state of the art restraints, the center of mass of the inner part of the vehicle is altered by the riders pushing with their feet to move themselves and the massive bench either left or right.
In another embodiment, riders can remain stationary in their seats and can steer by moving a simple lever mechanism that will move a heavy mass such that the direction of the vehicle is altered. Weight 20 is mounted within sphere 12, preferably attached to carriage 14 at the lowest possible point. A control is adapted for altering the position of the weight, most commonly laterally. The lateral movement of the weight alters the combined center of mass of sphere 12, carriage 14 and rider(s); thereby altering the path of travel of vehicle 10.
Referring now to
In yet another embodiment, riders can remain stationary in their seats and steer by causing certain rollers 18 (or combinations there of) to brake thereby causing inner carriage 14 to pivot on that point(s) and alter the center of mass of the vehicle 10.
Vehicle 10 provides significant advantages over the prior art in that not only is the user in control of the inner rotation of the vehicle; the spherical vehicle can be used on either a “free form surface” or on a prescribed track. While prescribed tracks are the norm for amusement ride, a free form surface provides an open area over which each vehicle can travel. For example, the spherical vehicle of the invention could be conveyed to the top of a large “mountain” like structure covering a large area. The sphere would then roll freely down the surface that would have a variety of features including troughs, valleys, maelstroms, “worm-holes,” etc. The nature of the navigable features is selected in accordance with the theme of the attraction. Riders could “steer” to these features. The spheres could enter tunnels which would have orchestrated light and sound to enhance the experience. Features could be connected via conveyors. Riders could “interact” with the environment of the amusement ride by steering to specific experiences.
In use, vehicles of the current invention can be transported to their starting points using a variety of methods. In addition to a conventional elevator, a modified “Archimedes Screw” can be used to transport vehicles. The machine consists of a large screw inside a hollow pipe having a sufficient diameter to accommodate the spherical vehicle. Here, a screw is any inclined plane wrapped around a rotatable axle or cylinder. The lower end of the device is positioned near the loading point for the vehicles. As the screw is turned, it scoops up, or captures, the spherical vehicles. The vehicles then “slide up” in the spiral tube as the axle is turned, until it finally exits out from the top of the tube and begins to roll under the power of gravity.
Alternatively, a pneumatic system can be employed. Various devices for lifting a spherical body containing a human rider are know. U.S. Pat. Nos. 4,487,410 and 4,545,574 to Sassak describe methods of lifting a spherical body having a passenger with fluid power and are incorporated herein by reference.
Simulators
Another embodiment, shown in
Servomotors 60 and 62 are connected to the inner surface of outer sphere 65. Outer sphere 65 is connected to similar servomotors 66 and 68. The servomotors (60, 62, 66 and 68) are controlled by software that contains a “virtual environment” for the simulated experience.
Viewing Screen 70 is positioned to project a virtual scene to the rider responsive to his/her steering within the vehicle. The images on the viewing screen are transmitted via wireless signals from an external system. This external system contains the virtual 3-D environment, as well as necessary circuitry for transmitting signals from the steering circuits to the servo motors that control the motion of the sphere 12 and sphere 65.
It will be seen that the advantages set forth above, and those made apparent from the foregoing description, are efficiently attained and since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matters contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall there between. Now that the invention has been described,
This application claims priority to currently U.S. Provisional Patent Application No. 60/725,030, filed Oct. 7, 2005.
Number | Name | Date | Kind |
---|---|---|---|
3066951 | Gray | Dec 1962 | A |
4272093 | Filice et al. | Jun 1981 | A |
4487410 | Sassak | Dec 1984 | A |
4501434 | Dupuis | Feb 1985 | A |
4545574 | Sassak | Oct 1985 | A |
5453053 | Danta et al. | Sep 1995 | A |
5791254 | Mares et al. | Aug 1998 | A |
6060847 | Hettema | May 2000 | A |
7030894 | Allen et al. | Apr 2006 | B2 |
Number | Date | Country |
---|---|---|
2006021572 | Mar 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070089633 A1 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
60725030 | Oct 2005 | US |