Intervertebral implants are commonly used in spinal surgery, such as in interbody fusion procedures, in which an implant (e.g., a spacer or cage) is placed in the disc space between two vertebrae to be fused together. At least a portion of the disc is typically removed before the implant is positioned in the intervertebral space, and the implant may be supplemented with bone graft material to promote fusion of the vertebrae. Interbody fusion procedures may also be performed in conjunction with other types of fixation, such as pedicle screw fixation, to provide additional stability, particularly while the vertebrae fuse together.
Different interbody fusion procedures can be distinguished by their location along the spine (e.g., in the cervical, thoracic, or lumbar regions); by the type of implant used; and by the surgical approach to the intervertebral space, in which different surgical approaches often imply different structural characteristics of the implant or implants used. Different surgical approaches to the spine include anterior, posterior, and lateral. Examples of interbody fusion techniques performed along a posterior approach include posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF). PLIF techniques typically include positioning two intervertebral implants into the intervertebral space along a posterior to anterior direction, with one implant being positioned towards the left side of the spine and one implant being positioned towards the right side of the spine. The implants used in such PLIF techniques typically have a straight shape, in that they extend along a central axis. TLIF techniques, by contrast, typically include positioning one intervertebral implant into the intervertebral space (often towards the anterior portion of the intervertebral space) from the posterior of the patient, but the spine is approached on one side from a more lateral position than in PLIF techniques. The implants used in such TLIF techniques are often curved, such that they have an overall kidney bean-like shape. Interbody fusion techniques performed along a lateral approach, on the other hand, often involve implants that are generally symmetric along their linear longitudinal axis (e.g., having a substantially rectangular or oval shape), but the implants are typically larger than those used in PLIF or TLIF techniques. That is, intervertebral implants used in lateral approaches often cover a substantial portion of the disc space.
Included among the different types of intervertebral implants are expandable implants. Such implants often have an initially contracted configuration, such that they have a low profile in the superior-inferior direction, in order to ease insertion into the intervertebral space. Such expandable implants can then be expanded in the superior-inferior direction after implantation, so as to securely engage and stabilize the vertebrae on both sides of the intervertebral space. Examples of expandable intervertebral implants are disclosed in U.S. Pat. No. 8,992,620 (“the '620 Patent”) and in U.S. patent application Ser. No. 15/481,854 filed on Apr. 7, 2017, entitled Expandable Interbody Implant (hereinafter “the '854 Application”), the disclosures of which are hereby incorporated by reference herein as if fully set forth herein.
Although considerable effort has been devoted in the art to optimization of such intervertebral systems and methods, still further improvement would be desirable.
The present invention relates to expandable spinal interbody implants, as well as to systems comprising the same and methods of operating the same.
In accordance with aspects of the invention, a spinal implant for placement between first and second vertebral bodies preferably includes a body and at least first and second extendable support elements connected to the body at respective first and second locations. The body may have a first surface for engaging the first vertebral body. The first and second extendable support elements are each desirably configured to expand such that a respective first and second end of the extendable support element moves away from the body. A spinal implant system comprising such a spinal implant preferably further includes a tool selectively positionable with respect to the implant so as to independently or simultaneously expand the first and second extendable support elements.
According to some further aspects of the above spinal implant system, the spinal implant may be configured to allow the tool to move within the spinal implant to expand the first and second extendable support elements. In some yet further aspects of such spinal implant system, the spinal implant may be configured to allow the tool to move longitudinally within the spinal implant to expand the first and second extendable support elements. According to some even further aspects, such spinal implant may include a channel extending between the first and second extendable support elements, such that the longitudinal movement of the tool is within the channel.
According to some other aspects of the above spinal implant system, each of the first and second extendable support elements may include a piston slidably received within a cylinder. In some yet further aspects of such spinal implant system, the first and second extendable support elements may be configured to be extended by a fluid. According to some even further aspects, the spinal implant may include a channel extending between the first and second extendable support elements. In some such aspects, the tool may supply the fluid to the first and second extendable support elements, and the channel of the spinal implant may be configured to allow the tool to move therealong to selectively supply the fluid to the first and second extendable support elements. In some other of such aspects, the tool may include an internal fluid passageway. In some even further aspects, the channel of the spinal implant may be adapted to receive the tool therein, and, when the tool is received within the channel, an exterior fluid passageway may be defined between an inner surface of the channel and an exterior surface of the tool. That exterior fluid passageway may communicate with the internal fluid passageway via at least one exit port of the tool. In some further aspects of such spinal implant system, the tool may be longitudinally movable along the channel, such that the exterior fluid passageway can be moved to selectively communicate with either or both of the first and second expandable support elements. In some other further aspects of the spinal implant system, the exterior fluid passageway may be defined between a first seal member and a second seal member spaced apart along a length of the tool, which seal members may be configured to sealingly engage the inner surface of the channel. In some yet other further aspects of the spinal implant system, the exterior fluid passageway may be at least partially defined by a recessed portion of the exterior surface of the tool.
According to some other aspects of the above spinal implant system, the first end of the first extendable support element and the second end of the second extendable support element may be connected by a plate having a second surface for engaging the second vertebral body. In some yet further aspects of such spinal implant system, the first end of the first extendable support element may be connected to the plate by a first pivotable connection and the second end of the second extendable support element may be connected to the plate by a second pivotable connection.
In accordance with other aspects of the invention, a spinal implant for placement between first and second vertebral bodies preferably includes a body, at least one extendable support element connected to the body, first and second movable members having respective first and second ends movable away from the body, and first and second locking elements. The first movable member and the first locking element are preferably at a first location, and the second movable member and the second locking element are preferably at a second location. The first and second locking elements are desirably selectively lockable such that, when the first locking element is locked, the first locking element restrains movement of the first movable member away from the body without restraining movement of the second movable member away from the body, and, when the second locking element is locked, the second locking element restrains movement of the second movable member away from the body without restraining movement of the first movable member away from the body.
According to some further aspects of the above spinal implant, the first locking element, when locked, may restrain movement of the first movable member away from the body by defining a maximum amount of permitted movement of the first movable member away from the body, and the second locking element, when locked, may restrain movement of the second movable member away from the body by defining a maximum amount of permitted movement of the second movable member away from the body. In some yet further aspects of such spinal implant, the first locking element may be configured to selectively vary the maximum amount of permitted movement of the first movable member away from the body when the first locking element is locked, and the second locking element may be configured to selectively vary the maximum amount of permitted movement of the second movable member away from the body when the second locking element is locked.
According to some other aspects of the above spinal implant, the first and second locking elements may each be rotatable so as to move between a locked configuration and an unlocked configuration. In some yet further aspects of such spinal implant, the first and second locking elements may each have a cylindrical shape defining an open interior space. According to some even further aspects, the extendable support element may include a first extendable support element and a second extendable support element, with the first extendable support element being received within the open interior space of the first locking element, and the second extendable support element being received within the open interior space of the second locking element. In some even further aspects, an inner surface of the first locking element may include a first inner projecting feature, and an outer surface of the first extendable support element may include a first outer projecting feature. The first inner projecting feature and the first outer projecting feature may be arranged to selectively engage and disengage one another based on a rotational position of the first locking element. An inner surface of the second locking element may similarly include a second inner projecting feature, and an outer surface of the second extendable support element may include a second outer projecting feature. The second inner projecting feature and the second outer projecting feature may likewise be arranged to selectively engage and disengage one another based on a rotational position of the second locking element. In some such aspects, the first inner projecting feature, the first outer projecting feature, the second inner projecting feature, and the second outer projecting feature may each include a plurality of projecting ribs. In some other of such aspects, the first inner projecting feature may include a series of first projecting ribs, each of which may extend to a different radial position along the inner surface of the first locking element, and the second inner projecting feature may include a series of second projecting ribs, each of which may extend to a different radial position along the inner surface of the second locking element. According to some aspects, the first locking element may include a plurality of teeth along an outer surface of the first locking element, which teeth may be adapted for engagement by a first control tool to rotate the first locking element so as to move the first locking element between a locked configuration and an unlocked configuration.
According to some other aspects of the above spinal implant, the extendable support element may include a first extendable support element and a second extendable support element, with the first movable member being a portion of the first extendable support element, and the second movable member being a portion of the second extendable support element.
According to some other aspects of the above spinal implant, the first and second movable members may be connected by a plate having a second surface for engaging the second vertebral body. In some yet further aspects of such spinal implant, the first and second movable members are connected to the plate by a respective first and second pivotable connection.
In accordance with yet other aspects of the invention, a spinal implant system may comprise a spinal implant, as described above, and first and second control rods. The first and second control rods are desirably adapted to selectively lock the respective first and second locking elements of the implant.
According to some further aspects of the above spinal implant system, the first and second control rods may be adapted to selectively lock the respective first and second locking element by linear movement of the respective first and second control rod within the spinal implant. In some yet further aspects of such spinal implant system, the first and second control rods may each include a plurality of teeth arranged to engage the respective first and second locking elements so as to control the selective locking of the respective first and second locking elements.
As discussed below, each extendable support element (e.g., piston 22) can be independently actuated so as to independently expand with respect to the housing 11. The bottom 12 of the housing 11 has a bottom end surface 8, which is a bone engaging surface for engaging a vertebra on one side (e.g., the inferior side) of the intervertebral space within which the implant 10 is positioned. The top ends 5 of the pistons 22a, 22b may represent bone engaging surfaces of the implant 10 for engaging a vertebra on the opposite side of the intervertebral space from the bottom end surface 8 (e.g., the superior side). Alternatively, each piston top end 5 may be connected to a respective plate element (not shown) that has a top end surface representing a bone engaging surface for engaging the vertebra on the opposite side of the intervertebral space from the bottom end surface 8, similar to the plate elements in the embodiment of
The intervertebral implant system 1 in accordance with the present invention also includes a tool for actuating the expansion of the extendable support elements. The tool may include a fluid delivery cannula 63 for delivering a pressurized fluid to the cylinders 16a, 16b in order to drive the translation of the pistons 22a, 22b. The fluid delivery cannula 63 is in the form of a shaft having an internal fluid passageway 65 extending along its length. The fluid delivery cannula 63 is desirably configured to independently control the expansion of each extendable support element. The fluid delivery cannula 63 may also be configured to control the expansion of both extendable support elements at the same time. For example, the fluid delivery cannula 63 is selectively positionable within a pressure channel 41 extending between both of the cylinders 16a, 16b, which channel 41 communicates with each of the cylinders 16a, 16b via a respective opening 71. The fluid delivery cannula 63 can thus selectively communicate with either or both of the cylinders 16a, 16b based on its longitudinal position within the channel 41. In that regard, when the fluid delivery cannula 63 is received within the channel 41, an exterior fluid passageway 67 is defined between an inner surface of the channel 41 and an exterior surface of the fluid delivery cannula 63. The longitudinal extent of the exterior fluid passageway 67 may be defined by a distal seal member 73, which may be in the form of an o-ring positioned around the exterior surface of the fluid delivery cannula 63 towards its distal end, and a proximal seal member 75, which may also be in the form of an o-ring positioned around the exterior surface of the fluid delivery cannula 63 and spaced proximally from the distal seal member 73. The volume of the exterior fluid passageway 67 may also be defined by a recessed groove 69 within the exterior surface of the fluid delivery cannula 63. As shown in
In order to selectively actuate the extendable support elements, the fluid delivery cannula 63 can be appropriately positioned along the channel 41 as shown in
By manipulating the fluid delivery cannula 63 as discussed above, the expansion of the different extendable support elements can be individually controlled. That may be useful, for example, in order to adjust the height of each extendable support element to best fit the anatomy of the patient. Individual adjustment may also be useful for providing a specific angular correction to the patient's spine. For example, by providing greater expansion at the anterior portion of the spine than the posterior portion of the spine, the implant 10 may decompress nerve roots while also providing lordosis correction.
The above-described embodiment illustrated in
Although the embodiment of
As shown in
The bottom 112 of the housing 111 has a bottom end surface 108, which is a bone engaging surface for engaging a vertebra on one side (e.g., the inferior side) of the intervertebral space within which the implant 110 is positioned. The top ends 105 of the pistons 122a, 122b may represent bone engaging surfaces of the implant 110 for engaging a vertebra on the opposite side of the intervertebral space from the bottom end surface 108 (e.g., the superior side). Alternatively, the top end 105 of each piston 122a, 122b may be connected to a respective plate element 113a, 113b that has a top end surface 109 representing a bone engaging surface for engaging the vertebra on the opposite side of the intervertebral space from the bottom end surface 108, as shown in
The implant 110 also includes a locking system having multiple locking elements 120a, 120b secured to the housing 111 and configured to lock the translational positions of the pistons 122a, 122b. The locking elements 120a, 120b may have a cylindrical shape configured to be positioned around the respective pistons 122a, 122b. The locking elements 120a, 120b may include at least one feature projecting inwardly from an inner surface thereof, and the pistons 122a, 122b may include at least one corresponding feature projecting outwardly from an outer surface thereof. Those features are configured to engage and disengage one another by rotation of the locking elements 120a, 120b with respect to the pistons 122a, 122b. For example, as shown in
A rack-and-pinion arrangement may be used to control the rotational positions of the locking elements 120a, 120b, and thus the locked and unlocked status of the associated pistons 122a, 122b, as shown in
In the arrangement of
By manipulating the control rods, and thus the locked and unlocked configurations of the pistons, as discussed above, the expansion of the different pistons can be individually controlled while applying a single fluid pressure to all the pistons. For example, by applying a pressure to the pressure channels sufficient to expand all of the pistons, any one or more of the pistons can be selectively locked by appropriate manipulation of the position of the associated control rod, such that the remaining unlocked pistons continue to translate outward from the implant housing.
In order to control the translational position of the control rods 168a, 168b, a delivery tool 100 for inserting and positioning the implant 110 within the intervertebral space may include respective sliders 105a, 105b linearly movable by a user along at least a portion of the delivery tool 100, as shown in
A further alternative embodiment in accordance with the present invention includes rotatable locking elements 220 similar to those of the embodiment of
Other differences between the embodiment of
The above-described embodiments illustrated in
Although the locking elements in the embodiments of
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 15/702,171 filed Sep. 12, 2017, which claims the benefit of the filing date of U.S. Provisional Patent Application No. 62/393,380 filed Sep. 12, 2016, the disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3875595 | Froning | Apr 1975 | A |
4932975 | Main et al. | Jun 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
5236460 | Barber | Aug 1993 | A |
5653763 | Errico et al. | Aug 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5723013 | Jeanson et al. | Mar 1998 | A |
5827328 | Buttermann | Oct 1998 | A |
5865848 | Baker | Feb 1999 | A |
5916267 | Tienboon | Jun 1999 | A |
5980522 | Koros et al. | Nov 1999 | A |
5989290 | Biedermann et al. | Nov 1999 | A |
6039761 | Li et al. | Mar 2000 | A |
6102950 | Vaccaro | Aug 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6176881 | Schar et al. | Jan 2001 | B1 |
6193756 | Studer et al. | Feb 2001 | B1 |
6214012 | Karpman et al. | Apr 2001 | B1 |
6296665 | Strnad et al. | Oct 2001 | B1 |
6371989 | Chauvin et al. | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6375683 | Crozet et al. | Apr 2002 | B1 |
6395032 | Gauchet | May 2002 | B1 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6527803 | Crozet et al. | Mar 2003 | B1 |
6562074 | Gerbec et al. | May 2003 | B2 |
6582467 | Teitelbaum et al. | Jun 2003 | B1 |
6585699 | Ljunggreen et al. | Jul 2003 | B2 |
6692495 | Zacouto | Feb 2004 | B1 |
6719796 | Cohen et al. | Apr 2004 | B2 |
6723126 | Berry | Apr 2004 | B1 |
6730088 | Yeh | May 2004 | B2 |
6764491 | Frey et al. | Jul 2004 | B2 |
6830570 | Frey et al. | Dec 2004 | B1 |
6835207 | Zacouto et al. | Dec 2004 | B2 |
6866682 | An et al. | Mar 2005 | B1 |
6875235 | Ferree | Apr 2005 | B2 |
6953477 | Berry | Oct 2005 | B2 |
6960232 | Lyons et al. | Nov 2005 | B2 |
6981989 | Fleischmann et al. | Jan 2006 | B1 |
7001431 | Bao et al. | Feb 2006 | B2 |
7018415 | McKay | Mar 2006 | B1 |
7018416 | Hanson et al. | Mar 2006 | B2 |
7060037 | Lussier et al. | Jun 2006 | B2 |
7060073 | Frey et al. | Jun 2006 | B2 |
7066958 | Ferree | Jun 2006 | B2 |
7094257 | Mujwid et al. | Aug 2006 | B2 |
7166110 | Yundt | Jan 2007 | B2 |
7204853 | Gordon et al. | Apr 2007 | B2 |
7214243 | Taylor | May 2007 | B2 |
7217293 | Branch, Jr. | May 2007 | B2 |
7282063 | Cohen et al. | Oct 2007 | B2 |
7291150 | Graf | Nov 2007 | B2 |
7291158 | Crow et al. | Nov 2007 | B2 |
7316686 | Dorchak et al. | Jan 2008 | B2 |
7316714 | Gordon et al. | Jan 2008 | B2 |
7351261 | Casey | Apr 2008 | B2 |
7407513 | Alleyne et al. | Aug 2008 | B2 |
7419505 | Fleischmann et al. | Sep 2008 | B2 |
7452359 | Michelson | Nov 2008 | B1 |
7470273 | Dougherty-Shah | Dec 2008 | B2 |
7481812 | Frey et al. | Jan 2009 | B2 |
7485145 | Purcell | Feb 2009 | B2 |
7507241 | Levy et al. | Mar 2009 | B2 |
7520900 | Trieu | Apr 2009 | B2 |
7563284 | Coppes et al. | Jul 2009 | B2 |
7563286 | Gerber et al. | Jul 2009 | B2 |
7621956 | Paul et al. | Nov 2009 | B2 |
7628815 | Baumgartner et al. | Dec 2009 | B2 |
7670359 | Yundt | Mar 2010 | B2 |
7708779 | Edie et al. | May 2010 | B2 |
7722674 | Grotz | May 2010 | B1 |
7731752 | Edie et al. | Jun 2010 | B2 |
7731753 | Reo et al. | Jun 2010 | B2 |
7771480 | Navarro et al. | Aug 2010 | B2 |
7794501 | Edie et al. | Sep 2010 | B2 |
7806935 | Navarro et al. | Oct 2010 | B2 |
7819921 | Grotz | Oct 2010 | B2 |
7824444 | Biscup et al. | Nov 2010 | B2 |
7824445 | Biro et al. | Nov 2010 | B2 |
7854766 | Moskowitz et al. | Dec 2010 | B2 |
7862618 | White et al. | Jan 2011 | B2 |
7883543 | Sweeney | Feb 2011 | B2 |
7935124 | Frey et al. | May 2011 | B2 |
7967863 | Frey et al. | Jun 2011 | B2 |
7967867 | Barreiro et al. | Jun 2011 | B2 |
7985231 | Sankaran | Jul 2011 | B2 |
7985256 | Grotz et al. | Jul 2011 | B2 |
8021395 | Ben-Mokhtar et al. | Sep 2011 | B2 |
8025680 | Hayes et al. | Sep 2011 | B2 |
8057549 | Butterman et al. | Nov 2011 | B2 |
8062368 | Heinz et al. | Nov 2011 | B2 |
8062373 | Fabian, Jr. | Nov 2011 | B2 |
8070813 | Grotz et al. | Dec 2011 | B2 |
8105382 | Olmos et al. | Jan 2012 | B2 |
8153785 | Khire et al. | Apr 2012 | B2 |
8187331 | Strohkirch, Jr. et al. | May 2012 | B2 |
8192495 | Simpson et al. | Jun 2012 | B2 |
8267939 | Cipoletti et al. | Sep 2012 | B2 |
8273124 | Renganath et al. | Sep 2012 | B2 |
8303663 | Jimenez et al. | Nov 2012 | B2 |
8353961 | McClintock et al. | Jan 2013 | B2 |
8366777 | Matthis et al. | Feb 2013 | B2 |
8394143 | Grotz et al. | Mar 2013 | B2 |
8435296 | Kadaba et al. | May 2013 | B2 |
8454695 | Grotz et al. | Jun 2013 | B2 |
8696751 | Ashley et al. | Apr 2014 | B2 |
8992620 | Ashley et al. | Mar 2015 | B2 |
9028550 | Shulock et al. | May 2015 | B2 |
9044218 | Young | Jun 2015 | B2 |
10182922 | Nichols et al. | Jan 2019 | B2 |
20010056302 | Boyer et al. | Dec 2001 | A1 |
20020128716 | Cohen et al. | Sep 2002 | A1 |
20020136146 | Lee et al. | Sep 2002 | A1 |
20020138146 | Jackson | Sep 2002 | A1 |
20020151976 | Foley et al. | Oct 2002 | A1 |
20030114899 | Woods et al. | Jun 2003 | A1 |
20030130739 | Gerbec et al. | Jul 2003 | A1 |
20040030346 | Frey et al. | Feb 2004 | A1 |
20040088054 | Berry | May 2004 | A1 |
20040097928 | Zdeblick et al. | May 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040153065 | Lim | Aug 2004 | A1 |
20040153156 | Cohen et al. | Aug 2004 | A1 |
20040181229 | Michelson | Sep 2004 | A1 |
20040186576 | Biscup et al. | Sep 2004 | A1 |
20050033437 | Bao et al. | Feb 2005 | A1 |
20050043800 | Paul et al. | Feb 2005 | A1 |
20050049590 | Alleyne et al. | Mar 2005 | A1 |
20050085910 | Sweeney | Apr 2005 | A1 |
20050107881 | Alleyne et al. | May 2005 | A1 |
20050113842 | Bertagnoli et al. | May 2005 | A1 |
20050197702 | Coppes et al. | Sep 2005 | A1 |
20050216084 | Fleischmann et al. | Sep 2005 | A1 |
20050229433 | Cachia | Oct 2005 | A1 |
20050251260 | Gerber et al. | Nov 2005 | A1 |
20050273169 | Purcell | Dec 2005 | A1 |
20050273170 | Navarro et al. | Dec 2005 | A1 |
20050273171 | Gordon et al. | Dec 2005 | A1 |
20060036259 | Carl et al. | Feb 2006 | A1 |
20060049917 | Hyde et al. | Mar 2006 | A1 |
20060085073 | Raiszadeh | Apr 2006 | A1 |
20060089719 | Trieu | Apr 2006 | A1 |
20060106416 | Raymond et al. | May 2006 | A1 |
20060116767 | Magerl et al. | Jun 2006 | A1 |
20060142860 | Navarro et al. | Jun 2006 | A1 |
20060142861 | Murray | Jun 2006 | A1 |
20060149377 | Navarro et al. | Jul 2006 | A1 |
20060167547 | Suddaby | Jul 2006 | A1 |
20060200244 | Assaker | Sep 2006 | A1 |
20060235426 | Lim et al. | Oct 2006 | A1 |
20060235535 | Ferree et al. | Oct 2006 | A1 |
20060241770 | Rhoda et al. | Oct 2006 | A1 |
20060264968 | Frey et al. | Nov 2006 | A1 |
20070050030 | Kim | Mar 2007 | A1 |
20070050033 | Reo et al. | Mar 2007 | A1 |
20070073395 | Baumgartner et al. | Mar 2007 | A1 |
20070093901 | Grotz et al. | Apr 2007 | A1 |
20070093903 | Cheng | Apr 2007 | A1 |
20070123987 | Bernstein | May 2007 | A1 |
20070179611 | DiPoto et al. | Aug 2007 | A1 |
20070233254 | Grotz | Oct 2007 | A1 |
20070255409 | Dickson et al. | Nov 2007 | A1 |
20070255413 | Edie et al. | Nov 2007 | A1 |
20070255415 | Edie et al. | Nov 2007 | A1 |
20070270961 | Ferguson | Nov 2007 | A1 |
20070270964 | Strohkirch et al. | Nov 2007 | A1 |
20070288092 | Bambakidis | Dec 2007 | A1 |
20080021555 | White et al. | Jan 2008 | A1 |
20080021556 | Edie | Jan 2008 | A1 |
20080058930 | Edie et al. | Mar 2008 | A1 |
20080058931 | White et al. | Mar 2008 | A1 |
20080065082 | Chang et al. | Mar 2008 | A1 |
20080065220 | Alleyne et al. | Mar 2008 | A1 |
20080065221 | Alleyne et al. | Mar 2008 | A1 |
20080077150 | Nguyen | Mar 2008 | A1 |
20080086276 | Naka et al. | Apr 2008 | A1 |
20080097441 | Hayes et al. | Apr 2008 | A1 |
20080103601 | Biro et al. | May 2008 | A1 |
20080114467 | Capote et al. | May 2008 | A1 |
20080140207 | Olmos et al. | Jun 2008 | A1 |
20080147193 | Matthis et al. | Jun 2008 | A1 |
20080147194 | Grotz et al. | Jun 2008 | A1 |
20080161933 | Grotz et al. | Jul 2008 | A1 |
20080177387 | Parimore et al. | Jul 2008 | A1 |
20080215153 | Butterman et al. | Sep 2008 | A1 |
20080281424 | Parry et al. | Nov 2008 | A1 |
20080288073 | Renganath et al. | Nov 2008 | A1 |
20080300598 | Barreiro et al. | Dec 2008 | A1 |
20090005819 | Ben-Mokhtar et al. | Jan 2009 | A1 |
20090005874 | Fleischmann et al. | Jan 2009 | A1 |
20090018661 | Kim et al. | Jan 2009 | A1 |
20090043312 | Koulisis et al. | Feb 2009 | A1 |
20090048676 | Fabian, Jr. | Feb 2009 | A1 |
20090105836 | Frey et al. | Apr 2009 | A1 |
20090171389 | Sankaran | Jul 2009 | A1 |
20090182343 | Trudeau et al. | Jul 2009 | A1 |
20090204215 | McClintock et al. | Aug 2009 | A1 |
20090216331 | Grotz et al. | Aug 2009 | A1 |
20090222100 | Cipoletti et al. | Sep 2009 | A1 |
20090270987 | Heinz et al. | Oct 2009 | A1 |
20100016970 | Kapitan et al. | Jan 2010 | A1 |
20100057204 | Kadaba et al. | Mar 2010 | A1 |
20100145455 | Simpson et al. | Jun 2010 | A1 |
20100145456 | Simpson et al. | Jun 2010 | A1 |
20100249930 | Myers | Sep 2010 | A1 |
20100324606 | Moskowitz et al. | Dec 2010 | A1 |
20110130835 | Ashley et al. | Jun 2011 | A1 |
20110137416 | Myers | Jun 2011 | A1 |
20110138948 | Jimenez et al. | Jun 2011 | A1 |
20110270398 | Grotz et al. | Nov 2011 | A1 |
20110288646 | Moskowitz et al. | Nov 2011 | A1 |
20120059469 | Myers et al. | Mar 2012 | A1 |
20120116518 | Grotz et al. | May 2012 | A1 |
20120130387 | Simpson et al. | May 2012 | A1 |
20120158071 | Jimenez et al. | Jun 2012 | A1 |
20120245695 | Simpson et al. | Sep 2012 | A1 |
20120283830 | Myers | Nov 2012 | A1 |
20120303124 | McLuen et al. | Nov 2012 | A1 |
20120310350 | Farris et al. | Dec 2012 | A1 |
20130096677 | Myers et al. | Apr 2013 | A1 |
20130103156 | Packer et al. | Apr 2013 | A1 |
20130158668 | Nichols et al. | Jun 2013 | A1 |
20130158669 | Sungarian et al. | Jun 2013 | A1 |
20130197642 | Ernst | Aug 2013 | A1 |
20130197647 | Wolters et al. | Aug 2013 | A1 |
20130197648 | Boehm et al. | Aug 2013 | A1 |
20130204368 | Prevost | Aug 2013 | A1 |
20130204371 | McLuen et al. | Aug 2013 | A1 |
20130204374 | Milella, Jr. | Aug 2013 | A1 |
20130211525 | McLuen et al. | Aug 2013 | A1 |
20130253650 | Ashley | Sep 2013 | A1 |
20130274883 | McLuen et al. | Oct 2013 | A1 |
20140142701 | Weiman | May 2014 | A1 |
20140277500 | Logan et al. | Sep 2014 | A1 |
20140288652 | Boehm et al. | Sep 2014 | A1 |
20140316522 | Weiman et al. | Oct 2014 | A1 |
20150094814 | Emerick | Apr 2015 | A1 |
20150257894 | Levy et al. | Sep 2015 | A1 |
20150351925 | Emerick et al. | Dec 2015 | A1 |
20150374507 | Wolters et al. | Dec 2015 | A1 |
20160089247 | Nichols et al. | Mar 2016 | A1 |
20170000622 | Thommen et al. | Jan 2017 | A1 |
20170100255 | Hleihil et al. | Apr 2017 | A1 |
20170119542 | Logan et al. | May 2017 | A1 |
20170119543 | Dietzel et al. | May 2017 | A1 |
20170128226 | Faulhaber | May 2017 | A1 |
20170333198 | Robinson | Nov 2017 | A1 |
20180000606 | Hessler et al. | Jan 2018 | A1 |
20180000609 | Hessler et al. | Jan 2018 | A1 |
20180071111 | Sharifi-Mehr et al. | Mar 2018 | A1 |
20180098860 | To et al. | Apr 2018 | A1 |
20180110628 | Sharifi-Mehr et al. | Apr 2018 | A1 |
20180116811 | Bernard et al. | May 2018 | A1 |
20180116812 | Bernard et al. | May 2018 | A1 |
20180125671 | Bernard et al. | May 2018 | A1 |
20180147066 | Daffinson et al. | May 2018 | A1 |
20180193160 | Hsu et al. | Jul 2018 | A1 |
20180193164 | Shoshtaev | Jul 2018 | A1 |
20180200076 | Knapp et al. | Jul 2018 | A1 |
20180243107 | Foley et al. | Aug 2018 | A1 |
20180296361 | Butler et al. | Oct 2018 | A1 |
20180303621 | Brotman et al. | Oct 2018 | A1 |
20180318101 | Engstrom | Nov 2018 | A1 |
20180360616 | Luu | Dec 2018 | A1 |
20190000646 | Daffinson et al. | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
1756516 | Apr 2006 | CN |
101610741 | Dec 2009 | CN |
101631516 | Jan 2010 | CN |
101686860 | Mar 2010 | CN |
101686865 | May 2013 | CN |
1442715 | Nov 2004 | EP |
1415624 | May 2006 | EP |
2001-518824 | Oct 2001 | JP |
2008-502372 | Jan 2008 | JP |
2003003951 | Jan 2003 | WO |
2004016250 | Feb 2004 | WO |
2004016205 | May 2004 | WO |
2006044786 | Jan 2007 | WO |
2008011371 | Mar 2008 | WO |
2007124078 | Jul 2008 | WO |
2008039811 | Jul 2008 | WO |
2008112607 | Dec 2008 | WO |
2008148210 | Dec 2008 | WO |
2009033100 | Mar 2009 | WO |
2008121251 | Aug 2009 | WO |
2009064787 | Aug 2009 | WO |
2009105182 | Aug 2009 | WO |
2009114381 | Sep 2009 | WO |
2008086276 | Dec 2009 | WO |
2010074704 | Jul 2010 | WO |
2010068725 | Oct 2010 | WO |
2011011609 | Jun 2011 | WO |
2011150077 | Dec 2011 | WO |
2013119803 | Aug 2013 | WO |
2013158294 | Oct 2013 | WO |
2016183382 | Nov 2016 | WO |
2017117513 | Jul 2017 | WO |
Entry |
---|
Milz et al., U.S. Appl. No. 15/481,854, filed Apr. 7, 2017. |
Extended European Search Report of EP 17 19 0437 dated Jan. 11, 2018. |
Number | Date | Country | |
---|---|---|---|
20200100905 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
62393380 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15702171 | Sep 2017 | US |
Child | 16592990 | US |