Solar power systems have provided a source of renewable energy for decades. One of the impediments to more wide scale adoption of solar power is the high customer acquisition cost (“CAC”) which today averages $3,000-5,000 per project. In an attempt to reduce CAC, solar companies have begun to sell in nontraditional venues such as inside big box stores, shopping malls and car dealerships, to name but a few. Many of these merchandising efforts are accompanied by computer graphics displays. Some include interactive computer graphics. The primary purpose of such interactive kiosks is to provide shoppers with information about solar power and to capture shopper lead information for the purpose of scheduling a follow-up sales meeting. Even so, shopper engagement, as measured by the number of people stopping to shop for solar in retail settings remains very low.
Accordingly, what is needed in the art is an improved technique for pricing solar power systems.
Embodiments of the invention include computing devices, systems, and computer-implemented methods for interactively generating solar power proposals, a given solar power proposal including a solar power system configuration and an accompanying pricing solution. The computing devices can include a configuration engine that generates at least one candidate solar power system configuration, a computer-aided design (CAD) interface that facilitates direct manipulation of the at least one candidate solar power system configuration, a solution engine that generates at least one pricing solution for each of the at least one candidate solar power system configuration, and a results engine that generates a results package comprising a signature-ready contract for the solar power proposal. The computing devices may be part of a system located in a place of public accommodation so that a shopper may interactively design a solar power system and receive a signature-ready proposal on site and in real time.
So that the manner in which the recited features of the one more embodiments set forth above can be understood in detail, a more particular description of the one or more embodiments, briefly summarized above, may be had by reference to certain specific embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments and are therefore not to be considered limiting of its scope in any manner, for the scope of the invention subsumes other embodiments as well.
In the following description, numerous specific details are set forth to provide a more thorough understanding of certain specific embodiments. However, it will be apparent to one of skill in the art that other embodiments may be practiced without one or more of these specific details or with additional specific details.
The conventional use of interactive computer graphics for selling solar power systems in retail environments has been limited to: educating shoppers about solar power; capturing shopper and site information to initiate generation of a design and proposal from a remote location at a later time; and scheduling a follow-up meeting. Typically, the detail design and proposal is delivered to the shopper hours to days later. Various embodiments of the present invention involve provisioning stores with an interactive system that provides shoppers with a highly engaging and interactive process to assess their site's solar potential, interactively optimize the design and pricing and generate customized and signature-ready proposals in-store and all in real-time. Signature-ready proposals may be electronically signed, or paper copies can be printed out on site for the user's signature. The system and process can occur either on a self-serve basis or assisted by a sales person.
While several web-based solar assessments tools now let shoppers quickly get a rough assessment of their property's solar potential based simple inputs, these systems are very inaccurate and contribute greatly to the extremely high and costly industry-wide change order rates. In addition, more accurate system design generally requires the operator to have specialized technical training which greatly limits the generally applicability of conventional systems. By contrast, features of various embodiments of the present invention include: ability to interactive create an accurate and engineered solar design and proposal for a retail shopper in minutes and with their participation; an engaging interface that lets the shopper and sales person interactively select design and pricing options to optimize system performance and account for shopper preference in a retail setting; and being able to complete a transaction, the signing of contracts, in the retail setting.
As shown in
Computing device 102 and computing device 122 are configured to exchange data across network 180 via communication paths 140 and 150. Computing device 102 may also read data from or write data to database 116 across network 180 via communication paths 140 and 160. Likewise, computing device 122 may read data from or write data to database 116 across network 180 via communication paths 150 and 160 or, alternatively, directly via communication path 170. Communication paths 140, 150, 160 and 170 may each be implemented as a wireless communication path, a wired communication path, or any other technically feasible type of communication path capable of transporting data.
As further described below in conjunction with
When generating solar power system configurations, computing devices 102 and/or 122 access database 116 in order to extract data that describes a target installation location for the solar power system. The extracted data may represent a set of constraints associated with a given target installation location and may also include data representing physical components and/or materials that may be used to build the solar power system, local electricity rates, and so forth. Computing devices 102 and/or 122 are configured to analyze the extracted data and, based on that data, traverse the decision tree mentioned above in order to generate one or more solar power system configurations.
In one embodiment, computing device 102 operates as a client device and computing device 122 operates as a cloud-based device. In this embodiment, computing device 102 causes computing device 122 to perform the majority of the processing operations involved with generating solar power system configurations. Persons skilled in the art will recognize that computing device 102 and computing device 122 may distribute the processing tasks involved with determining solar power system configurations based on any technically feasible load-balancing algorithm. Those skilled in the art will also understand that either of computing devices 102 or 122 may perform all of the disclosed functionality of the present invention independently, i.e. without being coupled to another computing device, in a non-distributed manner. In such situations, the computing device performing the disclosed functionality may be a desktop computing device, laptop computing device, handheld computing device, and so forth.
Computing device 102 includes a processing unit 104 that is configured to perform various processing tasks and is coupled to input/output (I/O) devices 106 and to a memory 108. As shown, I/O devices 106 are also coupled to memory 108. Processing unit 104 may include one or more central processing unit (CPUs), parallel processing unit (PPUs), graphics processing unit (GPUs), application-specific integrated circuit (ASICs), field-programmable gate arrays (FPGAs), or any other type of processing unit capable of processing data. In addition, processing unit 104 may include various combinations of processing units, such as, e.g., a CPU coupled to a GPU. In on embodiment, computing device 102 is a mobile computing device, such as, e.g., a cell phone or tablet computing device.
I/O devices 106 may include input devices, such as a keyboard, a mouse, a touchpad, a microphone, a video camera, and so forth. I/O devices 106 may also include output devices, such as a screen, a speaker, a printer, and so forth. In addition, I/O devices 106 may include devices capable of performing both input and output operations, such as a touch screen, an Ethernet port, a universal serial bus (USB) port, a serial port, etc. I/O devices 106, as well as processing unit 104 described above, are both configured to read data from and write data to memory 108.
Memory 108 may include a hard disk, one or more random access memory (RAM) modules, a compact disc (CD) residing within a CD drive, a zip disk, and so forth. Persons skilled in the art will understand that memory 108 could be implemented as any technically feasible unit capable of storing data. Memory 108 includes a client-side configuration engine 110, configuration data 112, and a client-side computer-aided design (CAD) interface 114.
Client side configuration engine 110 is a software program that includes a set of program instructions capable of being executed by processing unit 104. When executed by processing unit 104, client-side configuration engine 110 configures processing unit 104 to participate in generating multiple configurations for a solar power system to be installed on the target surface, as mentioned above. In doing so, client-side configuration engine 110 may cooperate with a corresponding software program within computing device 122, a cloud-based configuration engine 130, in order to determine outcomes to the various design decisions associated with the solar power system configurations. Client-side configuration engine 110 cooperates with cloud-based configuration engine 130 in order to generate configuration data 112, which reflects each outcome to the various design decisions.
Computing device 122 may be substantially similar to computing device 102 and includes a processing unit 124 that is configured to perform various processing tasks. Processing unit 124 is coupled to I/O devices 126 and to a memory 128. As shown, I/O devices 126 are also coupled to memory 128. Processing unit 124 may be substantially similar to processing unit 104 included within computing device 102, and, thus, may include one or more CPUs, PPUs, GPUs, ASICs, FPGAs, as well as various combinations of processing components, such as, e.g., a CPU coupled to a GPU.
I/O devices 126 may be substantially similar to I/O devices 106 included within computing device 102, and, thus, may include input devices, such as a keyboard, a mouse, a touchpad, a microphone, a video camera, and so forth, output devices, such as a screen, a speaker, a printer, and so forth, as well as devices capable of performing both input and output operations, such as a touch screen, an Ethernet port, a USB port, a serial port, etc. I/O devices 126, as well as processing unit 124 described above, are both configured to read data from and write data to memory 128.
Memory 128 may be substantially similar to memory 108 included within computing device 102, and, thus, may include a hard disk, one or more RAM modules, a CD residing within a CD drive, a zip disk, and so forth. Persons skilled in the art will understand that memory 128 could be implemented by any technically feasible unit capable of storing data. Memory 128 includes cloud-based configuration engine 130.
Cloud-based configuration engine 130 is a software program that includes a set of program instructions capable of being executed by processing unit 124. When executed by processing unit 124, cloud-based configuration engine 130 configures processing unit 124 to cooperate with client-side configuration engine 110, in generating the multiple solar power system configurations. In doing so, cloud-based configuration engine 130 and/or client-side configuration engine 110 are configured to extract data that describes the target installation location from database 116 and then process that data.
Database 116 may be a computer system executing a database program, such as, e.g. MySQL or postgreSQL, or may also be a cloud-based service configured to provide data based on requests transmitted by remote computer systems, such as, e.g. Google Earth®, Bing™ Maps, Pictometry® Online for geocoded RGB imagery, Digital Surface Models and Digital Elevation Models and Clean Power Research's powerBILL® or the Genability Tariff Cloud for utility electricity tariffs and local, state and federal incentives. In one embodiment, database 116 is included within computing device 122 or computing device 102 or, alternatively, distributed between computing devices 102 and 122.
Database 116 includes geospatial data that may describe target installation locations suitable for solar power systems to be installed. For example, database 116 could include a set of aerial or satellite photographs of three-dimensional (3D) structures, Digital Surface Models or Digital Elevation Models. Each of these could be used to identify land surfaces, structures suitable for solar power installations and to identify shading of those facilities. Database 116 may also include one or more 3D models representing 3D structures and obstructions, like trees, that might cast shadows on the solar array. In one embodiment, the 3D models are generated from a set of aerial or satellite photographs.
Client-side configuration engine 110 and cloud-based configuration engine 130 are configured to extract the geospatial data from database 116 and to analyze a portion of that data corresponding to a particular physical location. The physical location could be represented by, e.g., a street address or geospatial positioning system (GPS) coordinates, among others. In practice, client side configuration engine 110 within computing device 102 and cloud-based configuration engine 130 within computing device 122 work in conjunction with one another when generating solar power system configurations. Accordingly, for the sake of simplicity, the remainder of this description will simply describe the configuration engine 100, which includes computing devices 102 and 122, as performing the various steps involved with generating solar power system configurations, including traversing the decision tree and evaluating solar power system configurations.
In the exemplary embodiment discussed herein, level 212 corresponds to a “site” decision associated with the solar power system configuration and reflects a choice of the target installation location. Level 222 corresponds to a “surfaces” decision associated with the solar power system configuration and reflects a choice of surfaces onto which solar modules may be mounted. Level 232 corresponds to a “module type” decision associated with the solar power system configuration and reflects a choice of possible solar module types that may be included within the solar power system. Level 242 corresponds to a “sub-regions” decision associated with the solar power system configuration and reflects a choice of specific non-contiguous sub-regions of the surface(s) onto which solar modules may be mounted. Level 252 corresponds to a “sub-arrays” decision associated with the solar power system configuration and reflects a choice of particular sub-arrays of solar modules projected onto the different sub-regions. Level 262 corresponds to an “arrays” decision associated with the solar power system configuration and reflects a choice between different possible groupings of sub-arrays. Level 272 corresponds to a “balance of system” (BOS) decision associated with the solar power system configuration and reflects the choice of all other components needed to complete the solar power system configuration, including inverters, wiring, fuses, and so forth. Those skilled in the art will understand that the sequential order of levels shown in
Within a given level, configuration engine 100 may generate multiple different “candidate” configurations by implementing a heuristics engine to identify a range of technically feasible configurations. Configuration engine 100 identifies each different candidate configuration by determining a different alternative outcome to the design decision associated with that level. Configuration engine 100 is configured to then compute the result of a value function for each candidate configuration and select the candidate configuration having an optimal value function result compared to the other candidates. In this fashion, configuration engine 100 identifies candidate configurations at each level that optimize the aforementioned value function.
The value function could be, for example, levelized cost of electricity (LCOE) or net present value (NPV), among other options discussed in greater detail below. Configuration engine 100 refines the selected candidate configuration by visiting subsequent levels and successively computing a result to the value function for each level and selecting the optimal configuration. In one embodiment, configuration engine 100 selects more than one candidate configuration at each level and then refines the selected configurations separately and in parallel with one another.
As shown, level 212 includes candidate configurations 214 and a selected candidate configuration 216, level 222 includes candidate configurations 224 and a selected candidate configuration 226, level 232 includes candidate configurations 234 and a selected candidate configuration 236, level 242 includes candidate configurations 244 and a selected candidate configuration 246, level 252 includes candidate configurations 254 and a selected candidate configuration 256, level 262 includes candidate configurations 264 and a selected candidate configuration 266, and level 272 includes candidate configurations 274 and a selected candidate configuration 276. All together, the sequence of selected candidate configurations constitutes a branch 204 of decision tree 202. Those skilled in the art will recognize that each level of decision tree 202 could include any number of candidate configurations. In embodiments where configuration engine 100 selects more than one candidate configuration at each level, configuration engine 100 may explore other branches of decision tree 202 in parallel with exploring branch 204.
When traversing decision tree 202 along branch 204, configuration engine 100 begins at level 212 and selects candidate configuration 216 from within candidate configurations 214. An example of configuration engine 100 traversing level 212 is provided below in conjunction with
Configuration engine 100 generates candidate configurations 224 within level 222 by identifying different surfaces, located at the target installation location, onto which solar modules may be mounted. Configuration engine 100 selects candidate configuration 226, which includes the selection of a particular set of surfaces, based on computing a result to the value function for each of candidate configurations 224. Configuration engine 100 then continues to level 232.
Configuration engine 100 generates candidate configurations 234 within level 232 by identifying different types of solar modules that may be included within a solar power system mounted to the surfaces selected within level 222. An example of configuration engine 100 traversing levels 222 and 232 is provided below in conjunction with
Configuration engine 100 generates candidate configurations 244 within level 242 by identifying different sub-regions of the surfaces selected within level 222 onto which the solar module type selected at level 232 may be mounted. An example of configuration engine 100 traversing level 242 is provided below in conjunction with
Configuration engine 100 generates candidate configurations 254 within level 252 by identifying different possible sub-arrays of solar modules projected onto the sub-regions selected within level 242. Configuration engine 100 selects candidate configuration 258, which includes the selection of one or more specific sub-arrays of solar modules, based on computing a result to the value function for each of candidate configurations 254. Configuration engine 100 then continues to level 262.
Configuration engine 100 generates candidate configurations 264 within level 262 by identifying different possible groupings of the sub-arrays selected within level 256. Configuration engine 100 selects candidate configuration 266, which includes the selection of one or more specific groupings of sub-arrays (arrays), based on computing a result to the value function for each of candidate configurations 264. Configuration engine 100 then continues to level 272.
Configuration engine 100 generates candidate configurations 274 within level 276 by identifying different possible BOS permutations. A given BOS permutation includes a specific combination of the components required by the solar power system, such as inverter types, wiring, fuses, and so forth. Configuration engine 100 selects candidate configuration 276, which includes the selection of a particular BOS permutation. An example of configuration engine 100 traversing levels 252, 262, and 272 is provided below in conjunction with
By traversing decision tree 202 in the fashion described above, configuration engine 100 iteratively refines the configuration of the solar power system until arriving at level 272. Each candidate configuration 274 within level 272 represents a complete solar power system configuration. Configuration engine 100 may select candidate configuration 276 based on computing a result of the value function for each of candidate configurations 274. Alternatively, a customer may select candidate configuration 276 from among candidate configurations 274 based on, for example, aesthetics, total system size, total system cost, etc. In one embodiment, configuration engine 100 generates a graphical user interface (GUI) that includes some or all of candidate configurations 274. The GUI could, for example, allow a customer to flip through a virtual notebook that visually displays the placement of solar modules associated with different candidate configurations, allowing the customer to easily assess the aesthetic value of each configuration.
As noted above, configuration engine 100 may also explore other branches of decision tree 202 aside from branch 204 by selecting more than one candidate configuration at each level and then refining each of the selected configurations separately and in parallel with one another along different branches. Configuration engine 100 may also be configured to “prune” entire branches and the associated candidate configurations from decision tree 202 when the result of the value function for any of those configurations (i) departs significantly from a desired value function result or (ii) has a less optimal value function result compared to that associated with a previous configuration generated within a previous level. For example, configuration engine 100 could compute the result of the value function for candidate configuration 256 within level 252 and then determine that the computed value function result is less optimal than the value function result computed for candidate configuration 238 within level 232. In this situation, configuration engine 100 may discard candidate configuration 256 and return to level 232. Then, configuration engine 100 may refine candidate configuration 238 by visiting the subsequent levels starting from level 232, thereby creating a new branch within decision tree 202. Configuration engine 100 may repeat this process any number of times before arriving at level 272.
Configuration engine 100 is configured to select a candidate configuration within a given level based on computing the result of the value function for each candidate configuration within that level, as discussed. Since each successive level includes increasingly constrained candidate configurations, the granularity of the inputs to the value function may increase between subsequent levels depending on the degree of “completeness” associated with a given set of candidate configurations.
For example, at level 222, once configuration engine 100 has generated candidate configurations 224 corresponding to different selections of surfaces, configuration engine 100 may compute the result of the value function for a given candidate configuration based on the total area of the surfaces associated with that configuration. Then, at level 232, once configuration engine 100 has generated candidate configurations 234 corresponding to different selections of solar module type, configuration engine 100 may compute the result of the value function for a given configuration based on (i) the performance characteristics of the solar module type included within that configuration and (ii) the surfaces associated with that configuration (previously selected within level 222). Computing the value function result at level 232 based on both (i) and (ii) yields a more precise value function result than computing the value function result at level 222 based only on (ii). Hence, the value function result becomes increasingly precise as configuration engine 100 traverses decision tree 202 because each successive computation is based on increasingly granular inputs.
The value function itself could be derived from a wide variety of possible algorithms generally intended to estimate the value of a system, including algorithms that simply estimate the performance of candidate configurations as well as more complex algorithms that optimize the search process involved with traversing decision tree 202. In one embodiment, configuration engine 100 implements a cost function at each level in order to estimate the cost of the various candidate configurations associated with the different levels. Configuration engine 100 could then select candidate configurations that minimize cost. The cost function could be, for example, a best-first search, an A star (A*) search, a distance-plus-cost function, or another heuristic-based search algorithm.
When implementing the distance-plus-cost function for a given candidate configuration, configuration engine 100 implements a path-cost function based on the cost of traversing from candidate configuration 214 to one of candidate configurations 274, then computes an heuristic estimate of the distance to a complete configuration within level 272. Configuration engine 100 also implements a benefit function when estimating the performance of the candidate configurations, where the benefit function indicates the ideal performance of a given candidate configuration. Further, configuration engine 100 may extend the benefit function to account for various real-world considerations, including system life and degradation, electricity prices and price fluctuations, gross system cost, system rating, effective incentives, discount rates, and system maintenance. Configuration engine 100 may then combine the results of the cost, benefit, and value functions to produce the overall value function. Those having skill in the art will understand that various algorithms for traversing graph-like structures, such as decision tree 202, may be implemented for the value function described herein.
Surface 302 includes obstructions 308, 310, 312, and 314. Obstructions 308 and 310 could be, e.g. skylights, while obstructions 312 and 314 could be, e.g. vents. An obstruction 318 partially occludes surface 316, while another obstruction 320 resides nearby to surface 316. Obstructions 318 and 320 could be, e.g., trees. In general, obstructions 308, 310, 312 and 314 and the intersection of obstruction 318 and surface 316 represent regions unsuitable for the placement of solar modules. Configuration engine 100 may indentify obstructions 308, 310, 312, 314 and 318, based on the geospatial data extracted from database 116 or, alternatively, the geospatial data may include indications of various obstructions generated via CAD interface 114 in conjunction with client-side configuration engine 110.
When traversing decision tree 202 to generate candidate configurations for the solar power system, as discussed above in conjunction with
Configuration engine 100 then continues to level 222 of decision tree 202, corresponding to a “surfaces” decision associated with the solar power system configuration, as discussed in greater detail below in conjunction with
Within level 222, configuration engine 100 generates candidate configurations 224 that each includes a different selection of surfaces 302 and 316. For example, one candidate configuration could specify solar modules placed on surface 302, another candidate configuration could specify solar modules placed on surface 316, and yet another candidate configuration could specify solar modules placed on both surfaces 302 and 316. Configuration engine 100 may discard any candidate configurations that violate engineering rules for solar power systems, including, e.g., building codes, fire zones, wind zones, required inverter fill and/or voltage drop, as well as wiring rules.
When computing value function results for candidate configurations 224 using tile grids 402 and 404, configuration engine 100 may evaluate the simulated performance of each tile within a given tile grid separately and then accumulate the results of those separate evaluations. For example, configuration engine 100 could compute a value function result for a candidate configuration that includes surface 302 by evaluating the performance of each tile of tile grid 404 separately and then accumulating the results of each separate evaluation. In doing so, configuration engine 100 may evaluate the performance of a given tile based on the location, tilt, and/or orientation of the tile, a temperature estimate for the tile, a utility rate corresponding to the location of target surface 302, and an estimated amount of irradiance (net of shadows), associated with the tile. Configuration engine 100 selects the candidate configuration that optimizes the value function and which includes surface 302 (candidate configuration 226 shown in
Within level 232, configuration engine 100 generates candidate configurations 234 that each includes a different selection of solar module type, as discussed above in conjunction with
When computing value function results for a given candidate configuration, configuration engine 100 may re-evaluate the performance of each tile associated with surface 302 based on known performance characteristics of the solar module type associated with that configuration. For example, configuration engine 100 could evaluate the performance of each tile associated with surface 302 by applying the performance characteristics of solar module type 412 to each tile within tile grid 402 and then accumulating the results of those evaluations.
Configuration engine 100 selects the candidate configuration that optimizes the value function and which includes solar module type 412 (candidate configuration 236 shown in
Within level 242, configuration engine 100 generates candidate configurations 244 that each includes a different selection of sub-regions onto which solar modules may be placed. For example, configuration engine 100 could generate a candidate configuration 244 that includes sub-region 502, and another candidate configuration 244 that includes sub-region 504.
Configuration engine 100 may then compute different results of the value function for each different candidate configuration 244 and select the configuration that optimizes the value function. Configuration engine 100 may compute value function results for a given sub-region by evaluating each tile within that sub-region separately and then accumulating the separate evaluations, in like fashion as described above in conjunction with
Configuration engine 100 selects the candidate configuration that optimizes the value function and which includes sub-region 502 (candidate configuration 246 shown in
Within level 252, configuration engine 100 generates candidate configurations 254 that each includes a different projection of one or more sub-arrays onto surface 302. Conceptual diagram 600 illustrates only one such projection associated with one candidate configuration, although configuration engine 100 may generate many other projections by projecting one or more sub-arrays onto surface 302 at different locations.
When computing value function results for candidate configurations 254 using different sub-arrays, configuration engine 100 may evaluate each sub-array separately and then accumulate the results of those separate evaluations. For example, configuration engine 100 could compute a value function result for a candidate configuration that includes sub-arrays 602, 604 and 606 by evaluating the simulated performance each of those sub-arrays separately and then accumulating the results of each separate evaluation. When evaluating the performance of a single sub-array, configuration engine 100 may evaluate the performance of each solar module included within that sub-array.
In one embodiment, when evaluating the performance of a single solar module, configuration engine 100 implements Sandia National Laboratories' PV Performance Model and estimates the performance of the solar module based on one or more of (i) the location and/or orientation of target surface 302, (ii) the solar module type, (iii) a utility rate corresponding to the location of target surface 302, (iv) an amount of irradiance (net of shadows) associated with the solar module, (v) long-term average or typical weather data as well as measured weather data of arbitrary duration and frequency as well as (vi) power flow simulators that account for module electrical wiring and topology. In other embodiments, National Renewable Energy Lab's PVWatts or the University of Wisconsin 5, 6, or 7 Parameter models or other performance models can be used in place of the Sandia National Laboratories' PV Performance Model.
Configuration engine 100 selects the candidate configuration that optimizes the value function and which includes sub-arrays 602, 604, and 604 (candidate configuration 256 shown in
Within level 262, configuration engine 100 generates candidate configurations 264 that each includes a different grouping of one or more of the sub-arrays previously selected at level 252. Each such grouping is referred to herein as an “array”. For example, one candidate configuration could include a first array comprised of sub-arrays 602 and 604 and a second array comprised of sub-array 606. A second candidate configuration could include a first array comprised only of sub-array 602 and a second array comprised of both sub-arrays 604 and 606.
When computing value function results for candidate configurations 264 using different possible arrays, configuration engine 100 may evaluate the performance of a given array by simulating the performance of the different strings of solar modules included within the corresponding sub-arrays being coupled together, i.e. stringing together those solar modules in series. For example, configuration engine 100 could evaluate the performance of an array that includes sub-arrays 602 and 604 by stringing together different collections solar modules (“strings”) within those sub-arrays and then evaluating the performance of each string in the array. Configuration engine 100 then accumulates the evaluations across different string groups within the array in order to evaluate the performance of the array as a whole. Configuration engine 100 may repeat this process for each array associated with a given configuration and accumulate the evaluations for each array when computing the value function result for that configuration.
Configuration engine 100 selects the candidate configuration that optimizes the value function (candidate configuration 266 shown in
Within level 272, configuration engine 100 generates candidate configurations 274 that each includes a different permutation of the remaining components required to build a solar power system, i.e. BOS. As known in the art, BOS may include a specific selection of inverter type, a particular wiring topology and gauge, one or more fuse types, and so forth. When computing value function results for candidate configurations 274, configuration engine 100 integrates all of the outcomes to design decisions made at previous levels and provides a precise evaluation of each candidate configuration 274. Configuration engine 100 may then select a candidate configuration based on the value function results, or simply generate the GUI mentioned in conjunction with
By implementing the techniques described above in conjunction with
As shown, the method begins at step 702, where configuration engine 100 receives data describing the “site,” i.e. the target installation location. The site data could include 3D geospatial data defining the terrain and/or structures located at the site, as well as other relevant data associated with the site, such as historical weather data, electricity rates, ecological statistics, and so forth.
At step 704, configuration engine 100 generates a candidate configuration based on the site data and designates that configuration as the “current configuration.” Configuration engine 100 may also compute the result of the value function with the current configuration in order to generate a rough estimate of the performance of a solar power system installed at the site.
At step 706, configuration engine 100 proceeds to a subsequent level in decision tree 202. During a first pass through steps 706, 708, 710, 712, 714, and 722, configuration engine 100 proceeds to level 222 corresponding to a “surfaces” design decision associated with the solar power system configuration. During subsequent passes, configuration engine 100 may proceed to a different level of decision tree 100. Since configuration engine 100 may perform steps 706, 708, 710, 712, 714, and 722 for multiple levels of decision tree 202, as noted above, those steps will be described generically.
At step 708, configuration engine 100 generates N candidate configurations based on the current configuration by determining N alternative outcomes to a design decision associated with the current level of decision tree 202. For example, configuration engine 100 could generate N candidate configurations 224 within level 222 that each includes N alternative sets of surfaces on which solar modules may be mounted.
At step 710, configuration engine 100 computes a different result of the value function for each of the N candidate configurations generated at step 708. The inputs to the value function depend on the current level of decision tree 202, such that the inputs for a given level are based on the outcomes to the design decisions determined at previous levels of decision tree 202.
The value function itself could be derived from a wide variety of possible algorithms generally intended to estimate the value of a system, including algorithms that simply estimate the performance of candidate configurations as well as more complex algorithms that optimize the search process involved with traversing decision tree 202. In one embodiment, configuration engine 100 implements a cost function in order to estimate the cost of the various candidate configurations associated with the current level. The cost function could be, for example, a best-first search, an A star (A*) search, a distance-plus-cost function, or another heuristic-based search algorithm.
At step 712, configuration engine 100 identifies the candidate configuration with the optimal value function result compared to the value function results associated with other candidate configurations within the current level of decision tree 702. In one embodiment, configuration engine 100 identifies one or more different candidate configurations having optimal value function results compared to those associated with other candidate configurations within the current level of decision tree 702.
At step 714, configuration engine 100 determines whether the value function result associated with the candidate configuration identified at step 712 has a less optimal value function result than that associated with a candidate configuration generated at a previous level of decision tree 202. If so, then the method 700 proceeds to step 716.
At step 716, configuration engine 100 discards the current configuration, thereby “pruning” the branch of decision tree 202 associated with that configuration. At step 718, configuration engine 100 designates the candidate configuration generated at the previous level (i.e., having the more optimal value function result) as the current configuration. At step 720, configuration engine 100 returns the previous level of decision tree 202. The method then returns to step 706 proceeds as described above.
Returning to step 714, if configuration engine 100 determines that the value function result associated with the candidate configuration identified at step 712 does not have a less optimal value function result than that associated with any candidate configurations generated at previous levels of decision tree 202, the method proceeds to step 722.
At step 722, configuration engine 100 determines whether the current configuration is complete, i.e. configuration engine 100 has generated a candidate configuration residing within level 272 of decision tree 202. If configuration engine 100 determines that the current configuration is not complete, then the method 700 returns to step 706 and proceeds as described above. Otherwise, the method 700 ends.
By implementing the method 700, including performing steps 706, 708, 710, 712, 714, and 722 one or more times, configuration engine 100 traverses decision tree 202, thereby generating one or more complete configurations for the solar power system.
Client-side solution engine 810-0 is a software program that includes a set of program instructions capable of being executed by processing unit 104. When executed by processing unit 104, client-side solution engine 810-0 configures processing unit 104 to participate in generating multiple pricing solutions for a solar power system to be installed on the target surface. The solar power system could be configured using the techniques described above in conjunction with
In the context of this disclosure, the term “pricing solution” refers to the cost or rate of return, over any time period, of a solar installation. Additionally, the term “pricing parameter” refers to any quantity or collection of quantities, including the financial model, used to generate the pricing solution for a solar installation.
Pricing parameters 820 could include, for example, such solar system configuration parameters as the solar power system size in peak kilowatts (kWp) or the solar power system production in kilowatt-hours (kWh). Pricing parameters 820 could also include such financial parameters as the purchase rebate, the lease term, the down payment, the initial electricity rate, the customer's credit rating, and so forth. Further, pricing parameters 820 could include such financial models such as net present value or internal rate of return. Those skilled in the art will understand that the aforementioned parameters are illustrative only and that any quantifiable factor associated with a solar power system installation could be used as a pricing parameter.
When generating a pricing solution, client-side solution engine 810-0 may cooperate with a corresponding software program within computing device 122, cloud-based solution engine 810-0, in order to determine the various pricing solutions for one or more solar power system configurations. Cloud-based solution engine 810-1 is a software program that includes a set of program instructions capable of being executed by processing unit 124. When executed by processing unit 124, cloud-based solution engine 810-1 configures processing unit 124 to cooperate with client-side solution engine 810-0 in generating solar power system pricing solutions.
Persons skilled in the art will understand that client-side solution engine 810-0 and cloud-based solution engine 810-1 may interact with one another in any technically feasible fashion to generate pricing solutions for one or more solar power system configurations. As such, for the sake of simplicity, client-side solution engine 810-0 and cloud-based solution engine 810-1 will be referred to hereinafter collectively as “solution engine 810.”
Pricing interface 830 is a software program that includes a set of program instructions capable of being executed by processing unit 104. When executed by processing unit 104, pricing interface 830 generates a GUI (shown in
In
In
Referring generally to
Parameter selections 1020 are generated by pricing interface 830 from pricing parameters 820 and GUI filters 930. As describe above in conjunction with
Solution engine 810 uses pricing parameters 820, parameter selections 1020 and candidate configuration 1010 to generate pricing options 940. Pricing solutions are sent through pricing interface 830 to GUI 900 where they are presented to the user via solution sorting/filtering 1040. The user may select from the presented pricing options 940 or adjust GUI filters 930 to generate alternate pricing options 940.
In one embodiment of the current invention, pricing parameters 820 and parameter selections 1020 are applied to one candidate configuration 1010 to generate pricing options 940. In another embodiment of the current invention, pricing parameters 820 and parameter selections 1020 are applied to multiple candidate configurations 1010 to generate pricing options 940. In yet another embodiment, pricing parameters 820 and parameter selections 1020 may be used at step 704 of the method 700 shown in
As shown, a method 1100 begins at step 1110, where solution engine 810 receives candidate configuration 1010. Candidate configuration 1010 may be a configuration generated via the method 700 or may be any other solar power system configuration.
At step 1120, solution engine 810 receives pricing parameters 820 and parameter selections 1020. Pricing parameters 820 may reflect a standard set of parameters used to compute pricing solutions for solar power system configurations, while parameter selections reflect user-selected values of pricing parameters 820. At step 1130, solution engine 810 generates pricing options 940 based on the specific set of pricing parameters selected at step 1120. At step 1140, solution engine 810 sends pricing options 940 to pricing interface 830, which, in turn, populates solution interface 920 with a set of pricing solutions.
At step 1150, the user may adjust the GUI filters 930 with GUI 900. If the user changes the GUI filters 930, then pricing interface 830 generates a new set of parameter selections 1020 and the method 1100 returns to step 1120 and proceeds as described above. If the user does not adjust GUI filters 820, then the method 1100 continues to step 1160.
At step 1160, the user selects one or more solution checkboxes via solution sorting/filtering 1040. Solution sorting/filtering 1040 may include checkboxes or other elements for receiving a selection of a pricing option 940. In this fashion, the user may identify one or more available pricing options 940, thereby indicating a preference to those pricing options 940. The method 1100 then ends.
In sum, a solar power system pricing and configuration engine is configured to generate solar power system configurations and corresponding pricing solutions with minimal involvement from a user. Solar power system configurations are generated by automatically exploring a decision tree of design options. The resulting configurations are combined with pricing parameters associated with a financial model to produce pricing solutions. The user can modify either the pricing parameters or the configuration to generate alternate sets of pricing solutions. The resulting pricing solutions can then be selected and presented to the customer.
Advantageously, the number of solar power system configurations and pricing solutions that can be explored is greatly expanded resulting in more available options and lower cost for the buyer. Furthermore, the user exploring the available pricing solutions requires minimal training in the financial models used to price solar power installations, thereby streamlining the process of identifying and selecting pricing solutions.
Interactive design engine 100 can therefore combine the functionalities of configuration engine 100 and pricing engine 100 to offer an end-to-end, interactive design and pricing system capable of generating customized and signature-ready proposals in real time. As used herein, “real time” may refer to a time period that is reasonable for a user to wait for on a typical trip to a retail store (e.g., less than 1 hour, less than 30 minutes, or less than 15 minutes). Signature-ready proposals may be electronically signed, or paper copies can be printed out on site for the user's signature. Accordingly, alone or together with cloud-based configuration engine 130, client-side configuration engine 110 can generate one or more configurations for a solar power system to be installed on a target surface, as described above with respect to
A user may interface with interactive design engine 100 either on a self-serve basis or with salesperson assistance. To begin, a user may enter her personal information, such as her name, address, and/or other identifying information (e.g., a Social Security Number for running a credit check), using one or more of I/O devices 106 of computing device 102, which may be resident at a retail establishment, for example.
Once the personal information is received, client-side configuration engine 110, client-side solution engine 810-0, cloud-based configuration engine 130, and/or cloud-based solution engine 810-1 can operate as described above and feed the results to client-side results engine 1210-0 and/or cloud-based results engine 1210-1 to output a results package that includes one or more of the following: one or more preliminary designs or a final design; an electricity production estimate; a shading analysis; a customer savings estimate; a financial assessment; a rendering of the proposed design; contract documents; permit sets; sales materials; marketing materials; rebate applications; and so forth. Thus, a user can approach computing device 102 and receive a signature-ready proposal for a solar power system in real time.
As depicted in
As used herein, the term direct manipulation may refer to interacting with graphical representations of real-world objects, such as an aerial view of the user's property, including the user's roof (or other potential solar power installation surface) and objects or obstructions located thereon, nearby objects that may shade the installation surface, solar panel configurations to be installed thereon, and so forth. Direct manipulation of candidate solar power system configurations may be facilitated by a CAD interface, such as CAD interface 114, for example.
As one particular example, a user may interact with computing device 102 to verify that certain objects located on the user's roof are indeed installation obstructions (e.g., skylight obstructions 308 and 310 and vent obstructions 312 and 314 of
As one other example, the user may be presented with one or more user interfaces, such as GUI 900 with filter interface 910 and solution interface 920, for example, that can allow the user quickly navigate the spectrum of possible pricing solutions for a given solar power system installation. In some embodiments, rather than operating on already-generated solar power system configurations, one or more of the filters in filter interface 910 may be set prior to solar power system configurations being generated such that the filters operate as prior constraints on the generation of solar power system configurations.
As noted above, a user may interface with interactive design engine 100 either on a self-serve basis or with salesperson assistance. A salesperson be available on-site to help users navigate interactive design system 1300 and/or one or more remote salespersons may be available to help users (e.g., via audio or video chat carried out through computing device 102 using communications methods known in the art). The remote salespersons may be located at a remote service center equipped, for example, with a computing device (e.g., computing device 102) or equipped with a computing device capable of interacting with a cloud-based computing device (e.g., computing device 122). Accordingly, an on-site or remote salesperson may be able to, alone or in conjunction with the user, perform at least some of the design, analysis, or presentation work, such as data entry, verification of obstructions, manipulation of generated solar power installations, verification of adequacy of pricing solutions, and so forth. It should be understood that although a user may interact with software components installed on computing device 102, some or all of the computing may be carried out by computing device 122 to hasten the process.
In the event that all computing devices 102 of interactive design system 1300 being used or all on-site and/or remote salespersons are currently engaged with other customers, queue/wait management software may be provide potential customers with wait times for access to a computing device and/or an on-site or remote sales person. The queue/wait management software may be installed on any suitable computing device (e.g., one of computing devices 102) of interactive design system 1300. In some embodiments, queue/wait times may be displayed on display 1302, and potential customers may sign up for a session on computing devices 102 on a self-serve basis or on a salesperson-assisted basis. Sessions may be first-come first-served basis as computing devices and/or salespersons become available, or sessions may be set up as appointments with specified return times.
As shown, method 1400 begins at step 1410, where configuration engine 110 generates candidate solar power system configurations. The candidate solar power system configurations may be generated via method 700 or may be any other solar power system configuration.
At step 1420, the user may adjust one or more of the candidate solar power system configurations with a GUI provided by CAD interface 114. Indeed, the user may be permitted to directly manipulate one or more aspects of the candidate solar power system configurations, such as to validate, invalidate or add obstructions, alter the configuration and/or placement of solar modules on the installation surface, and/or to otherwise view and asses the candidates from an aesthetic point of view. CAD interface 114 may be presented in the form of a manipulatable 2D or 3D GUI.
At step 1430, solution engine 810 generates one or more pricing solutions for each candidate solar power system configuration generated at step 1410 and adjusted at step 1420. The pricing solutions may be generated via method 1100 or may be any other pricing solution. It should be understood that the pricing solutions may be generated before or after the user adjusts the candidate solar power system configurations at step 1420. In the event that the user adjusts one or more aspects of the candidate solar power system configurations at step 1420, pricing solutions previously generated at step 1430 may be recalculated to take the adjustments into account. In some embodiments, step 1430 may be carried out in real time along with step 1410 or step 1420. Thus, details of the generated pricing solutions may be displayed along with the candidate solar power system configurations using one or more of I/O devices 106 (e.g., a touch-sensitive display).
At step 1440, the user may adjust the GUI filters 930 with GUI 900. If the user changes the GUI filters 930, then pricing interface 830 generates a new set of parameter selections 1020 and the method 1100 returns to step 1120 and proceeds as described above. If the user does not adjust GUI filters 820, then method 1400 continues to step 1450. In some embodiments, one or more of the user may adjust one or more of GUI filters 930 prior to configuration engine 110 generating any candidate solar power system configurations at step 1410 such that the filters act as prior constraints on the generation of candidate solar power system configurations.
At step 1450, the user may select one of the candidate solar power system configurations, and at step 1460, the user may select one of the pricing solutions generated for the selected solar power system configuration.
At step 1470, results engine 1210 can generate a results package for the selected solar power system configuration and pricing solution. The results package can include one or more of the following: one or more preliminary designs or a final design; an electricity production estimate; a shading analysis; a customer savings estimate; a financial assessment; a rendering of the proposed design; contract documents; permit sets; sales materials; marketing materials; rebate applications; and so forth. The method then ends.
In sum, a solar power system pricing and configuration engine is configured to generate solar power system configurations and corresponding pricing solutions with minimal involvement from a user. Solar power system configurations are generated by automatically exploring a decision tree of design options. The resulting configurations are combined with pricing parameters associated with a financial model to produce pricing solutions. The user can modify either the pricing parameters or the configuration to generate alternate sets of pricing solutions. The resulting pricing solutions can then be selected and presented to the customer.
One embodiment of the invention may be implemented as a program product for use with a computer system. The program(s) of the program product define functions of the embodiments (including the methods described herein) and can be contained on a variety of computer-readable storage media. Illustrative computer-readable storage media include, but are not limited to: (i) non-writable storage media (e.g., read-only memory devices within a computer such as CD-ROM disks readable by a CD-ROM drive, flash memory, ROM chips or any type of solid-state non-volatile semiconductor memory) on which information is permanently stored; and (ii) writable storage media (e.g., floppy disks within a diskette drive or hard-disk drive or any type of solid-state random-access semiconductor memory) on which alterable information is stored.
The invention has been described above with reference to specific embodiments. Persons skilled in the art, however, will understand that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The foregoing description and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
This application is a continuation-in-part (CIP) of U.S. patent application Ser. No. 14/299,925, entitled “TECHNIQUE FOR PRICING A SOLAR POWER SYSTEM,” filed on Jun. 9, 2014, and published as U.S. Patent Application Publication No. 2014/0289168 on Sep. 25, 2015, which is a CIP of U.S. patent application Ser. No. 13/685,526, entitled “METHOD AND SYSTEM FOR GENERATING MULTIPLE CONFIGURATIONS FOR A SOLAR POWER SYSTEM,” filed on Nov. 26, 2012, and published on May 29, 2014 as U.S. Patent Application Publication No. 2014/0149081. This application also claims the benefit of U.S. Provisional Application Ser. No. 61/910,667, entitled “INTERACTIVE DESIGN FOR IN-STORE SELLING OF SOLAR PANELS,” filed Dec. 2, 2013. The subject matter of these related applications is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14299925 | Jun 2014 | US |
Child | 14558043 | US | |
Parent | 13685526 | Nov 2012 | US |
Child | 14299925 | US |