The present invention generally relates to high intensity light emitting diode devices, and more particularly to docking ports for the same.
High intensity light emitting diode (LED) systems and devices are often used in curing systems to emit the radiation required to effect the curing operation. U.S. Pat. No. 8,641,236discloses one such device and U.S. Pat. No. 10,203,102 discloses another such device. The entirety of the disclosures of U.S. Pat. Nos. 8,641,236 and 10,203,102 are incorporated herein by reference as part of this application. Such LED-based curing devices typically emit high intensity light in the ultraviolet range, and consequently are usually connected to both electrical power supplies and coolant supplies. A connector end cap is provided on one end of the LED device with external fittings to couple the coolant and the electrical power to the device.
These high intensity LED devices are used in a variety of machines and assemblies. They require regular cleaning and occasional maintenance. Occasionally a device fails. Installation and removal of the LED device from the machinery in which it is installed can be difficult and time consuming. Downtime for replacement of the LED device, regardless of the reason, leads to reduced production and increased costs. Thus there is a need for devices, methods and systems that provide for quick change of the LED device from their installed position.
The disclosure includes an LED light device that can be securely engaged on one of its ends with a docking port that includes electrical and fluid fittings for the LED light device.
In one example, a docking port for a high intensity light emitting diode (LED) light device can include a connection body, a plurality of fittings disposed on a common side of the connection body, a release lever, and a guide rail extending forwardly from the connection body away from the common side of the connection body. The plurality of fittings can include a first fitting configured to mate with an electrical fitting of the LED light device and a second fitting configured to mate with a first coolant fitting of the LED light device.
The plurality of fittings disposed on a common side of the connection body can include a third fitting that is configured to mate with a second coolant fitting of the LED light device.
The guide rail can be configured to mate with a channel defined in a sidewall of the LED light device.
A pair of guide rails can be provided, wherein each of the pair of guide rails is spaced apart from one another and extend parallel to one another. Each of the pair of guide rails can be configured to mate with a respective channel defined in a pair of opposing sidewalls of the LED light device.
The release lever can be movable between a locked position and an unlocked position, wherein in the locked positon, the LED light device, when mated with the docking port, cannot be disengaged from the docking port, and wherein in the unlocked position, the LED light device can be disengaged from the docking port.
The docking port can include an electric conduit coupled to the connection body, which is in electric communication with the first fitting through the connection body and a fluid conduit coupled to the connection body, which is in fluidic communication with the second fitting through the connection body.
In another example, an interchangeable ultraviolet (UV) light system can include a high intensity UV light source and a docking port. The UV light source can include an elongated body and an end cap disposed at a longitudinal end of the elongated body. The end cap can include a first coolant fitting and an electrical fitting. The docking port can include a connection body, a plurality of fittings disposed on a common side of the connection body, a release lever and a guide rail. The guide rail can extend forwardly from the connection body away from the common side of the connection body. The plurality of fittings can include a first fitting configured to mate with an electrical fitting of the LED light device and a second fitting configured to mate with a first coolant fitting of the LED light device.
The end cap of the UV light source can include a third fitting that is configured to mate with a second coolant fitting of the UV light source.
The guide rail can be configured to mate with a channel defined in a sidewall of the UV light source. A pair of guide rails can be provided, wherein each of the pair of guide rails is spaced apart from one another and extending parallel to one another. Each of the pair of guide rails can mate with a respective channel defined in a pair of opposing sidewalls of the UV light source.
The release lever can be movable between a locked position and an unlocked position. In the locked positon, the UV light source, when mated with the docking port, cannot be disengaged from the docking port. In the unlocked position, the UV light source can be disengaged from the docking port.
An electric conduit can be coupled to the connection body, which is in electric communication with the first fitting through the connection body. A fluid conduit can be coupled to the connection body, which is in fluidic communication with the second fitting through the connection body.
The end cap of the UV light source can include a latch member that extends towards the docking port to secure the UV light source to the docking port when the UV light source is mated with the docking port.
A housing can be provided that is configured to enclose the UV light source and the docking port. The housing can include an openable end that is selectively closable via a door disposed on the openable end.
In a further example, a method of changing an LED light device can include moving a release lever of a docking port to which the LED light device is mated from a locked position and an unlocked position, disengaging an electrical fitting of the LED light device from a first fitting disposed on a first side of the docking port, disengaging a coolant fitting of the LED light device from a second fitting disposed on the first side of the docking port, and moving the LED light device away from the docking port in a direction away from the first side of the docking port.
A guide rail can slide along a channel defined in a sidewall of the LED light device as the LED device is moved away from the docking port.
A replacement LED device can be moved toward the docking port until an electrical fitting and a coolant fitting thereof are mated with a respective one of the first fitting and the second fitting, and the release lever can be moved from the unlocked position to the locked position.
The guide rail can slide along the channel defined in a sidewall of the replacement LED light device as the replacement LED device is moved toward the docking port.
The detailed technology and preferred embodiments implemented for the subject invention are described in the following paragraphs accompanying the appended drawings for people skilled in this field to well appreciate the features of the claimed invention. It is understood that the features mentioned hereinbefore and those to be commented on hereinafter may be used not only in the specified combinations, but also in other combinations or in isolation, without departing from the scope of the present invention.
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular example embodiments described. On the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
In the following descriptions, the present invention will be explained with reference to example embodiments thereof. However, these embodiments are not intended to limit the present invention to any specific example, embodiment, environment, applications or particular implementations described in these embodiments. Therefore, description of these embodiments is only for purpose of illustration rather than to limit the present invention.
Reference will be made throughout to an LED light device and/or LED-based curing devices. However, the present invention can also be utilized with light emitting devices that utilize light generating means other than light emitting diodes (LEDs).
Referring to
The docking port 100 further comprises a pair of guide rails 112 (also referred to as forks) that extend in a direction normal to a forward surface of the body and forward from the fittings 104, 106A, 106B, toward the LED device. The guide rails 112 can be arms disposed along or adjacent to opposite sides of the body 102.
A latch arm 114 is coupled to the body 102 to selectively engage and release locking collars on the coolant fittings 106A, 106B to securely engage, retain and lock the LED device to the docking port 100. In one example embodiment, the latch arm 114 is pivotally coupled to the body 102 adjacent a first end of the latch arm 114, and the opposing second end moves freely so that the user can actuate the latch arm 114 with their hand.
The docking port 100 can be formed of metal, plastic or other suitable materials. Each of the fittings 104, 106A, 106B are configured to mate with the respective companion fittings on the LED device.
Referring next to
The proximal end 206 includes a pair of doors 208 that permit the housing to be fully enclosed when the doors are in the closed position, and so that the LED devices 202 can be easily accessed and replaced by a user. The doors 208 can be pivotally mounted to the fixed portion of the housing 200 via hinges or other means. A single door 208 can be provided in alternative embodiments.
Referring now to
Next, referring to
Now in
Referring to
The latch member 212 extends past the female latch portion of the docking port upon joining of the LED light device 202 with the docking port, thereby preventing the LED light device from backing out of engagement undesirably. Pulling on the latch arm 114 by the user moves the latch member 212 to an unlocked or release position so that the LED light device 202 can be withdrawn from the docking port 100. More than one latch member 212 can be provided, and the location of the latch members 212 can be changed in other alternative embodiments. Other means for locking or securing the LED light device 202 to the docking port 100 can be provided in still other embodiments.
The docking port 100 disclosed herein can also be used with other components where the respective fittings are configured for mating with one another.
For purposes of interpreting the claims for the present invention, it is expressly intended that the provisions of Section 112, sixth paragraph of 35 U.S.C. are not to be invoked unless the specific terms “means for” or “step for” are recited in a claim.
The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof, and it is, therefore, desired that the present embodiment be considered in all respects as illustrative and not restrictive. Those skilled in the art may recognize other equivalents to the specific embodiments described herein which equivalents are intended to be encompassed by the claims attached hereto.
This application claims priority under 35 U.S.C. § 119(e) to, and hereby incorporates by reference in its entirety, U.S. Provisional Application No. 63/159,977, filed Mar. 11, 2021.
Number | Date | Country | |
---|---|---|---|
63159977 | Mar 2021 | US |