The disclosure relates to an interactive projector and an operation method thereof for determining a depth information of an object.
In recent years, contact-free human-machine interfaces (cfHMIs) have been developed rapidly. At present, a number of manufacturers have been dedicated to creating various human-machine interaction devices to be applied in our daily lives. For instance, a combination of a depth camera Kinect and a projector is made by Microsoft to arrive at the application of an interactive projection. However, such design has problems of a high manufacturing cost and an over-sized volume in appearance. In addition, as an image alignment between the depth camera and the projector is still demonstrated as a product in an experimental stage, it is not yet applicable to a product. Hence, the use of the image alignment technology in the human-machine interaction devices confronts a lot of difficult and complicated issues in manufacturing process.
In accordance with the disclosure, embodiments of the present disclosure are directed to an interactive projector and an operation method thereof for determining a depth information of an object.
In an exemplary embodiment of the disclosure, the interactive projector that includes an optical engine, an image capture unit and a process unit is provided. The optical engine projects a visible image via a visible light source and an invisible pattern via an invisible light source to a projection area. Here, the visible light source and the visible are integrated to the optical engine. The image capturing unit captures an image having depth information from the projection area, in which the image is being projected on an object via the invisible light source. A processing unit is electrically coupled to the optical engine and the image capturing unit. The processing unit receives the image having depth information and determines an interactive event according to the image having depth information. According to the interactive event, a status of the optical engine is refreshed.
In another exemplary embodiment of the disclosure, the operation method of an interactive projector for determining a depth information of an object is provided, and the interactive projector includes an optical engine, an image capturing unit and a processing unit. The operation method includes following steps. An invisible light beam is projected onto a projection area by the optical engine, so as to form an invisible pattern. The invisible pattern is captured by the image capturing unit, and the invisible pattern is further stored as a reference pattern by the processing unit. The invisible light beam is projected on an object from the projection area by the optical engine, and so as to form an image having depth information of the object. The image having depth information of the object is captured by the image capturing unit. The reference pattern and the image having depth information of the object are compared by the processing unit, so as to obtain a depth information of the object.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the disclosure as claimed.
The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure.
The disclosure will now be described with reference to the accompanying figures. It is to be understood that the specific illustrated in the attached figures and described in the following description is simply an exemplary embodiment of the present disclosure. This description is made for the purpose of illustrating the general principles of the disclosure and should not be taken in a limiting sense. The scope of the disclosure is best determined by reference to the appended claims
The optical engine 110 includes a light source unit 112, an image source 114, and a projection lens 116. The light source unit 112 has a light source LS integrating both of a visible light source emitting a visible light and an invisible light source emitting an invisible light, such that the light source unit 112 provides a visible light beam and an invisible light beam simultaneously or periodically. In the embodiment, the visible light source, for example, includes a white light-emitting diode (LED), but the disclosure is not limited thereto. In other embodiments, the visible light source includes a red LED, a green LED and a blue LED. In the embodiment, the invisible light source, for example, includes an infrared ray (IR). In an embodiment, the light source unit 112 further comprises a color wheel, at least one mirror, at least one dichroic mirror, or a combination thereof, the disclosure is not limited thereto.
The image source 114 is located at light paths PL of the visible light beam and the invisible light beam. As the visible light beam and the invisible light beam pass through the image source 114, the image source 114 converts the visible light beam into a visible image beam and converts the invisible light beam into an invisible image beam. In an embodiment, the image source 114, for example, includes a display panel.
The projection lens 116 is located at light paths PI of the visible image beam and the invisible image beam. As the visible image beam and the invisible image beam pass through the projection lens 116, the projection lens 116 projects a visible image and an invisible pattern to a projection area PA located outside the optical engine 110.
In the embodiment, the light source unit 112 further includes a color wheel CW (refereeing to
With the use of a rotating color wheel, the visible light emitted by the light source LS (e.g., the white LED) is splitted into a visible light beam having mono-color, such as a red visible light beam, a green visible light beam and a blue visible light beam. Then, these of the red visible light beam, the green visible light beam and the blue visible light beam are then projected to the image source 114 to form corresponding visible image beams, and then are projected to the projection area PA through the projection lens 116, so as to present a color projection frame, i.e., the visible image. In an embodiment, the visible image can be, for example, an user operation interface. In addition, the invisible light emitted by the light source LS (e.g., the IR) is passing through the color wheel CW as the invisible light beam. Then, the invisible light beam is projected to the image source 114 to form a corresponding invisible image beams, and which are projected to the projection area PA through the projection lens 116, so as to form the invisible pattern.
The image capturing unit 120 captures an image having depth information from the projection area, in which the image having depth information is generated when the invisible image beam is projected onto an object from the projection area PA. Furthermore, before the image capturing unit 120 captures the image having depth information, the image capture unit 120 first captures a reference pattern, which the reference pattern is the invisible pattern which is generated by projecting invisible image beam to the projection area PA. In an embodiment, the image capturing unit 120 can be, for example, a depth camera, a 3D camera having a multiple lenses, a combination of multiple cameras for constructing a three-dimensional (3D) image, or other image sensors capable of detecting 3D space information.
The processing unit 130 is electrically coupled to the optical engine 110 and the image capturing unit 120. The processing unit 130 receives the image having depth information and compares the reference pattern and the image having depth information to obtain a depth information of the object. According to the depth information of the object obtained from the image having depth information, the processing unit 130 determines an interactive event. In other words, the processing unit 130 performs image process and analysis for the image having depth information of the object, so as to detect a region of the object, and the processing unit 130 determines the interactive event according to the region of the object. Then, a status of the optical engine 110 is refreshed according to the interactive event. For example, the visible image projected by the optical engine 110 is updated according to the interactive event. The processing unit 130 is, for example, a device such as a central processing unit (CPU), a graphics processing unit (GPU), or other programmable microprocessor.
Referring to
The light source unit 112′ has a light source LS integrating both of a visible light source emitting a visible light and an invisible light source emitting an invisible light, such that the light source unit 112′ provides a visible light beam and an invisible light beam simultaneously or periodically. In the embodiment, the visible light source includes a red LED, a green LED and a blue LED. In the embodiment, the invisible light source, for example, includes an IR.
In the embodiment, the light source unit 112′ further includes at least one mirror M1-M3 and at least one dichroic mirror DM. As shown in
The lens unit 118 is located at light paths PL of the visible light beam and the invisible light beam between the light source unit 112 and the image unit 114, and the lens unit 118 includes at least one optical lens. As the visible light beam and the invisible light beam provided by the light source unit 112 are projecting on the lens unit 118, the lens unit 118 adjusts transmission paths of the visible light beam and the invisible light beam toward the image source 114.
The image source 114 is located at light paths PL of the visible light beam and the invisible light beam. As the visible light beam and the invisible light beam pass through the image source 114, the image source 114 converts the visible light beam into a visible image beam and converts the invisible light beam into an invisible image beam. In an embodiment, the image source 114, for example, includes a microdisplay panel.
The projection lens 116 is located at light paths PI of the visible image beam and the invisible image beam. As the visible image beam and the invisible image beam pass through the projection lens 116, the projection lens 116 projects a visible image and an invisible pattern to a projection area PA located outside the optical engine 110.
The image capturing unit 120 captures an image having depth information from the projection area, in which the image having depth information is generated when the invisible image beam is projected onto an object from the projection area PA. Furthermore, before the image capturing unit 120 captures the image having depth information, the image capture unit 120 first captures a reference pattern, which the reference pattern is the invisible pattern being generated by projecting invisible image beam to the projection area PA. In an embodiment, the image capturing unit 120 can be, for example, a depth camera, a 3D camera having a multiple lenses, a combination of multiple cameras for constructing a three-dimensional (3D) image, or other image sensors capable of detecting 3D space information.
The processing unit 130 is electrically coupled to the optical engine 110 and the image capturing unit 120. The processing unit 130 receives the image having depth information and compares the reference pattern and the image having depth information to obtain a depth information of the object. According to the depth information of the object obtained from the image having depth information, the processing unit 130 determines an interactive event. In other words, the processing unit 130 performs image process and analysis for the image having depth information of the object, so as to detect a region of the object, and the processing unit 130 determines the interactive event according to the region of the object. Then, a status of the optical engine 110 is refreshed according to the interactive event. For example, the visible image projected by the optical engine 110 is updated according to the interactive event. The processing unit 130 is, for example, a device such as a central processing unit (CPU), a graphics processing unit (GPU), or other programmable microprocessor.
In an exemplary embodiment, as the image having depth information may be, for example, a dynamic pattern, the processing unit 130 divides the image having depth information into a first region of a first resolution and a second region of a second resolution, and the first resolution is less than the second resolution. Then, the step S40 may be divided into several steps S41, S42, S43, and S44. In
To sum up, compared to the design of a conventional human-machine interactive device, the visible light source and the invisible light source are integrated to the light source unit of the interactive projector of the disclosure, it allows that the interactive protector projects an visible image (e.g., an user operation interface) and an invisible pattern (e.g., a reference pattern and an image having depth information of an object) onto the same projection area, which makes an image alignment between the depth camera and the projector is no needed, resulting in simple manufacturing processes, low manufacturing cost, and a Portable size.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed methods and materials. It is intended that the specification and examples be considered as exemplary only, with the true scope of the disclosure being indicated by the following claims and their equivalents.
This application claims the priority benefits of U.S. provisional application Ser. No. 62/108,060, filed on Jan. 27, 2015. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
Number | Date | Country | |
---|---|---|---|
62108060 | Jan 2015 | US |