Interactive systems and methods with tracking devices

Abstract
A wearable device includes a radio-frequency identification (RFID) tag having a memory that stores identification information. The wearable device also has a power harvesting circuit configured to harness power from electromagnetic radiation. Further, the wearable device has a sensor coupled to the power harvesting circuit and configured to utilize the power to monitor a condition of the wearable device. Even further, the wearable device has a microcontroller coupled to the sensor and configured to write data indicative of the condition to the memory of the RFID tag, wherein the RFID tag is configured to transmit the identification information and the data in response to receipt of the electromagnetic radiation from an RFID reader.
Description
FIELD OF DISCLOSURE

The present disclosure relates generally to interactive systems and methods. More specifically, embodiments of the present disclosure relate to interactive systems and methods that utilize a wearable device to track a guest's interactions in an amusement park.


BACKGROUND

Amusement parks and/or theme parks may include various entertainment attractions. Some existing attractions may provide guests with an immersive or interactive experience. For example, guests may visit areas having various features, such as audio, video, and special effects. With the increasing sophistication and complexity of modern attractions, and the corresponding increase in expectations among amusement park and/or theme park guests, improved and more creative attractions are needed, including attractions that provide a more interactive and personalized experience.


SUMMARY

Certain embodiments commensurate in scope with the originally claimed subject matter are summarized below. These embodiments are not intended to limit the scope of the disclosure, but rather these embodiments are intended only to provide a brief summary of certain disclosed embodiments. Indeed, the present disclosure may encompass a variety of forms that may be similar to or different from the embodiments set forth below.


In one embodiment, a wearable device includes a radio-frequency identification (RFID) tag having a memory that stores identification information. The wearable device also includes a power harvesting circuit configured to harness power from electromagnetic radiation. Further, the wearable device includes a sensor coupled to the power harvesting circuit and configured to utilize the power to monitor a condition of the wearable device. Even further, the wearable device includes a microcontroller coupled to the sensor and configured to write data indicative of the condition to the memory of the RFID tag, wherein the RFID tag is configured to transmit the identification information and the data in response to receipt of the electromagnetic radiation from an RFID reader.


In one embodiment, a system includes a wearable device having a radio-frequency identification (RFID) tag. The RFID tag has a memory that stores identification information, and the RFID tag is configured to transmit the identification information to an RFID reader in response to receipt of electromagnetic radiation from the RFID reader. Further, the wearable device includes a tracking device supported by the wearable device and configured to facilitate tracking a position of the wearable device. Even further, the wearable device includes a power harvesting circuit supported by the wearable device and configured to harness power from the received electromagnetic radiation, wherein the harnessed power is utilized to transmit the identification information and to operate the tracking device. Further still, the system includes a processor configured to receive the identification information from the RFID reader and a signal indicative of the position of the wearable device, wherein the processor is configured to detect an interaction between the wearable device and an element of an attraction based on the received identification information and the received signal.


In one embodiment, a method includes transmitting electromagnetic radiation from a radio-frequency identification (RFID) reader. Further, the method includes harvesting power from the electromagnetic radiation using a power harvesting circuit of a wearable device. Further, the method includes utilizing the harvested power to operate a sensor supported by the wearable device to monitor a position of the wearable device. Even further, the method includes utilizing the harvested power to operate a microcontroller supported by the wearable device to write data indicative of the monitored position to a memory of a RFID tag supported by the wearable device. Then, the method includes transmitting identification information and the data from the memory of the RFID tag to the RFID reader in response to receipt of the electromagnetic radiation from the RFID reader.





BRIEF DESCRIPTION OF DRAWINGS

These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:



FIG. 1 is a schematic diagram of an interactive system, in accordance with an embodiment of the present disclosure;



FIG. 2 is an illustration showing communication between a reader system and multiple wearable devices that may be used in the interactive system of FIG. 1, in accordance with an embodiment of the present disclosure;



FIG. 3 is an illustration showing communication between a reader system and multiple wearable devices proximate to one target that may be used in the interactive system of FIG. 1, in accordance with an embodiment of the present disclosure;



FIG. 4 is an illustration showing communication between a reader system and multiple wearable devices having sensors that may be used in the interactive system of FIG. 1, in accordance with an embodiment of the present disclosure;



FIG. 5 is a flow diagram of a method of operating a wearable device having a sensor that may be used in the interactive system of FIG. 1, in accordance with an embodiment of the present disclosure; and



FIG. 6 is a flow diagram of a method of operating a wearable device having a light emitter that may be used in the interactive system of FIG. 1, in accordance with an embodiment of the present disclosure.





DETAILED DESCRIPTION

One or more specific embodiments of the present disclosure will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


Amusement parks feature a wide variety of entertainment, such as amusement park rides, performance shows, and games. The different types of entertainment may include features that enhance a guest's experience at the amusement park. For example, an attraction may include a game that has a touchscreen display that detects a guest's touch at a rendered image shown on the display screen. However, some interactive systems may provide a suboptimal experience due to inadequate or unreliable detection of the guest's interaction (e.g., recognition by the interactive system) with an interactive element (e.g., the rendered image shown on the display screen). Furthermore, it is now recognized that it is desirable for interactive systems to determine an identity of the guest that interacted with the interactive element, and thus, accurately and efficiently track points or other game statistics for each guest.


Accordingly, the present disclosure relates to systems and methods that utilize wearable devices (e.g., wearable by one or more guests) to track a guest's interactions with interactive elements. More particularly, the present disclosure relates to an interactive system that includes one or more radio-frequency identification (RFID) readers and multiple wearable devices, which each have one or more RFID tags and one or more tracking devices (e.g., light emitters and/or sensors). The tracking devices may be part of a tracking system that includes one or more components configured to generate a signal indicative of a guest's interactions with interactive elements. In an embodiment, certain tracking devices (e.g., light emitting diodes [LEDs]) of the wearable devices may also provide a visual indication of a successful interaction with an interactive element of an attraction to a guest wearing the wearable device.


As used below, the term “user” may refer to a user of the interactive system, and the user may be a guest at an amusement park. By way of example, a user may wear or carry the wearable device having the one or more tracking devices as the user travels through an attraction. The attraction may have various interactive elements, which may be any of a variety of images or objects (e.g., rendered images, virtual elements, or graphical elements presented on a display screen; physical objects or targets; costumed characters). To experience the attraction, the user may interact with the interactive elements, such as by touching a physical target or approaching a costumed character, for example.


In one embodiment, the tracking device may be a sensor (e.g., motion sensor, such as an accelerometer) that generates a signal indicative of a condition (e.g., position or movement) of the wearable device. A microcontroller of the wearable device may be coupled to the sensor and may write data indicative of the condition (e.g., based on the signal) to a memory of the RFID tag of the wearable device. As discussed in more detail below, the data may then be transferred from the RFID tag to an RFID reader, which may be positioned at a location within the attraction and/or proximate to certain interactive elements. A computing system that is communicatively coupled to the RFID reader may process the data, such as to determine that the user performed a particular movement (e.g., wave or jab) and/or to assign points to the user, for example.


In one embodiment, the tracking device may be a LED, and light emitted by the LED may be detected by a detector (e.g., light detector or camera) that is communicatively coupled to a computing system. The computing system may receive and process a signal from the detector to determine the location of the wearable device, to determine that the user performed a particular movement (e.g., wave or jab), and/or to assign points to the user, for example. As discussed in more detail below, the communication between one or more RFID readers within the attraction and the RFID tag of the wearable device may cause the LED to illuminate, thereby providing feedback to notify the user that the communication between the one or more RFID readers and the RFID tag has occurred. Because the one or more RFID readers may be positioned at an entrance of the attraction or proximate to the various interactive elements, illumination of the LED may also indicate to the user that the interactive system has detected the user within the attraction and/or has detected the user's interaction with an interactive element, for example.


Thus, the tracking device may enable the interactive system to track a user's movements (e.g., touching a target, dancing, waving, jabbing, or various other gestures), which in turn may also enable the interactive system to track the user's progress (e.g., game statistics) as the user travels through the attraction. For example, the interactive system may detect and keep track of the number of targets contacted by the user and/or the number of costumed characters met by the user.


Turning now to the drawings, FIG. 1 is a schematic representation of an interactive system 10 including a reader system 12 (e.g., radio-frequency identification [RFID] reader system) and a wearable device 14. In one embodiment, the wearable device 14 is a wearable or portable device, such as a bracelet, necklace, charm, pin, or toy, that may be worn or carried by a user as the user travels through an attraction. As discussed in more detail below, the reader system 12 is capable of communicating with the wearable device 14 through electromagnetic radiation, and the communication enables tracking of the user's progress through the attraction (e.g., number of rides completed, areas visited, interactive elements contacted, costumed characters met, virtual achievements won). The communication may also enable the wearable device 14 to provide feedback indicative of the progress and/or various interactions to the user through a feedback response (e.g. light) output by the wearable device 14.


In one embodiment, the reader system 12 may include a first reader 16, a second reader 18, and a detector 20 (e.g., a light detector or camera) that are communicatively coupled to a computing system 22 (having a memory 24 and a processor 26) that accesses information stored in one or more databases 28 (e.g., cloud-based storage system.) Generally, the first reader 16 and the second reader 18 transmit electromagnetic radiation (e.g., signals) to the wearable device 14. In one embodiment, the first reader 16 transmits signals 30 of one frequency (e.g., range), and the second reader 18 transmits signals 32 of another frequency (e.g., range) that is different from the first frequency. In addition to transmitting signals 30, 32, the first reader 16 and the second reader 18 can receive signals, such as signals from the wearable device 14 and signals from the computing system 22. In one embodiment, the computing system 22 instructs the readers (e.g., the first reader 16 and the second reader 18) to send signals 30, 32 to the wearable device 14 based on information stored in data encoded in the one or more databases 28. Thus, it should be appreciated that the first reader 16 and the second reader 18 may be transceivers that are capable of both sending and receiving signals. In one embodiment, the detector 20 detects light emitted from the wearable device 14, and the detection may be used to detect or verify a successful interaction, for example.


As illustrated in FIG. 1, one embodiment of the wearable device 14 includes a first RFID tag 34, a second RFID tag 36, a microcontroller 38, a feedback device 39 (e.g., LEDs, speaker, haptics), one or more tracking devices 40 (e.g., LED or sensor), and power circuitry 42 that cooperate to enable the wearable device 14 of the interactive system 10 to function as disclosed. In one embodiment, the feedback device 39 may also operate as the tracking device 40. The first RFID tag 34 and the second RFID tag 36 each include an antenna 46 that transmits and receives signals, a memory 48 storing information (e.g., unique identification code), a microchip 50, and an integrated circuit 52 to power the microchip 50. Additionally, the integrated circuit 52 powers the power circuitry 42, which provides power to the microcontroller 38. In one embodiment, the power circuitry 36 may include an energy storage device (e.g., capacitor, super capacitor, a battery) configured to store power. As shown, the microcontroller 38 of the wearable device 14 includes a memory 44 and a processor 45. The memory 44 stores computer-readable instructions that are executed by the processor 45 to control operation of the microcontroller 38 and other components of the wearable device 14. In one embodiment, the microcontroller 38 provides signals to the feedback device 39 to cause the feedback device 39 to provide a feedback response that signifies to the user that a successful communication between the wearable device 14 and the reader system 12 has occurred.


In one embodiment, the wearable device 14 may include the tracking device 40. In general, the tracking device 40 may be used to detect or verify user interactions with the interactive elements of the attraction. To facilitate discussion of various tracking devices 40 that may be used in the wearable device 14, the wearable device 14 of FIG. 1 includes two different types of tracking devices 40 (e.g., LEDs 54a, 54b and sensors 56); however, it should be appreciated that any number (e.g., 1, 2, 3, 4, or more) and various types of tracking devices 40 may be used in the wearable device 14. As shown, one tracking device 40 includes one or more LEDs 54a, 54b, and one tracking device 40 includes one or more sensors 56. The LEDs 54a, 54b and/or the sensors 56 receive control signals from the microcontroller 38, and may also receive power from the power circuitry 42. The LEDs 54a, 54b emit light in response to control signals from the microcontroller 38, and the emitted light may then be detected by the detector 20. The sensors 56 may include an accelerometer, a gyrometer, a pressure sensor, a sound sensor, or a light detector, for example.


In general, the antenna 46 of the first RFID tag 34 is designed to receive signals 24 from the first reader 16, and the antenna 46 of the second RFID tag 36 is designed to receive signals 26 from the second reader 18 of the reader system 12. In one embodiment, the microcontroller 38 identifies interactions between the tags 34, 36 and the readers 16, 18 and sends signals (e.g., control signals) to cause illumination of one or more of the LEDs 54. In one embodiment, the LEDs 54 may emit visible light to provide feedback to the user. Thus, the LEDs 54 may operate as the feedback device 29 to provide feedback to the user, in addition to operating as the tracking device 40 to enable the computing system 22 to track the position of the user. In one embodiment, the wearable device 14 of the interactive system 10 may contain additional or alternative feedback devices 39, such as audio devices configured to emit sound or haptics configured to provide a tactile output (e.g., vibration). The light emitted by the LEDs 54 may be detected by the detector 20, which may provide a signal indicative of the detected light to the computing system 22. Backscatter indicative of a unique identification code may also be emitted by the first RFID tag 34 and/or the second RFID tag 36, and the backscatter is utilized by the computing system 22 to identify the user to facilitate tracking the user's progress (e.g., game statistics) as the user travels through the attraction.


More particularly, the first reader 16 of the reader system 12 continuously transmits signals 30. The antenna 46 of the first RFID tag 34 is configured to receive electromagnetic radiation (e.g., signals 30) from the first reader 16, as well as transmit signals 51 to the first reader 16. The integrated circuit 44 converts the electromagnetic radiation received by the antenna 46 into electricity to provide power to the microchip 50, which generates a backscatter (e.g., signal 51). The backscatter contains information (e.g., unique identification code) stored in the memory 48 of the first RFID tag 34. The backscatter (e.g., signal 51) is received by the first reader 16, which may send a signal to the computing system 22. The computing system 22 may process the signal to determine the identity of the user associated with the wearable device 14 (e.g., the user may register the wearable device 14 to associate the wearable device 14 with the user prior to experiencing the attraction) and/or to update information (e.g., game statistics) for the wearable device 14 in the one or more databases 28. In this manner, the interactive system 10 may detect the presence of the user within the attraction and/or track the user's progress (e.g., general location and/or game statistics) as the user travels through the attraction.


Furthermore, once power is supplied to the microcontroller 38, the processor 45 of the microcontroller 38 may also receive and process a signal from the first RFID tag 34 that indicates that the signal 30 from the first reader 16 was received at the first RFID tag 34. The processor 45 of the microcontroller 38 may then execute instructions stored on the memory 44 of the microcontroller 38 to illuminate one or more of the LEDs 54a, 54b to facilitate tracking and/or to provide feedback to the user. In one embodiment, the microcontroller 38 may be programmed to provide a certain type of illumination (e.g., number of lights, color, blinking pattern, length of time) in response to the signal that indicates that the signal 30 from the first reader 16 was received at the first RFID tag 34. For example, when the first RFID tag 34 receives the signal 30 from the first RFID reader 16, the microcontroller 38 may cause a first LED 54a to illuminate. In one embodiment, the signals 30 transmitted by the first reader 16 are ultra-high frequency (UHF) signals (e.g., having a frequency between approximately 300 megahertz and 3 gigahertz). As such, the first RFID tag 34 may receive signals 51 from the first reader 16 when the first RFID tag 34 is located a relatively far distance (e.g., up to approximately 3, 4, 5, 6, 7, 8, or more meters) away from the first reader 16.


Additionally, the second reader 18 may continuously transmit signals 32. The antenna 46 of the second RFID tag 36 is configured to receive electromagnetic radiation (e.g., signals 32) from the second reader 18. The integrated circuit 44 converts the radiation received by the antenna 46 into electricity to provide power to the microchip 50, which generates a backscatter (e.g., signal 52). The backscatter contains information (e.g., unique identification code) stored in the memory 46 of the second RFID tag 36. It should be appreciated that in some embodiments, the information stored in the respective memories 40 of the first RFID tag 34 and the second RFID tag 36 may be linked (e.g., the backscatter generated in response to receipt of the signals 32 at the second RFID tag 36 may contain the information stored in the memory 46 of the first RFID tag 34), or the first RFID tag 34 and the second RFID tag 36 may share one memory 46 (e.g., be a dual RFID tag capable of receiving different frequency signals). The backscatter (e.g., signal 52) is received by the second reader 18, which may send a signal to the computing system 22. The computing system 22 may process the signal to determine the identity of the user associated with the wearable device 14 and/or to update information (e.g., game statistics) for the wearable device 14 in the one or more databases 28. Because the first RFID reader 16 may be associated with a particular area (e.g., room) of the attraction and the second RFID reader 18 may be associated with a particular interactive element (e.g., physical or virtual target) of the attraction, the computing system 22 may track both the general location of the user, as well as the user's interactions with the interactive elements. In this manner, the interactive system 10 may track the user's progress (e.g., general location and/or game statistics) as the user travels through the attraction.


Furthermore, once power is supplied to the microcontroller 38, the processor 45 of the microcontroller 38 may also receive and process a signal from the second RFID tag 36 that indicates that the signal 30 from the second reader 18 was received at the second RFID tag 36. The processor 45 of the microcontroller 38 may then execute instructions stored on the memory 44 of the microcontroller 38 to illuminate one or more of the LEDs 54a, 54b to facilitate tracking and/or provide feedback to the user. In one embodiment, the microcontroller 38 may be programmed to provide a certain type of illumination (e.g., number of lights, color, blinking pattern, length of time) in response to the signal that indicates that the signal 32 from the second reader 18 was received at the second RFID tag 36. For example, when the second RFID tag 36 receives the signal 32 from the second RFID reader 18, the microcontroller 38 may cause a second LED 54b to illuminate. In one embodiment, the signals 32 transmitted by the second reader 16 are near-field communication (NFC) signals (e.g., having a frequency between approximately 10 to 20 megahertz). As such, the second RFID tag 36 may receive signals 32 from the second reader 18 when the second RFID tag 36 is within a relatively short distance (e.g., approximately 1, 2, 3, 4, or 5 centimeters) of the first reader 16. Because the first RFID reader 16 may be associated with a particular area (e.g., room) of the attraction and the second RFID reader 18 may be associated with a particular interactive element (e.g., target) of the attraction, the illumination of the LEDs 54 on the wearable device 14 may enable precise tracking and/or multiple types of feedback to the user. For example, illumination of the first LED 54a in response to receipt of the signals 30 from the first RFID reader 16 may notify the user that the interactive system 10 has detected the user within the particular area of the attraction, while illumination of the second LED 54b in response to receipt of the signals 32 from the second RFID reader 18 may notify the user that the interactive system 10 has detected the user's interaction with the particular interactive element. As discussed in more detail below, detection of the light from the LED 54a, 54b by the detector 20 may provide additional data (e.g., in addition to the data received via the RFID readers 16, 18) to enable the computing system 22 to determine that the user is within the particular area of the attraction or has interacted with the interactive element.


In general, the second reader 18 operates similarly to the first reader 16; however, the first reader 16 communicates with the first RFID tag 34 (and not the second RFID tag 36), while the second reader 18 communicates with the second RFID tag 36 (and not the first RFID tag 34). The wearable device 14 may include at least two RFID tags 28, 30 that are each configured to communicate with respective readers 16, 18 that transmit signals 30, 32 that travel different distances. The first RFID tag 34 and the first reader 16 that communicate over a relatively long distance enable tracking a general location of the wearable device 14 and charging the wearable device 14, while the second RFID tag 36 and the second reader 18 that communicate over a relatively short distance enable monitoring interactions based on a contact (or close proximity) between the user and interactive elements in the attraction. However, it should be appreciated that the second RFID tag 36 may be used to charge the wearable device 14.


In one embodiment, the interactive system 10 may include multiple first readers 16 at different locations within an attraction. As a user moves through the attraction, the user's location is updated in the database 28 based on which first reader 16 is currently communicating with the wearable device 14. In one embodiment, feedback may be provided to the user based on each interaction with each one of the first readers 16. For example, one first reader 16 may be positioned at an entrance of the attraction, and another first reader 16 may be positioned in a room or area of the attraction. In this case, the wearable device 14 provides feedback (e.g., illumination of the first LED 54a) upon the user entering the attraction, thereby notifying the user that they have been detected by the interactive system 10. Then, once the user enters the room or area, the wearable device 14 provides another feedback (e.g., the same feedback or a different feedback, such as illumination of the second LED 54b), thereby notifying the user that they have been detected by the interactive system 10 as being within the new area. The one or more LEDs 54 may also be used in cooperation with the detector 20 to provide tracking of the user.


In one embodiment, one or more first readers 16 and one or more second readers 18 may cooperate to improve the user's immersive experience. For example, the user may enter an area containing one or more first readers 16. The area may include one or more targets each associated with or proximate to one or more second readers 18. As discussed above, once the wearable device 14 is within a range (e.g., a relatively long range) of one first reader 16 in the area, the wearable device 14 communicates with the one first reader 16, the database 28 is updated, and the wearable device 14 may provide feedback to the user that they have been detected within the area. Additionally, once the wearable device 14 is within a range (e.g., a relatively short range) of one second reader 18 (e.g., due to the user hitting, touching, or walking by the target associated with the one second reader 18), the wearable device 14 communicates with the one second reader 18, the database 28 is updated, and the wearable device 14 may provide feedback to the user that they have successfully interacted with the target (e.g., points have been assigned). Thus, communication between the wearable device 14 and the first readers 16 may provide relatively long range tracking (e.g., identifying that the user is in a general location defined by the range of the first reader 16) of a user throughout the amusement park. Moreover, communication between the wearable device 14 and the second readers 18 may provide tracking within a relatively shortly range. In one embodiment, detectors 20 may be disposed in various portions of the attraction, such as proximate to the interactive elements and/or the second readers 18 to detect the light emitted by the LED(s) 54 in response to the communication between the second reader 18 and the second RFID tag 36.


In one embodiment, the computing system 22 may award points to the user if (e.g., only if) the detector 20 detects the light emitted by the LEDs 54 of the wearable device 14, as such detection may indicate the user has properly positioned their wearable device 14 relative to the interactive element. In one embodiment, the computing system 22 may award points to the user if (e.g., only if) the detector 20 detects that the wearable device 14 worn by the user is in motion (e.g., the user is waving their hand or hitting the target) during (or immediately prior to or immediately after) the interaction or communication between the second reader 18 and the second RFID tag 36 of the wearable device 14. In one embodiment, the detector 20 may detect a characteristic (e.g., color, wavelength, blinking pattern) of the LED 54 of the tracking device 40. The characteristic of the LED(s) 54 may be associated with one wearable device 14 or a group of wearable devices 14. Accordingly, detection of the characteristic may be used by the computing system 22 to determine or to verify the identity of the guest that completed the interaction with the interactive element. As such, when the detector 20 detects light, light indicative of motion, or light having the characteristic, the computing system 22 may award the user points based on a successful interaction indicated by both communication between the wearable device 14 and the second reader 18 and detection of the light emitted by the LEDs 54 at the detector 20.


As discussed herein, in one embodiment, the tracking device 40 may include a sensor 56. The sensor 56 may be a gyrometer, accelerometer, pressure sensor, light sensor, or sound sensor, and the microcontroller 38 of the wearable device may provide control signals and/or power to operate the sensor 56. In general operation, the sensor 56 may detect a condition (e.g., movement, position, sound, pressure, or light) that is indicative of the user interacting with an interactive element of the attraction. For example, when the sensor 56 is an accelerometer, the sensor 56 may detect movement of the wearable device 14 by the user, such as jabbing, dancing, or various other gestures. When the sensor 56 is a light detector, the sensor 56 may detect the presence or absence of light. The microcontroller 38 may receive data from the sensor 56 and write data to the memory 48 of one or more of the RFID tags 34, 36. The data may be transmitted (e.g., through backscatter) by the antenna 46 of the one or more RFID tags 34, 36 and read by the respective readers 16, 18. Then, based on the data received by the readers 16, 18, the computer system 22 updates the database 28 and awards points to the user.


As noted above, in one embodiment, the antenna 46 of the first RFID tag 34 may only receive UHF waves, while the antenna 46 of the second RFID tag 36 may only receive NFC waves. For example, the first RFID tag 34 may only communicate (e.g., receive or transmit) with UHF waves, and the second RFID tag 36 may only communicate with NFC waves. As UHF signals travel a longer distance, the first RFID tag 34 may frequently or continuously receive the UHF signals emitted by the first readers 16 as the user travels through the attraction, but the second RFID tag 36 may only receive the NFC signals emitted by the second readers 18 when the user positions the wearable device 14 close to the second readers 18. Thus, in one embodiment, the UHF signal may be used for powering or charging the wearable device 14 (e.g., via power harvesting by the integrated circuit 44 and power circuitry 36). However, the NFC signal may also be used for powering or charging the wearable device 14 in a similar manner.


It should be appreciated that the interactive system 10 may track multiple users and/or provide feedback on multiple wearable devices 14. For example, multiple users may each wear a respective wearable device 14 that is configured to communicate with multiple first readers 16 and second readers 18 disposed in different locations within the attraction. It should also be appreciated that in one embodiment, the wearable device 14 of the interactive system 10 may include a single RFID tag (e.g., a dual-frequency RFID tag) that is capable of communicating with signals of a first frequency (e.g., a range of frequencies) and signals of a second frequency (e.g., another range of frequencies) to facilitate the techniques disclosed herein. While certain examples provided herein include multiple types of RFID readers 16, 18 and RFID tags 34, 36 to facilitate discussion of various components that may be utilized in the interactive system 10, it should be understood that the wearable device 14 may include only one RFID tag (e.g., only the first RFID tag 34 or only the second RFID tag 36), and the reader system 12 may include only one type of RFID reader (e.g., only one or more first RFID readers 16 configured to emit electromagnetic radiation at one frequency range or only one or more second RFID reader 18 configured to emit electromagnetic radiation at one frequency range). Such configurations may cause illumination of the LEDs 54 as the user travels through the attraction to facilitate tracking and/or feedback, and/or such configurations may enable tracking using the sensor 56.



FIG. 2 illustrates a first user 60a wearing a first wearable device 14a, and a second user 60b wearing a second wearable device 14b. The illustrated portion of the interactive system 10 includes two second readers 18a, 18b, the first reader 16, and the detectors 20, which are all communicatively coupled to the computing system 22. As shown, the first reader 16 transmits signals 30 receivable by the wearable devices 14a, 14b worn by the users 60a, 60b. Each second reader 18a, 18b transmits signals 32a, 32b within respective areas 62a, 62b.


In one embodiment, the second readers 18a, 18b have a relatively short communication range, and thus, communicate with the wearable devices 14a, 14b when the users 60a, 60b make physical contact with targets 64a, 64b proximate to the second readers 18a, 18b or when the wearable devices 14a, 14b are otherwise brought within the areas 62a, 62b. Further, the first reader 16 has a relatively long communication range, and thus, continuously communicates with the wearable devices 14a, 14b through electromagnetic radiation.


Successful communication between the wearable devices 14a, 14b and the second readers 18a, 18b may result in illumination of the one or more LEDs 54a, 54b of the wearable devices 14a, 14b. Upon illumination of the LEDs 54a, 54b of the wearable devices 14a, 14b, the detectors 20 provide verification that a correct or desired interaction between the wearable devices 14a, 14b and second readers 18a, 18b (or between the user and a particular target 64) has occurred. In one embodiment, verification may include determining which user 60a, 60b has interacted with the second reader 18a, 18b. For example, characteristics of the illumination of the LED(s) 54a, 54b of the wearable devices 14a, 14b may be unique to each wearable device 14a, 14b. For example, the LED(s) 54a of the first wearable device 14a may be of one color, while the LED(s) 54b of the second wearable device 14b may be of another color. Further, the LED(s) 54 of the wearable devices 14a, 14b may blink at unique rates or have various other differentiating characteristics detectable by the detectors 20, and thus, the processor 26 of the computing system 22 may determine or receive an additional input indicative of which wearable device 14a, 14b is proximate to the target 64a, 64b.


More particularly, the first user 60a wearing the wearable device 14a with one or more LEDs 54a is positioned near the target 64a. As discussed above, the wearable device 14a receives signals 30 from the first reader 16. As such, the components of the wearable device 14a are powered and/or the computing system 22 may determine that the first user 60a is in the general vicinity of the target 64a. However, as illustrated, the wearable device 14a of the first user 60a is not within the area 62a of the second reader 18a. Thus, the wearable device 14a is not in communication with second reader 18a. However, upon the first user 60a positioning the wearable device 14a within the area 62a, the wearable device 14a is in communication with the second reader 18a, and in one embodiment, one or more of the LEDs 54a may be illuminated to facilitate tracking and/or to provide a feedback response. For example, as illustrated, the detector 20 is positioned proximate to the target 64a and the second reader 18a. As such, the detector 20 may detect the light emitted by the one or more LEDs 54a (e.g., the light emitted to due to the interaction between the second RFID tag 36 [FIG. 1] of the wearable device 14a and the second reader 18a), while the wearable device 14 is properly positioned relative to the target 64a and within the area 62a proximate to the second reader 18a.


Upon receipt of a signal from the second reader 18a indicating that an interaction with the second RFID tag 36 (FIG. 1) of the wearable device 14a occurred (which may also include identification information transferred from the second RFID tag 36 [FIG. 1] from the wearable device 14a) and receipt of a signal from the detector 20 indicating that light from the one or more LEDs 54a was detected and/or has characteristics that correspond to the expected characteristics of the light that should be emitted by the one or more LEDs 54a of the wearable device 14a, the computing system 22 will update the database 28 with information based on the interaction between the first user 60a and the target 64a (e.g., assign points). In one embodiment, the computing system 22 may determine whether the wearable device 14a was in motion during the interaction between the wearable device 14a and the second reader 18a based on the signal received from the detector 20 (e.g., the detector 20 may include imaging sensors or camera or other types of detectors capable of detecting movement of the light emitted by the one or more LEDs 54a).


As shown, the wearable device 14b of the second user 60b is within the area 62b containing signals 32b emitted by the second reader 18b. As such, the wearable device 14b and the second reader 18b are in communication, and the one or more LEDs 54b of the wearable device 14b are emitting light 58 that is detectable by the detector 20. Upon receipt of a signal from the second reader 18b indicating that an interaction with the second RFID tag 36 (FIG. 1) occurred (which may also include identification information transferred from the second RFID tag 36 from the wearable device 14b) and receipt of a signal from the detector 20 indicating that light from the LED 54b was detected and/or has characteristics that correspond to the expected characteristics of the light that should be emitted by the LED 54b of the wearable device 14b, the computing system 22 updates the database 28 with information based on the interaction between the second user 60b and the target 64b (e.g., assign points). In one embodiment, the computing system 22 may determine whether the wearable device 14b was in motion during the interaction between the wearable device 14b and the second reader 18b based on the signal received from the detector 20 (e.g., the detector 20 may include imaging sensors or cameras or other types of detectors capable of detecting movement of the light emitted by the one or more LEDs 54b).


As noted above, in one embodiment, the LEDs 54 may emit visible light of one or more frequencies to enable tracking and also to provide feedback to the user. However, in one embodiment, the LEDs 54 may emit invisible light (e.g., infrared) to enable detecting the LEDs 54 with the detector 20, while also limiting potential distractions to the user as the user travels through the attraction or participates in the game, for example. It should be appreciated that the one or more LED's 54 of the wearable devices 14 may be illuminated in response to receipt of the signals 30 from the first reader 16. In such cases, the detector 20 may detect the emitted light, which may have particular characteristics that enable the computing system 22 to determine the identity of the user and to properly assign points. The signal from the detector 20 may be considered in combination with the identification information transmitted from the first RFID tag 34 [FIG. 1] to the first reader 16 to facilitate determination of the identity of the user and proper assignment of points. Thus, in some cases, the interactive system 10 may operate without the second readers 18.


It should also be appreciated that, in one embodiment, the wearable device 14 may contain a light detector, and the illustrated detector 20 may, instead, be a light emitter. In such cases, the microprocessor 38 may write to the memory 48 of one or more of the RFID tags 34, 36 with information indicative of detection of light emitted by the light emitter at the detector of the wearable device 14. In one embodiment, the detector of the wearable device 14 may be configured to detect darkness, resulting in the microprocessor 38 writing to the memory 48 of the RFID tags based on determining that a light level is below a threshold. The data may be transferred from the memory 48 to of the RFID readers 16, 18 and may be used by the computing system 22 to confirm a successful interaction (e.g., the user properly positioned the wearable device 14 in a dark area).



FIG. 3 illustrates the first user 60a, the second user 60b, the detector 20, the first reader 16, and the second reader 18. The first reader 16, the second reader 18, and the detector 20 are communicatively coupled to the computing system 22, as discussed above. The second reader 18 is emitting signals 32 within the area 62. The first user 60a is wearing the wearable device 14a having the one or more LEDs 54a and the second user 60b is wearing the wearable device 14b having the one or more LEDs 54b. As illustrated, the detector 20 detects light within a range 63, which may partially overlap with the area 62 associated with the range of signals 32 from the second reader 18.


As illustrated, both wearable devices 14a, 14b are within the area 62 associated with the range of signals 32 from the second reader 18 disposed proximate to the target 64. As such, both wearable devices 14a, 14b are in communication with the second reader 18. However, as illustrated, the wearable device 14a worn by the first user 60a is also within the range 63 associated with the detector 20. The one or more LEDs 54a of wearable device 14a may have a different characteristic illumination than the one or more LEDs 54b of wearable device 14b (e.g., the one or more LEDs 54a may emit red light and the one or more LEDs 54b may emit blue light). In the illustrated example, the detector 20 may only detect the light from the one or more LEDs 54a of the wearable device 14a worn by the first user 60a. Therefore, the computing system 22 may determine that the first user 60a is interacting differently with second reader 18 (and the target 64) than the second user 60b. In one embodiment, the computing system 22 may make a determination to award users 60a, 60b based on the communication between the wearable devices 14a, 14b and the second reader 18, in combination with whether the detector 20 observes the one or more LEDs 54 (e.g., 54a and/or 54b). For example, in the illustrated example, the computing system 22 may only award points to the first user 60a because the detector 20 detected the light emitted by the one or more LEDs 54a of the wearable device 14a carried by the first user 60a while the wearable device 14a is within the range 62 of the second reader 18.


As noted above, in one embodiment, the interactive system 10 may only include one reader (e.g., either the first reader 16 or the second reader 18) and the corresponding RFID tag (e.g., either the first RFID tag 34 or the second RFID tag 36). For example, if the illustrated interactive system 10 includes only the first reader 16 and the first RFID tag 34, the one or more LEDs 54 of the respective wearable devices 14 may continuously emit light while the wearable device 14 communicates with the first reader 16. As such, the computing system 22 may award points to the user when the detector 20 detects the light emitted from the one or more LEDs 54 of the wearable device 14.



FIG. 4 illustrates the first user 60a, the second user 60b, the second readers 18a, 18b, and the first reader 16. The first reader 16 and the second readers 18a, 18b are communicatively coupled to the computing system 22. The second reader 18a is emitting signals 32a within the area 62a. The second reader 18b is emitting signals 32b within the area 62b. As illustrated, an output device 67 (e.g., speaker, light emitter) that provides an output 68 (e.g., sound, light) may be positioned proximate to the target 64a.


Both the wearable device 14a of the first user 60a and the wearable device 14b of the second user 60b are in communication with the first reader 16 (e.g., receive signals 30 from the first reader 16), and thus, may be powered and may provide identification (e.g., via backscatter) to the first reader 16. The wearable device 14a of the first user 60a is also in communication with the second reader 18a (e.g., is within the area 62a and is receiving signals 32a). In one embodiment, the sensor 56a of the wearable device 14a may be configured to detect sound, and the output device 67 may be configured to provide sound as the output 68. Thus, when the sensor 56a detects the output 68, the microcontroller 38 of the wearable device 14a may write data indicative of this detection to the memory 48 of the wearable device 14a. Then, the antenna 46 of the wearable device 14a may backscatter the data to the first reader 16 or the second reader 18a. The computing system 22 may determine that points should be awarded to the first user 60a based on the wearable device 14a being in communication with the second reader 18a and also detecting the output 68. It should be appreciated that the output device 67 may additionally or alternatively include a light emitter that emits light, and the wearable device 14a may include a light detector that is configured to detect the light emitted by the emitter to facilitate tracking of the wearable device 14a.


The sensor 56b of the wearable device 14b worn by the second user 60b may be a motion sensor, such as a gyroscope or accelerometer, that detects the motion or position of the wearable device 14b. When the second user 60b moves (e.g., illustrated by arrow 70) the wearable device 14b into the area 62b, the wearable device 14b is in communication with the second reader 18b. In one embodiment, the sensor 56b may also detect the motion or orientation of the wearable device 14b prior to or while the wearable device 14b is in communication with the second reader 18b. For example, the sensor 56b may only be operated to sense the condition of the wearable device 14 when the wearable device 14 communicates with the second reader 18b. In one embodiment, the sensor 56b may be operated at other periods of time (e.g., whenever sufficient power is provided, such as via communication between the wearable device 14b and the first reader 16). In some such cases, only data obtained when the wearable device 14b communicates with the second reader 18b may be written to the memory 48 of the one or more RFID tags 34, 36 and/or transferred via backscatter to the computing system 22. In some such cases, only data obtained during a certain time period (e.g., approximately 1, 2, 3, 4, 5 or more seconds prior to an initial communication between the wearable device 14b and the second reader 18b) may be written to the memory 48 of the one or more RFID tags 34, 36 and/or transferred via backscatter to the computing system 22. In some such cases, only data indicative of motion may be written to the memory 48 of the one or more RFID tags 34, 36 and/or transferred via backscatter to the computing system 22.


More particularly, the data measured by the sensor 56b is written to the respective memory 48 of the one or more of the RFID tags 34, 36. Then, the data is backscattered to the respective reader 16, 18b, and the computing system 22 may make a determination to award points based on the data indicative of the gesture performed by the second user 60b. As discussed above, in one embodiment, the interactive system 10 may only include type of reader (e.g., one or more first readers 16 or one or more second readers 18b), and the sensor 56 may operate to monitor the condition of the wearable device 14 in a similar manner.



FIG. 5 is a flow diagram illustrating one embodiment of a process 80 for operating the wearable device 14 that includes the sensor 56, in accordance with present techniques. It is to be understood that the steps discussed herein are merely exemplary, and certain steps may be omitted or added, and the steps may be performed in a different order. In one embodiment, the process 80 may be executed by the first RFID tag 34 and/or the second RFID tag 36 in cooperation with the microcontroller 38 and the other components of the wearable device 14.


The process 80 begins with the antenna 46 of the first RFID tag 34 and/or the second RFID tag 36 receiving electromagnetic radiation from a respective first reader 16 or second reader 18 (block 82). As discussed above, after the antenna 46 receives electromagnetic radiation, the antenna 46 may return a backscatter with information stored within the memory 48 of the RFID tag 34, 36 to the respective reader 16, 18. In one embodiment, this information may include an identification number that is specific to the wearable device 14, and thus, identifies a user (e.g., user using the wearable device 14). In one embodiment, the electromagnetic radiation emitted by the first reader 16 travels a relatively long distance, and the electromagnetic radiation emitted by the second reader 18 travels a relatively short distance. The first RFID tag 34 is capable of communicating with the first reader 16, and the second RFID tag 36 is capable of communicating with the second reader 18.


Once the wearable device 14 has received electromagnetic radiation, the wearable device 14 harvests power (block 84) from the electromagnetic radiation. As discussed above, the first RFID tag 34 and the second RFID tag 36 may each include an integrated circuit 52 that powers the microchip 50. Additionally, the integrated circuit 52 powers the power circuitry 42, which provides power to the microcontroller 38 (block 86) and other components of the wearable device 14 (e.g., the sensor 56). In one embodiment, the power circuitry 36 may include a capacitor or battery that is electrically coupled to a receiver coil and that stores power upon the wearable device 14 receiving signals from the first reader 16 and/or the second reader 18.


Once the microcontroller 38 is powered, the microcontroller 38 may then output a signal (e.g., control signal) to power the sensor 56 of the wearable device 14 (block 86). Once the sensor 56 is powered, it may measure or determine information indicative of a condition of the wearable device 14. For example, when the sensor 56 is an accelerometer, the sensor 56 might detect motion of the wearable device 14. The sensor 56 may transmit information to the microcontroller 38 indicative of the detected motion or position of the wearable device 14.


Then, microcontroller 38 utilizes the power to write data indicative of the position or movement of the wearable device 14 to the memory 48 of an RFID tag (e.g., first RFID tag 34 and/or second RFID tag 36) (block 88). In one embodiment, an accelerometer may detect a motion of or a force applied to the wearable device 14 for an amount of time. For example, the motion or the force may be associated with a user hitting the target 64, as discussed above. The associated information is then written as data to the memory 48 of the RFID tags 34 and/or 36. The data written to the memory 48 of the RFID tags 34 and/or 36 is transmitted (e.g., through backscatter) to the one or more readers (e.g., first reader 16 and/or second reader 18). Then, the computing system 22 process the information and may update the database 28 and/or award points based at least in part on the information measured by the sensor 56b. In one embodiment, the data may be indicative of a sensor 56 receiving sound or light waves. As such, the data would be indicative of the wearable device 14 being in an area where the wearable device 14 could receive such waves. For example, an attraction of an amusement park may include multiple light emitters that emit light. Thus, data indicative of the sensor 56 detecting the light is indicative of the position of the user within the attraction.


Once the data indicative of the position or movement of the wearable device 14 is written to the memory 48 of the RFID tag 34, 36, the wearable device 14 may transmit identification information and data from the RFID tag to the reader 16, 18 (block 90). As discussed above, the antenna 46 of the RFID tag 34, 36 may communicate with the reader 16, 18 by backscatter. In one embodiment, when the wearable device 14 is communicating with the reader system 12 (e.g., the RFID tags 34, 36 are receiving signals 30, 32 from the reader 16, 18), the antenna 46 of the RFID tags 34, 36 may continuously backscatter data indicative of the position or movement of the wearable device 14. As such, the computing system 22 may award points to a user once the data is above a certain threshold (e.g., the data from an accelerometer indicates that a user made an intentional motion, such as a wave or a jab), for example.


As discussed above, the wearable device 14 may additionally or alternatively include one or more LEDs 54 that operate as the tracking device 40. FIG. 6 is a flow diagram illustrating of one embodiment of a process 92 for operating the wearable device 14 that includes the one or more LEDs 54, in accordance with present techniques. It is to be understood that the steps discussed herein are merely exemplary, and certain steps may be omitted or added, and the steps may be performed in a different order. In one embodiment, some steps of the process 92 may be executed by the first RFID tag 34 and/or the second RFID tag 36 in cooperation with the microcontroller 38 and the other components of the wearable device 14. Additionally, some steps of the process 92 may be carried out by the detector 20 that is communicatively coupled to the computing system 22.


The process 92 begins with the antenna 46 of the first RFID tag 34 and/or the second RFID tag 36 receiving electromagnetic radiation from a respective first reader 16 or second reader 18 (block 82). As discussed above, after the antenna 46 receives electromagnetic radiation, the antenna 46 may return a backscatter with information stored within the memory 48 of the RFID tag 34, 36 to the respective reader 16, 18. In one embodiment, this information may include an identification number that is specific to the wearable device 14, and thus, identifies a user (e.g., user using the wearable device 14). In one embodiment, the electromagnetic radiation emitted by the first reader 16 travels a relatively long distance, and the electromagnetic radiation emitted by the second reader 18 travels a relatively short distance. The first RFID tag 34 is capable of communicating with the first reader 16, and the second RFID tag 36 is capable of communicating with the second reader 18.


Once the wearable device 14 has received electromagnetic radiation, the wearable device 14 harvests power (block 84) from the electromagnetic radiation. As discussed above, the first RFID tag 34 and the second RFID tag 36 may each include an integrated circuit 52 that powers the microchip 50. Additionally, the integrated circuit 52 powers the power circuitry 42, which provides power to the microcontroller 38 and other components of the wearable device 14 (e.g., tracking device 40, such as the LED 54). In one embodiment, the power circuitry 36 may include a capacitor or battery that is electrically coupled to a receiver coil and that stores power upon the wearable device 14 receiving signals from the first reader 16 and/or the second reader 18.


Once the microcontroller 38 is powered, the microcontroller 38 then outputs a signal (e.g., control signal) to power one or more LED(s) 54 of the tracking device 40 (block 94). In one embodiment, the control signal is a variable voltage applied to one or more of the LEDs 54, which causes the LED to emit light intermittently at a particular rate.


Then, the detector 20 detects the light emitted by the one or more LEDs 54 (block 96). For example, the detector 20 may detect that the wearable device 14 worn by the user is in motion (e.g., the user is waving their hand or hitting the target) during the interaction or communication between the second reader 18 and the second RFID tag 36 of the wearable device 14. In one embodiment, the detector 20 may monitor a characteristic (e.g., color, blinking pattern) of the LED 54 of the tracking device 40. The characteristic of the LED(s) 54 may be associated with one wearable device 14 or a group of wearable devices 14. As such, when the detector 20 detects light, light indicative of motion, or light having the characteristic, the computing system 22 may award the user points based on a successful interaction indicated by both communication between the wearable device 14 and the second reader 18, and detection of the light emitted by LED 54 at the detector 20.


Accordingly, the present disclosure is directed to an interactive system having a reader system and a wearable device that utilize RFID to track a guest's interactions with interactive elements. More specifically, the reader system includes one or more readers that communicate (e.g., transmit and receive signals) with one or more tags of a wearable device through electromagnetic radiation. The readers continuously emit electromagnetic radiation within a range (e.g., communication range), and upon the wearable device entering that range, the readers communicate with the wearable device. The electromagnetic radiation that is received by the wearable device provides power to a tracking device. For example, the tracking device may include LEDs that emit light that is detected by a detector. In one embodiment, a computing system is communicatively coupled to the detector and determines or confirms the identification of a user based on a characteristic of the LED that may be specific to the wearable device (e.g., the LED of one wearable device may emit a red light, while the LED of another wearable device 14 emit blue light). In one embodiment, the computing system may award points to a user, or otherwise update a user profile of the user, based at least in part on the detected light. In one embodiment, the tracking device may be a sensor configured to detect a condition, such as a position or movement, of the wearable device. The movement may be indicative of a user performing an appropriate gesture (e.g., jabbing, jumping, dancing, waving, or other gestures) that may be expected or called for at a particular interactive element. The data obtained by the sensor may be stored on a memory of one or more RFID tags of the wearable device, and then transmitted (e.g., via backscatter) to the respective reader, which is communicatively coupled to the computing system. In one embodiment, the computing system may award points to a user, or otherwise update a user profile of the user, based at least in part on the condition detected by the sensor.


While only certain features of the disclosure have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the disclosure. It should be appreciated that any of the features illustrated or described with respect to FIGS. 1-6 may be combined in any suitable manner. For example, the wearable device 14 may include any suitable combination of sensors 56 and LEDs 54 to facilitate tracking of the wearable device 14.


The techniques presented and claimed herein are referenced and applied to material objects and concrete examples of a practical nature that demonstrably improve the present technical field and, as such, are not abstract, intangible or purely theoretical. Further, if any claims appended to the end of this specification contain one or more elements designated as “means for [perform]ing [a function] . . . ” or “step for [perform]ing [a function] . . . ”, it is intended that such elements are to be interpreted under 35 U.S.C. 112(f). However, for any claims containing elements designated in any other manner, it is intended that such elements are not to be interpreted under 35 U.S.C. 112(f).

Claims
  • 1. A wearable device comprising: a radio-frequency identification (RFID) tag that stores identification information;a power harvesting circuit configured to harness power from electromagnetic radiation;one or more LEDs configured to facilitate detection of the wearable device by an external light detector; anda microcontroller coupled to the one or more LEDs and configured to generate a control signal to illuminate at least one LED of the one or more LEDs based on the stored identification information in response to receipt of the electromagnetic radiation from an RFID reader via the power harvesting circuit.
  • 2. The wearable device of claim 1, wherein the microcontroller is configured to generate the control signal to cause the at least one LED of the one or more LEDs to emit light with one or more characteristics including a color, a rate, a pattern, or a combination thereof.
  • 3. The wearable device of claim 1, wherein the RFID tag comprises a memory storing the identification information and additional information.
  • 4. The wearable device of claim 1, wherein the microcontroller is configured to generate the control signal to cause the at least one LED of the one or more LEDs to emit light intermittently at a predetermined rate.
  • 5. The wearable device of claim 1, wherein the one or more LEDs are configured to illuminate using only power received from the power harvesting circuit.
  • 6. The wearable device of claim 1, wherein the wearable device comprises an energy storage device configured to store the harnessed power.
  • 7. A system, comprising: a wearable device comprising a radio-frequency identification (RFID) tag, wherein the RFID tag comprises a memory that stores identification information and the RFID tag is configured to transmit the identification information to an RFID reader in response to receipt of electromagnetic radiation from the RFID reader;one or more light emitting diodes (LEDs) disposed on the wearable device and configured to facilitate tracking a position of the wearable device via an electronic device external to the wearable device; anda power harvesting circuit supported by the wearable device and configured to harness power from the received electromagnetic radiation, wherein the harnessed power is utilized to transmit the identification information from the RFID tag and to operate the one or more LEDs.
  • 8. The system of claim 7, comprising a processor configured to receive the identification information from the RFID reader and a signal indicative of the position of the wearable device, wherein the processor is configured to detect an interaction between the wearable device and an interactive element of an attraction based on the received identification information and the received signal.
  • 9. The system of claim 8, comprising: a microcontroller supported by the wearable device and configured to generate a control signal that causes at least one LED of the one or more LEDs to illuminate in response to receipt of the electromagnetic radiation at the RFID tag;wherein the electronic device is coupled to the processor, andwherein the electronic device comprises a detector that is configured to detect light emitted by the one or more LEDs and to generate the signal indicative of the position of the wearable device.
  • 10. The system of claim 9, wherein the processor is configured to differentiate the wearable device from another wearable device based on the identification information transmitted through one or more characteristics of light emitted by the one or more LEDs.
  • 11. The system of claim 10, wherein the one or more characteristics include a color, a rate, a pattern, or any combination thereof.
  • 12. The system of claim 8, wherein the processor and the RFID reader share a housing.
  • 13. The system of claim 8, wherein the processor is configured to adjust the interactive element of the attraction based on the detection of the interaction between the wearable device and the interactive element.
  • 14. The system of claim 7, wherein at least one LED of the one or more LEDs is configured to emit infrared electromagnetic radiation.
  • 15. A method, comprising: harvesting power from electromagnetic radiation received from a radio frequency identification (RFID) reader using a power harvesting circuit of a wearable device;utilizing the harvested power to operate a microcontroller supported by the wearable device to generate a control signal to illuminate one or more light emitting diodes (LEDs) supported by the wearable device to facilitate detection of the wearable device by an external light detector; andtransmitting identification information from a memory of an RFID tag of the wearable device to the RFID reader in response to receipt of the electromagnetic radiation from the RFID reader.
  • 16. The method of claim 15, comprising detecting, using the external light detector, additional electromagnetic radiation from the one or more LEDs to generate data indicative of one or more positions of the wearable device.
  • 17. The method of claim 16, comprising determining, using a processor, that a guest interacted with an interactive element of an attraction based on the transmitted identification information and the data indicative of one or more positions of the wearable device.
  • 18. The method of claim 17, comprising updating, using the processor, a database to award points to the guest in response to determining that the guest interacted with the interactive element.
  • 19. The method of claim 17, comprising adjusting, using the processor, the element of the attraction based on the determination that the guest interacted with the interactive element.
  • 20. The method of claim 15, wherein the microcontroller is configured to generate the control signal in response to receipt of the electromagnetic radiation from the RFID reader.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Non-Provisional application Ser. No. 15/882,761, entitled “INTERACTIVE SYSTEMS AND METHODS WITH TRACKING DEVICES”, filed on Jan. 29, 2018, which claims priority from and the benefit of U.S. Provisional Application No. 62/617,510, entitled “INTERACTIVE SYSTEMS AND METHODS WITH TRACKING DEVICES,” filed Jan. 15, 2018, which is hereby incorporated by reference in its entirety for all purposes.

US Referenced Citations (299)
Number Name Date Kind
5946444 Evans et al. Aug 1999 A
6142368 Mullins et al. Nov 2000 A
6307952 Dietz Oct 2001 B1
6346886 De La Huerga Feb 2002 B1
6352205 Mullins et al. Mar 2002 B1
6474557 Mullins et al. Nov 2002 B2
6526158 Goldberg Feb 2003 B1
6634949 Briggs et al. Oct 2003 B1
6680707 Allen et al. Jan 2004 B2
6761637 Weston et al. Jul 2004 B2
6822569 Bellum et al. Nov 2004 B1
6888502 Beigel et al. May 2005 B2
6908387 Hedrick et al. Jun 2005 B2
6967566 Weston et al. Nov 2005 B2
7029400 Briggs Apr 2006 B2
7047205 Hale et al. May 2006 B2
7066781 Weston Jun 2006 B2
7204425 Mosher, Jr. et al. Apr 2007 B2
7224967 Hale et al. May 2007 B2
7311605 Moser Dec 2007 B2
7327251 Corbett, Jr. Feb 2008 B2
7336178 Le Feb 2008 B2
7336185 Turner et al. Feb 2008 B2
7385498 Dobosz Jun 2008 B2
7396281 Mendelsohn et al. Jul 2008 B2
7400253 Cohen Jul 2008 B2
7445550 Barney et al. Nov 2008 B2
7479886 Burr Jan 2009 B2
7488231 Weston Feb 2009 B2
7492254 Bandy et al. Feb 2009 B2
7500917 Barney et al. Mar 2009 B2
7528729 Light et al. May 2009 B2
7541926 Dugan et al. Jun 2009 B2
7564360 Cote et al. Jul 2009 B2
7564426 Poor et al. Jul 2009 B2
7606540 Yoon Oct 2009 B2
7614958 Weston et al. Nov 2009 B2
7642921 Cutler et al. Jan 2010 B2
7674184 Briggs et al. Mar 2010 B2
7720718 Hale et al. May 2010 B2
7739925 Foster Jun 2010 B2
7749089 Briggs et al. Jul 2010 B1
7752794 Kerlin Jul 2010 B2
7775894 Henry et al. Aug 2010 B2
7786871 Schwarze et al. Aug 2010 B2
7791557 Mickle et al. Sep 2010 B2
7802724 Nohr Sep 2010 B1
7812779 Turner et al. Oct 2010 B2
7817044 Posamentier Oct 2010 B2
7837567 Holzberg et al. Nov 2010 B2
7850527 Barney et al. Dec 2010 B2
7855697 Chamarti et al. Dec 2010 B2
7878905 Weston et al. Feb 2011 B2
7881713 Hale et al. Feb 2011 B2
7885763 Havens Feb 2011 B2
7896742 Weston et al. Mar 2011 B2
7925308 Greene et al. Apr 2011 B2
7942320 Joe May 2011 B2
7956725 Smith Jun 2011 B2
7994910 Brooks et al. Aug 2011 B2
7997981 Rowe et al. Aug 2011 B2
8016667 Benbrahim Sep 2011 B2
8035335 Duron et al. Oct 2011 B2
8082165 Natsuyama et al. Dec 2011 B2
8085130 Liu et al. Dec 2011 B2
8089458 Barney et al. Jan 2012 B2
8123613 Dabrowski Feb 2012 B2
8164567 Barney et al. Apr 2012 B1
8169406 Barney et al. May 2012 B2
8184097 Barney et al. May 2012 B1
8200515 Natsuyama et al. Jun 2012 B2
8213862 Muth Jul 2012 B2
8222996 Smith et al. Jul 2012 B2
8226493 Briggs et al. Jul 2012 B2
8231047 Canora Jul 2012 B2
8237561 Beigel et al. Aug 2012 B2
8248208 Renfro, Jr. Aug 2012 B2
8248367 Barney et al. Aug 2012 B1
8253533 Jones Aug 2012 B2
8253542 Canora et al. Aug 2012 B2
8296983 Padgett et al. Oct 2012 B2
8313381 Ackley et al. Nov 2012 B2
8330284 Weston et al. Dec 2012 B2
8330587 Kupstas Dec 2012 B2
8342929 Briggs et al. Jan 2013 B2
8353705 Dobson et al. Jan 2013 B2
8368648 Barney et al. Feb 2013 B2
8373543 Brommer et al. Feb 2013 B2
8373659 Barney et al. Feb 2013 B2
8384668 Barney et al. Feb 2013 B2
8392506 Rowe et al. Mar 2013 B2
8416087 Canora et al. Apr 2013 B2
8425313 Nelson et al. Apr 2013 B2
8430749 Nelson et al. Apr 2013 B2
8463183 Muth Jun 2013 B2
8475275 Weston et al. Jul 2013 B2
8477046 Alonso Jul 2013 B2
8489657 Shepherd et al. Jul 2013 B2
8491389 Weston et al. Jul 2013 B2
8531050 Barney et al. Sep 2013 B2
8552597 Song et al. Oct 2013 B2
8564414 Bergevoet Oct 2013 B2
8571905 Risnoveanu et al. Oct 2013 B2
8581721 Asher et al. Nov 2013 B2
8593283 Smith Nov 2013 B2
8593291 Townsend et al. Nov 2013 B2
8597111 LeMay et al. Dec 2013 B2
8608535 Weston et al. Dec 2013 B2
8618928 Weed et al. Dec 2013 B2
8621245 Shearer et al. Dec 2013 B2
8635126 Risnoveanu et al. Jan 2014 B2
8681000 August et al. Mar 2014 B2
8682729 Werbitt Mar 2014 B2
8686579 Barney et al. Apr 2014 B2
8702515 Weston et al. Apr 2014 B2
8708821 Barney et al. Apr 2014 B2
8711094 Barney et al. Apr 2014 B2
8742623 Biederman et al. Jun 2014 B1
8753165 Weston Jun 2014 B2
8758136 Briggs et al. Jun 2014 B2
8773245 Canora et al. Jul 2014 B2
8790180 Barney et al. Jul 2014 B2
8797146 Cook et al. Aug 2014 B2
8810373 Kim et al. Aug 2014 B2
8810430 Proud Aug 2014 B2
8814688 Barney et al. Aug 2014 B2
8816873 Bisset et al. Aug 2014 B2
8821238 Ackley et al. Sep 2014 B2
8827810 Weston et al. Sep 2014 B2
8830030 Arthurs et al. Sep 2014 B2
8851372 Zhou et al. Oct 2014 B2
8866673 Mendelson Oct 2014 B2
8870641 Dabrowski Oct 2014 B2
8888576 Briggs et al. Nov 2014 B2
8913011 Barney et al. Dec 2014 B2
8915785 Barney et al. Dec 2014 B2
8917172 Charych Dec 2014 B2
8923994 Laikari et al. Dec 2014 B2
8924432 Richards et al. Dec 2014 B2
8937530 Smith et al. Jan 2015 B2
8961260 Weston Feb 2015 B2
8961312 Barney et al. Feb 2015 B2
8971804 Butler Mar 2015 B2
8972048 Canora et al. Mar 2015 B2
9002264 Zhang Apr 2015 B2
9021277 Shearer et al. Apr 2015 B2
9039533 Barney et al. May 2015 B2
9072965 Kessman et al. Jul 2015 B2
9087246 Chin et al. Jul 2015 B1
9109763 Wein Aug 2015 B1
9122964 Krawczewicz Sep 2015 B2
9130651 Tabe Sep 2015 B2
9138650 Barney et al. Sep 2015 B2
9149717 Barney et al. Oct 2015 B2
9162148 Barney et al. Oct 2015 B2
9162149 Weston et al. Oct 2015 B2
9178569 Chakravarty et al. Nov 2015 B2
9186585 Briggs et al. Nov 2015 B2
9196964 Baringer Nov 2015 B2
9207650 Narendra et al. Dec 2015 B2
9215592 Narendra et al. Dec 2015 B2
9225372 Butler Dec 2015 B2
9232475 Heinzelman et al. Jan 2016 B2
9245158 Gudan et al. Jan 2016 B2
9272206 Weston et al. Mar 2016 B2
9318898 John Apr 2016 B2
9320976 Weston Apr 2016 B2
9367852 Canora et al. Jun 2016 B2
9383730 Prestenback Jul 2016 B2
9393491 Barney et al. Jul 2016 B2
9393500 Barney et al. Jul 2016 B2
9411992 Marek et al. Aug 2016 B1
9412231 Dabrowski Aug 2016 B2
9413229 Fleming Aug 2016 B2
9424451 Kalhous et al. Aug 2016 B2
9438044 Proud Sep 2016 B2
9443382 Lyons Sep 2016 B2
9446319 Barney et al. Sep 2016 B2
9463380 Weston et al. Oct 2016 B2
9468854 Briggs et al. Oct 2016 B2
9474962 Barney et al. Oct 2016 B2
9480929 Weston Nov 2016 B2
9483906 LeMay et al. Nov 2016 B2
9491584 Mendelson Nov 2016 B1
9523775 Chakraborty et al. Dec 2016 B2
9542579 Mangold et al. Jan 2017 B2
9563898 McMahan et al. Feb 2017 B2
9579568 Barney et al. Feb 2017 B2
9582981 Rokhsaz et al. Feb 2017 B2
9589224 Patterson et al. Mar 2017 B2
9613237 Nikunen et al. Apr 2017 B2
9616334 Weston et al. Apr 2017 B2
9626672 Fisher Apr 2017 B2
9642089 Sharma et al. May 2017 B2
9646312 Lyons et al. May 2017 B2
9651992 Stotler May 2017 B2
9661450 Agrawal et al. May 2017 B2
9675878 Barney et al. Jun 2017 B2
9680533 Gudan et al. Jun 2017 B2
9692230 Biederman et al. Jun 2017 B2
9696802 Priyantha et al. Jul 2017 B2
9706924 Greene Jul 2017 B2
9707478 Barney et al. Jul 2017 B2
9713766 Barney et al. Jul 2017 B2
9731194 Briggs et al. Aug 2017 B2
9737797 Barney et al. Aug 2017 B2
9741022 Ziskind et al. Aug 2017 B2
9743357 Tabe Aug 2017 B2
9747538 Gudan et al. Aug 2017 B2
9748632 Rokhsaz et al. Aug 2017 B2
9754139 Chemishkian et al. Sep 2017 B2
9754202 Gudan et al. Sep 2017 B2
9756579 Zhou et al. Sep 2017 B2
9762292 Marian et al. Sep 2017 B2
9767649 Dabrowski Sep 2017 B2
9770652 Barney et al. Sep 2017 B2
9813855 Sahadi et al. Nov 2017 B2
9814973 Barney et al. Nov 2017 B2
9831724 Copeland et al. Nov 2017 B2
9836103 Kramer et al. Dec 2017 B2
9837865 Mitcheson et al. Dec 2017 B2
9861887 Briggs et al. Jan 2018 B1
9864882 Geist et al. Jan 2018 B1
9867024 Larson Jan 2018 B1
9871298 Daniel et al. Jan 2018 B2
9909896 Bass et al. Mar 2018 B2
9928527 Woycik et al. Mar 2018 B2
9928681 LeMay, Jr. et al. Mar 2018 B2
9931578 Weston Apr 2018 B2
9936357 Mills et al. Apr 2018 B2
9949219 Belogolovy Apr 2018 B2
9972894 Dion et al. May 2018 B2
9993724 Barney et al. Jun 2018 B2
10010790 Weston et al. Jul 2018 B2
10022624 Barney et al. Jul 2018 B2
20070270672 Hayter Nov 2007 A1
20120286938 Cote et al. Nov 2012 A1
20130249301 Smoot et al. Sep 2013 A1
20130324059 Lee et al. Dec 2013 A1
20140122170 Padgett et al. May 2014 A1
20140162693 Wachter et al. Jun 2014 A1
20150046202 Hunt Feb 2015 A1
20150078140 Riobo Aboy et al. Mar 2015 A1
20150138556 LeBoeuf et al. May 2015 A1
20150145671 Cohen et al. May 2015 A1
20150186701 Otis et al. Jul 2015 A1
20150194817 Lee et al. Jul 2015 A1
20150236551 Shearer et al. Aug 2015 A1
20150255226 Rouvala et al. Sep 2015 A1
20150312517 Hoyt et al. Oct 2015 A1
20150336013 Stenzler et al. Nov 2015 A1
20150363617 Honore Dec 2015 A1
20150371194 Marshall et al. Dec 2015 A1
20160019423 Ortiz et al. Jan 2016 A1
20160020636 Khlat Jan 2016 A1
20160020637 Khlat Jan 2016 A1
20160067600 Barney et al. Mar 2016 A1
20160144280 Pawlowski et al. May 2016 A1
20160170998 Frank et al. Jun 2016 A1
20160171484 Liu Jun 2016 A1
20160182165 Margon et al. Jun 2016 A1
20160203663 Proctor Jul 2016 A1
20160217496 Tuchman et al. Jul 2016 A1
20160226610 Pinzon Gonzales, Jr. Aug 2016 A1
20160307398 Walker et al. Oct 2016 A1
20160321548 Ziskind et al. Nov 2016 A1
20160373522 Carlos et al. Dec 2016 A1
20170091850 Alvarez et al. Mar 2017 A1
20170093463 Wang et al. Mar 2017 A1
20170115018 Mintz Apr 2017 A1
20170132438 Cletheroe et al. May 2017 A1
20170162006 Sahadi et al. Jun 2017 A1
20170169449 Heaven et al. Jun 2017 A1
20170186270 Acres Jun 2017 A1
20170201003 Ackley et al. Jul 2017 A1
20170228804 Soni et al. Aug 2017 A1
20170235369 Acer et al. Aug 2017 A1
20170237466 Carr Aug 2017 A1
20170270507 Wang et al. Sep 2017 A1
20170270734 Geraghty et al. Sep 2017 A1
20170288735 Zhou et al. Oct 2017 A1
20170293985 Deria et al. Oct 2017 A1
20170331509 Gollakota et al. Nov 2017 A1
20170340961 Weston et al. Nov 2017 A1
20170348593 Barney et al. Dec 2017 A1
20170358957 Mitcheson et al. Dec 2017 A1
20170361236 Barney et al. Dec 2017 A1
20170373526 Huang et al. Dec 2017 A1
20180008897 Ackley et al. Jan 2018 A1
20180014385 Wein Jan 2018 A1
20180078853 Barney et al. Mar 2018 A1
20180214769 Briggs et al. Aug 2018 A1
20180318723 Weston Nov 2018 A1
20180339226 Barney et al. Nov 2018 A1
20190009171 Barney et al. Jan 2019 A1
20190038970 Weston et al. Feb 2019 A1
20190164177 Yeh et al. May 2019 A1
20190168120 Cossairt et al. Jun 2019 A1
20190180540 Usi et al. Jun 2019 A1
Foreign Referenced Citations (7)
Number Date Country
2003288472 Oct 2003 JP
2004126791 Apr 2004 JP
2005267179 Sep 2005 JP
2010000178 Jan 2010 JP
2012244846 Dec 2012 JP
2013188019 Sep 2013 JP
6152919 Jun 2017 JP
Non-Patent Literature Citations (6)
Entry
PCT/US2019/012935 International Search Report and Written Opinion dated Apr. 4, 2019.
U.S. Appl. No. 15/882,721, filed Jan. 29, 2018, Wei Cheng Yeh.
U.S. Appl. No. 15/882,788, filed Jan. 29, 2018, Wei Cheng Yeh.
U.S. Appl. No. 15/882,738, filed Jan. 29, 2018, Travis Jon Cossairt.
U.S. Appl. No. 15/861,502, filed Jan. 3, 2018, Wei Cheng Yeh.
U.S. Appl. No. 15/874,671, filed Jan. 18, 2018, Wei Cheng Yeh.
Related Publications (1)
Number Date Country
20190332834 A1 Oct 2019 US
Provisional Applications (1)
Number Date Country
62617510 Jan 2018 US
Continuations (1)
Number Date Country
Parent 15882761 Jan 2018 US
Child 16508052 US