N/A
Technical Field
This disclosure relates generally to well logging, and more particularly to the interactive display of results obtained from the inversion of the logging data.
Background Art
Logging tools have long been used in wellbores to make, for example, formation evaluation measurements to infer properties of the formations surrounding the borehole and the fluids in the formations. Common logging tools include electromagnetic tools, nuclear tools, and nuclear magnetic resonance (NMR) tools, though various other tool types are also used.
Early logging tools were run into a wellbore on a wireline cable, after the wellbore had been drilled. Modern versions of such wireline tools are still used extensively. However, the need for information while drilling the borehole gave rise to measurement-while-drilling (MWD) tools and logging-while-drilling (LWD) tools. By collecting and processing such information during the drilling process, the driller can modify or correct key steps of the operation to optimize performance.
MWD tools typically provide drilling parameter information such as weight on the bit, torque, temperature, pressure, direction, and inclination. LWD tools typically provide formation evaluation measurements such as resistivity, porosity, and NMR distributions. MWD and LWD tools often have components common to wireline tools (e.g., transmitting and receiving antennas), but MWD and LWD tools must be constructed to not only endure but to operate in the harsh environment of drilling. The terms MWD and LWD are often used interchangeably, and the use of either term in this disclosure will be understood to include both the collection of formation and wellbore information, as well as data on movement and placement of the drilling assembly.
An interactive display of results obtained from the inversion of logging data is produced by obtaining and inverting the logging data using a Monte-Carlo inversion. An interactive plot having a percentile scale plotted against a location parameter is produced and a particular percentile is selected using the interactive plot. A cross-section plot for the particular percentile using the results of the Monte-Carlo inversion is produced. The particular percentile can be a curve representing a best-fit solution or a polyline representing selected solutions. Background color/shading can be displayed on the interactive plot to indicate user-defined constraints have been applied. Uncertain features can be plotted on a corresponding cross-section display using fading. Clusters of solutions that are substantially equally likely, given the measurements at a particular drill location, can be identified and plotted. A cross-section constructed from the layered models belonging to a particular cluster can be overlaid on another cross-section.
Other advantages and features will be apparent from the following detailed description when read in conjunction with the attached drawings.
It should be understood that the drawings are not to scale and that the disclosed embodiments are sometimes illustrated diagrammatically and in partial views. In certain instances, details that are not necessary for an understanding of the disclosed method and apparatus or that would render other details difficult to perceive may have been omitted. It should be understood that this disclosure is not limited to the particular embodiments illustrated herein.
Some embodiments will now be described with reference to the figures. Like elements in the various figures may be referenced with like numbers for consistency. In the following description, numerous details are set forth to provide an understanding of various embodiments and/or features. However, it will be understood by those skilled in the art that some embodiments may be practiced without many of these details and that numerous variations or modifications from the described embodiments are possible. As used here, the terms “above” and “below”, “up” and “down”, “upper” and “lower”, “upwardly” and “downwardly”, and other like terms indicating relative positions above or below a given point or element are used in this description to more clearly describe certain embodiments. However, when applied to equipment and methods for use in wells that are deviated or horizontal, such terms may refer to a left to right, right to left, or diagonal relationship, as appropriate.
A drill string 12 is suspended within the borehole 11 and has a bottom hole assembly 100 which includes a drill bit 105 at its lower end. The surface system includes platform and derrick assembly 10 positioned over the borehole 11, the assembly 10 including a rotary table 16, kelly 17, hook 18 and rotary swivel 19. The drill string 12 is rotated by the rotary table 16, energized by means not shown, which engages the kelly 17 at the upper end of the drill string. The drill string 12 is suspended from a hook 18, attached to a traveling block (also not shown), through the kelly 17 and a rotary swivel 19 which permits rotation of the drill string relative to the hook. As is well known, a top drive system could alternatively be used.
In the example of this embodiment, the surface system further includes drilling fluid or mud 26 stored in a pit 27 formed at the well site. A pump 29 delivers the drilling fluid 26 to the interior of the drill string 12 via a port in the swivel 19, causing the drilling fluid to flow downwardly through the drill string 12 as indicated by the directional arrow 8. The drilling fluid exits the drill string 12 via ports in the drill bit 105, and then circulates upwardly through the annulus region between the outside of the drill string and the wall of the borehole, as indicated by the directional arrows 9. In this well known manner, the drilling fluid lubricates the drill bit 105 and carries formation cuttings up to the surface as it is returned to the pit 27 for recirculation.
The bottom hole assembly 100 of the illustrated embodiment includes a logging-while-drilling (LWD) module 120, a measuring-while-drilling (MWD) module 130, a roto-steerable system and motor 150, and drill bit 105.
The LWD module 120 is housed in a special type of drill collar, as is known in the art, and can contain one or a plurality of known types of logging tools. It will also be understood that more than one LWD and/or MWD module can be employed, e.g. as represented at 120A. (References, throughout, to a module at the position of 120 can alternatively mean a module at the position of 120A as well.) The LWD module includes capabilities for measuring, processing, and storing information, as well as for communicating with the surface equipment. In the present embodiment, the LWD module includes a resistivity measuring device.
The MWD module 130 is also housed in a special type of drill collar, as is known in the art, and can contain one or more devices for measuring characteristics of the drill string and drill bit. The MWD tool further includes an apparatus (not shown) for generating electrical power to the downhole system. This may typically include a mud turbine generator powered by the flow of the drilling fluid, it being understood that other power and/or battery systems may be employed. In the present embodiment, the MWD module includes one or more of the following types of measuring devices: a weight-on-bit measuring device, a torque measuring device, a vibration measuring device, a shock measuring device, a stick/slip measuring device, a direction measuring device, and an inclination measuring device.
An example of a tool which can be the LWD tool 120, or can be a part of an LWD tool suite 120A, is shown in
Recent electromagnetic (EM) logging tools use one or more tilted or transverse antennas, with or without axial antennas. Those antennas may be transmitters or receivers. A tilted antenna is one whose dipole moment is neither parallel nor perpendicular to the longitudinal axis of the tool. A transverse antenna is one whose dipole moment is perpendicular to the longitudinal axis of the tool, and an axial antenna is one whose dipole moment is parallel to the longitudinal axis of the tool. A triaxial antenna is one in which three antennas (i.e., antenna coils) are arranged to be mutually orthogonal. Typically, one antenna (coil) is axial and the other two are transverse. Two antennas are said to have equal angles if their dipole moment vectors intersect the tool's longitudinal axis at the same angle. For example, two tilted antennas have the same tilt angle if their dipole moment vectors, having their tails conceptually fixed to a point on the tool's longitudinal axis, lie on the surface of a right circular cone centered on the tool's longitudinal axis and having its vertex at that reference point. Transverse antennas obviously have equal angles of 90 degrees, and that is true regardless of their azimuthal orientations relative to the tool.
The interactive display is used to control how the results of the Monte-Carlo inversion are used to make the cross-section display. For example, a user can move a horizontal percentile line, using what is referred to herein as the “interactor”, to control which results of the Monte-Carlo inversion are used to build the cross-section. Moving the horizontal line from, say, y=50% to y=90% will change the cross-section from representing the median value from an inversion to the 90th percentile results from that inversion for all x values. This may allow the user to better gauge the sensitivity of the results (e.g., the uncertainty in the parameters describing the layered formation). Optionally, when the user changes the percentile in the interactive plot, a corresponding curve representing resistivity profile can move synchronously in the vertical resistivity profile plot (top left in
A curve representing the “best solution” from an error minimization point of view can be drawn on the interactive plot. This curve can be selected to generate a cross-section showing the best-fit solution for all x values.
In another mode of interaction, a series of points can be entered by the user (see
Different methods are available to generate one or several curves in the interactive display, each corresponding to a selection of Monte-Carlo inversion results from which the user can select. At least two classes can be distinguished among those methods. A first class exploits the outputs of the standard Monte-Carlo inversion. One technique from this class decomposes the a posteriori distribution of the Monte-Carlo inversion into the sum of a series of n Gaussian distributions and creates n curves corresponding to the mean of each of those Gaussian distributions.
A second class introduces additional criteria to select a sub-population of the a posteriori distribution of the standard Monte-Carlo inversion. This second class is a direct extension of the Monte-Carlo inversion, where the criteria for a result to be kept not only include the distance between the measured data curves and the curves obtained by a forward modeling of the inversion result, but also include additional conditions such as only those models: having resistivities in a given range at a given distance from the tool, having a given number of beds, belonging to the main cluster of models, yielding local anisotropy in a given range, and having the highest correlation with solutions found at a selected X position. An exemplary set of such criteria could be articulated as “results with a local resistivity anisotropy greater than five in layers of less than two ohm-m resistivity”. One could then compute for each station the best-fit result that satisfies those criteria, thereby defining a curve in the interactive plot and the corresponding cross-section.
Using those criteria to post-process the standard Monte-Carlo inversion rather than embedding them in a cost function educes a clear separation between “impartial” data analysis and “user-driven” logic, and allows for the flexibility for a user to define local criteria, such as those applicable only to a given field or well. For instance, shales will have anisotropy above five only in relatively old formations. Therefore, that criterion may make sense in one area, based on geology, but not in other areas. Those criteria could be established prior to drilling as part of the well plan, exploiting a priori knowledge.
As a further display option, the background of the interactive plot can be colored or shaded as a function of the error, from a minimization point of view, corresponding to the Monte-Carlo inversion result at a particular x station and y percentile. Where constraints are changed within the inverted interval, the zones over which constraint sets are applied is indicated by the background color (shade) of the percentile display, as shown in
A further example makes use of a clustering algorithm to provide for an automatic separation of the set of layered models comprising the a posterior distribution into a set of informative clusters. Such a technique is helpful by providing the user with alternate scenarios that are equally probable given the constraints of the measurements. Some of those scenarios may be consistent with the user's prior knowledge of the field or particular well. The user can then select a specific scenario with which to update the curtain plot (cross-section) display.
For example,
The process of clustering the set of layered models into two clusters can be accomplished as follows. Suppose that the layered models are indexed by j=1, . . . , N. Let I be the true vertical depth interval in which the layered models are defined. In the case shown in
An automatic k-means clustering can be performed at the measurement stations near the selected measurement station, and a new curtain plot can be constructed which displays the cluster 1 solutions in the selected region. This processing step can be accomplished as follows and shown in
This same procedure is then repeated (step 208) at measurement station s=s*+2 where we again compare the cluster centroids μk,s*+2 with the cluster 1 centroid μ1,s*+1. An entirely similar procedure is conducted (step 210) for the measurement stations to the left of the selected measurement station s<s*. In this way the cluster means μ1,s are identified and grouped together (step 212) for all of the measurement stations s=sstart, . . . , send. As shown in
While only certain embodiments have been set forth, alternatives and modifications will be apparent from the above description to those skilled in the art. These and other alternatives are considered equivalents and within the scope of this disclosure and the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4899112 | Clark et al. | Feb 1990 | A |
6826486 | Malinvero | Nov 2004 | B1 |
6945781 | Perry et al. | Sep 2005 | B2 |
7379601 | Yang et al. | May 2008 | B2 |
7949476 | Strubel et al. | May 2011 | B2 |
8331671 | Dai | Dec 2012 | B2 |
8583378 | Jacques et al. | Nov 2013 | B2 |
20020133323 | Dahlberg | Sep 2002 | A1 |
20020169006 | Buehrer et al. | Nov 2002 | A1 |
20030214286 | Heidler | Nov 2003 | A1 |
20070168133 | Bennett et al. | Jul 2007 | A1 |
20070244646 | Zhang | Oct 2007 | A1 |
20080109204 | Zhang et al. | May 2008 | A1 |
20090198447 | Legendre et al. | Aug 2009 | A1 |
20100010744 | Prange et al. | Jan 2010 | A1 |
20100058222 | Bergstrom | Mar 2010 | A1 |
20100095235 | Bennett et al. | Apr 2010 | A1 |
20100161228 | Heliot et al. | Jun 2010 | A1 |
20110264420 | Sander et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
1151326 | Nov 2001 | EP |
2009099825 | Aug 2009 | WO |
Entry |
---|
Lloyd, S.P., Least squares quantization in PCM, IEEE Transactions on Information Theory, vol. 28(2), 1982, pp. 129-137. |
International Search Report and Written Opinion issued corresponding International No. PCT/US2012/049891 dated Nov. 9, 2012; 8 pages. |
Supplementary Search Report issued in EP application 12821824.5 dated Sep. 15, 2015, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20130038463 A1 | Feb 2013 | US |