The die-cutting creasing system of the invention relates to die-cutting apparatus, and more specifically relates to a die-cutting creasing apparatus for creasing corrugated sheets of material.
Die-cutting apparatus produce product from corrugated sheets of material via forces on a cutting-die that allow a cutting die rule to cut, crease, score, perforate and/or emboss the corrugated sheets. The products produced through this process are called blanks. The blanks are subsequently manipulated in a variety of ways to create boxes, covers, trays, folders, standees (displays), shells, tubes, partitions and interior forms. Some examples of die-cutting apparatus are disclosed in U.S. Pat. Nos. 4,808,054 and 5,409,442, herein incorporated by reference to the extent that these patents are not inconsistent with the present disclosure.
There are generally two types of die-cutting apparatus for corrugated workpieces: flat die-cutting apparatus and rotary die-cutting apparatus. Flat die-cutting apparatus produce blanks by way of a machine press that uses a simultaneous normal force across the entire die. Rotary die-cutting apparatus produce blanks by way of a variety of forces (normal, rotational and tangential). The combination of forces allow for a normal force to dominate and advance across the corrugated board between two opposing cylinders.
The rotary die-cutting apparatus include two revolving cylinders. One cylinder is called a die cylinder upon which the cutting die is mounted. The opposing cylinder is called an anchor cylinder. The surface of the anchor cylinder is usually wrapped completely by a rubber (often polyurethane) sheet referred to as a “blanket.” The blanket serves several purposes, one of which is to oppose and cushion the force of the cutting-die rule.
Normally, die-cutting apparatus include a variety of rules that cut, perforate, emboss as well as crease the blank. There are also other items that are attached throughout the die known as “finishing products” that assist in the overall process.
Crease impressions by the die-cutting apparatus allow raw sheets of material to be folded in varying directions and degrees as desired. The quality of the crease impression (sometimes referred to as scoring) is one of the major variables that directly affect the ability to properly stack, store and fold the blank for application. The quality of crease impressions is dependent on the height and cross-sectional profile of the crease member. The crease impression is created by a normal (perpendicular) force upon the corrugated sheet combined with a rotational force (and sometimes a tangential pushing or pulling force) which transfers the corrugated sheet through the process. The crease impression sometimes needs to be altered to produce or maintain a quality blank. It is often the case that to achieve a quality crease impression requires a trial and error type process, which in turn, often requires changing out the crease member profile.
As with most production machinery, downtime can significantly affect the cost of production. The present inventors have recognized that the capability to quickly interchange various crease member designs during production while the die is either mounted to the machine or at the machine location (as opposed to shipping the die to a facility for rework) would greatly benefit the overall flow of production.
Though there are currently a number of systems on the market designed to allow for the interchanging of creasing geometry, most require fasteners, adhesives or other adherents to maintain the structural integrity between the cutting-die board and the crease member.
The present inventors have recognized that fasteners such as staples and nails sometimes complicate systems due to failure of adherence and structural integrity and may create stress concentrations which may adversely affect the alignment and/or structural integrity of the system. The present inventors have recognized that adhesives and other adherents sometimes fail due to the inability to maintain the adherence and may adversely affect downtime due to set-up and hold time.
The creasing system of the embodiments of the present invention creates effective crease impressions on raw sheets of material. The design also allows for the creation of a variety of profiles of crease members for customized crease profiles. These crease member profiles can be designed and produced in a wide variety of shapes which can be quickly exchanged on the die cutting board.
The creasing system of some of the embodiments of the present invention do not require any other means of maintaining the structural integrity of the system other than the pre-existing static force between the die board and the anchor, and the mating surface between the outer cross- sectional profile of the anchor and the inner cross-sectional profile of the crease member; the combination of which snaps and secures the crease member in place.
The creasing system of some of the embodiments of the present invention do not require fasteners, adhesives or other adherents to install the crease member onto the board. During the die-cutting board construction process, the die-board is prepared to receive the anchor usually via laser burning or jig-cutting lines or slots through the die-board. The anchor, preferably a metallic anchor, is secured to the die-board during the die manufacturing process. The anchor is secured to the die-board by force, usually from pressing or hammering. The width of the laser burn or jig-cut that receives the anchor is slightly thinner than the lower profile width of the anchor so that a static force, gripping or friction, is created and maintained between the anchor and the board.
The upper, outer cross-section of the anchor is exposed above the board and profiled to allow for the securing of the crease member. The inner cross-section of the crease member is profiled in such a way so that it is secured to the exposed profile of the anchor. The crease member is secured to the anchor via a pressing force, pounding force or a sliding force. The mating surfaces between the crease member and the anchor are profiled in such a way as to allow for the removal of the crease member via a pulling force, prying force or sliding force. The crease member may be changed out relatively quickly. The crease member profile can be customized and produced in a wide variety of ways to fit specific applications.
The creasing apparatus according to embodiments of the invention also maintains a more consistent geometric alignment due to the anchor being located via the initial geometrically located cut into the die board as opposed to surface mounted creasing systems, the location of which may vary dependent on how it is applied.
Though the proposed design will be implemented for both flat and rotary die-cutting apparatus, the rotary die-cutting apparatus is slightly more involved and encompasses much of what occurs during the flat die process; therefore the rotary die-cutting apparatus will be referenced throughout the remainder of the description.
Crease impressions assist in the ability to fold raw sheets of material to varying directions and degrees. The crease impression created in a raw sheet of material is dependent on several variables that exist throughout the process. One of the most significant variables in creating quality crease impressions is the outer cross-sectional height and profile of the creasing rule geometry. It is often the case that to achieve a quality crease impression requires a trial and error type process, which in turn, often requires changing out the creasing rule profile. Machine downtime adversely affects the cost of production. The ability to alter or change out the creasing rule geometry in a relatively small amount of time would greatly benefit the overall production process.
The system disclosed herein allows for the changing out of the creasing rule geometry in a relatively short amount of time. The system disclosed herein will allow for the application of an infinite variety of heights and profiles of creasing rule geometry. The specific components of the system is comprised of a die-board, a metallic anchor and the crease disclosed herein. Fasteners such as staples and nails sometimes complicate systems due to failure of adherence and structural integrity and may create stress concentrations which may adversely affect the structural integrity of the system. Adhesives and other adherents sometimes fail due to the inability to maintain the adherence and may adversely affect downtime due to set-up and hold time. Some of the systems disclosed herein are designed in such a way that they do not require fasteners, adhesives or other adherents. During the die-board construction process, the die board is prepared to receive the metallic anchor usually via laser burning or jig-cutting through the die-board. The metallic anchor is secured to the die-board during the die manufacturing process. The metallic anchor is secured to the die-board by force, usually from pressing or hammering. The width of the laser burn or jig-cut that receives the metallic anchor is slightly thinner than the lower profile width of the metallic anchor so that a static force is created and maintained between the metallic anchor and the board. The upper, outer cross-section of the metallic anchor is exposed above the board and profiled to allow for the securing of the crease disclosed herein.
The inner cross-section of the crease disclosed herein is profiled in such a way so that it is secured to the exposed profile of the metallic anchor. The crease rule is secured to the metallic anchor via a pressing force, pounding force or a sliding force. The mating surfaces between the crease disclosed herein and the metallic anchor are profiled in such a way as to allow for the removal of the crease disclosed herein via a pulling force, prying force or sliding force. The crease disclosed herein may be changed out relatively quickly. The crease profile of the crease disclosed herein can be customized and produced in an infinite amount of ways to fit specific desires.
Other than crease profiles, the specific system of adherence to the board can apply to alternative purposes and pieces that are part of the die board but have different functions other than forming creases in the corrugation. These purposes include, but are not limited to rubber, foam and embossing placement and processes.
Numerous other advantages and features of the present invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, from the claims and from the accompanying drawings.
While this invention is susceptible of embodiment in many different forms, there are shown in the drawings, and will be described herein in detail, specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated.
This application incorporates by reference US Provisional application 62/427,653, filed Nov. 29, 2016.
The anchor 40 or 40a is secured to the die-board by static forces created when a lower body portion 40b of the anchor is forced into the laser or jig cut lines or slots 56 which are precut into the board 46. Gaps 60 are cut into the lower body portion 40b of the anchor 40, 40a and the locations of the gaps 60 correspond to segments along the lines 56 that are not cut into the die-board. These segments form solid bridges 61 in the board 46 allow for the die-board to maintain enough structural integrity about the anchor to keep the die-board together while still allowing for the static force to secure the anchor 40, 40a into the board 46.
The anchor 40, 40a includes an enlarged head rail 64 located above the upper surface 67 of the board 46. The head rail 64 provides shoulders 66 that are spaced above the upper surface 67 of the board 46. A crease member 70 is mounted onto the head rail 64 and includes inwardly turned lip portions 70a, 70b that underlie the shoulders 66 and are gripped between the upper surface 67 and the shoulders 66. The crease member 70 shown in
The use of a resilient gripping of the walls 930, 932 of an anchor wall 940, or the walls 1030, 1032 with undulating inside surfaces are techniques that could be used on any of the embodiments described herein. The walls 124, 126 of the clasps 120 shown in
The crease member 70, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 described herein are preferably composed of a plastic or other polymer material, such as a polymer resin, such as a Rigid Polyvinyl Chloride (RPVC). Other materials may be possible, such as a powdered metal. It may also be possible to co-extrude two different polymer resins to produce the crease member.
The crease members and anchors shown in
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred.
This application claims the benefit of US Provisional application 62/427,653, filed Nov. 29, 2016.
Number | Name | Date | Kind |
---|---|---|---|
2598649 | Rintoul | May 1952 | A |
2814344 | Oberem | Nov 1957 | A |
3302490 | Bishop | Feb 1967 | A |
3479931 | Bishop | Nov 1969 | A |
3673926 | Saunders | Apr 1972 | A |
3673929 | Saunders | Jul 1972 | A |
3919924 | Snodgrass | Nov 1975 | A |
4373929 | Smith | Apr 1983 | A |
4808054 | Cuzin | Feb 1989 | A |
4963062 | Giannuzzi | Oct 1990 | A |
5194064 | Simpson | Mar 1993 | A |
5221249 | Simpson | Jun 1993 | A |
5409442 | Smithwick, Jr. | Apr 1995 | A |
5647277 | DeVito | Jul 1997 | A |
6071225 | Kucharski | Jun 2000 | A |
6523448 | Chang | Feb 2003 | B1 |
7563220 | Harris | Jul 2009 | B2 |
Number | Date | Country |
---|---|---|
202011051257 | Aug 2012 | DE |
202016102849 | Jun 2016 | DE |
2886320 | Jun 2015 | EP |
Entry |
---|
PCT International Search Report, dated Feb. 20, 2018. |
Number | Date | Country | |
---|---|---|---|
20180147807 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62427653 | Nov 2016 | US |