The invention is described below in detail with the help of the attached schematic drawings wherein;
When a proper credential is not presented to the knob 5, the knob 5 rotates freely around the plug 2 without engaging and causing the plug 2 to rotate. When a proper credential is presented to the knob 5, the knob 5 is engaged to the plug 2, and the rotation of the knob 5 causes the operating cam 6 to rotate and engage/disengage a door lock or other type of security mechanism.
The blocking cam 4 is used to secure the contents of the core within a lock housing, such as on a door. When the blocking cam 4 is in a first position the core is held securely within the door. When the blocking cam 4 is in a second position the core is removable from the lock housing of the door. The position of the blocking cam 4 is controlled by the rotation of the plug 2, which is in turn dependent upon the coupling between the plug 2 and the knob 5. Both the blocking cam 4 and the knob 5 have to be mechanically coupled to the plug 2 in order to manipulate the position of the blocking cam 4 to thereby permit removal from and insertion of the core within the lock housing.
The blocking cam 4 can be coupled to the plug 2 in a number of different ways. Coupling means such as, pins, gears, friction drives, chains, belts, or any other positive engagement mechanisms can be employed. Pressing an actuator 9 toward a rear face 8 of the shell 1 typically effects the engagement of the blocking cam 4 to the plug 2 through a coupling means. As will be described in detail below, the actuator 9 can cause the blocking cam 4 to be coupled to the plug 2. The mere coupling of the blocking cam 4 to the plug 2, in most configurations, is not sufficient to allow manipulation of the position of the blocking cam 4. Rather, the knob 5 must also be coupled to the plug 2 while the blocking cam 4 is coupled to the plug 2. As can be appreciated, the actuator 9 can be any type of known actuator that is external, internal, integrated, and/or separate to the lock core.
The lock core is further provided with electronic access control 15, which generates an authorization signal after receiving an access signal from a credential. The access signal may be transmitted via wireless communication. Upon generation of the authorization signal, an electric motor drive 14 arranged in a recess of the plug 2 drives a locking pin 12 into a recess or hole 13 in the socket 11 of the knob 5. The electric motor drive 14 turns an eccentric 20 that moves a rod 21 connected to the locking pin 12. With this arrangement, a connection between the knob 5 and the plug 2 is provided. The operating cam 6 can then be turned by the knob 5.
The locking pin 12 is movable in the plug 2 in radial direction between a recessed position and an extended position. The rod 21 is movable against the force of a spring 23 within a sleeve 22 of the locking pin 12. With this arrangement it is possible to move the rod 21 into its extended position or engaging position even if the locking pin 12 is not in an aligned position or directly engaging the hole 13 of the socket 11 of the knob 5. If the knob 5 is turned until the hole 13 is opposite to or aligned with the locking pin 12 as it is shown in
The bidirectional authorization signal for operating the electric motor drive 14 is transmitted between the control unit 18 and electronic access control 15 by a slip ring arrangement. In the embodiment of
The knob 5 with the electronic access control 15 can be easily changed. It is only required to provide an alternate knob 5 with the desired access control technique which can be mounted on the free end of the plug 2. For further security a drill plate 19 may be provided in front of the locking pin 12 within the plug in order to prevent drilling of the locking means. The lock housing of the lock core preferably has a size such that the locking holes 13 are covered. A protection shield (not shown) may be provided which extends to the knob such that the socket 11 cannot be reached.
For operating the lock an RF credential is held in front of the knob 5. The electronic access control unit 15 receives the access signal. After detecting the authorized signal an authorization signal is generated by the electronic access control 15 and is transmitted to the control unit 18. The control unit 18 generates an electric signal upon which the electric motor drive 14 turns the eccentric 20. The eccentric 20 extends the rod 21 radially outwards. If the sleeve 22 of the locking pin 12 is aligned with a locking hole 13 of the socket 11 of the knob, the locking pin 12 engages the recess or hole 13. The plug 2 can be turned by the knob 5.
If the sleeve 22 is not in an engaging position aligned with the recess or hole 13 the rod 21 is moved into the sleeve 22 and compresses the spring 23. The sleeve is now under compression with the effect that, upon turning the knob 5 until a recess or hole 13 of the socket 11 of the knob 5 is opposite to the sleeve 22, the sleeve 22 will be forced into the recess or hole 13. At this point, the plug 2 can also be turned by the knob 5.
After this engagement the operating cam 6 of the lock core can be turned for opening or closing the lock. It may be provided that, after a predetermined time or after the operation of the lock, a signal is generated for moving the eccentric 20 and the rod 21 to its recessed or radially withdrawn position.
The engagement of the knob 5 to the plug 2 is also needed to actuate the blocking cam 4. More specifically, the blocking cam 4 is moved by the plug 2, and the plug 2 can only be moved when the knob 5 is engaged to the plug 2. If one of the blocking cam 4 or knob 5 are not properly engaged to the plug 2 then the position of the blocking cam 4 cannot be manipulated such that the shell 1 can neither be inserted into the lock housing or removed from the lock.
Referring now to
Rotation of the blocking plug 3 occurs in unison with rotation of the plug 2 and knob 5 via the coupling pin 25. This coupling can be made by any number of coupling pin grooves 27 situated radially along the perimeter of the plug 2. To prevent over-rotation of the blocking plug 3 and blocking cam 4, the coupling pin 25 is mechanically limited to length L by clearance in the pin opening 28. Additional rotation of the blocking plug 3 will causes the coupling pin 25 to contact the pin opening 28 when rotated to extremes in the clockwise or counter-clockwise directions. As a secondary mechanical feature, rotation of the blocking plug 3 is also limited to length L by physical contact of the blocking cam 4 against the inner solid surface (not shown) of the shell 1.
A sensor 29 is provided to detect the presence or absence of the coupling pin 25 in the coupling pin groove 27 and pin opening 28. In one embodiment, the sensor 29 is a hall effect sensor capable of detecting a magnetic field associated with the coupling pin 25. Any other known type of presence sensors including, without limitation, infrared sensors, friction sensors, pressure sensors, and the like may be used for the sensor 29. The sensor 29 is capable of transmitting a binary value to the control unit 18 and electronic access control 15 indicating the presence or lack thereof of the coupling pin 25 in the coupling pin groove 27.
When the presence of the coupling pin 25 is detected in the coupling pin groove 27, the sensor 29 sends an electronic signal to the control unit 18 signifying the same. When the control unit 18 receives the signal showing that the coupling pin 25 is present in the coupling pin groove 27, the control unit 18 and electronic access control 15 adjust permissions that will allow the coupling of the knob 5 to the plug 2. More specifically, a population of contactless credentials may include at least two types of credentials. The first type of credential is a general access credential that is allowed access through a door associated with the lock core. The second type of credential is a control credential that functions as an access credential and a credential that is allowed to reprogram and/or remove lock cores within the secure access system. In the situation where the presence of the coupling pin 25 is not sensed within the coupling pin groove 27 any valid credential, including general access credentials, can be used to engage the knob 5 to the plug 2. This allows a holder of the credential to open the door associated with the lock core. When the presence of the coupling pin 25 is sensed within the coupling pin groove 27, the permissions for coupling the knob 5 to the plug 2 are adjusted. Specifically, when the coupling pin 25 is within the coupling pin groove 27 the control unit 18 and electronic access control 15 restrict the connection of the knob 5 to the plug 2 to only control credentials. If a general access credential is presented to the electronic access control 15, the control unit 18 will not cause the locking pin 12 to be inserted into the recess or hole 13 and thus the knob 5 will continue to rotate freely about the plug 2. On the other hand, if a control credential is presented to the electronic access control 15, the control unit 18 will actively engage the knob 5 to the plug 2 and the knob 5 can be turned, thereby rotating the plug 2, which rotates the blocking plug 3 thus moving the blocking cam 4.
With reference now to
Adequate movement of actuator 9 toward the rear face 8 will cause the drive pin 35 to move radially outward by an amount equal to the tapered dimensions of the actuator 9. Motion of the drive pin 35 is translated to the coupling pin 34 to move the coupling pin into the coupling pin receptacle 36 located at the outer periphery of the plug 2. A sensor 40 is used to detect the presence or removal of the coupling pin 34 in the coupling pin receptacle 36. When the presence of the coupling pin 34 is detected in the coupling pin receptacle 36, the sensor 40 along with the control unit 18 and electronic access control 15 invalidate general access credentials that are subsequently presented to the electronic access control 15 situated in the knob 5. This feature prevents holders of general credentials from inserting and/or removing the interchangeable lock core from its mating receptacle or housing. When the coupling pin 34 is in the second position such that rotation of the plug 2 will result in movement of the blocking cam 4, the control unit 18 and electronic access control 15 only permits rotation of the plug 2 when a control credential is presented to the electronic access control 15.
Rotation of the plug 2 in a non-select position causes the ball 41 to disengage the ball recess 46. The motion of the ball 41 away from the ball recess 46 and thus away from the center of the plug 2 is translated to an equivalent motion of the interlocking pin 42. The interlocking pin 42 moves the drive pin 43 acting to compress the interlocking spring 44. Given a fixed length interlocking pin 42 and fixed length drive pin 43, interference is created between the interlocking pin 42, the coupling core 37 and the inner solid surface (not shown) of the shell 1. This interference serves to stabilize the coupling core 37 relative to the shell 1. The positioning assembly can be adjusted or removed via the cap 45 located in proximity to the top of the shell 1.
The present invention, in various embodiments, includes components, methods, processes, systems and/or apparatuses substantially as depicted and described herein, including various embodiments, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the present invention after understanding the present disclosure. The present invention, in various embodiments, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and\or reducing cost of implementation.
The foregoing discussion of the invention has been presented for purposes of illustration and description. The foregoing is not intended to limit the invention to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the invention are grouped together in one or more embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the invention.
Moreover though the description of the invention has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the invention, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.