The present invention relates generally to interactive input systems, and in particular, to an interactive input system comprising a multi-angle reflector.
Interactive input systems that allow users to inject input (eg. digital ink, mouse events etc.) into an application program using an active pointer (eg. a pointer that emits light, sound or other signal), a passive pointer (eg. a finger, cylinder or other suitable object) or other suitable input device such as for example, a mouse or trackball, are known. These interactive input systems include but are not limited to: touch systems comprising touch panels employing analog resistive or machine vision technology to register pointer input such as those disclosed in U.S. Pat. Nos. 5,448,263; 6,141,000; 6,337,681; 6,747,636; 6,803,906; 7,232,986; 7,236,162; and 7,274,356 assigned to SMART Technologies ULC of Calgary, Alberta, Canada, assignee of the subject application, the contents of which are incorporated by reference; touch systems comprising touch panels employing electromagnetic, capacitive, acoustic or other technologies to register pointer input; tablet personal computers (PCs); touch-enabled laptop PCs; personal digital assistants (PDAs); and other similar devices.
PCT Application Publication No. WO 02/03316 to Morrison et al., assigned to the assignee of the present application, the contents of which are incorporated by reference, discloses a camera-based touch system comprising a touch screen that includes a passive touch surface on which a computer-generated image is presented. A rectangular bezel or frame surrounds the touch surface and supports digital cameras at its corners. The digital cameras have overlapping fields of view that encompass and look across the touch surface. The digital cameras acquire images looking across the touch surface from different locations and generate image data. Image data acquired by the digital cameras is processed by digital signal processors to determine if a pointer exists in the captured image data. When it is determined that a pointer exists in the captured image data, the digital signal processors convey pointer characteristic data to a master controller, which in turn processes the pointer characteristic data to determine the location of the pointer relative to the touch surface using triangulation. The pointer location data is conveyed to a computer executing one or more application programs. The computer uses the pointer location data to update the computer-generated image that is presented on the touch surface. Pointer contacts on the touch surface can therefore be recorded as writing or drawing or used to control execution of applications programs executed by the computer.
The touch system described above has been shown to work extremely well. However, due to employing two or four digital cameras and associated digital signal processors, the touch system described above is somewhat expensive to produce.
Camera-based touch systems having fewer hardware components have been considered. For example, U.S. Pat. No. 5,484,966 to Segen discloses an apparatus for determining the location of an object within a generally rectangular active area. The apparatus includes a pair of mirrors extending along different sides of the active area and oriented so that the planes of the mirrors are substantially perpendicular to the plane of the active area. The mirrors are arranged at a 90 degree angle with respect to one another and intersect at a corner of the active area that is diametrically opposite a detecting device. The detecting device includes a mirror and a CCD sensor and looks along the plane of the active area. A processor communicates with the detecting device and receives image data from the CCD sensor.
According to Segen, when a stylus is placed in the active area, the detecting device sees the stylus directly as well as images of the stylus reflected by the mirrors. Images including the stylus and stylus reflections are captured by the detecting device and the captured images are processed by the processor to detect the stylus and stylus reflections in the captured images. With the stylus and stylus reflections having been determined, the location of the stylus within the active area is calculated using triangulation.
Although the camera-based touch system described above employs only one optical sensing device and processor, a reflective bezel is required along multiple sides of the active area, which can be obstructive to users.
It is therefore an object of the present invention to provide a novel interactive input system comprising a multi-angle reflector along a single side of the pointer input region.
Accordingly, in one aspect there is provided an interactive input system, comprising:
a pointer input region;
a multi-angle reflecting structure located along a single side of the pointer input region and operable to reflect radiation from a pointer within the pointer input region from at least two surface locations of the multi-angle reflecting structure, wherein the at least two surface locations each have different respective angles;
an imaging system operable to capture within at least a portion of the pointer input region images of the reflected radiation located within a field of view of the imaging system; and
processing structure for determining the location of the pointer relative to the pointer input region based on the at least one image.
In another aspect there is provided, in an interactive input system, a method of detecting the position of a pointer associated with a pointer input region, the method comprising:
illuminating the pointer when applied to the pointer input region;
reflecting along a single side of the pointer input region a first incident radiation signal received from the illuminated pointer;
reflecting along the single side of the pointer input region a second incident radiation signal received from the illuminated pointer;
acquiring an image of the reflected first and second incident radiation signals; and
processing the acquired image to determine the position of the pointer relative to the pointer input region using triangulation.
In another aspect there is provided an interactive input system, comprising:
a pointer input region;
a multi-angle reflector located along a single side of the pointer input region and operable to reflect radiation received from an object associated with the pointer input region from at least two non-planar surfaces of the multi-angle reflector; and
an imaging system operable to capture within at least a portion of the pointer input region images of the reflected radiation located within a field of view of the imaging system for determining the location of the object relative to the pointer input region.
In another aspect there is provided an interactive input system, comprising:
a pointer input region;
a plurality of reflectors located along a single side of the pointer input region and operable to reflect radiation received from an object associated with the pointer input region from each of the plurality of reflectors, wherein each of the plurality of reflectors comprise a different shape; and
an imaging system operable to capture within at least a portion of the pointer input region images of the reflected radiation located within a field of view of the imaging system for determining the location of the object relative to the pointer input region.
In another aspect there is provided an interactive input system, comprising:
a pointer input region;
a plurality of reflectors located along a single side of the pointer input region and operable to reflect radiation received from an object associated with the pointer input region from each of the plurality of reflectors, wherein each of the plurality of reflectors comprise a different angular orientation; and
an imaging system operable to capture within at least a portion of the pointer input region images of the reflected radiation located within a field of view of the imaging system for determining the location of the object relative to the pointer input region.
Embodiments of the present invention will now be described more fully with reference to the accompanying drawings in which:
Turning now to
The display screen 174, in this embodiment an LCD monitor, presents images provided by the processing structure 180 executing one or more application programs. The an external interface 156 provides the means by which images may be provided to other systems for various purposes, such as web conferencing.
The multi-angle reflector 176, in this embodiment a reflective compound curve shaped bezel, similar in appearance to a sinusoid, is positioned along a first side of the pointer input region 178 and across the pointer input region 178 from imaging system 172. The reflective surface of the multi-angle reflector 176 faces the imaging system 172, and extends a short distance approximately vertical from the plane of the pointer input region 178.
The imaging system 172 is positioned along a second side of the pointer input region 178 with a field of view capable of observing the multi-angle reflector 176 and generally looking across the pointer input region 178 from the multi-angle reflector 176 and is aimed at the multi-angle reflector 176.
The processing structure 180 in this embodiment is a general purpose computing device in the form of a computer. The computer (not shown) comprises, for example, a processing unit, system memory (volatile and/or non-volatile memory), other non-removable or removable memory (eg. a hard disk drive, RAM, ROM, EEPROM, CD-ROM, DVD, flash memory, etc.) and a system bus coupling the various computer components to the processing unit. The computer can include a network connection to access shared or remote drives, one or more networked computers, or other networked devices.
During operation of the touch system 150, processing structure 180 outputs video data to display screen 174. A pointer placed in the pointer input region 178 of touch surface 152 emits incident radiation towards the multi-angle reflector 176. Multi-angle reflector 176 reflects the incident radiation from two (2) of its surface locations towards the imaging system 172. The imaging system 172 receives images of the multi-angle reflector 176 including the reflected radiation, and provides the images to master controller 154. Master controller 154 processes the images to generate pointer location data based on the location of the reflected radiation in the images, and the pointer location data is then provided to processing structure 180. The processing structure 180 uses the pointer location data to update the video images being output to display screen 174 for presentation and interaction with applications. Pointer contacts in the pointer input region 178 of the touch surface 152 on the display screen 174 can therefore be recorded as writing or drawing or used to control execution of applications programs executed by the processing structure 180.
The multi-angle reflector 176 is constructed according to a numerical optimization based on design constraints, so that at least two reflections of the pointer 184 in the entire pointer input region 152 are visible to the imaging system 172. In this embodiment, the multi-angle reflector 176 comprises both a section having a convex shape and a section having a concave shape. Each section is a rectangular strip from the surface of a torus. The optimization itself is developed on the two dimensional plane parallel to the pointer input region, where each part of the multi-angle reflector 176 is projected as a portion of a circle. The goal of optimization is to determine the parameters of each portion of the circles, including the radius of each circle, the location of the center of each circle, and the start and end angles of each portion of the circle. Optimization of these parameters is performed under a number of constraints. For example, the two portions of the circles are conjugated by the first derivative. In other words, for reflector continuity, the first derivative of the ending point of the first circle must equal that of the ending point of the second circle. Also, the two portions of the circles are conjugated at a predetermined location, and are within the camera's field of view (FOV). The radius of each piece of circle is no larger than a first upper limit, and the height of the multi-angle reflector (i.e. the conjugated circles portions) is no larger than a second upper limit. The goal here is to achieve, for any point in the pointer input region, at least two different light rays to the imaging system after reflection by the multi-angle reflector.
The optimization is developed numerically with the assistance of optimization software such as for example Matlab™ or Zemax™. Those skilled in the art will appreciate that other types of curvatures may also be used for designing the multi-angle reflector 176, other appropriate optimization parameters and constraints can also be employed, and other appropriate optimization techniques and software can be used for the optimization.
Incident ray 430 of radiation, denoted as vector Îe, is emitted by the pointer 184 and reaches a reflective surface location 425, denoted as (xe,ye), on a concave portion of the multi-angle reflector 176. The reflected ray 432, denoted as vector {right arrow over (O)}e, leaves the surface location 425 at a reflection angle in accordance with the law of reflection, as described below.
Similarly, incident ray 434, denoted as vector Îc, is emitted by the pointer 184 and is reflected from a surface location 424, denoted as (xc,yc), on a convex portion of the multi-angle reflector 176. The reflected radiation ray 436, denoted as vector {right arrow over (O)}e, leaves from surface location 424 at a reflection angle according to the law of reflection.
According to the law of reflection, the angle of incidence of a ray with respect to a surface normal is equal to the angle of reflection of the ray.
Ô=Î+(2 cos θi){circumflex over (n)} (1)
Ô=Î−2Î, {circumflex over (n)}{circumflex over (n)} (2)
Î, {circumflex over (n)}Î●{circumflex over (n)}=∥Î∥∥{circumflex over (n)}∥(−cos θi) (3)
∥Î∥∥{circumflex over (n)}∥=1 (4)
Returning to
For positions at which the camera 182 is able to observe the pointer 184 directly, the image of the pointer 184 can be used in the calculation to triangulate the position or the pointer 184 can be ignored. Using the image of the pointer 184 in the triangulation calculation is more robust as it compensates for instances where the pointer 184 obscures one of the images of the reflections 424 or 425. The pointer 184 in the image may appear larger than its reflections due to the proximity of the pointer 184 to the imaging system 172. Further, the pointer 184 may appear brighter in the image than its reflections due to the attenuation of the multi-angle reflectors. Preferably, the size of the bright spots in the image are compared to determine which is the largest and therefore coming directly from the pointer and not having been reflected by the reflecting structure. However, another method by which the bright spots due to the reflection are determined is by defining a line between the calculated position of each pair of bright spots detected (as set out below) and seeing if the third bright spot (eg. not in the tested pair) falls on the line. If the third bright spot falls on this line, then the pair of bright spots is the reflected ones. Otherwise, another of the pairs is the reflected bright spots
Image sensor 280 produces images of the multi-angle reflector 176. When pointer 184 is in the pointer input region, the produced images include two bright points/areas at locations 407 and 406. The images are provided to the master controller 154, which calculates the coordinates (x0, y0) of the pointer 184 based on the locations in the images of the bright spots at locations 407 and 406 and known parameters respecting the positions in the reference coordinate system of the camera entrance pupil 421, the image sensor 280, and the multi-angle reflector 176.
The field of view 502 of the digital camera 182 is demonstrated in
The slope kc of the ray {right arrow over (O)}c reflected from surface location 424 on the convex portion of the multi-angle reflector 176 to the camera entrance pupil 421 is first calculated (step 702), as shown in Equation 5 below:
kc=tan(−(pc−u0)*dp+90) (5)
where:
The slope ke of the ray {right arrow over (O)}e reflected from surface location 425 on the concave portion of the multi-angle reflector 176 to the camera entrance pupil 421 is then calculated in a similar manner (step 704), as shown in Equation 6, below:
ke=tan(−(pe−u0)*dp+90) (6)
where:
Based on the calculated slope kc and known coordinates (0,ycam) of the camera entrance pupil 421, the equation of the reflected ray {right arrow over (O)}c is determined as
y=kc x+ycam (7).
The x-coordinate (xc, yc) of the intersection point 424 of the reflected ray {right arrow over (O)}c with the surface of the multi-angle reflector 176 is then determined by using the equation of the reflected ray {right arrow over (O)}c and the predefined surface coordinate data of the multi-angle reflector 176 stored in the lookup table. Many methods can be used. For example, linear search methods may be used to find (xc, yc), with which at least a subset of the predefined surface coordinate data of the multi-angle reflector 176 stored in the lookup table are used, where the subset of coordinates may be determined by using, e.g., the Newton's method. For each pair of coordinates (xi,yi) in the selected subset, one substitutes xi into Equation 7 to calculate the corresponding y-coordinate
The point can be determined by checking each of the pairs of coordinates describing the multi-angle reflector surface in the look up table to see which pair of coordinates fits the line equation of the reflected ray. i.e. A y-coordinate on the reflected ray can be calculated for each x-coordinate in the look up table and the calculated y-coordinates can be compared with the y-coordinates in the look up table. When the calculated y-coordinate on the reflected ray matches the y-coordinate in the look up table, the reflection point has been found. Various methods could be used to increase the speed of the search. For example, a coarse search could be performed on a subset of the coordinates initially to identify the region of the reflector where the intersection point falls, and a finer search could then be used to determine the exact intersection point.
In a similar manner, based on the calculated slope ke and the known coordinates (0,ycam) of the camera entrance pupil 421, the equation of the reflected ray {right arrow over (O)}e is determined. The coordinates (xe,ye) of the intersection point 425 of the reflected ray {right arrow over (O)}e with the surface of the multi-angle reflector 176 is then determined by using the equation of the reflected ray {right arrow over (O)}e and the predefined surface coordinate data of the multi-angle reflector 176 stored in the lookup table (step 708).
With the coordinates (xc, yc) of surface location 424 having been determined, the slope Ktc of a tangent to the convex portion of the surface of the multi-angle reflector 176 at coordinates (xc, yc) of surface location 424 is calculated (step 710). More particularly, the slope Ktc is calculated as the slope of a line connecting two nearby surface locations (selected from the lookup table) centered at coordinates (xc, yc) of surface location 424.
With the slope Ktc of the tangent at surface location 424 having been calculated, the normal {circumflex over (n)}c at surface location 424 is then calculated (step 712) as shown in Equation 8 below:
{circumflex over (n)}c=(−sin(alc), cos(alc)) (8)
where:
The normalized form Ôc of vector {right arrow over (O)}c representing the ray from surface location 424 to camera entrance pupil 421 is then calculated (step 714), as shown in Equation 9 below:
Ôc={right arrow over (O)}c/∥{right arrow over (O)}c∥ (9)
where:
Based on the law of reflection described above with reference to
Îc=Ôc−2Ôc,{circumflex over (n)}c{circumflex over (n)}c (10)
where:
The slope Kic of vector Îc is then calculated (step 718), as shown in Equation 11 below:
Kic=Îc (2)/Îc (1) (11)
where:
Based on the slope Kic and coordinates (xc, yc) of surface location 424, a line equation for a line passing through (xc, yc) with a slope Kic, representing the incident ray from pointer 184 reflected at surface location 424 is defined (step 720), as shown in Equation 12 below:
y=Kic(x−xc)+yc (12)
The line representing incident ray from pointer 184 reflected at surface location 425 is defined in a similar manner as has been described above. In particular, with the coordinates (xe, ye) of surface location 425 having been determined at step 708, the slope Kte of a tangent to the concave portion of the surface of the multi-angle reflector 176 at coordinates (xe, ye) of surface location 425 is calculated (step 722). More particularly, the slope Kte is calculated as the slope of a line connecting two nearby surface locations (selected from the lookup table) centered at coordinates (xe, ye) of surface location 425.
With the slope Ktc of the tangent at surface location 425 having been calculated, the normal {circumflex over (n)}e (a unit vector with a magnitude of 1) at surface location 425 is then calculated (step 724) as shown in Equation 13 below:
{circumflex over (n)}e=(−sin(ale), cos(ale)) (13)
where:
The normalized form Ôe of vector {right arrow over (O)}e representing the ray from surface location 425 to camera entrance pupil 421 is then calculated (step 726), as shown in Equation 14 below:
Ôe={right arrow over (O)}e/∥{right arrow over (O)}e∥ (14)
where:
Based on the law of reflection described above with reference to
Îe=Ôe−2Ôe,{circumflex over (n)}e{circumflex over (n)}e (15)
The slope Kie of vector Îe is then calculated (step 730), as shown in Equation 16 below:
Kie=Îe (2)/Îe (1) (16)
where
Based on the slope Kie and coordinates (xe, ye) of surface location 425, a line equation for a line passing through (xe, ye) with a slope Kie, representing the incident ray from pointer 184 reflected at surface locate 425 is defined (step 732), as shown in Equation 17 below:
y=Kie(x−xe)+ye (17)
With line equations for lines representing the two incident rays Ie and Ic having been defined as shown in Equations 11 and 16 above, the location (x0, y0) of pointer 184 is then calculated based on the intersection of the incident rays Ie and Ic determined by equating the two lines, as shown in Equation 18 below:
Kic(x0−xc)+yc=Kie(x0−xe)+ye (18)
Thus:
A calibration procedure is performed to determine exact values for the system parameters, including any offset (dx, dy) of the camera entrance pupil 421 relative to the origin point (0,0) in the reference coordinate system, based on camera parameters including the principal point 422 of the camera, the angular resolution dp of the camera in degrees per pixel, and physical dimensions of the touch system including the distance R of the camera to the nearest edge of the pointer input region along the plane of the pointer input region 178.
The pointer locations at each of the designated calibration positions 701 are determined as described above with reference to
After the estimates of the system parameters have been revised, the calibration process returns to step 908 and new pointer coordinates are calculated based on the revised system parameter estimates. If at step 912 none of the error values is greater than the threshold value, the system parameters are saved as calibrated system parameters (step 916).
In an alternative embodiment of
Using similar algorithms described above for calibration and triangulation applied individually for each multi-angle reflector, the resolution overall of the interactive surface increases as shown by the increased density of the rays 504. Moreover, if one multi-angle reflector 176, 1102 becomes damaged or obscured through dust, dirt, etc then the other multi-angle reflector can compensate for this problem.
In yet another embodiment of
In yet another embodiment shown in
In yet another alternative embodiment,
In yet another embodiment, shown in
By having more reflections visible (by using more rows and/or sections of multi-angle reflectors), additional redundancy is added to the interactive system 174 at the expense of processing power required to process the additional rows. For the pointer 184 in the lower left corner of
One of skill in the art would know that other variations are possible, the facets of the multi-angle reflector can be curved to increase the area of the interactive surface 178 covered by each facet 1504 or to improve the linearity of coverage across the interactive surface 178. The facets could be much larger or smaller.
To improve the field of view and its orientation (as shown in
A prism 1704 slides in front of the camera 1702 to re-direct the field of view of the camera 1702 to include a multi-angle reflector 178 comprising a plurality of planar mirror segments or facets 1504 at different angles. The multi-angle reflector 178 is at an angle greater than 90 degrees with respect to the plane of the touch sensitive area 178, such that reflections of an illuminated pointer 184 in the touch sensitive area 178 are visible to the camera 1702 when the prism 1704 is positioned over the camera 1702. The illuminated pointer 184 may be an infrared light-emitting pen, or it may be a passive pointer such as a passive pen or a finger that is illuminated by one or more light sources disposed along the edge, at the camera, or at the corners adjacent the edge of the touch sensitive area 178 that the multi-angle reflector 176 is positioned along.
Likewise, by using multiple rows of compound facets 1504, the system, using a lit pointer, could be used to detect gestures in the three dimensional free space in front of the screen and above the keyboard of a standard laptop computer.
Another embodiment of the system incorporates a computer learning system (such as artificial intelligence, neural networks, fuzzy logic, etc) where strips of faceted tape could be applied and, by moving a lit pointer around the touch area along a known path, the system could associate reflection patterns to pointer locations. This approach would simplify construction by allowing essentially random facets to be placed on the multi-angle reflector and the reflective profile will be determined. Moreover, if facets of the reflector become damaged or dirty, the computer learning system may be able to compensate for these defects.
Although several embodiments have been presented, one of skill in the art will appreciate that other embodiments of the interactive input system are possible. One such embodiment might employ alternative forms of multi-angle reflectors could be employed to further reduce the amount of physical space required for the reflecting structure. For example, a multi-angle reflector composed of a plurality of non-planar reflectors arranged in rows or a multi-angle reflector with a plurality of concave and convex portions could be employed. Alternatively, a multi-angle reflector described by a mathematical function, as opposed to discrete surface locations stored in a lookup table, could be employed.
The sliding prism could incorporate filtering of specific types of light in order to improve the signal-to-noise ratio of the interactive input system. By incorporating the filter in the prism, the camera can be used as a conventional camera for web-conferencing and provide an optimal system for touch interaction when the prism is placed over the camera.
Those of skill in the art will appreciate that may different wavelengths of light would work with this system, for example, visible, white, IR, etc. However, it is preferable to use a non-visible form of light to reduce interference with the images being displayed.
Those of skill in the art will appreciate that an illuminated passive pointer could be used with the interactive input systems described above, such that the passive pointer is illuminated by a source of illumination that is either located near the imaging system 172 or at some other position that is remote from the pointer. In such an embodiment, the pointer would be reflective in order to provide sufficient light to the multi-angle reflectors. The light source could incorporate an infrared (IR) Light Emitting Diode (LED) for such a passive pointer systems. Techniques such as that described in U.S. patent application Ser. No. 12/118,521 to McGibney et al., assigned to the assignee of the present application, the contents of which are incorporated by reference, could be applied to the interactive input system for additional advantage. The LEDs may be located at the cameras, along the bezels of the display, but preferably should be located outside of the direct FOV of the camera. Alternatively, the LEDs may be located at the multi-angle reflector and a retro-reflective pointer could be used.
Those of skill in the art will appreciate that although the imaging system looks generally across the touch surface in most of the embodiments described, the imaging system may be located at other positions in the interactive input system. For example, the imaging system may be located at a corner of the pointer input region, or it may look down on the pointer input region. At any of these locations, the field of view of the imaging system comprises at least a substantial portion of the multi-angle reflector.
Those of skill in the art will also appreciate that the mathematical procedures and equations described in the preferred embodiment are exemplary and that other mathematical techniques could be used to obtain the pointer coordinates. For example, other techniques such as Newton's method could be used to estimate the tangent vectors to points along the surface of the multi-angle reflector.
Those of skill in the art will also appreciate that other processing structures could be used in place of the master controller and computer processor described in the preferred embodiment. The master controller could be eliminated and its processing functions could be performed by the computer. Various implementations of the master controller are possible. Although the preferred embodiment of the invention uses a DSP in the camera assembly, other processors such as microcontrollers, central processing units (CPUs), graphics processing units (GPUs), or cell-processors could be used in place of the DSP. Alternatively, the DSP and the master controller could be integrated.
Those of skill in the art will appreciate that although the embodiments presented in this application incorporate a liquid crystal display (LCD) display screen, other types of display screens such as a plasma display screen, or a projector and screen could be used in place of an LCD display screen.
Although preferred embodiments have been described, those of skill in the art will appreciate that variations and modifications may be made without departing from the spirit and scope thereof as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2769374 | Sick | Nov 1956 | A |
3025406 | Stewart et al. | Mar 1962 | A |
3128340 | Harmon | Apr 1964 | A |
3187185 | Milnes | Jun 1965 | A |
3360654 | Muller | Dec 1967 | A |
3478220 | Milroy | Nov 1969 | A |
3613066 | Cooreman | Oct 1971 | A |
3764813 | Clement et al. | Oct 1973 | A |
3775560 | Ebeling et al. | Nov 1973 | A |
3857022 | Rebane et al. | Dec 1974 | A |
3860754 | Johnson et al. | Jan 1975 | A |
4107522 | Walter | Aug 1978 | A |
4144449 | Funk et al. | Mar 1979 | A |
4243879 | Carroll et al. | Jan 1981 | A |
4247767 | O'Brien et al. | Jan 1981 | A |
4420261 | Barlow et al. | Dec 1983 | A |
4459476 | Weissmueller et al. | Jul 1984 | A |
4468694 | Edgar | Aug 1984 | A |
4507557 | Tsikos | Mar 1985 | A |
4550250 | Mueller et al. | Oct 1985 | A |
4553842 | Griffin | Nov 1985 | A |
4558313 | Garwin et al. | Dec 1985 | A |
4639720 | Rympalski et al. | Jan 1987 | A |
4672364 | Lucas | Jun 1987 | A |
4673918 | Adler et al. | Jun 1987 | A |
4703316 | Sherbeck | Oct 1987 | A |
4710760 | Kasday | Dec 1987 | A |
4737631 | Sasaki et al. | Apr 1988 | A |
4742221 | Sasaki et al. | May 1988 | A |
4746770 | McAvinney | May 1988 | A |
4762990 | Caswell et al. | Aug 1988 | A |
4766424 | Adler et al. | Aug 1988 | A |
4782328 | Denlinger | Nov 1988 | A |
4811004 | Person et al. | Mar 1989 | A |
4818826 | Kimura | Apr 1989 | A |
4820050 | Griffin | Apr 1989 | A |
4822145 | Staelin | Apr 1989 | A |
4831455 | Ishikawa | May 1989 | A |
4851664 | Rieger | Jul 1989 | A |
4868551 | Arditty et al. | Sep 1989 | A |
4868912 | Doering | Sep 1989 | A |
4888479 | Tamaru | Dec 1989 | A |
4893120 | Doering et al. | Jan 1990 | A |
4916308 | Meadows | Apr 1990 | A |
4928094 | Smith | May 1990 | A |
4943806 | Masters et al. | Jul 1990 | A |
4980547 | Griffin | Dec 1990 | A |
4990901 | Beiswenger | Feb 1991 | A |
5025314 | Tang et al. | Jun 1991 | A |
5025411 | Tallman et al. | Jun 1991 | A |
5097516 | Amir | Mar 1992 | A |
5103085 | Zimmerman | Apr 1992 | A |
5105186 | May | Apr 1992 | A |
5109435 | Lo et al. | Apr 1992 | A |
5130794 | Ritchey | Jul 1992 | A |
5140647 | Ise et al. | Aug 1992 | A |
5148015 | Dolan | Sep 1992 | A |
5162618 | Knowles | Nov 1992 | A |
5162783 | Moreno | Nov 1992 | A |
5164714 | Wehrer | Nov 1992 | A |
5168531 | Sigel | Dec 1992 | A |
5179369 | Person et al. | Jan 1993 | A |
5196835 | Blue et al. | Mar 1993 | A |
5196836 | Williams | Mar 1993 | A |
5239152 | Caldwell et al. | Aug 1993 | A |
5239373 | Tang et al. | Aug 1993 | A |
5272470 | Zetts | Dec 1993 | A |
5317140 | Dunthorn | May 1994 | A |
5359155 | Helser | Oct 1994 | A |
5374971 | Clapp et al. | Dec 1994 | A |
5414413 | Tamaru et al. | May 1995 | A |
5422494 | West et al. | Jun 1995 | A |
5448263 | Martin | Sep 1995 | A |
5457289 | Huang et al. | Oct 1995 | A |
5483261 | Yasutake | Jan 1996 | A |
5483603 | Luke et al. | Jan 1996 | A |
5484966 | Segen | Jan 1996 | A |
5490655 | Bates | Feb 1996 | A |
5502568 | Ogawa et al. | Mar 1996 | A |
5525764 | Junkins et al. | Jun 1996 | A |
5528263 | Platzker et al. | Jun 1996 | A |
5528290 | Saund | Jun 1996 | A |
5537107 | Funado | Jul 1996 | A |
5554828 | Primm | Sep 1996 | A |
5581276 | Cipolla et al. | Dec 1996 | A |
5581637 | Cass et al. | Dec 1996 | A |
5591945 | Kent | Jan 1997 | A |
5594469 | Freeman et al. | Jan 1997 | A |
5594502 | Bito et al. | Jan 1997 | A |
5617312 | Iura et al. | Apr 1997 | A |
5638092 | Eng et al. | Jun 1997 | A |
5670755 | Kwon | Sep 1997 | A |
5686942 | Ball | Nov 1997 | A |
5698845 | Kodama et al. | Dec 1997 | A |
5729704 | Stone et al. | Mar 1998 | A |
5734375 | Knox et al. | Mar 1998 | A |
5736686 | Perret, Jr. et al. | Apr 1998 | A |
5737740 | Henderson et al. | Apr 1998 | A |
5739479 | Davis-Cannon | Apr 1998 | A |
5745116 | Pisutha-Arnond | Apr 1998 | A |
5764223 | Chang et al. | Jun 1998 | A |
5771039 | Ditzik | Jun 1998 | A |
5784054 | Armstrong et al. | Jul 1998 | A |
5785439 | Bowen | Jul 1998 | A |
5786810 | Knox et al. | Jul 1998 | A |
5790910 | Haskin | Aug 1998 | A |
5801704 | Oohara et al. | Sep 1998 | A |
5804773 | Wilson et al. | Sep 1998 | A |
5818421 | Ogino et al. | Oct 1998 | A |
5818424 | Korth | Oct 1998 | A |
5819201 | DeGraaf | Oct 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5831602 | Sato et al. | Nov 1998 | A |
5854491 | Pryor et al. | Dec 1998 | A |
5909210 | Knox et al. | Jun 1999 | A |
5911004 | Ohuchi et al. | Jun 1999 | A |
5914709 | Graham et al. | Jun 1999 | A |
5920342 | Umeda et al. | Jul 1999 | A |
5936615 | Waters | Aug 1999 | A |
5940065 | Babb et al. | Aug 1999 | A |
5943783 | Jackson | Aug 1999 | A |
5963199 | Kato et al. | Oct 1999 | A |
5982352 | Pryor | Nov 1999 | A |
5988645 | Downing | Nov 1999 | A |
5990874 | Tsumura | Nov 1999 | A |
6002808 | Freeman | Dec 1999 | A |
6008798 | Mato, Jr. et al. | Dec 1999 | A |
6031531 | Kimble | Feb 2000 | A |
6061177 | Fujimoto | May 2000 | A |
6075905 | Herman et al. | Jun 2000 | A |
6076041 | Watanabe | Jun 2000 | A |
6091406 | Kambara et al. | Jul 2000 | A |
6100538 | Ogawa | Aug 2000 | A |
6104387 | Chery et al. | Aug 2000 | A |
6118433 | Jenkin et al. | Sep 2000 | A |
6122865 | Branc et al. | Sep 2000 | A |
6128003 | Smith et al. | Oct 2000 | A |
6141000 | Martin | Oct 2000 | A |
6144366 | Numazaki et al. | Nov 2000 | A |
6147678 | Kumar et al. | Nov 2000 | A |
6153836 | Goszyk | Nov 2000 | A |
6161066 | Wright et al. | Dec 2000 | A |
6179426 | Rodriguez, Jr. et al. | Jan 2001 | B1 |
6188388 | Arita et al. | Feb 2001 | B1 |
6191773 | Maruno et al. | Feb 2001 | B1 |
6208329 | Ballare | Mar 2001 | B1 |
6208330 | Hasegawa et al. | Mar 2001 | B1 |
6209266 | Branc et al. | Apr 2001 | B1 |
6215477 | Morrison et al. | Apr 2001 | B1 |
6222175 | Krymski | Apr 2001 | B1 |
6226035 | Korein et al. | May 2001 | B1 |
6229529 | Yano et al. | May 2001 | B1 |
6232962 | Davis et al. | May 2001 | B1 |
6252989 | Geisler et al. | Jun 2001 | B1 |
6256033 | Nguyen | Jul 2001 | B1 |
6262718 | Findlay et al. | Jul 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6320597 | Ieperen | Nov 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6326954 | Van Ieperen | Dec 2001 | B1 |
6328270 | Elberbaum | Dec 2001 | B1 |
6335724 | Takekawa et al. | Jan 2002 | B1 |
6337681 | Martin | Jan 2002 | B1 |
6339748 | Hiramatsu | Jan 2002 | B1 |
6346966 | Toh | Feb 2002 | B1 |
6352351 | Ogasahara et al. | Mar 2002 | B1 |
6353434 | Akebi et al. | Mar 2002 | B1 |
6359612 | Peter et al. | Mar 2002 | B1 |
6362468 | Murakami et al. | Mar 2002 | B1 |
6377228 | Jenkin et al. | Apr 2002 | B1 |
6384743 | Vanderheiden | May 2002 | B1 |
6414671 | Gillespie et al. | Jul 2002 | B1 |
6414673 | Wood et al. | Jul 2002 | B1 |
6421042 | Omura et al. | Jul 2002 | B1 |
6427389 | Branc et al. | Aug 2002 | B1 |
6429856 | Omura et al. | Aug 2002 | B1 |
6429857 | Masters et al. | Aug 2002 | B1 |
6480187 | Sano et al. | Nov 2002 | B1 |
6496122 | Sampsell | Dec 2002 | B2 |
6497608 | Ho et al. | Dec 2002 | B2 |
6498602 | Ogawa | Dec 2002 | B1 |
6504532 | Ogasahara et al. | Jan 2003 | B1 |
6507339 | Tanaka | Jan 2003 | B1 |
6512513 | Fleck et al. | Jan 2003 | B2 |
6512838 | Rafii et al. | Jan 2003 | B1 |
6517266 | Saund | Feb 2003 | B2 |
6518600 | Shaddock | Feb 2003 | B1 |
6522830 | Yamagami | Feb 2003 | B2 |
6529189 | Colgan et al. | Mar 2003 | B1 |
6530664 | Vanderwerf et al. | Mar 2003 | B2 |
6531999 | Trajkovic | Mar 2003 | B1 |
6532006 | Takekawa et al. | Mar 2003 | B1 |
6540366 | Keenan et al. | Apr 2003 | B2 |
6540679 | Slayton et al. | Apr 2003 | B2 |
6545669 | Kinawi et al. | Apr 2003 | B1 |
6559813 | DeLuca et al. | May 2003 | B1 |
6563491 | Omura | May 2003 | B1 |
6567078 | Ogawa | May 2003 | B2 |
6567121 | Kuno | May 2003 | B1 |
6570103 | Saka et al. | May 2003 | B1 |
6570612 | Saund et al. | May 2003 | B1 |
6577299 | Schiller et al. | Jun 2003 | B1 |
6587099 | Takekawa | Jul 2003 | B2 |
6590568 | Astala et al. | Jul 2003 | B1 |
6594023 | Omura et al. | Jul 2003 | B1 |
6597348 | Yamazaki et al. | Jul 2003 | B1 |
6597508 | Seino et al. | Jul 2003 | B2 |
6603867 | Sugino et al. | Aug 2003 | B1 |
6608619 | Omura et al. | Aug 2003 | B2 |
6614422 | Rafii et al. | Sep 2003 | B1 |
6624833 | Kumar et al. | Sep 2003 | B1 |
6626718 | Hiroki | Sep 2003 | B2 |
6630922 | Fishkin et al. | Oct 2003 | B2 |
6633328 | Byrd et al. | Oct 2003 | B1 |
6650318 | Arnon | Nov 2003 | B1 |
6650822 | Zhou | Nov 2003 | B1 |
6674424 | Fujioka | Jan 2004 | B1 |
6683584 | Ronzani et al. | Jan 2004 | B2 |
6690357 | Dunton et al. | Feb 2004 | B1 |
6690363 | Newton | Feb 2004 | B2 |
6690397 | Daignault, Jr. | Feb 2004 | B1 |
6710770 | Tomasi et al. | Mar 2004 | B2 |
6714311 | Hashimoto | Mar 2004 | B2 |
6720949 | Pryor et al. | Apr 2004 | B1 |
6736321 | Tsikos et al. | May 2004 | B2 |
6738051 | Boyd et al. | May 2004 | B2 |
6741250 | Furlan et al. | May 2004 | B1 |
6747636 | Martin | Jun 2004 | B2 |
6756910 | Ohba et al. | Jun 2004 | B2 |
6760009 | Omura et al. | Jul 2004 | B2 |
6760999 | Branc et al. | Jul 2004 | B2 |
6774889 | Zhang et al. | Aug 2004 | B1 |
6778207 | Lee et al. | Aug 2004 | B1 |
6803906 | Morrison et al. | Oct 2004 | B1 |
6828959 | Takekawa et al. | Dec 2004 | B2 |
6829372 | Fujioka | Dec 2004 | B2 |
6864882 | Newton | Mar 2005 | B2 |
6911972 | Brinjes | Jun 2005 | B2 |
6919880 | Morrison et al. | Jul 2005 | B2 |
6927384 | Reime et al. | Aug 2005 | B2 |
6933981 | Kishida et al. | Aug 2005 | B1 |
6947032 | Morrison et al. | Sep 2005 | B2 |
6954197 | Morrison et al. | Oct 2005 | B2 |
6972401 | Akitt et al. | Dec 2005 | B2 |
6972753 | Kimura et al. | Dec 2005 | B1 |
7002555 | Jacobsen et al. | Feb 2006 | B1 |
7007236 | Dempski et al. | Feb 2006 | B2 |
7015418 | Cahill et al. | Mar 2006 | B2 |
7030861 | Westerman et al. | Apr 2006 | B1 |
7057647 | Monroe | Jun 2006 | B1 |
7058204 | Hildreth et al. | Jun 2006 | B2 |
7075054 | Iwamoto et al. | Jul 2006 | B2 |
7084857 | Lieberman et al. | Aug 2006 | B2 |
7084859 | Pryor | Aug 2006 | B1 |
7084868 | Farag et al. | Aug 2006 | B2 |
7098392 | Sitrick et al. | Aug 2006 | B2 |
7121470 | McCall et al. | Oct 2006 | B2 |
7151533 | Van Iperen | Dec 2006 | B2 |
7176904 | Satoh | Feb 2007 | B2 |
7184030 | McCharles et al. | Feb 2007 | B2 |
7187489 | Miles | Mar 2007 | B2 |
7190348 | Kennedy et al. | Mar 2007 | B2 |
7190496 | Klug et al. | Mar 2007 | B2 |
7202860 | Ogawa | Apr 2007 | B2 |
7227526 | Hildreth et al. | Jun 2007 | B2 |
7232986 | Worthington et al. | Jun 2007 | B2 |
7236162 | Morrison et al. | Jun 2007 | B2 |
7237937 | Kawashima et al. | Jul 2007 | B2 |
7242388 | Lieberman et al. | Jul 2007 | B2 |
7265748 | Ryynanen | Sep 2007 | B2 |
7268692 | Lieberman | Sep 2007 | B1 |
7274356 | Ung et al. | Sep 2007 | B2 |
7283126 | Leung | Oct 2007 | B2 |
7283128 | Sato | Oct 2007 | B2 |
7289113 | Martin | Oct 2007 | B2 |
7302156 | Lieberman et al. | Nov 2007 | B1 |
7305368 | Lieberman et al. | Dec 2007 | B2 |
7330184 | Leung | Feb 2008 | B2 |
7333094 | Lieberman et al. | Feb 2008 | B2 |
7333095 | Lieberman et al. | Feb 2008 | B1 |
7352940 | Charters et al. | Apr 2008 | B2 |
7355593 | Hill et al. | Apr 2008 | B2 |
7372456 | McLintock | May 2008 | B2 |
7375720 | Tanaka | May 2008 | B2 |
RE40368 | Arnon | Jun 2008 | E |
7411575 | Hill et al. | Aug 2008 | B2 |
7414617 | Ogawa | Aug 2008 | B2 |
7479949 | Jobs et al. | Jan 2009 | B2 |
7492357 | Morrison et al. | Feb 2009 | B2 |
7499037 | Lube | Mar 2009 | B2 |
7538759 | Newton | May 2009 | B2 |
7559664 | Walleman et al. | Jul 2009 | B1 |
7619617 | Morrison et al. | Nov 2009 | B2 |
7692625 | Morrison et al. | Apr 2010 | B2 |
20010019325 | Takekawa | Sep 2001 | A1 |
20010022579 | Hirabayashi | Sep 2001 | A1 |
20010026268 | Ito | Oct 2001 | A1 |
20010033274 | Ong | Oct 2001 | A1 |
20010050677 | Tosaya | Dec 2001 | A1 |
20010055006 | Sano et al. | Dec 2001 | A1 |
20020008692 | Omura et al. | Jan 2002 | A1 |
20020015159 | Hashimoto | Feb 2002 | A1 |
20020036617 | Pryor | Mar 2002 | A1 |
20020041327 | Hildreth et al. | Apr 2002 | A1 |
20020050979 | Oberoi et al. | May 2002 | A1 |
20020064382 | Hildreth et al. | May 2002 | A1 |
20020067922 | Harris | Jun 2002 | A1 |
20020075243 | Newton | Jun 2002 | A1 |
20020080123 | Kennedy et al. | Jun 2002 | A1 |
20020118177 | Newton | Aug 2002 | A1 |
20020145595 | Satoh | Oct 2002 | A1 |
20020163530 | Takakura et al. | Nov 2002 | A1 |
20030001825 | Omura et al. | Jan 2003 | A1 |
20030025951 | Pollard et al. | Feb 2003 | A1 |
20030043116 | Morrison et al. | Mar 2003 | A1 |
20030046401 | Abbott et al. | Mar 2003 | A1 |
20030063073 | Geaghan et al. | Apr 2003 | A1 |
20030071858 | Morohoshi | Apr 2003 | A1 |
20030085871 | Ogawa | May 2003 | A1 |
20030095112 | Kawano et al. | May 2003 | A1 |
20030137494 | Tulbert | Jul 2003 | A1 |
20030142880 | Hyodo | Jul 2003 | A1 |
20030151532 | Chen et al. | Aug 2003 | A1 |
20030151562 | Kulas | Aug 2003 | A1 |
20030156118 | Ayinde | Aug 2003 | A1 |
20030161524 | King | Aug 2003 | A1 |
20030210803 | Kaneda et al. | Nov 2003 | A1 |
20030227492 | Wilde et al. | Dec 2003 | A1 |
20040001144 | McCharles et al. | Jan 2004 | A1 |
20040012573 | Morrison et al. | Jan 2004 | A1 |
20040021633 | Rajkowski | Feb 2004 | A1 |
20040031779 | Cahill et al. | Feb 2004 | A1 |
20040032401 | Nakazawa et al. | Feb 2004 | A1 |
20040046749 | Ikeda | Mar 2004 | A1 |
20040051709 | Ogawa et al. | Mar 2004 | A1 |
20040071363 | Kouri et al. | Apr 2004 | A1 |
20040108990 | Lieberman | Jun 2004 | A1 |
20040125086 | Hagermoser et al. | Jul 2004 | A1 |
20040149892 | Akitt et al. | Aug 2004 | A1 |
20040150630 | Hinckley et al. | Aug 2004 | A1 |
20040169639 | Pate et al. | Sep 2004 | A1 |
20040178993 | Morrison et al. | Sep 2004 | A1 |
20040178997 | Gillespie et al. | Sep 2004 | A1 |
20040179001 | Morrison et al. | Sep 2004 | A1 |
20040189720 | Wilson et al. | Sep 2004 | A1 |
20040201575 | Morrison | Oct 2004 | A1 |
20040204129 | Payne et al. | Oct 2004 | A1 |
20040218479 | Iwamoto et al. | Nov 2004 | A1 |
20040221265 | Leung et al. | Nov 2004 | A1 |
20040252091 | Ma et al. | Dec 2004 | A1 |
20050052427 | Wu et al. | Mar 2005 | A1 |
20050057524 | Hill et al. | Mar 2005 | A1 |
20050077452 | Morrison et al. | Apr 2005 | A1 |
20050083308 | Homer et al. | Apr 2005 | A1 |
20050104860 | McCreary et al. | May 2005 | A1 |
20050128190 | Ryynanen | Jun 2005 | A1 |
20050151733 | Sander et al. | Jul 2005 | A1 |
20050156900 | Hill et al. | Jul 2005 | A1 |
20050190162 | Newton | Sep 2005 | A1 |
20050241929 | Auger et al. | Nov 2005 | A1 |
20050243070 | Ung et al. | Nov 2005 | A1 |
20050248539 | Morrison et al. | Nov 2005 | A1 |
20050248540 | Newton | Nov 2005 | A1 |
20050270781 | Marks | Dec 2005 | A1 |
20050276448 | Pryor | Dec 2005 | A1 |
20060012579 | Sato | Jan 2006 | A1 |
20060022962 | Morrison et al. | Feb 2006 | A1 |
20060028456 | Kang | Feb 2006 | A1 |
20060034486 | Morrison et al. | Feb 2006 | A1 |
20060152500 | Weng | Jul 2006 | A1 |
20060158437 | Blythe et al. | Jul 2006 | A1 |
20060170658 | Nakamura et al. | Aug 2006 | A1 |
20060192799 | Vega et al. | Aug 2006 | A1 |
20060197749 | Popovich | Sep 2006 | A1 |
20060202953 | Pryor et al. | Sep 2006 | A1 |
20060227120 | Eikman | Oct 2006 | A1 |
20060244734 | Hill et al. | Nov 2006 | A1 |
20060274067 | Hikai | Dec 2006 | A1 |
20060279558 | Van Delden et al. | Dec 2006 | A1 |
20070002028 | Morrison et al. | Jan 2007 | A1 |
20070019103 | Lieberman et al. | Jan 2007 | A1 |
20070075648 | Blythe et al. | Apr 2007 | A1 |
20070075982 | Morrison et al. | Apr 2007 | A1 |
20070089915 | Ogawa et al. | Apr 2007 | A1 |
20070116333 | Dempski et al. | May 2007 | A1 |
20070126755 | Zhang et al. | Jun 2007 | A1 |
20070139932 | Sun et al. | Jun 2007 | A1 |
20070152984 | Ording et al. | Jul 2007 | A1 |
20070152986 | Ogawa et al. | Jul 2007 | A1 |
20070165007 | Morrison et al. | Jul 2007 | A1 |
20070167709 | Slayton et al. | Jul 2007 | A1 |
20070205994 | van Ieperen | Sep 2007 | A1 |
20070236454 | Ung et al. | Oct 2007 | A1 |
20070269107 | Iwai et al. | Nov 2007 | A1 |
20070273842 | Morrison | Nov 2007 | A1 |
20070290996 | Ting | Dec 2007 | A1 |
20070291125 | Marquet | Dec 2007 | A1 |
20080029691 | Han | Feb 2008 | A1 |
20080042999 | Martin | Feb 2008 | A1 |
20080055262 | Wu et al. | Mar 2008 | A1 |
20080055267 | Wu et al. | Mar 2008 | A1 |
20080062140 | Hotelling et al. | Mar 2008 | A1 |
20080062149 | Baruk | Mar 2008 | A1 |
20080068352 | Worthington et al. | Mar 2008 | A1 |
20080083602 | Auger et al. | Apr 2008 | A1 |
20080106706 | Holmgren et al. | May 2008 | A1 |
20080122803 | Izadi et al. | May 2008 | A1 |
20080129707 | Pryor | Jun 2008 | A1 |
20080259050 | Lin et al. | Oct 2008 | A1 |
20080259052 | Lin et al. | Oct 2008 | A1 |
20090058832 | Newton | Mar 2009 | A1 |
20090058833 | Newton | Mar 2009 | A1 |
20090146972 | Morrison et al. | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
2003233728 | Dec 2003 | AU |
2006243730 | Nov 2006 | AU |
2058219 | Apr 1993 | CA |
2367864 | Apr 1993 | CA |
2219886 | Apr 1999 | CA |
2251221 | Apr 1999 | CA |
2267733 | Oct 1999 | CA |
2268208 | Oct 1999 | CA |
2252302 | Apr 2000 | CA |
2350152 | Jun 2001 | CA |
2412878 | Jan 2002 | CA |
2341918 | Sep 2002 | CA |
2386094 | Dec 2002 | CA |
2372868 | Aug 2003 | CA |
2390503 | Dec 2003 | CA |
2390506 | Dec 2003 | CA |
2432770 | Dec 2003 | CA |
2493236 | Dec 2003 | CA |
2448603 | May 2004 | CA |
2453873 | Jul 2004 | CA |
2460449 | Sep 2004 | CA |
2521418 | Oct 2004 | CA |
2481396 | Mar 2005 | CA |
2491582 | Jul 2005 | CA |
2563566 | Nov 2005 | CA |
2564262 | Nov 2005 | CA |
2501214 | Sep 2006 | CA |
2606863 | Nov 2006 | CA |
2580046 | Sep 2007 | CA |
1310126 | Aug 2001 | CN |
1784649 | Jun 2006 | CN |
101019096 | Aug 2007 | CN |
101023582 | Aug 2007 | CN |
1440539 | Sep 2009 | CN |
3836429 | May 1990 | DE |
198 10 452 | Dec 1998 | DE |
60124549 | Sep 2007 | DE |
0125068 | Nov 1984 | EP |
0 279 652 | Aug 1988 | EP |
0 347 725 | Dec 1989 | EP |
0420335 | Apr 1991 | EP |
0 657 841 | Jun 1995 | EP |
0 762 319 | Mar 1997 | EP |
0 829 798 | Mar 1998 | EP |
0897161 | Feb 1999 | EP |
0911721 | Apr 1999 | EP |
1059605 | Dec 2000 | EP |
1262909 | Dec 2002 | EP |
1739528 | Jan 2003 | EP |
1739529 | Jan 2003 | EP |
1420335 | May 2004 | EP |
1 450 243 | Aug 2004 | EP |
1457870 | Sep 2004 | EP |
1471459 | Oct 2004 | EP |
1517228 | Mar 2005 | EP |
1550940 | Jun 2005 | EP |
1611503 | Jan 2006 | EP |
1674977 | Jun 2006 | EP |
1 297 488 | Nov 2006 | EP |
1741186 | Jan 2007 | EP |
1766501 | Mar 2007 | EP |
1830248 | Sep 2007 | EP |
1877893 | Jan 2008 | EP |
2279823 | Sep 2007 | ES |
1575420 | Sep 1980 | GB |
2176282 | May 1986 | GB |
2204126 | Nov 1988 | GB |
2263765 | Aug 1993 | GB |
57-211637 | Dec 1982 | JP |
61-196317 | Aug 1986 | JP |
61-260322 | Nov 1986 | JP |
62-005428 | Jan 1987 | JP |
63-223819 | Sep 1988 | JP |
3-054618 | Mar 1991 | JP |
03-244017 | Oct 1991 | JP |
4-350715 | Dec 1992 | JP |
4-355815 | Dec 1992 | JP |
5-181605 | Jul 1993 | JP |
5-189137 | Jul 1993 | JP |
5-197810 | Aug 1993 | JP |
06-110608 | Apr 1994 | JP |
7-110733 | Apr 1995 | JP |
7-230352 | Aug 1995 | JP |
8-016931 | Feb 1996 | JP |
8-108689 | Apr 1996 | JP |
8-240407 | Sep 1996 | JP |
8-315152 | Nov 1996 | JP |
9-091094 | Apr 1997 | JP |
9-224111 | Aug 1997 | JP |
9-319501 | Dec 1997 | JP |
10-105324 | Apr 1998 | JP |
10-222646 | Aug 1998 | JP |
11-051644 | Feb 1999 | JP |
11-064026 | Mar 1999 | JP |
11-085376 | Mar 1999 | JP |
11-110116 | Apr 1999 | JP |
11-203042 | Jul 1999 | JP |
11-212692 | Aug 1999 | JP |
2000-105671 | Apr 2000 | JP |
2000-132340 | May 2000 | JP |
2001-075735 | Mar 2001 | JP |
2001-142642 | May 2001 | JP |
2001-282456 | Oct 2001 | JP |
2001-282457 | Oct 2001 | JP |
2002-055770 | Feb 2002 | JP |
2002-236547 | Aug 2002 | JP |
2003-65716 | Mar 2003 | JP |
2003-158597 | May 2003 | JP |
2003-167669 | Jun 2003 | JP |
2003-173237 | Jun 2003 | JP |
2005-108211 | Apr 2005 | JP |
2005-182423 | Jul 2005 | JP |
2005-202950 | Jul 2005 | JP |
9627808 | Sep 1996 | WO |
9807112 | Feb 1998 | WO |
9908897 | Feb 1999 | WO |
9921122 | Apr 1999 | WO |
9928812 | Jun 1999 | WO |
9940562 | Aug 1999 | WO |
0124157 | Apr 2001 | WO |
0131570 | May 2001 | WO |
0163550 | Aug 2001 | WO |
0191043 | Nov 2001 | WO |
0203316 | Jan 2002 | WO |
0207073 | Jan 2002 | WO |
0227461 | Apr 2002 | WO |
03104887 | Dec 2003 | WO |
03105074 | Dec 2003 | WO |
2004072843 | Aug 2004 | WO |
2004090706 | Oct 2004 | WO |
2004102523 | Nov 2004 | WO |
2004104810 | Dec 2004 | WO |
2005031554 | Apr 2005 | WO |
2005034027 | Apr 2005 | WO |
WO 2005034027 | Apr 2005 | WO |
2005106775 | Nov 2005 | WO |
2005107072 | Nov 2005 | WO |
2006002544 | Jan 2006 | WO |
2006020462 | Feb 2006 | WO |
2006092058 | Sep 2006 | WO |
2006095320 | Sep 2006 | WO |
2006096962 | Sep 2006 | WO |
WO 2006095320 | Sep 2006 | WO |
2006116869 | Nov 2006 | WO |
2007003196 | Jan 2007 | WO |
2007019600 | Feb 2007 | WO |
2007037809 | Apr 2007 | WO |
2007064804 | Jun 2007 | WO |
2007079590 | Jul 2007 | WO |
2007132033 | Nov 2007 | WO |
2007134456 | Nov 2007 | WO |
2008128096 | Oct 2008 | WO |
2009029764 | Mar 2009 | WO |
2009029767 | Mar 2009 | WO |
2009146544 | Dec 2009 | WO |
WO 2009146544 | Dec 2009 | WO |
2010051633 | May 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20100110005 A1 | May 2010 | US |