This invention relates to a method and system for employing multiple kill vehicles (KV) designated to kill multiple Re-entry Vehicles (RVs) that are launched simultaneously towards a friendly territory.
Ground to ground ballistic missiles (BM) have become an efficient weapon which can cause significant damage to military and civilian infra-structures, and thereby they serve as a strategic tool in favor of states which attack their enemies (either offensively or defensively as a result of an attack originated by the enemy). In light of this ever increasing threat, an anti missile technology has been developed, such as the “Arrow” anti-missile technology (deployed and used by the Israel Defense Forces) and others. The Arrow system is capable of tracking the oncoming ground to ground BMs and launch, e.g. from a protected territory, an interceptor missile which flies along a flight trajectory which substantially intercepts that of the oncoming threat. The interceptor missile approaches the oncoming target (at a safe distance from the protected territory) and destroys it by using hit to kill mechanism or by activating an appropriate kill warhead which destroys at least the active warhead of the threat and reduces dramatically the damage to the protected territory.
Modern GTG may consist of multiple Re-entry Vehicles and include undistinguishable decoys. Note that the interceptor missile is in some cases unable to distinguish between real Re-entry Vehicle and decoy and accordingly any potential threat is classified as a real threat that needs to be destroyed, regardless of whether is it a true warhead or only a decoy.
A Ballistic Missile Defense (BMD) system may use Multiple Kill Vehicles (KV) to encounter these threats. Present Kill Vehicles (KV) are quite large, complicated and thus expensive. Modern KVs usually use an IR imaging electro optical sensor having a large aperture and cooled focal plane array. These sensors are quite large and expensive. High resolution is very important in these sensors, mainly for the final lethality maneuver performed close to hitting the target in order to hit the point in the target that will ensure maximum lethality. The high closing velocities between the interceptor and the target require accurate determination of the target's “sweet spot” (i.e. the point of impact in the target which will destroy the warhead(s) of the target). The multiple threats may be encountered by employing a plurality of interceptor missiles each designated to destroy a distinct threat.
An interceptor missile (having limited physical dimensions) needs to accommodate a plurality of Miniature Kill Vehicles (MKV) (designated to be launched towards multiple targets). This constraint prescribes that the size of each MKV would be relatively small (therefore designating the KV as Miniature KV). Due to the small size of each MKV, the aperture d of the IR imaging sensor fitted thereon cannot be large. Considering also that in the operational infra-red range the appropriate wavelength λ is relatively large (i.e. above 3 microns or in specific embodiments 3-5 or 8-12 microns) it readily arises that the diffraction factor (proportional to λ/d) is relatively large, giving rise to degraded resolution. Considering the small size of the MKV, the hitting point should be very close to the “sweet spot”, and this requires high resolution and accuracy of the aiming point measurement. The specified degraded resolution may result in missing the sweet spot thereby reducing the prospect of successful kill. In addition, the degraded resolution may lead to an undesired result of failing to identify that the “target” that the MKV tracks is in fact two (or more) real targets (since due to the degraded resolution the MKV cannot distinguish between the two) and therefore even if it succeeds in hitting one of the targets the other or others (non distinguishable) targets could leak and hit the friendly territory leading to dire consequences.
There is thus a need in the art to provide for an MKV with improved resolution which will increase the likelihood of destroying all imminent RVs (either warheads or decoys) that are launched simultaneously towards friendly territory.
According to certain embodiments of the invention, the sensors that are employed in a Miniature Kill Vehicle (MKV) are in the visible or near IR spectrum instead of the IR part thus significantly improving the resolution for a given aperture by an order of magnitude. Visible or near IR sensors are also much smaller than the IR ones, they provide high resolution with a small aperture and they do not need cooled focal plane arrays. All this reduces the weight and cost of the sensor dramatically and it releases the requirements imposed on the divert system time constants allowing the MKV to maneuver more efficiently. Since the targets do not emit enough energy in the visible or near IR part of the spectrum, some illumination device should be added to the system.
In accordance with certain embodiments, the interceptor employs an illuminator system. Unlike each of the MKVs, the interceptor missile can carry relatively heavy sub-systems, and one of them will be an illuminating system. In accordance with certain embodiments, the illumination system includes a laser in the visible or near-IR range to supply high enough resolution for small-aperture detectors of the multiple MKVs. Relatively simple low-weight sensors measuring the signal reflected by the target allows homing and end-game of MKVs. In accordance with certain embodiments, the illumination will be switched between targets (one or more Re-entry Vehicle(s) [RV] associated with the Ballistic Missile), according to a predefined interception plan for each MKV.
In accordance with an aspect of the invention there is provided a small kill-vehicle (KV) accommodated within an interceptor missile together with additional at least one KV, each KV is equipped with an image acquisition sensor operable in the visible or near IR range, and adapted to be launched from the interceptor missile during exo-atmospheric flight and utilizing said sensor for tracking and homing at least one Re-entry Vehicle (RV) of a Ballistic Missile (BM).
In accordance with a certain embodiment of the invention there is provided a KV, wherein said tracking is performed in an autonomous manner.
In accordance with a certain embodiment of the invention there is further provided a KV, equipped with a gyro system to perform the tracking and homing.
In accordance with a certain embodiment of the invention there is provided a KV, further being equipped with accelerometers to calculate its self position.
In accordance with a certain aspect of the invention there is provided an interceptor missile for exo-atmospheric interception of a at least one Re-entry Vehicle (RV) of a Ballistic missile (BM), comprising: a plurality of small kill-vehicle (KVs) accommodated within the interceptor missile, each KV being equipped with a built-in image acquisition sensor operable in the visible or near IR range, the interceptor missile including:
In accordance with a certain embodiment of the invention there is provided an interceptor missile, wherein the interceptor sensor is operable in the wavelength range of 3-5 microns.
In accordance with a certain embodiment of the invention there is provided an interceptor missile, wherein the interceptor sensor is operable in the wavelength range of 8-12 microns.
In accordance with a certain embodiment of the invention there is provided an interceptor, wherein said illuminator being a laser designator.
In accordance with a certain embodiment of the invention there is further provided an interceptor missile, wherein said sensor is configured to sense at least two RVs of a Ballistic missile (BM), and in response said control is configured to command said illuminator to illuminate the RV;
In accordance with a certain embodiment of the invention there is still further provided an interceptor missile, wherein said control is configured to command said illuminator to switch illumination between at least two RVs that were separated from said BM.
In accordance with a certain embodiment of the invention there is yet further provided an interceptor missile, wherein said illuminator includes fast illumination beam direction system for fast switching of illuminations between RVs that were separated from said BM.
In accordance with a certain embodiment of the invention there is yet further provided an interceptor missile, wherein said illumination is modulated allowing said control to calculate range to the RV.
In accordance with a certain embodiment of the invention there is yet further provided an interceptor missile, wherein said illumination is unmodulated.
In accordance with a certain embodiment of the invention there is yet further provided an interceptor missile, further comprising communication means for receiving initial location of each RV in a cluster of RVs.
In accordance with a certain embodiment of the invention there is yet further provided an interceptor missile, wherein said control is further configured to divert the interceptor towards the center of the cluster.
In accordance with a certain embodiment of the invention there is yet further provided an interceptor, wherein the control is configured to trigger a command for launching a KV with or without an initial velocity towards a designated RV.
In accordance with a certain embodiment of the invention there is yet further provided an interceptor missile, wherein at least two KVs are launched towards the same RV with a time delay between planned interceptions to increase the kill probability.
In accordance with a certain embodiment of the invention there is yet further provided an interceptor missile, wherein at least two KVs are released towards different RVs which were separated from the same BM or from different BMs in a salvo, according to the divert capability of the KVs and the warheads dispersion.
In accordance with a certain embodiment of the invention there is yet further provided an interceptor missile, wherein at least additional KV is launched towards the same RVs in response to detecting a miss, provided the time budget and required divert of the KV allow an additional try.
In accordance with a certain embodiment of the invention there is yet further provided an interceptor missile, capable of performing kill assessment by the sensor.
In accordance with a certain embodiment of the invention there is yet further provided an interceptor, wherein said mission plan is communicated to the interceptor from a ground station.
In accordance with a certain aspect of the invention there is yet further provided a method for exo-atmospheric interception of Re-entry Vehicles (RVs) of a Ballistic Missile (BM), comprising:
In order to understand the invention and to see how it may be carried out in practice, a preferred embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
In accordance with certain embodiments, when a threat is launched towards a friendly territory a known detection and tracking system detects the object, tracks it and a battle management center (BMC) classifies it as a potential threat and in response launches one or more interceptor missiles towards the threat(s). The threats are one or more Re-entry Vehicles (RV) associated with the Ballistic Missile (BM).
Having launched an interceptor missile, it has, as is known per se, a bus system for controlling its flight and the mission plan (of destroying the threat or threats) based on a mission plan communicated thereto and being updated whenever necessary.
Bearing this in mind, attention is drawn to
Reverting now to
Turning now to
Turning now to
The various MKV modules are powered utilizing power supply 35, all as is known in the art. In accordance with certain embodiments, the MKV generally operates in an autonomous manner.
Those versed in the art will readily appreciate that the system architecture of
Turning now to
After the interceptor missile has been launched towards a BM (in response to appropriate command from the BMC 14), and after booster and shroud separation, the bus activates a high performance sensor e.g. IR imaging system (25 of
Note that in accordance with certain embodiments, the illuminator device direction system (not shown in the figs.) is responsive to the bus of the interceptor (which in turn being responsive to the BMC 14) and is capable of directing the illuminating beam towards the designated RV.
In accordance with certain other embodiments, in response to mission plan guidelines communicated to the interceptor, the bus is configured to instruct the illumination device to switch the illumination beam between targets, e.g. directing the beam towards various RVs (that were separated from the BM) intermittently.
Unlike the prior art, the MKV employs a sensor for image acquisition of the target operating in the visible or near IR range, say one or more CCD cameras. The utilization (in the MKV) of a sensor operating in the visible or near IR range (for tracking and homing onto the target warhead) is only possible if the object is sufficiently illuminated and this is achieved by the illumination beam that is directed (by the illuminator device fitted on the interceptor) towards the oncoming threat. Had the object not been illuminated by the laser beam (but only be viewed by the IR imaging means of the interceptor), a CCD camera fitted on the MKV and operating in the visible or near IR range would not have been able to view the oncoming threat if the latter is launched during the night and not day. Thus, the utilization of the illuminator that is fitted on the interceptor facilitates usage of a camera operating in the visible or near IR range (fitted at the MKV) rather than operating in the Infra-red range, as is the case with the prior art. Note that utilization of a camera operating in the visible or near IR range improves the resolution of the camera which, as is well known, is proportional diffraction factor λ/d, where λ is the appropriate wavelength (0.4-0.7 micron for the visible or 0.7 to 1.4 micron for the near IR range, compared to the 3-5 or 8 -12 microns for the Infra-red range) and d is the camera's aperture. As may be recalled the camera's aperture d is relatively small since it must be a small camera as it is fitted to a small MKV. The MKV is obviously relatively small because few of them are mountable on or accommodated within the interceptor. Accordingly, the value of λ/d for a camera operating in the infra-red range is relatively large imposing a low resolution. Low resolution may lead to an undesired scenario of missing the sweet spot, jeopardizing thus the prospects of successful kill or in accordance with another scenario where two or more target Re-entry Vehicles (RVs) are flying in close proximity one with respect to the other and the MKV that is launched towards them fails to discern between the two targets and even if it succeeds to hit one, then the other (undamaged) RVs may leak and hit the friendly territory, which is obviously undesired. In contrast, utilizing a camera operating in the visible or near IR range, under the same physical constraints (i.e. small aperture d) would result in considerable smaller diffraction factor λ/d (due to the small λ value for the visible or near IR range), giving rise to enhanced resolution (compared to an infra-red camera equipped MKV). Thus, utilizing an illuminator fitted on the interceptor and directed towards the oncoming warhead, facilitates the use of an MKV equipped with a camera operating in the visible or near IR range, giving rise to an MKV with higher resolution specifications, thereby significantly enhancing the prospects of duly hitting the sweet spot and discerning between targets and hitting them, regardless of whether the targets were launched in daylight or during the night.
Note that in accordance with certain embodiments, the illumination may be modulated (pulsed or other) to allow range measurement. In this case MKVs after being released (or ejected) are dependent on data transfer from the platform during their flight. In accordance with certain other embodiments, the illumination may be unmodulated. In the latter case the range estimation is based on measurements received from an external source. Thus, the MKVs may operate autonomously with less dependence on the communication from the interceptor.
Note that in accordance with certain embodiments, the MKV is designated to collide with the RV, or, in accordance with certain other embodiments, to collide with the warhead section of the RV, or, in accordance with certain other embodiments, to activate the MKV's warhead in close proximity to the RV, all as required and appropriate depending upon the particular application.
In accordance with certain embodiments, every MKV may be equipped with accelerometers to calculate its own position or use the data passed from the interceptor or both. In case the MKV does not have a full inertial measurement system but only a gyro, the interceptor will measure MKV position in addition to threat position measurements and will communicate the calculated MKV location data to the MKV through the communication module.
In accordance with certain embodiments, the divert system of the MKV (whose structure is generally known per se), is capable of directing the MKV towards the threat, all as described in detail in the specified WO 2006/003660 publication. The MKV is launched with or without an initial direction correction by the interceptor. In case the interceptor did not launch the MKV in the required direction, the correction will be performed by the MKV divert system. In accordance with certain embodiments the interceptor may launch the MKV with an initial velocity in the right direction towards the threat.
Note that the mission plan logic does not necessarily fully divorce from the interceptor and accordingly in accordance with certain embodiments it may reside partially also at an interceptor module and/or partially at the MKV. Note also that the mission plan logic may employ one or more scenarios as the case may be. Thus by way of non limiting example one or more of the following mission plan scenarios may be utilized:
Bearing all this in mind, attention is drawn to
51—The detection system detects the incoming ballistic missile and sends cuing to the tracking system.
52 The tracking system tracks the target and identifies the suspected reentry vehicles (RV).
53 The tracking system sends the target object map (coordinates and velocity vectors to all detected object (including the suspected reentry vehicles) to the interceptor through the BMC.
54 The BMC analyses the scenario and decides on the optimal interception plan for all RVs.
55 The BMC sends this interception plan to the interceptor.
55 The interceptor is launched and undergoes booster and shroud separation.
56 Knowing its own position and velocity, the interceptor calculates the coordinates of all objects relative to its coordinate system.
57 The interceptor launches the MKVs according to the interception plan and points the IR camera and laser to the different RV in the preplanned sequence.
58 The IR camera detects the target and corrects the pointing to ensure proper illumination by the laser.
59 Every MKV flies toward its target pointing its sensor to it and illuminates it.
501 Once the target is detected by the MKV it measures the line of sight angles to it in an inertial reference system and calculates the angular velocity of this line of sight.
502 The angular velocity of the line of sight around two defined axes is used in order to calculate the required maneuver for hitting the target utilizing for example proportional navigation all as known per se.
503 The required acceleration is achieved by changing the angle between the line of sight to the target and the thrust of the rocket motor as known per se.
504 If the MKV navigation system is not accurate enough the interceptor may measure the position of the MKV using its accurate navigation system and transmit it to the MKV through a communication channel in order to correct the MKV navigation system.
Note that the invention is not bound by the sequence of operation described with reference to
Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions, utilizing terms such as, “processing”, “computing”, “calculating”, “determining”, or the like, refer to the action and/or processes of a computer or computing system, or processor or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data, similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.
Embodiments of the present invention may use terms such as, processor, computer, apparatus, system, sub-system, module, unit, device (in single or plural form) for performing the operations herein, This may be specially constructed for the desired purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but not limited to, any type of disk including optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), electrically programmable read-only memories (EPROMs), electrically erasable and programmable read only memories (EEPROMs), magnetic or optical cards, any other type of media suitable for storing electronic instructions that are capable of being conveyed via a computer system bus.
The processes/devices (or counterpart terms specified above) discussed herein are not inherently related to any particular computer or other apparatus, unless specifically stated otherwise. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct a more specialized apparatus to perform the desired method. In addition, embodiments of the present invention are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the inventions as described herein.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will occur to those skilled in the art. It is therefore to be understood that the appended claims are intended to cover all such modifications and changes as fall within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
195171 | Nov 2008 | IL | national |