The present invention relates to infrared (IR) remote control vehicles having multiple body styles operable with a universal chassis with attachable dynamic assemblies, and more particularly to robotic vehicles that can accept one or more different weapon assemblies operable from the drive motors of the universal chassis.
It would be desirable to provide a modular chassis system for children facilitating the customization or modification of overall vehicle designs and allowing for the configuration of robotic vehicles which may include mechanical subassemblies such as weaponry providing a play pattern as between remote control vehicles operable simultaneously such that overall functionality may be removed or limited based on collisions or damages taken on by the vehicles.
Briefly summarized, the present invention provides a universal chassis which may be assembled with modular componentry allowing for a play pattern with the user in which modification of the overall construction of the vehicle is encouraged. There is a desire therefore to provide for the ability to accept a variety of snap-on components. In operating the configured vehicle, two motors, i.e., left and right, are provided with pulsed controlled operation to facilitate two-speed performance. The ability to transmit/receive IR signals modulated on one or more of multiple carriers facilitates the play pattern with simultaneous operation of multiple vehicles. An impact sensor or the like provides for detecting impacts, and processor control may be used for counting impacts in order to modify the functionality accorded to the user with the universal chassis.
Advantageously, snap-on mechanical subassemblies may be powered from either of the two motors of the universal chassis such that operation of either motor may operate the snap-on mechanical subassembly which may be provided as a weapon or the like as use by the robotic vehicle. The controller onboard the chassis controls all functionality of the chassis and may also provide for the detection of the presence or absence of any mechanical subassemblies. Additionally, interlocks or clutch mechanisms may be provided with the mechanical subassemblies for safety and reliability of the configured vehicles.
A better understanding of the present invention is obtained when considered in connection with the following description, drawings and software Appendix (A-1 through A-8), in conjunction with the following figures, in which:
With reference to
IR Battlebots 1 are described as a variety of dual motor, dual speed, remote controlled vehicles having a universal chassis 10 with the means for accepting modular wheel 112, weapon 114 and body 116 assemblies and where the chassis 10 is also equipped with the on board electronics 22 for receiving an IR signal, for controlling the speed of the motors, and for counting the number of physical impacts received. The controller 100 has the means of transmitting via IR any one of 17 codes required for the operation of the vehicles 1. These functions are forward and reverse for both motors 18, 20 and “turbo” forward and reverse for both motors 18, 20. There is also a code for when the vehicle is idle. The IR itself is broadcast at one specific carrier frequency.
Both the chassis 10 and the controller 100 may be outfitted with a switch 50 for changing the specific IR carrier broadcast frequency. The number possible switch positions is determined by the number of Battlebots 1 (chassis) required to battle simultaneously.
Alternatively, each Battlebot 1 (chassis) may be tuned to a single specific IR carrier frequency. In this event, two of the same style Battlebots (chassis) will not be able to operate simultaneously.
To clarify further, any chassis 10 may become any Battlebot 1 because of the modular nature of its construction. The modularity is purposely built in to allow users to modify their Battlebot chassis 10.
A hand-held controller 100 (not shown) is facilitated with the ability to transmit via IR signals nine codes which facilitate 17 operations of the motor as illustrated Appendix A-1 through A-8. The decoding of the 17 encoded operations for the motor drive combinations of the vehicles facilitates the functions of forward, reverse, and turbo drive commands for either or both motors including turbo forward and reverse for both motors. A code is also provided for indicating when the vehicle is in an idle state when the user has not manipulated the controls of the hand-held controller such that the vehicle motor may be provided in an OFF state. Additionally, the IR carrier frequency is broadcast by individual controllers at separate carrier frequencies allowing for the control and operation of multiple vehicles simultaneously by different users.
To this end, the controller 100 and the chassis 10 may be outfitted with a switch 50, e.g., rotatable, momentary or dip switches, for changing the specific IR broadcast frequencies. The number of possible switch positions or frequency configurations may be determined by the number of vehicles required to battle or otherwise operate simultaneously. Alternatively, each chassis may be tuned to a single specific IR carrier frequency, in which two of the same style chassis 10 may not be able to operate simultaneously.
The configured vehicles are intended for operation at relatively close range with directional infrared IR controllers 100 such that multiple players may engage in a battle or collision activity between multiple vehicles. The operation may be provided either on a tabletop or on a flat floor surface for providing a platform for engaging the play pattern as between the players and their controlled vehicles. It is likely that the players will be operating the vehicles within close range, e.g., 3 to 10 feet, preferably at a range of about six feet. As shown in
As discussed, the universal chassis 10 accepts modular components and includes four bosses 44 to accept any of the four bodies 16, or body styles of
The IR controller 100 is operated on one of multiple carrier frequencies, at least three and preferably four to eight frequencies for allowing simultaneous operation, e.g., eight vehicles over eight carrier frequencies, which are controlled with a frequency configuration switch or input provided by the user. The infrared (IR) transmission link is somewhat directional with the remote hand-held controllers providing an angle of illumination of about 40 degrees allowing for multiple players in indoor closer range operation. The transmit and receive circuitries are described further below in connection with
The mechanical subassemblies are illustrated in exploded views for each of the four embodiments, as shown in
Turning now to
With reference to
While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications, and variations as fall within the spirit and broad scope of the appended claims.
VI.12.1 H/W IR Protocol
The output protocol of hardware defined IR begins with a Start bit followed by 9 Data bits(1 data byte, MSB first, and 1 parity bit), and Stop bit. The Start bit is typically composed of 1 mS High(TH) and 6.5 mS Low(TL). Data bit ‘1’ is composed of 1 mS High and 4 mS Low. Data bit ‘0’ and Stop bit are composed of 1 mS High and 2 mS Low. It's called pulse position modulation. The IROUT pin will keep high in TH duration and output 38 KHz carrier with 75% duty cycle in TL duration. Receiver module will recover the original waveform by filtering the 38 KHz carrier out.
This application claims benefit of U.S. Provisional Application No. 60/266,958, filed Feb. 6, 2001.
Number | Name | Date | Kind |
---|---|---|---|
1547516 | Neff | Jul 1925 | A |
1973220 | Mohr | Sep 1934 | A |
2587142 | Gray et al. | Feb 1952 | A |
4183173 | Ogawa | Jan 1980 | A |
4248006 | Jones et al. | Feb 1981 | A |
4530670 | Ohno | Jul 1985 | A |
4631040 | Shiraishi | Dec 1986 | A |
4895542 | de Blanitza | Jan 1990 | A |
4938483 | Yavetz | Jul 1990 | A |
4993983 | Kurita et al. | Feb 1991 | A |
5046981 | Roddy | Sep 1991 | A |
5135427 | Suto et al. | Aug 1992 | A |
5292275 | Swisher et al. | Mar 1994 | A |
5322469 | Tilbor | Jun 1994 | A |
6439956 | Ho | Aug 2002 | B1 |
Number | Date | Country |
---|---|---|
1 005 849 | Sep 1965 | GB |
1 357 517 | Jun 1974 | GB |
Number | Date | Country | |
---|---|---|---|
20020160688 A1 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
60266958 | Feb 2001 | US |