The invention relates to locking mechanisms used in filing and storage cabinets, office furniture, storage compartments, including built in cabinets, and other lockable storage units.
Many furniture manufacturers and their customers desire electronic locking mechanisms that use a keypad or other electronic means, such as an RFID Card reader or other security scanner, rather than traditional mechanical locks, to access and secure their office furniture and other kinds of storage units.
Electronic locks in the prior art have been used to provide secure storage and access control in office furniture, storage cabinets and other compartments. These prior art locks have special latching mechanisms and housings which require the furniture manufacturers and others to make tooling changes to their furniture or make other potentially time consuming, difficult, and costly adaptations to accept the special locking mechanisms and housings of these prior art locks as replacements for pre-existing locking systems.
By way of example, FIG. 1 in published US Patent Application 2011 0056253 shows such an electronic lock with a unique housing and latching apparatus. FIGS. 1, 2, 3 and 4 of U.S. Pat. No. 6,655,180 also show an electronic lock with a unique housing and latching system requiring custom installation.
Similarly FIG. 5 of U.S. Pat. No. 5,886,644 shows a unique installation of outer and inner housings for an electronic lock.
Furthermore, neither of these locks can be used with lateral filing cabinets or pedestal drawers because they cannot be easily adapted to existing central locking systems.
Canadian Patent No. 2,388,230 shows an example of a mechanical lock used in a central locking application for a lateral filing cabinet or other storage unit. In FIGS. 1 and 2 of that Patent, the mechanical lock is shown with a zigzag shaped lock shaft and a round retainer. The illustrated lock shaft is connected to a locking core which is included in a standard “Double D” lock housing unit. An example of this mechanical lock is shown as being installed in a conventional 2 drawer locking cabinet.
Prior art locking systems come in various shapes, sizes and configurations. Many of these prior art locking systems include multi component drawer slide locking arrays.
Therefore, it is desirable to provide a new electronic locking system that is conveniently interchangeable with existing mechanical locks without requiring costly tooling changes by office furniture manufacturers, and without using difficult or complicated installation procedures by installers, customers or other users.
By way of example, it is preferable that an electronic lock include a replaceable or interchangeable driver selected from a group of preselected drivers of different shapes, sizes, and configurations, the group being compatible for use with a plurality of tenons, cranks, linkage bars and other components in locking systems which are widely used in many standard locking applications within the industry.
In one aspect, an electronic lock is designed to be installed in a storage unit. When installed, the electronic lock is operationally associated with a locking assembly (for example, a locking bar assembly) for locking and unlocking a storage unit (for example, storage units suitable for one or more storage compartments). In this aspect, the electronic lock includes a lock housing which can be releasably secured to the storage unit. The electronic lock may be adapted for use in retrofit installations, as a replacement for previously installed locks, or as an original equipment manufacturers' (OEM) component.
Various features and components may be used to releasably secure the electronic lock housing to a storage unit. Fasteners, couplings, quick connect and other elements may be provided to secure the electronic lock, yet allow the manufacturer, installer or other user to remove the electronic lock, if replacement, repair or removal for some other reason, is desired.
It is preferable that the housing is replaceable or interchangeable with other housings selected from a group of preselected housings of different shapes, sizes, and configurations, the group being compatible for use with a plurality of other locking systems which are widely used in many standard locking applications within the industry.
The electronic lock includes a driver to operationally engage the locking assembly. Typically, the driver moves between a first driver position and a second driver position. In the first driver position, the locking assembly is in the locked position. In the second driver position, the locking assembly is in the unlocked position.
Preferably, the driver is replaceable or interchangeable with other drivers selected from a group of preselected drivers of different shapes, sizes, and configurations, the group being compatible for use with a plurality of tenons, cranks, linkage bars and other components in locking systems which are widely used in many standard locking applications within the industry.
A drive shaft assembly is protected in the housing. The drive shaft assembly is adapted to be selectively and operationally engaged with the driver. For example, an operator may select a locked position for the electronic lock in which the drive shaft assembly will not activate the locking assembly in the storage unit. In one mode, such as for example, when the electronic lock is in the locked position, the drive shaft assembly is operationally disengaged from the driver so that the driver is unable to lock or unlock the locking assembly in the storage unit. Similarly, by way of example, the operator may select an unlocked position for the electronic lock in which the drive shaft assembly may be operationally engaged with the driver, so that the operator may manually unlock the locking assembly.
The electronic lock includes a gear segment assembly which moves between a first gear segment position and a second gear segment position. In the first gear segment position, the drive shaft assembly is operationally disengaged from the driver. In the second gear segment position, the drive shaft assembly is operationally engaged with the driver.
The electronic lock also includes an electronic access control to operate the gear segment assembly between the first gear segment position and the second gear segment position. The electronic access control will, often, but not necessarily, include an operator activation device such as a programmable keypad or a programmable access card reader (for example, an RFID card reader). The electronic access control may include an electric motor in combination with a rechargeable or replaceable battery power source. The electric motor may be used to move the gear segment assembly to the second gear segment position, so that the operator may operationally engage the driver, to, in turn, operate the locking assembly between a first position in which the locking assembly is “locked” (for example, to prevent opening of the storage unit) and a second position in which the locking assembly is unlocked (so that the locking assembly may be moved by the operator, between the locked and unlocked positions).
In a preferred embodiment, when the electronic lock is in the unlocked mode, and the electric motor has moved the gear segment assembly to the second gear position, the operator may manually operate the driver by rotational movement, or other movement, of the drive shaft assembly. Preferably, the motor may be used sparingly to operate the gear segment assembly, without operating the entire drive shaft assembly, to reduce power consumption and thus, prolong battery life, or reduce the frequency of battery recharging or replacement.
A port, such as a USB port, may be provided to allow convenient recharging of a suitable rechargeable battery and to allow data storage, data access or exchange with the electronic access control.
The electronic lock in this aspect also includes a manual activation assembly which is operationally connected to the driver when the gear segment assembly is in the second gear segment position. In this mode, the operator may manually operate the driver between the first driver position and the second driver position. In a preferred embodiment, the manual activation assembly includes a manually operated knob which the operator may rotate, to move the drive shaft assembly and to operate the driver so that the locking assembly may be operated between its locked position and its unlocked position.
The manual activation assembly may also provide a bypass feature. In certain situations, for example, when the motor in the electronic access control is not operational (or for administrative convenience), the bypass feature may be activated to permit the operator to manually operate the drive shaft assembly, without using the motor to move the gear segment assembly to the second gear segment position. In some instances, the bypass feature may allow the operator to manually move the gear segment assembly to the second gear segment position (for example, when the motor is not operational). In other embodiments, the bypass feature may allow the operator to activate other elements to operationally engage the drive shaft assembly with the driver. In some instances, the bypass feature may operationally engage the drive shaft assembly with the driver without activating or moving the gear segment assembly to the second gear segment position.
For example, in some embodiments, the bypass feature may include a key activated locking core to operationally engage the drive shaft assembly with the driver, without moving the gear segment assembly. The operating key may be inserted by the operator into the locking core, to turn the drive shaft assembly, and in turn, move the driver so that the locking assembly in the storage unit may be moved between the locked and unlocked positions.
In another aspect, an electronic lock operates between a locked position and an unlocked position, to allow an operator to lock and unlock a storage unit. In this aspect, the electronic lock comprises:
In yet another aspect, an electronic lock operates between a locked position and an unlocked position to lock and unlock a locking assembly in a storage unit. In this aspect, the electronic lock may include:
By way of example, in some embodiments, the third shaft segment may include a keyed locking core configured to operate the drive shaft without activating the electronic access control or without drawing power from a battery power source to operate an electric motor or other electronic components. In other embodiments, the third shaft segment may be configured to operate separately from the manual activation assembly. In some instances, one or more of the shaft segments may be constructed from multiple components or pieces.
There are other possible embodiments of these aspects which may include interchangeable drivers, interchangeable housings, electronic access control features which may include a programmable keypad, a programmable card reader, a manual bypass feature, and one or more of the other features described elsewhere within this specification. An optional modular chassis assembly may also be provided in which a removable array of components are assembled in a modular format for testing, maintenance, repair, convenience, or improved quality control during assembly of the electronic lock. A preferred embodiment of the invention is described having regard to the following drawings.
Other aspects of the invention will become apparent to those persons who are skilled in the art upon reading the following detailed description, drawings and appended claims.
Electronic locks of the prior art are not readily or easily adapted for retrofit installation in storage units fitted with prior art latching systems.
FIGS. 3 to 15-2 show a preferred embodiment of the present invention.
The lock housing insert 5 extends from the interchangeable rear housing plate 4 of the lock housing 3. The lock housing insert 5 is configured to fit within a corresponding opening with a like configuration in a storage unit. The lock housing insert 5 may be cast with the rear plate 4 as one piece. In other embodiments, the lock housing insert 5 may be a separate piece 4a secured (in some other manner) to a suitable back plate piece.
A drive shaft 7 extends rearwardly from the lock housing 3 toward the interior of a storage unit (not shown). A driver 9 extends from the distal end of the drive shaft 7. The driver 9 is provided to connect with a locking system in a storage unit (which may be similar to an existing unit similar to the locking system described in Canadian Patent No. 2,388,230. Preferably, the driver 9 is interchangeable with other replacement drivers. A substitute driver may be attached to a suitably configured drive shaft segment which may also differ in configuration from the drive shaft 9 illustrated in
Different drive shaft configurations may be accommodated within the interior of the lock housing 3. The drive shaft, driver and housing components may be interchangeable with other replacement components to allow the electronic lock 1 to be interchangeable with comparable mechanical locks or other electronic locks. The interchangeability of these components enhances the adaptability of the electronic lock system for simplified repairs and replacements of existing locks and in OEM manufacture.
A keypad 15 is provided as part of an electronic access control situated on the proximate face of the electronic lock 1. In this embodiment, keypad 15 includes an external protective keyboard membrane 44 and a front gasket 44a. The keypad 15 supports the entry of pass codes and programming commands via a keyboard circuit 42 into the memory element included in circuit board 40 by regular users and master users. Indicator light array 45 is connected to the circuit board and the power supply, to notify the operator of one or more status indicators associated with the maintenance and operation of the electronic lock. A USB port and cover 17 are provided on the side face of the lock housing 3. The USB port may be provided to facilitate recharging of the interior power storage (battery 33) used to power the electronic components of the electronic lock 1 including a battery powered rotary motor 32. In this embodiment, the USB port cover 17 is shown as a flexibly hinged attachment to a protective gasket 18 positioned between the interchangeable housing rear plate 4 and the housing frame 3a.
A manual knob assembly 11 surrounds a rotatable bypass (override) key core 13. The manual knob assembly 11 includes a knob grip 14 which extends outwardly from the housing front plate 3b. The knob grip 14 is secured to a manual knob 14a which partially extends inwardly, away from the front plate 3b. When the knob grip 14 is secured to the manual knob 14a (for example, in a snap fit configuration), the manual knob assembly 11 is rotatably secured to the housing front plate 3b. In other embodiments comprising a lock housing 3a, a dummy plug (not shown) may be permanently installed so that a keyed bypass feature is not available. Some customers may wish to avoid the risk of the keyed lock being picked and therefore those customers may choose to decline the keyed bypass feature.
The knob barrel 14b nests within knob 14a, and knob barrel cap 14c is positioned within knob barrel 14b, in a predetermined alignment so that the matched internal channels and abutments may selectively engage with the locking core 13 in the event that the operator chooses to operate the manual knob assembly in a manual override mode. The manual knob assembly 11 engages with a front drive gear 22 mounted about the knob barrel cap 14c, both of which are mounted on a fixed collar 3c projecting in a forward direction from the chassis 3f located within the housing frame 3a. Inner cam 14f is positioned rearwardly of the chassis 3f. The inner cam 14f extends through the interior channel of the collar 3c.
When the electronic lock 1 is in a locked state, the manual knob assembly 11 and the drive shaft 7 are not engaged and will not permit operation of the driver 9. In the disengaged state, the manual knob 14a spins freely.
Once the appropriate passcode has been successfully entered and accepted by the software, the motor 32 begins to rotate. Ramped collar cam 30 which is mounted on the motor shaft also rotates. This collar cam 30 interacts with the ramped follower surface 29a on the first slider cam 29 so that as the collar cam 30 rotates, the slider 28 is urged away from the collar cam 30. This linear movement of the slider 28 displaces the locking dog 50 in the second slider cam 28b, to disengage locking dog 50 from recess 24e in rear drive gear 24a, to unlock and permit manual rotation of the drive shaft 7. The slider lobe 28c engages gear lobe 20x, when the slider 28 is displaced, to rotate the front and rear gear segments 20a, 20b, so that the gear segments 20a, 20b are aligned for engagement with the front drive gear 22 and rear drive gear 24a. When the knob 14 is turned, the gears 20a, 20b, 22, and 24a are meshed and the drive shaft 7 also turns. As shown in
The gear segment assembly 20 includes a front gear segment 20a located forward of the chassis 3f and a rear gear segment 20b located rearward of the chassis 3f. A gear segment sleeve 20c extends through an aperture 3h in chassis 3f to connect front gear segment 20a to rear gear segment 20b. Torsion spring 27a urges the gear segment assembly 20 in a preferred direction, preferably to hold the gear segment assembly 20, in a starting position, abutting against rest 3j, when the gear assembly 20 is disengaged from the corresponding gears of the front drive assembly 14d and the rear drive gear assembly 24 when the electronic lock is in the locked position. In this embodiment the front drive assembly 14d includes front drive gear 22 and parts 14, 14a, 14b, and 14c. The rear drive gear assembly includes rear drive gear segment 24a.
Front gear segment 20a includes a first cam segment 21a and a second cam segment 21b. Cam segments 21a and 21b interact with the drive gear assembly, during rotation of the drive gear assembly, to activate control switches which interact with the motor, during the opening and closing steps of the electronic lock.
When the manual knob assembly 11 and the gear assembly 20 are operationally engaged and the manual knob assembly 11 is turned, the drive shaft 7 also turns. The user turns the manual knob assembly 11 through 180 degrees to open a matched locking assembly (not shown) within a storage unit (not shown). This manual action provides the power to lift locking bars, rotate cams and other locking features without electrical power. This optional power saving feature allows an operator to apply manual power to perform these steps thereby reducing the power draw from the battery 33.
The electronic lock 1 supports an optional manual override key K. The override key K bypasses the keypad 15 and allows the manual knob assembly 11 to be turned in operational engagement with the drive shaft assembly after the override key has been turned.
When tumblers (not shown) in the locking core 13 are key activated, they engage with the internal channels and abutments of the manual knob assembly 11 to enable the bypass (override) option, allowing the operator to operationally engage the drive shaft assembly and rotate it upon rotation of the locking core 13 and the manual knob assembly 11.
With reference to
An index spring 12 acts as a detent so the user can feel discrete clicks as the manual knob assembly 11 is rotated to advance through the operational steps of locking and unlocking.
In this embodiment, the indicator 31 is used to show different colours in the window lens 12a corresponding to the rotational position of the manual knob assembly 11 and whether the driver 9 has opened or closed the locking assembly. Torsion spring 27 urges the indicator 31 in a preferred direction to indicate the status of the electronic lock 1. These different colours provide the user with a visual cue showing the status of the electronic lock and its corresponding affect on the locking assembly in the storage unit: (i) fully opened, (ii) fully closed or (iii) manual knob assembly 11 is partially turned.
The electronic lock is readily adapted for use with various locking systems and storage units. A variety of interchangeable drive shafts and drivers may be provided with the electronic lock. The drive shafts and drivers are designed to fit with pre-existing locking components or standard OEM parts used by furniture manufacturers and the like. In addition, interchangeable lock housings of different configurations may be provided. For example, with regard to the example of the standard “Double D” lock housing, an opening of the same size and corresponding configuration is provided by furniture manufacturers in their furniture to accept a standard mechanical lock with a Double D mechanical lock housing. The electronic lock is easily adapted to be surface mounted on the furniture so that the housing insert 4a may be inserted as a replacement into a corresponding opening in an existing storage unit, including office furniture, fitted with a standard mechanical lock with a Double D housing.
The electronic lock is easily adapted to be installed into an existing central locking system of a storage unit in exactly the same manner as an existing mechanical lock. In a preferred embodiment, The back plate of the lock housing assembly is first mounted within the gable of the cabinet structure using a hex nut, spring clip or other means suitable to secure the housing back plate to the structure. For convenience, a template may be provided to locate a single drill hole for a mounting screw (not shown) on the cabinet structure to match a threaded opening or other fastening feature on the lock. The hole may be drilled in the cabinet (or other structure) and the screw may be threaded through the drilled hole and into the electronic lock housing to ensure that the housing does not rotate or move relative to the structure after installation. Provided that the appropriate housing insert, drive shaft and driver configurations have been selected, the installer should be able to install the electronic lock without other tooling changes.
The central locking system is installed in the same manner and configuration as with a mechanical lock.
In different embodiments, the lock drive shaft and or driver may be replaced with a plurality of shapes and sizes such as square, horseshoe or other configurations.
Opening the Lock
The electronic lock 1 is initially in the locked state as shown in
Step 1
The user enters a pass code on the keypad which is validated by the microcontroller against the data stored in the database. The data includes a pass code and other pre selected information, for example, the time of day. If the pass code is valid, then power is applied to the motor to engage the gear segment assembly to engage the manual knob assembly with the drive shaft.
Step 2
Step 3
Once the gear segment assembly 20 is engaged with both drive gears 22, 24a (e.g., the gear segments from the rear drive gear assembly 24 and the front drive assembly 14d associated with the manual knob assembly 11), the user can now turn the manual knob assembly 11 to open the locking assembly (for example, a locking bar assembly) in the storage unit.
Closing the Lock
Step 1
The user then closes a drawer or door (not shown) on the storage unit (for example, in a furniture cabinet) and turns the manual knob assembly 11 through 180° in a counter clockwise direction. This action is shown in
Step 2
As the user continues to turn the manual knob assembly 11 fully through 180°, the gear segment assembly 20 disengages and falls away and is biased away by the torsion spring 27a. In Step 2, the electronic lock is in the fully locked position shown in
Many other variations and modifications of the invention are also possible. The preferred embodiment of the invention has been described with regard to the appended drawings. It will be apparent to those skilled in the art that additional embodiments are possible and that such embodiments will fall within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4213118 | Genest et al. | Jul 1980 | A |
4887445 | Beatty | Dec 1989 | A |
4931789 | Pinnow | Jun 1990 | A |
4967305 | Murrer et al. | Oct 1990 | A |
5020345 | Gartner et al. | Jun 1991 | A |
5021776 | Anderson et al. | Jun 1991 | A |
5033282 | Gartner et al. | Jul 1991 | A |
5153561 | Johnson | Oct 1992 | A |
5223829 | Watabe | Jun 1993 | A |
5265452 | Dawson et al. | Nov 1993 | A |
5321963 | Goldman | Jun 1994 | A |
5367295 | Gokcebay et al. | Nov 1994 | A |
5475375 | Barrett et al. | Dec 1995 | A |
5479151 | Lavelle et al. | Dec 1995 | A |
5552777 | Gokcebay et al. | Sep 1996 | A |
5816084 | Clark | Oct 1998 | A |
5857365 | Armstrong | Jan 1999 | A |
5886644 | Keskin et al. | Mar 1999 | A |
5894277 | Keskin et al. | Apr 1999 | A |
6000609 | Gokcebay | Dec 1999 | A |
6016677 | Clark | Jan 2000 | A |
6116067 | Myers et al. | Sep 2000 | A |
D438447 | Gartner | Mar 2001 | S |
6244084 | Warmack | Jun 2001 | B1 |
D452807 | Gartner | Jan 2002 | S |
6374653 | Gokcebay et al. | Apr 2002 | B1 |
6434987 | Juillerat et al. | Aug 2002 | B1 |
D484390 | Abernethy et al. | Dec 2003 | S |
6655180 | Gokcebay et al. | Dec 2003 | B2 |
6722167 | Hsu | Apr 2004 | B1 |
6730867 | Hyp | May 2004 | B2 |
6739164 | Warmack | May 2004 | B2 |
6826935 | Gokcebay et al. | Dec 2004 | B2 |
D501388 | Carpintero | Feb 2005 | S |
6895791 | Alexander et al. | May 2005 | B2 |
6926318 | Oxley | Aug 2005 | B2 |
D512297 | Metivier et al. | Dec 2005 | S |
D520848 | Metivier et al. | May 2006 | S |
7144053 | Bashford | Dec 2006 | B2 |
7209029 | Coelho et al. | Apr 2007 | B2 |
7221272 | Hosselet | May 2007 | B2 |
7336150 | Gokcebay et al. | Feb 2008 | B2 |
7397343 | Gokcebay et al. | Jul 2008 | B1 |
D580837 | Kluck | Nov 2008 | S |
7472934 | Burke et al. | Jan 2009 | B2 |
D593398 | Pelletier et al. | Jun 2009 | S |
7647797 | Viso Cabrera et al. | Jan 2010 | B1 |
7747286 | Conforti | Jun 2010 | B2 |
7770423 | Wu | Aug 2010 | B2 |
7891222 | Ratkus et al. | Feb 2011 | B2 |
8141400 | Sorensen et al. | Mar 2012 | B2 |
8495898 | Gokcebay | Jul 2013 | B2 |
20010045112 | Berton et al. | Nov 2001 | A1 |
20020056300 | Pierre et al. | May 2002 | A1 |
20040003633 | Alexander et al. | Jan 2004 | A1 |
20050128050 | Frolov et al. | Jun 2005 | A1 |
20050199026 | Geringer et al. | Sep 2005 | A1 |
20050253715 | Awobue | Nov 2005 | A1 |
20060226948 | Wright et al. | Oct 2006 | A1 |
20060238294 | Gokcebay et al. | Oct 2006 | A1 |
20070257773 | Hill et al. | Nov 2007 | A1 |
20080084836 | Baird et al. | Apr 2008 | A1 |
20080252083 | Carabalona | Oct 2008 | A1 |
20090058102 | Garneau et al. | Mar 2009 | A1 |
20100307206 | Taylor et al. | Dec 2010 | A1 |
20100320971 | Zhu et al. | Dec 2010 | A1 |
20110012709 | Payson et al. | Jan 2011 | A1 |
20110056253 | Greiner et al. | Mar 2011 | A1 |
20110181060 | Geringer et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
2388230 | Nov 2003 | CA |
2005017293 | Feb 2005 | WO |
2006114330 | Nov 2006 | WO |
2010124851 | Nov 2010 | WO |
Entry |
---|
Theodore Ullrich et al., U.S. Appl. No. 13/468,219, filed May 10, 2012. |
Number | Date | Country | |
---|---|---|---|
20130298619 A1 | Nov 2013 | US |