The field of the invention relates generally to devices, systems and methods for preventing undesired conducted or radiated energy, such as unwanted radiated or conducted energy resulting from Electromagnetic Pulse (EMP) events and Electromagnetic Interference (EMI), from disrupting or damaging electrical systems. The field of the invention also relates generally to the devices, systems and methods for preventing undesired conducted or radiated emanations from a system from leaving the system, where they may be detected by unfriendly eavesdropping receivers.
This invention also relates to a scalable, EMI/EMP/HEMP hardened electronic enclosure rack system for electronic processors, servers, storage media, communications and other electrical or electronic equipment, wherein individual electronic enclosure racks may be interconnected via panels or other structures comprising piezoelectric transducers for electrical feedthroughs that are operable to communicate electrical signal(s), electrical power, or both from an electronic system, such as a computer, computer readable media, server, data storage or any other electronic device (“electrical system”) in one rack to an electrical system in an adjacent rack, while at the same time providing electrical and EMI/EMP/HEMP isolation of a system to be protected that is disposed within an interior volume of such electronic enclosure racks. In embodiments, the electrical feedthroughs of the invention comprise an electrically conductive sheet having no openings or holes, that, in conjunction with the electrically conductive panel, form a complete, uninterrupted electrical sheet, or plane, covering openings between racks. The racks may be any racks, chassis, boxes, or enclosure that is intended to house an electrical system to be protected.
The susceptibility of electrical power systems, electronic circuits, semiconductors and other systems and device(s) to undesired radiated and conducted energy has long been known, and has been a source of concern as it relates to the continued operation of such systems. Increasingly, systems that are generally considered crucial for the continued, uninterrupted operation of channels of trade, banking, securities exchanges, and national security are based on communication, computing, data storage and like systems that are comprised of electrical power systems, electronic circuits, memory media, semiconductors and other devices that are susceptible to dielectric breakdown, catastrophic shorting, conductor trace failure and other catastrophic failures caused by directly conducted or induced currents and voltages they may experience when subjected to high levels of undesired radiated and conducted energy. Even if the undesired radiated and conducted energy is not of sufficient magnitude to result in the non-operability of a system to be protected, such energy may generate sufficient electrical noise in the system to be protected that desired signals are no longer detectible or usable, causing disruption of normal operation. Undesired radiated or conducted energy is any energy of sufficient magnitude such that it causes the aforementioned effects on a system to be protected.
Such undesired conducted or radiated energy may result from manmade causes, such as electromagnetic radiation from manmade sources, including both unintentional and intentional radiation including but not limited to electromagnetic pulse (EMP) energy and energy resulting in electromagnetic interference (EMI); or such unwanted conducted or radiated energy may result from natural sources such as solar flares, lightning or other natural causes. It is desirable that such unwanted conducted or radiated energy be kept from entering electronics enclosures that house systems to be protected that may comprise sensitive electronic circuitry.
EMI may result from radiated energy resulting from electrical current switching, electrical frequency sources such as those used to provide radio reference frequencies, clock signals for digital systems, lightning, atmospheric noise, intentional radiation of electromagnetic energy, for example in various weapon systems. EMI may be pulsed or continuous in nature. Further, EMI may be narrowband, such as is the case when caused by a single carrier signal or other narrowband source such as oscillators and clock signals used in electronic circuits, or spurious signals caused by intermodulation in transmitters such as mobile phones or Wi-Fi routers. EMI may also be broadband in nature such as the EMI resulting from naturally occurring energy sources of which solar plasma ejections are an example.
When considering schemes for protecting a system from the damaging effects resulting from the subjecting of the system to undesired radiated and conducted energy, it is important to understand how such undesired radiated and conducted energy is coupled into such systems. The coupling of undesired radiated and conducted energy into a system to be protected may occur, among other things, by the coupling of electromagnetic energy onto electrical conductors providing power or communications signals to the system and by the coupling of electromagnetic energy to the electrical conductors and semiconductors forming the system itself such as occurs when a conductor is subjected to a time-varying magnetic field. If it were possible to house a system to be protected in an electrically conductive enclosure such that the system were completely surrounded by a continuous conductive sheet enclosure with no electrical connection to the environment outside the enclosure, i.e. no electrical path passing through the continuous conductive sheet enclosure from the enclosed interior volume of the enclosure to the space outside the enclosure, the system housed inside the enclosed interior volume of the enclosure would be protected because 1) there would no unwanted conducted energy communicated to the system due to the lack of electrical conduction between the system and the environment outside the enclosure; and 2) there would be no unwanted radiated energy communicated to the system due to the continuously conductive enclosure having no openings. However, as regarding systems and enclosures of the prior art, such a system would not be able to receive power, and would not be able to communicate to any other system outside the enclosure. Thus, such a system would be rendered useless by the scheme used to protect it.
In order for systems to have utility, they must be able to communicate with other systems; i.e., they must be able to sink (i.e. receive) signals from other systems, or source (i.e. transmit) signals to other systems, or both. This means that, in order to be useful, they generally must be in communication with systems outside any enclosure in which they are housed. In particular, in order for a system to be protected from unwanted conducted and radiated EMI and EMP, and in order to prevent conducted and radiated emanations from the system, it is desired that the system be completely surrounded by an continuous electrically conductive surface such as, for example, an enclosure forming an enclosed interior volume in which the system may be disposed. In order to protect against unwanted radiated electromagnetic energy, and to prevent radiated electromagnetic energy generated by the system to be receivable by others outside the enclosure, it is desired that the continuous electrically conductive surface have no openings or holes passing through it. In order to protect against unwanted conducted electrical energy, and to prevent energy generated by the system to be receivable by others outside the enclosure, it is desired that there be no electrically conductive path through the continuous electrically conductive surface or enclosure. However it is desired that electrical power and signals are able to be communicated through the continuous electrically conductive surface or enclosure from either outside the continuous electrically conductive surface or enclosure to the enclosed interior volume of the surface or enclosure, or from the enclosed interior volume formed by the continuous electrically conductive surface or enclosure to others located outside the continuous electrically conductive surface or enclosure. The enclosures of the prior art do not satisfy these desires.
Thus, it is desired to protect such systems from undesired radiated and conducted energy while allowing such systems to receive power from, provide power to, or communicate with, other systems. The inventive system and method of the invention do provide these features.
Systems of the prior art have relied upon various schemes for protecting systems from the damaging effects resulting from the subjecting of the system to undesired radiated and conducted energy, while still allowing such systems to receive power from, provide power to, or communicate with other systems. Exemplary prior schemes have included using electrical filtering on signal lines connecting the system to be protected; using high speed sensing and shutdown circuits that, hopefully, remove power from, or disconnect, the system to be protected before the system is damaged; enclosing the system in a Faraday shield enclosure; converting electrical signals to optical signals using either optical isolators or fiber optic communication systems; or combinations of the above. However, each of these prior schemes have significant drawbacks. Electrical filters, however complex in design for rejecting frequencies that are outside a desired signal band, still provide an electrically conductive path between the system to be protected and the environment outside the enclosure. Further, no filter has infinitely steep cutoff and bandwidth characteristics. Thus, electrical filters will always allow some undesired conducted energy to be communicated to the system to be protected. High-current and high-voltage sensing and shutdown circuits that operate to quickly remove power from, or electrically disconnect, the system to be protected from the conductor. However, such protective circuits require a finite reaction time, and may themselves be damaged by undesired radiated and conducted energy such that they fail to operate or wind up latching to a state that leaves the system disconnected and thus inoperable, or, alternatively, may leave the system connected and thus vulnerable. Such sensing and shutdown circuits may themselves be damaged either by the undesired radiated energy, the conducted energy, or both, as they may comprise sensitive circuitry located outside the system to be protected; and, in any event, optical isolators can only communicate small amounts of power to the system. Faraday shield and cages of the prior art must have openings allowing electrically conductive wiring, optical fibers, or other communication transmission media to pass through. These openings create an opportunity for unwanted radiated or conducted energy, or both, to pass (i.e. leak) into the interior volume of the prior art enclosures, rendering any system to be protected vulnerable to radiated electromagnetic energy such as EMI or EMP; and, further they allow for radiated emissions produced by the system in the interior volume to radiate outside the prior art enclosure.
Most enterprises in government, military, and industry rely on critical applications that are frequently hosted in central data processing hubs—whether commercial or proprietary data centers. Today, much, if not all internet commerce is dependent upon data centers. Data centers allow for enterprises to centralize and scale the specialized hardware and support staff required to operate their critical applications. Additionally, the data centers allow for the centralizing of support systems such as power, cooling, communication bandwidth, backup power, maintenance, software upgrades and many other functions that are costly for individual entities to maintain and operate. Commercial offerings such as “Amazon Web Services” host small-scale applications for individuals and industry as well as large-scale applications such as NetFlix with large data processing, storage and bandwidth requirements. Banking and financial entities have been centralizing IT operations in data centers for many years as computer processing has become more advanced and data storage costs have become far less expensive and more reliable. Government, including the military, intelligence community and other critical functions are hosting critical applications in data centers.
Data centers are by definition repositories of high-density computing equipment—processors, memory storage and the like. The capacity of these systems is continually being increased as cost is further reduced and additional applications are developed. These repositories are ideally designed and built to provide rapidly scalable architecture to accommodate frequent capacity additions. One aspect of this scalability is the development of rack systems which house the equipment. IT equipment has evolved into processing, communications, and storage elements that are housed in racks having a standard-sized profile. These are defined in EIA-310, the Electronic Industries Alliance standard for “Cabinets, Racks, Panels, and Associated Equipment”. This standard defines the dimensions and support requirements for standard profile electronic equipment. It defines a “Rack Unit” (RU, or sometimes simply “U”) to express the requirements for mounting electronic equipment that complies with the EIA-310 standard. Most IT equipment dimensions are expressed in “U” units which implies that it can be installed in a compliant “server rack”. This necessarily simplifies the scaling of IT capacity, which is critical to data center construction and operations.
A parallel concern that arises as the size of and reliance on these very large data centers increases is the danger of damage to the data centers from electromagnetic pulses, malicious or otherwise, which can destroy or significantly impair the operation of a data center. As a result of this concern, Electromagnetic Pulse (“EMP”) protection protocols have been and are being developed to protect critical data centers. In March of 2019, an Executive Order titled “Executive Order on Coordinating National Resilience to Electromagnetic Pulses” was issued.
Data centers are defined by the US Government as “Critical Infrastructure” and, as such, it must be protected from various threats, including natural disasters and protection of data centers against electromagnetic threats, such as EMP. This includes the entire threat family such as Nuclear Electromagnetic Pulse—from the detonation of a nuclear fission device at high-altitude, Intentional Electromagnetic Interference (“IEMI”) and natural phenomena such as Geomagnetic Disturbances (GMD, or “Solar Storms”).
Data centers are nodes of vulnerability for any advanced economy—government, finance, commerce, water utilities, power utilities, transportation, military, national security, among other basic functions of an advanced economy all depend on data centers and communication between data centers and end user applications. The loss, even a temporary loss, of functionality would have very large cascading effects upon such an economy.
Principles of protection against electromagnetic threats are known and defined. The US military has published the non-classified “MIL-STD-188-125” standard (hereafter “MIL-STD”) as well as other publications that provide for the specification and shielding of critical functions within an environment that is protected against electromagnetic threats. Additionally, the intelligence community has articulated “TEMPEST” requirements that prevent electronic emanations from being released from electronic equipment that could be exploited and decoded by an adversary. EMP/IEMI shielding prevents electromagnetic energy originating outside of a protected environment from entering and damaging systems inside the protected environment.
TEMPEST shielding prevents electromagnetic emanations that originate inside a protected environment from exiting and possibly being exploited by “Bad Actors” outside of the protected environment.
In typical IT/Data Center installations, racks are either “Open” (facilitating cooling, power, interconnection between racks) or “Enclosed” which allows for some control over access to equipment in individual racks, but also facilitates the connection/interconnection of racked equipment with other racks, power, and communications equipment required for IT systems and applications to operate. Each connection for power, communications, cooling, as well as any doors on racks to facilitate access is a potential vulnerability to EMP/HEMP/IEMI and TEMPEST.
There are “EMI” rack systems that are available for purchase commercially. These systems focus on maintaining a shielded environment within the rack system.
See, for example, shielded rack examples at https://hollandshielding.com/RF-shielded-racks, https://www.equiptoelec.com/products/emi-rfi-shielded-cabinets/ and http://www.ets-lindgren.com/datasheet/shielding/rf-shielded-enclosures/11003/1100310. These systems all function similarly. However they do not provide adequate attenuation of radiated EMP and HEMP energy to protect electrical systems housed within them from interference or damage.
“Electromagnetically secure” as used in this application means that electromagnetic field levels will not exceed MIL-STD-188-125-1/2, IEMI levels will not exceed EN55035, and Tempest ICD/ICS 705. These are not the only electromagnetic shielding performance standards, and the rack system is not tied to any specific standard. The rack system is expected to perform from 10 khz (or lower) to 10 ghz (or higher) frequency to a level where electromagnetically induced damage, disruption, upset, exploitation, as well as the physical protection of the contents of the racks is reliably accomplished. The rack systems include the use of cypher locks, card-reader access, magnetic latching or other physical protection means to present access by unauthorized personnel.
What is needed in the art, therefore, is an apparatus, system and method that is adapted to prevent a system to be protected from undesired radiated and conducted energy while allowing desired signals to be communicated to the system to be protected, or to be communicated from the system to be protected to users external to the system to be protected.
Further, a need exists for an enhanced environment within which the requirements of EMP/HEMP/IEMI and TEMPEST standards may be met. The system and method of the invention overcome this deficiency of the prior art by providing for the interconnection of electronic enclosures housing electrical and electronic systems in a manner that EMI/EMP/HEMP radiated and conducted energy is attenuated to survivable levels, which means the electrical and electronic systems are rendered inoperable.
The present invention comprises a system, apparatus and method that have one or more of the following features and/or steps, which alone or in any combination may comprise patentable subject matter.
The present invention overcomes the shortcomings of the prior art in that it provides a system, apparatus and method for reducing the susceptibility of a system to be protected from undesired radiated and conducted energy, while allowing desired signals to be communicated to the system to be protected, or to be communicated from the system to be protected to users external to the system to be protected.
In accordance with an embodiment of the present invention, the invention is a signal feedthrough capable of providing a desired signal to a system to be protected, while preventing unwanted energy from being provided to the system to be protected. Further, in embodiments, the invention may prevent unwanted energy to be radiated or conducted from, i.e., to be communicated from, a system to be protected, to systems, equipment, circuits or other elements external to the system to be protected. Thus, as used herein, “system to be protected” may include within its meaning any element, device, or system for which protection from unwanted, possibly damaging, external radiated or conducted emissions (or both) is desired, while still allowing a desired signal to pass to the system to be protected at the same time; as well as any element, device, or system for which it is desired to prevent unwanted radiated or conducted emissions (or both) from being communicated to elements, devices, or systems external to the system to be protected, while still allowing a desired signal to pass from the system to be protected at the same time.
In exemplary operation, a desired signal is provided to an electroactive layer, which converts the desired signal to mechanical vibrational energy that is communicated through an electrically conductive layer that, in embodiments, may be connected to an electrical ground, and is either attached to or forms a part of an electrically conductive enclosure forming an enclosed interior volume that may completely enclose a system to be protected with a continuous, uninterrupted, electrically conductive surface having no openings or holes passing therethrough. The mechanical vibrational energy is received by an output electroactive layer, causing the output electroactive layer to vibrate. The output electroactive layer converts the mechanical vibrational energy representing the desired signal to an electrical signal where it may then be communicated to a load, which may be the system to be protected. Thus, the inventive signal feedthrough communicates the desired signal through the electrically conductive enclosure to the system to be protected via an electrically non-conductive mechanical coupling without requiring any openings or holes in the enclosure. In other words there is no electrically conductive path through the signal feedthrough of the invention, or through the electrically conductive surface of the enclosure that forms the enclosed interior volume.
In accordance with an embodiment of the present invention, the signal feedthrough may comprise an input piezoelectric layer and an output piezoelectric layer. The input piezoelectric layer may have a first surface having an electroded surface for electrically connecting to the source of a desired time varying signal. The input piezoelectric layer may have a second surface adjacent to an electrically conductive layer. The input piezoelectric layer may have first axis. The signal feedthrough may have an output piezoelectric layer that has a third surface that is also adjacent to the electrically conductive layer, and located on a side of the electrically conductive layer opposite the side of the electrically conductive layer to which the input piezoelectric layer is adjacent. The electrically conductive layer may comprise, and preferably does comprise, a continuously electrically conductive sheet or surface that passes through the entirety of the cross section of the signal feedthrough, completely covering the cross section of the feedthrough taken transverse to the axis of the signal feedthrough, and may be, but is not necessarily, comprised of a metal or metal alloy. The output piezoelectric layer may also have a second axis. The input and output piezoelectric layers may be coaxially aligned; i.e., the first and second axes may be coaxial. The output piezoelectric layer may have a fourth surface that is electroded for electrically connecting the fourth surface to a sink of the desired time varying signal, which may be, for example, a system to be protected. The first and second surfaces on the input piezoelectric layer may be opposing surfaces that form a thickness of the input piezoelectric layer, and the third and fourth surfaces on the output piezoelectric layer may be opposing surfaces that form a thickness of the output piezoelectric layer. In embodiments, the thickness of the input piezoelectric layer may be the same as the thickness of the output piezoelectric layer. In embodiments, the thickness of the input piezoelectric layer may be less than or greater than the thickness of the output piezoelectric layer. In embodiments, the first and second surfaces of the input piezoelectric layer may be, but are not necessarily, normal to the first axis; and, in embodiments, the first and second surfaces of the output piezoelectric layer may be, but are not necessarily, normal to the axis of the output piezoelectric layer.
There is no electrically conductive path between the electroded first surface on the input piezoelectric layer and the electroded fourth surface on the output piezoelectric layer; however, a time-varying electrical signal applied to the electroded first surface on the input piezoelectric layer is transformed into vibrational energy that is transmitted through the electrically conductive layer to the output piezoelectric layer, resulting in a replica, in some cases a scaled replica, of the time-varying electrical signal being present on the fourth surface of said output piezoelectric layer. Thus, a desired signal may be communicated to the system to be protected without providing any electrically conductive path through the signal feedthrough; thus, no undesired conducted energy is passed to the system to be protected.
In embodiments, the input piezoelectric layer may be at least partially made of a ceramic piezoelectric material, and the output piezoelectric layer may be at least partially made of ceramic piezoelectric material.
In embodiments, the input piezoelectric layer may be polarized in a direction parallel to the first axis, and the output piezoelectric layer may be polarized in a direction parallel to the second axis. The signal input piezoelectric layer and the output piezoelectric layer may be coaxially disposed with one another; i.e., the first axis and second axis may be, but are not necessarily, coaxial.
In embodiments, the invention may comprise a plurality of signal feedthroughs disposed in an electrically conductive layer, allowing for a plurality of desired signals to be communicated through the electrically conductive layer into, or out of, the enclosed interior volume of an electrically conductive enclosure, without requiring any holes or openings in the electrically conductive surface or enclosure that forms the enclosed interior volume in which the system to be protected may be disposed.
In embodiments, the output piezoelectric layer thickness may be greater than the input piezoelectric layer thickness, or vice versa. In an embodiment in which the output piezoelectric layer thickness is greater than the input piezoelectric layer thickness, signal gain from the input piezoelectric layer to the output piezoelectric layer may be achieved (in the case in which a desired signal is being communicated to the system to be protected from outside the system to be protected), and alternatively, signal reduction from the output piezoelectric layer to the input piezoelectric layer may be observed (in the case in which a desired signal is being communicated from the system to be protected to a receiving system or element outside the system to be protected). Likewise, in an embodiment in which the output piezoelectric layer thickness is less than the input piezoelectric layer thickness, signal reduction from the input piezoelectric layer to the output piezoelectric layer may be observed (in the case in which a desired signal is being communicated to the system to be protected from outside the system to be protected), and alternatively, signal gain from the output piezoelectric layer to the input piezoelectric layer may be observed (in the case in which a desired signal is being communicated from the system to be protected to a receiving system or element outside the system to be protected). As used herein, “gain” means a gain of greater than 1. As used herein. “reduction” means gain of less than 1.
In embodiments, a rigid end-mass may be disposed adjacent to, and attached to, the electroded first surface on the input piezoelectric layer, or a rigid end-mass may be disposed adjacent to, and attached to, the electroded fourth surface on the output piezoelectric layer, or both. The rigid end-mass(es) may have a mechanical quality factor greater than a mechanical quality factor of their adjacent piezoelectric layer. The rigid end-mass(es) may be selected so as to achieve a desired resonant frequency of the signal feedthrough. The rigid end-mass(es) may operate to increase the magnitude of resonant vibrations in the output piezoelectric layer.
In embodiments, the invention may comprise a system for reducing the susceptibility of a system to be protected from undesired radiated and conducted energy, while allowing desired energy to be provided to the system to be protected. The system may comprise at least one signal feedthrough, and in some embodiments a plurality of signal feedthroughs, that are attached to or form a part of a wall of an electrically conductive enclosure in such as manner as to communicate a desired signal between an outside system and a system to be protected that is disposed in an enclosed interior volume of the electrically conductive surface or enclosure, while preventing radiated electromagnetic energy from an outside environment to enter the electrically conductive enclosure. In embodiments, the electrically conductive layer of the signal feedthrough has a periphery that is in uninterrupted electrical contact with said electrically conductive enclosure around its periphery, forming a completely uninterrupted electrically conductive three-dimensional continuous surface forming an enclosed interior volume, wherein a system to be protected is completely surrounded by a continuously electrically conductive surface having no gaps, openings or holes, such that radiated electromagnetic energy from said outside environment cannot pass into the enclosed interior volume around, or through, the signal feedthrough, and electromagnetic energy radiated from the system to be protected that is located within the interior volume cannot radiate from within the enclosed interior volume to an area outside the enclosed interior volume of the enclosure.
In embodiments, the invention may comprise a signal feedthrough capable of providing designed energy to a system to be protected, while preventing unwanted energy from being provided to the system to be protected, comprising: an input piezoelectric layer having a first surface and a second surface defining a first thickness of the input piezoelectric layer, the second surface of the input piezoelectric layer opposing the first surface of the input piezoelectric layer, the input piezoelectric layer having a first axis normal to the first and second surfaces; and an output piezoelectric layer having a third surface and a fourth surface defining a second thickness of the output piezoelectric layer, the fourth surface of the output piezoelectric layer opposing the third surface of the output piezoelectric layer, the output piezoelectric layer having a second axis normal to the third and fourth surfaces; wherein the first surface of the input piezoelectric layer is electroded; the second surface of the input piezoelectric layer is in physical contact with an electrically conductive layer; the third surface is in physical contact with the electrically conductive layer; and the fourth surface of the output piezoelectric layer is electroded; and wherein the input piezoelectric layer is mechanically coupled to the output piezoelectric layer through the electrically conductive layer such that an input time-varying electrical signal applied to the first surface is converted to vibrational energy by the input piezoelectric layer, and wherein the vibrational energy is transmitted through the electrically conductive layer to the output piezoelectric layer, wherein the vibrational energy is converted back into a time-varying electrical signal, resulting in a replica of the input time-varying electrical signal being present on the fourth surface of the output piezoelectric layer; wherein there is no electrically conductive path between the electroded first surface on the input piezoelectric layer and the electroded fourth surface on the output piezoelectric layer.
In embodiments, the invention may comprise a system for reducing the susceptibility of a system to be protected from undesired radiated or conducted energy, while allowing desired electrical energy to be provided to the system to be protected, comprising: a continuously electrically conductive enclosure forming a three-dimensional structure having an enclosed interior volume for receiving a system to be protected; the continuously electrically conductive enclosure comprising a wall; a signal feedthrough passing through the wall of the electrically conductive enclosure, the signal feedthrough having an input end and an output end; the signal feedthrough able to be electrically coupled to a source of time-varying electrical energy on the input side, receiving input time-varying electrical energy from the source of time-varying electrical energy, convert the input time-varying electrical energy to time-varying mechanical energy representative of the input time-varying electrical energy, transmit the time-varying mechanical energy to the output end of the feedthrough, and convert, at the output end, the time-varying mechanical energy to output time-varying electrical energy that is representative of the input time-varying electrical energy; wherein the input the and the output side of the feedthrough are located on opposite sides of a wall of the continuously electrically conductive enclosure, such that either the input side of the feedthrough is exterior to the enclosed interior volume and the output the of the feedthrough is inside the enclosed interior volume, or the output side of the feedthrough is exterior to the enclosed interior volume and the input side of the feedthrough is inside the enclosed interior volume; wherein the signal feedthrough does not provide an electrically conductive path from outside the continuously electrically conductive enclosure to inside the continuously electrically conductive enclosure; the signal feedthrough comprising an continuous, uninterrupted electrically conductive layer completely covering a cross section of the feedthrough, wherein the electrically conductive layer comprises a periphery external to the feedthrough that is in uninterrupted electrical contact with a conductive surface of the electrically conductive enclosure, such that radiated energy from outside the electrically conductive enclosure does not pass into the enclosed interior volume. The conversion of electrical energy to mechanical energy and said conversion of mechanical energy to electrical energy is accomplished using piezoelectric materials.
In embodiments, the invention may comprise a method for reducing the susceptibility of a system to be protected from undesired energy, while allowing a desired signal to be provided to the system to be protected, comprising:
The step of providing a signal feedthrough may, in embodiments, further be defined as providing a feedthrough mechanically transmitting a desired signal to a system to be protected using piezoelectric materials, and wherein, in embodiments, the signal feedthrough may be any of the embodiments of the signal feedthrough of the invention.
In an embodiment, the signal feedthrough of the invention may be configured such that the electrically conductive layer extends beyond the outer periphery of the input piezoelectric layer and output piezoelectric layer such that it forms a flange for attaching or mounting to an exterior wall of the electrically conductive enclosure. Such attaching may be by any means know in the art such as threaded fasteners, welding, chemical bonding, or any other means. The output piezoelectric layer and optional end-mass of the output side of the signal feedthrough may pass through an opening in the wall of the electrically conductive enclosure, such that the output terminal is accessible from the enclosed interior volume. A conductive EMI gasket may be placed between, and in physical contact and in electrical communication with, the flange and the outer surface of the wall of the electrically conductive enclosure. The EMI gasket may provide continuous electrical contact running outside the periphery of the opening in the electrically conductive enclosure. A further shock and vibration isolating gasket may be interposed between the flange and the outer surface of the wall of the electrically conductive enclosure to prevent mechanical shock and vibration from causing the piezoelectric output signal to contain noise components resulting from such mechanical shock and vibration, causing strain on the piezoelectric materials of the signal feedthrough. Using this configuration of signal feedthrough, existing systems may easily be retrofitted with the signal feedthrough of the invention to improve the EMI and EMP susceptibility of the system to be protected. New systems may also be built with this configuration of signal feedthrough.
It is also the case that certain systems to be protected may generate emanations from the time-varying currents they generate, such as clock and data signals and their harmonics, switching power supply currents, and the like. Such emanations may contain information content that is radiated from the system. These emanations may be received by a hostile receiver and the information content recovered from the received signal. Still further, the information content may be conducted from the system to be protected by electrically conductive connections in the form of conductors carrying signal or power to the system. It is desirable that such emanations and such conducted energy containing information content be prevented from leaving the system to be protected. In embodiments, the signal feedthrough of the invention may be used prevent such emanations and such conducted energy containing information content from leaving the enclosed interior volume. In this use case, a signal feedthrough of the invention is utilized such that the electroded fourth surface of the output piezoelectric layer is used as an input that is in communication with the system to be protected, and the electroded first surface of the input piezoelectric layer is used as an output. A signal from the system to be protected is converted to mechanical vibrational energy in the output piezoelectric layer; the mechanical vibrational energy is passed though the electrically conductive layer to the input piezoelectric layer; and the mechanical vibrational energy is converted back to an electrical signal at the first layer of the input piezoelectric layer. In this manner, a signal may be passed from a system to be protected disposed in the interior volume of the enclosure to a user outside the enclosure who is in communication with the electroded first surface of the input piezoelectric layer. Emanated emissions are prevented from leaving the enclosure because the electrically conductive layer may be in continuous peripheral contact with the electrically conductive enclosure forming a complete Faraday cage around the system to be protected, thereby not allowing such emanated emissions to escape the enclosure. Further, any conducted energy that is outside BWSF will not be conducted through the signal feedthrough, thus it will not be detectable outside the enclosure. In this use case, the signal feedthrough and enclosure of the invention prevent eavesdroppers outside the enclosure from being able to recover information content from emanated emissions or conducted energy from the system inside the enclosure because such emanated emissions or conducted energy are not allowed to leave the enclosed interior volume of the enclosure.
In embodiments, the signal feedthrough of the invention may comprise an input structure for receiving an input desired signal, an input piezoelectric layer for converting the received input desired signal to mechanical vibrational energy representing the input desired signal, a structure for communicating the mechanical vibrational energy through an electrically conductive layer to an output piezoelectric layer for receiving the mechanical energy and converting it to an output signal that is a replica of the received input desired signal. The transducers may be any electromechanical or electroactive device or material, including but not limited to electromechanical devices such as, by way of example and not limitation, solenoids or mechanical actuators, and piezoelectric devices or materials.
It is therefore an object of the invention to provide data center equipment racks that are interconnectable with adjacent shielded racks without compromising shielding. It is another object of the invention to provide data center equipment racks that are interconnectable with racks above/below shielded racks without compromising shielding.
It is another object of the invention to provide data center equipment racks that are mobile, depending on size.
It is another object of the invention to provide protection for electrical or electronic systems from outside EMP, HEMP, or IEMI threats.
It is another object of the invention to protect against electromagnetic emanations that originate inside an enclosure from exiting the enclosure by either radiated emissions or conduction, and thereafter potentially being exploited outside of the protected environment.
According to one aspect of the invention, an equipment rack includes an electronic equipment enclosure defined by RF-shielded walls and a plurality of openings in the RF-shielded walls adapted for being aligned with complimentary openings in one or more like data center equipment racks and adapted for permitting a shielded electromagnetic connection between two or more racks. At least one access door is provided in the enclosure for facilitating access to the electronic equipment in the rack. Covers are provided for covering the respective openings in the RF-shielded walls when the openings are not being used to permit an electromagnetic interconnection between two or more racks.
According to another aspect of the invention, the enclosure includes at least one waveguide air intake/exhaust port.
It is another object of the invention to provide for a cooling system based on compressed gas that will pass through a “waveguide below cutoff” into the rack system and provide cooling through expansion of compressed gas, and the flow of compressed gas out of the rack system.
According to another aspect of the invention, an access door may be provided in the enclosure for allowing access to an interior of the enclosure.
According to another aspect of the invention, an equipment rack may be provided that includes an electronic equipment enclosure defined by RF-shielded top wall, bottom wall, first and second side walls and front and rear walls. A plurality of openings is provided in at least one top and at least one side wall of the RF-shielded wall and adapted for being aligned with complimentary openings in one or more like data center equipment racks and adapted for permitting a shielded electromagnetic connection between two or more racks. At least one access door is provided in the enclosure for facilitating access to the electronic equipment in the rack. Covers are provided for covering the respective openings in the RF-shielded walls when the openings are not being used to permit an electromagnetic interconnection between two or more racks.
According to another aspect of the invention, an opening is provided in each of the first and second side walls, the openings positioned respectively to allow mating alignment with each other for passage of connectors therethrough.
According to another aspect of the invention, an equipment rack assembly is provided that includes a plurality of RF-shielded equipment racks.
According to another aspect of the invention, at least one of the plurality of racks comprising the rack system is a different size than other of the plurality of racks.
Racks may be taller, wider, deeper, depending on application
According to another aspect of the invention, the racks include an access door on the front wall and the rear wall.
The accompanying drawings, which are incorporated into and form a part of the specification, illustrate one or more embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating embodiments of the invention and are not to be construed as limiting the invention. In the figures, like item designators refer to like elements. The figures are not necessarily to scale, and elements in the figures are depicted without regard to their relative physical size or shape, so that the figures are not limiting as to the sizes of the depicted features in relation to one another.
In the drawings:
The following documentation provides a detailed description of exemplary, non-limiting embodiments of the invention.
Although a detailed description as provided in the attachments contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the following preferred embodiments of the invention are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents, and not merely by the preferred examples or embodiments given.
As used herein, “piezoelectric material”, or PZT, includes within its meaning any material that experiences a mechanical change when subjected to an applied electric charge, or which develops an electric charge when subjected to a mechanical stress or mechanical deformity, or both. A non-limiting, exemplary list of piezoelectric materials includes: ceramics including but not limited to barium titanate (BaTiO3), lead zirconate titanate Pb[ZrxTix]03, potassium niobate (KNbO3), sodium tungstate (Na2WO3), Ba2NaNb5O5, Pb2KNb5O15, zinc oxide, sodium potassium niobate (K0.5Na0.5NbO3), bismuth ferrite (BiFeO3), sodium niobate (NaNbO3), barium titanate (BaTiO3 and Bi4Ti3O12) and Sodium bismuth titanate NaBi(TiO3)2; crystalline materials such as langasite (La3Ga5SiO14), gallium orthophosphate (GaPO4), lithium niobate (LiNbO3), lithium tantalate (LiTaO3), quartz, berlinite (AlPO4), rochelle salt, topaz, tourmaline-group minerals, and lead titanate (PbTiO3); semiconductors such as, for example and not by way of limitation, III-V and II-VI semiconductors including zincblende and wurtzite crystal structures such as GaN, InN, AlN and ZnO, and any bulk or nanostructured semiconductor crystal having non-central symmetry; polymers, including amorphous and semi-crystalline polymers, including but not limited to polyvinylidene fluoride (PVDF) and its copolymers, polyamides, paralyne, polyimide polyvinylidene chloride (PVDC), voided charged polymers, polymer composites integrating piezoelectric ceramic particles into a polymer film; and any other material that experiences a mechanical change when subjected to an applied electric charge, or which develops an electric charge when subjected to a mechanical stress or mechanical deformity, or both. Such piezoelectric materials may, or may not be, polarized, in any direction.
As used herein, “electronics enclosure”, “rack” or “housing” includes within its meaning any structure that has a substantially closed interior volume in which a system to be protected may be disposed, or housed. An electronics enclosure may comprise electrically conductive sheet materials that have been shaped to form the interior volume. The sheet materials may be a solid sheet material, or the sheet materials may comprise openings that are sized and disposed so as to significantly attenuate undesired radiated electromagnetic energy to which the enclosure may be subjected. Further, the sheet materials may comprise mu-metals. Electronics enclosures may have feedthroughs for allowing electrical power and communication signals to enter and exit the electronics enclosure, as well as other feedthroughs that may allow, for example, cooling air or liquids to enter or exit the enclosure.
As used herein, “undesired conducted energy” includes within its meaning electric currents that, when a system to be protected is subjected to such electric currents, experiences undesired results that render the system to be protected such that its operation is degraded or it is inoperable, temporarily or permanently. In some cases, the effect of the undesired conducted energy may be temporary such that the system returns to normal operation when the undesired radiated energy is removed. In other cases, the effect of the undesired conducted energy may be permanent such that the system does not return to normal operation when the undesired conducted energy is removed.
As used herein, “undesired radiated energy” includes within its meaning electric and/or magnetic fields and radiating electromagnetic energy such as EMP, HEMP and HEMP-level energy that, when a system to be protected (such as an electrical system) is subjected to such energy, the system experiences undesired results that render the electrical system to be protected such that its operation is degraded, or the electrical system is inoperable, temporarily or permanently. In some cases, the effect of the undesired radiated energy may be temporary such that the system returns to normal operation when the undesired radiated energy is removed. In other cases, the effect of the undesired radiated energy may be permanent such that the system does not return to normal operation when the undesired radiated energy is removed. Within the context of “undesired radiated energy” is EMP (including HEMP-level) radiated energy. HEMP radiated energy includes within its meaning electric fields of up to 114 J/m2, which may extend up to and beyond 100 MHz; and, electric field components of HEMP may range up to 101 V/m at 0.01 Hz, 10-1 V/m at 100 Hz, and 0.001 V/m at 10,000,000 Hz (as stated at 5.6.3.1 and in Fig. A.1 in IEC TR 6100-5-5-3 (1999), Installation and mitigation guidelines—HEMP protection concepts, filed herewith in an Appendix to the patent application, and incorporated by reference herein in its entirety). “Undesired radiated energy” also includes EMP and HEMP pulse levels and durations as set out in Electromagnetic Pulse (EMP) Protection and Resilience Guidelines for Critical Infrastructure and Equipment, developed by the National Coordinating Center for Communications (NCC), National Cybersecurity and Communications Integration Center, Arlington, Va., (Feb. 5, 2019), filed herewith in an Appendix to the patent application, and incorporated by reference herein in its entirety. “Undesired radiated energy” also includes HEMP-level radiated energy. “Undesired radiated energy” also includes within its meaning radiated energy that causes EMI in the system to be protected. “Undesired radiated energy” also includes within its meaning the effect electric fields induced in the earth by variations in the geomagnetic field caused by natural phenomena such as, for example, geomagnetic storms. Such fields may range up to 15 V/km or more. See Geomagnetic Storms and Their Impacts on the U.S. Power Grid, John Kappenman (Metatch Corporation) (2010), as prepared for the Oak Ridge National Laboratory, 1 Bethel Valley Rd., P.O. Box 2008, Oak Ridge, Tenn. 37831, U.S. govt. contract no. 6400009137, contemporaneously filed herewith as an Appendix in the application, which is incorporated by reference herein in its entirety. “HEMP” means the EMP resulting from a high-altitude nuclear explosion. “HEMP-level” means any electromagnetic energy at the same level as HEMP radiated energy. HEMP and HEMP-level radiated energy includes within its meaning radiated energy as depicted in any of
As used herein, “system to be protected” and “system” includes within their meaning any system, element, structure or device which may be susceptible to damage, degraded operation, or any undesirable effect resulting from being subjected to undesired radiated electromagnetic energy or conducted electrical energy. Such systems may comprise, by way of example and not by limitation, any electrical or electronic circuit; any system in communication with electrical conductors for transmission of electrical power or information; circuits comprising discrete logic components, analog electrical components, digital circuit components, semiconductor-based circuit elements including but not limited to microprocessors, memory devices, communication circuits, logic arrays, programmable logic, field programmable gates, and other digital circuit elements; electric power supplies; and any system comprising conductors or semiconductors. Such systems may include computers, radios, power supplies, guidance and control systems, motor controllers, and virtually any system comprising an electric or electronic circuit or device.
As used herein, “mu-metal” includes within its meaning any ferromagnetic alloy exhibiting a permeability greater than ordinary steel, for example greater than 10,000, and up to, and greater than, 100,000. An exemplary common range for the permeability of mu metal is 80,000 to 100,000. Exemplary, non-limiting compositions of mu-metal include approximately 77% nickel, 16% iron, 5% copper, and 2% chromium or molybdenum. Mu-metal may also be considered to be ASTM A753 Alloy 4 and may be composed of approximately 80% nickel, 5% molybdenum, small amounts of various other elements such as silicon, and the remaining 12% to 15% iron. A number of different proprietary formulations of the alloy are sold under trade names such as MuMETAL®, Mumetall®, and Mumetal2®. Mu-metal may be a “soft” ferromagnetic material such that it has low magnetic anisotropy and magnetostriction, giving it a low coercivity so that it saturates at low magnetic fields. Other high-permeability nickel-iron alloys such as permalloy have similar magnetic properties; mu-metal's advantage is that it is more ductile, malleable and workable, allowing it to be easily formed into the thin sheets needed for magnetic shields such as electronics enclosures. Mu-metal objects, including electronics enclosures, may require heat treatment after they are in final form—annealing in a magnetic field in hydrogen atmosphere, which may increase the magnetic permeability of the mu-metal about 40 times. Such annealing alters the material's crystal structure, aligning the grains and removing some impurities, especially carbon, which obstruct the free motion of the magnetic domain boundaries. Bending or mechanical shock after annealing may disrupt the mu-metal's grain alignment, leading to a drop in the permeability of the affected areas, which can be restored by repeating the hydrogen annealing step.
As used herein, “Electromagnetic Pulse”, or “EMP”, includes within its meaning any transient electromagnetic disturbance or short burst of electromagnetic energy. Such a burst's origin may be a natural occurrence, or may be manmade, and may occur as a radiated, electric, or magnetic field or a conducted electric current, depending on the source and circumstance of the occurrence. An EMP may result in the generation of undesired conducted electric currents, undesired radiated electric fields and undesired magnetic fields. EMP also includes within its meaning HEMP and HEMP-level electromagnetic energy.
As used herein, “electroded” means the creation of a conductive surface on an object through any means known in the art such as plating, depositing, sputtering or any form of metal deposition, or through any other means of creating, applying or attaching a conductive surface on an object or adjacent to an object. An electroded object has at least one surface that has received a conductive coating or is adjacent to and in electrical contact with a conductive surface.
As used herein, “signal” includes within its meaning desired energy provided from a source to a load. “Signal” includes within its meaning electrically conducted or mechanically transmitted energy that contains power or information. A non-limiting, exemplary list of signals includes: alternating electrical current (AC); non-time varying electrical voltages or currents (sometimes known as “discretes”); time varying electrical voltages or currents such as those used to transmit information; and mechanical stress or vibration, including time-varying stress and vibration.
As used herein, a “replica” of a signal means a resulting signal that has the same information content as an original, or input, signal. Thus, it may be, but is not necessarily, an exact replica of the input signal. The replica signal is not necessarily the same amplitude, polarity, level or spectral content of the input signal. Thus, as a non-limiting exemplary case, an output signal may be a replica of an input signal even if the output signal is level-shifted, scaled, or inverted or any combination of these; or even if it contains spectral components not present in the input signal, such as may be the case when the output signal has picked up noise as it is passed from input to output. A replica signal may be, for example, a scaled version of the replicated signal.
As used herein, “desired signal” includes within its meaning any signal that is intended for use by the system to be protected, or by any system in communication with the system to be protected. A desired signal may have a bandwidth BWd having a lower frequency fL and an upper fU, within which the desired signal is contained.
As used herein, “mechanical transmission” of energy includes within its meaning any form of mechanical energy that is capable of transmitting a signal. The piezoelectric transmission of a signal from an input piezoelectric layer to an output piezoelectric layer as described herein is a non-limiting example of mechanical transmission of a signal.
As used herein, “electrically conductive enclosure” includes within its meaning any form or shape of enclosed volume, in which an enclosing structure forms an interior volume, and wherein the enclosing structure is electrically conductive. The enclosing structure may be a continuously electrically conductive sheet comprised of one or more conductive surfaces, such as when it is formed of a solid sheet of electrically conductive material; or it may comprise openings of a dimension small enough to prevent an undesired level of radiated electromagnetic energy to penetrate or radiate from or into the enclosed interior volume of the enclosure. The allowable dimension of any such opening may be determined by the susceptibility of the system to be protected to undesired radiated electromagnetic energy. Some systems, which may be highly susceptible to smaller levels of higher frequency radiated electromagnetic energy, may allow only small openings in the enclosing structure; other systems, which are less susceptible, may allow openings of larger dimensions in the enclosing structure. “Electrically conductive enclosure” also includes within its meaning electrically conductive enclosures in which the enclosing structure comprises mu-metal. The enclosing structure may comprise only electrically conductive materials, such an embodiment in which the enclosing structure is fabricated from a metal such as stainless steel, or it may comprise a combination of electrically non-conductive and electrically conductive materials such as an embodiment that comprises plastic or other non-conductive materials that have been plated or coated with a conductive surface. In such embodiments, the conductive surface may form a continuous conductive sheet surrounding the enclosed interior volume or may form a continuous conductive sheet comprising openings, as described above, that surrounds the enclosed interior volume. Such enclosures are known as EMI enclosures in the art. “Electrically conductive enclosure” includes within its meaning Faraday cages structures.
As used herein, “feedthrough” does not imply or mean that an opening or hole is created or required in the continuous electrically conductive surface or enclosure that forms the enclosed interior volume. “Feedthrough” includes within its meaning structures that receive a signal on a first end and either communicate that signal, or provide a replica signal, at a second end.
As used herein, “input side” includes within its meaning the side of a feedthrough that receives energy, such as electrical energy, from a source, and converts the received energy to mechanical vibrational energy for transmitting to the output side of the feedthrough.
As used herein, “output side” includes within its meaning the side of a feedthrough that receives energy, such as mechanical vibrational energy, from an input side of the feedthrough and converts the received energy to electrical energy for providing to a load.
While reference may be made herein to “data centers”, it is to be understood that this is by way of example only. The inventive scalable, EMI/EMP hardened electronic enclosure rack system may be used generally, in an application or situation in which it is desired to protect an electrical or electronic system from the effects of EMI or EMP radiated energy, or conducted electrical energy, or to reduce electromagnetic or conducted radiated emissions, without regard to the type of electrical system to be protected. Thus, the use of the inventive interconnectable, EMI/EMP/HEMP and HEMP-level hardened electronic enclosure rack system in data centers is just one of many applications of the invention.
It is well known that certain undesired radiated and conducted energy may have undesired effects on systems to be protected. In some cases in which the undesired radiated and conducted energy result in undesired voltages and currents in the system to be protected that are of a magnitude low enough that there is no permanent harm to the system to be protected, the undesired effect produced by the undesired radiated and conducted energy on the system may be limited to the generation of noise. Such noise may render the system to be temporarily non-operable, but the system may return to normal operation when the undesired radiated and conducted energy have ceased. However, in other cases, the undesired radiated and conducted energy may be of such magnitude that the system experiences voltages and or electric current exceeding breakdown levels such that the system suffers permanent damage in the form of burned out semiconductor junctions, semiconductor metal layers, cables, connectors, and the like. In such circumstances the result can be catastrophic, system-wide destruction of the ability to operate. In such circumstances, when the undesired radiated and conducted energy cease, the system may not return to normal operation.
In some circumstances, undesired radiated and conducted energy may be the result of natural phenomena such as lightning, electrostatic discharge (ESD), meteoric EMP, coronal mass ejection (i.e., a burst of plasma and accompanying magnetic field, ejected from the solar corona and released into the solar wind) or geomagnetic storms. In other circumstances, undesired radiated and conducted energy may be manmade such as, for example, the switching action of electrical circuitry, whether isolated or repetitive (as a pulse train); the closing and opening of electrical contacts in electric motors, clock and data signals in electronic systems, gasoline engine ignition systems, power line surges; EMP and HEMP weapons including nuclear weapons, and continuously operated radiated emission weapons and jamming systems, as in electronic warfare (EW) systems.
The development of the rack system as described in this application is directed towards the purpose of providing an electromagnetically secure environment within which any item, including IT equipment, communications equipment, control equipment, protective relay equipment, or any other electronic or non-electronic item may be placed. As described below, the described racks and rack system are interconnectable—above, below, beside, or through a protected umbilical structure.
Various views of a rack 10 according to an embodiment of the invention are shown in
As shown collectively in
With the covers 24, 26 and 28 removed, interconnection ports 24A, 26A and 28A are exposed for use. The size and location of the interconnection ports 24A, 26A and 28A can be of any size and location, as long as the ports 24A, 26A and 28A match up to ports in adjacent racks 10.
Penetrations may be integrated onto the interconnection ports 24A, 26A and 28A as required to connect and maintain the electromagnetic shielding environment inside the rack 10. Penetrations can be integrated into the cover 24, 26 and/or 28 of an otherwise unused interconnection port 24A, 26A and/or 28A. This is important to accommodate specific applications inside the rack 10. Sizes and types of penetrations can vary. The penetrations can include an umbilical attachment to cooling/power for “TIER IV+” data center protection.
Referring collectively to
The air intake/exhausts 40, 42, 44 can be any size and in any location to accommodate specific needs of the user. As evident by its description, the air intake/exhausts 40, 42, 44 may either take cooling air into the rack 10 or exhaust warm air from the rack 10 depending on the direction of fan rotation. See by way of example, fan 46 of air intake/exhaust 44.
The rack 10 includes air waveguides, provisions for filters and other items. Because the racks 10 are interconnectable, each individual rack 10 does not need to have a filter, rather it can be connected to power in another rack 10 through the interconnection ports 24A, 26A and/or 28A.
Similarly, air flow, data cables, or any other required connection can be routed between racks 10 as needed. Also, a hose 17 may be provided to route compressed gas from a connector 15 to provide further cooling.
The racks 10 may be combined into multi-rack assemblies to form a rack system 70 shown in
The rack system 70 can support a “power bus” architecture, whereby a single bus supplies power to a full row of racks 10, without each rack 10 having its own power supply. A common “rectifier cabinet” can provide power to all of the racks 10 in a row, and still maintain electromagnetic protections.
The racks 10 can have as many interconnection ports as required. Also, the interconnection ports facilitate the integration of special penetrations, as needed, by allowing for electromagnetically sealed penetrations for waveguides, air, liquid, fiber optic ports, or penetrations for any other purpose to be integrated into any available rack interconnection port.
The depictions shown in this application are one possible version of many possible rack designs. The racks can be taller, wider, or be sized to support any standard or non-standard rack unit mounting of equipment. The interconnections shown are just one way to assure interconnection between racks. These can include versions with more, fewer, larger or smaller interconnection ports using any shape interconnection port cover.
The interconnection ports exclude electromagnetic energy from entering the inside of the rack system, and the means of accomplishing this can be the use of any suitable form of gasketing, fingerstock, conductive pastes, or any other method that can support electromagnetic shielding and facilitate the removal of the interconnection port cover to support any configuration or change in configuration of racks over the life-cycle of the systems protected by the rack system. As best shown in
The cooling pedestal 74 is interconnected through an electromagnetically sealed umbilical to electromagnetically protected cooling modules (not shown) that can be located inside, outside or any other convenient location to provide dedicated cooling capacity to the rack system 70. The rack system 70 can also use cooling as provided by any typical data center environment.
The electromagnetically protected umbilical can also support the supply of power to the rack system and can be connected to an electromagnetically sealed generator dedicated to the support of the rack system and any associated mechanical systems.
The rack system 70 may support “built in test” through the use of electromagnetic emitters inside the protected environment of the rack system 70. These emitters can be used to assess the electromagnetic shielding environment and detect if there are any shielding leaks, or to perform periodic “verification testing” of the shielded environment. The built-in test may not impact any operational aspect of the equipment operating inside the rack system.
Another embodiment may include the use of an integrated filter as part of the rack assembly and will provide isolation from RF energy that may be present at harmful levels outside the new rack assembly. The rack system 70 can be mobile—the system may or may not have integrated wheels for mobility, and may or may not have handles allowing for the system to be transported.
The rack system may have RF ports built in to allow for the automatic testing of the rack system for Shielding Effectiveness per the MIL-STD. The rack system may have “Shielded Enclosure Leak Detection System” ports to allow for the injection of RF energy into loops or studs.
As shown in
Referring now to
Still referring to
Still referring to
Still referring to
Still referring to
In embodiments, the piezoelectric layers 101 and 103, and the optional end masses 105 and 106, may be of similar exterior shape. In embodiments, the piezoelectric layers 101 and 103, and optional end masses 105 and 106, may be coaxially located.
Referring now to
Referring now to
Referring now to
Still referring to
Still referring to
In embodiments, the piezoelectric layers 301 and 303, and the optional end masses 305 and 306, may be of similar exterior shape. In embodiments, the piezoelectric layers 301 and 303, and optional end masses 305 and 306, may be coaxially located.
As with other embodiments of the invention, in the embodiment depicted in
Referring now to
Referring now to
Referring now to
Referring now to
Still referring to
Still referring to
The structure shown in
Referring still to
Herein, “signal” and “energy” are used interchangeably to describe the energy passing through the feedthrough. It is to be understood that the signal, or energy, passing through the feed through may be any signal of any characteristic that is able to be converted from electrical energy to mechanical vibrational energy and from mechanical vibrational energy to electrical energy using piezoelectric materials and techniques.
In any of the embodiments, the electrically conductive layer 109, 309 and the continuously electrically conductive sheet or enclosure forming the enclosed interior volume of enclosure 202 may optionally be, but is not required to be, connected to an electrical ground. In the figures, electrically conductive layer 109, 309 and enclosure 202 may be depicted as optionally connected to an electrical ground at a point 600. Such depiction is for convenience, and only depicts an exemplary, non-limiting embodiment. Such ground connection 600 is simply an optional embodiment of the invention. It is not necessary for each embodiment of the invention that any of these features be connected to an electrical ground, and, in fact, in some embodiments, it may be desired that electrically conductive layer 109, 309 and the electrically conductive walls of enclosure 202 not be connected to an electrical ground.
In the embodiments of the invention, wherever an electrical signal is applied to a piezoelectric element or material, it is understood that the surface of the piezoelectric element or material that is in electrical contact with an electrical conductor has been electroded.
Referring now to
Still referring to
Still referring to
Still referring to
In any of the embodiments of the invention, the feedthrough may operate bi-directionally, without regard to whether one end of the feedthrough is labeled as being an “input” or an “output”. In other words, the feedthroughs of the invention may be used to communicate a signal (including power) from either end of the feedthrough to the other end of the feedthrough. The use of “input” and “output” are thus to provide reference to certain features for ease of explanation, and not to create a limitation.
In the various embodiments of the invention, the various features described herein may be present in any combination, and in any quantity. The scope of the claimed invention includes not only all the various embodiments and features described herein, but all legal equivalents thereof.
The various elements of the embodiments of the invention as described herein and depicted in the figures may be present in any embodiment, and in any combination or quantity.
A system and method for protecting electronic systems from failure or damage when such systems are subjected to undesired conducted or radiated energy such as electromagnetic pulse energy or electromagnetic interference, including EMP, HEMP and HEMP-level electromagnetic energy. The invention also reduces the amount of conducted or radiated emanations from a system. A novel, non-conductive signal feedthrough allows a desired signal to be communicated with electrical connectivity. An incoming desired electrical signal is converted to vibrational energy by a piezoelectric transducer, which is communicated into an enclosed interior volume of a conductive electrical enclosure housing a system to be protected, where it is converted back to electrical energy for processing by the system to be protected by a second piezoelectric transducer. The signal feedthrough allows a continuously conductive enclosure to be employed, in embodiments forming a Faraday cage surrounding the electrical system to be protected, providing protection from undesired radiated energy such as EMP and HEMP. The signal feedthrough allows communication without requiring electrical conduction through the feedthrough, thus protecting against undesired conducted energy.
An EMP and HEMP-hardened electrical electronic equipment rack, enclosure, and rack system according to the invention has been described and claimed with reference to specific embodiments and examples. Various details of the invention may be changed without departing from the scope of the invention. Furthermore, the foregoing description of the preferred embodiments of the invention and best mode for practicing the invention are provided for the purpose of illustration only and not for the purpose of limitation, the invention being defined by the claims.
This application is a continuation in part of U.S. non-provisional patent application Ser. No. 17/468,777, entitled INTERCONNECTABLE DATA CENTER EQUIPMENT RACK, filed in the United States Patent and Trademark Office (USPTO) on Sep. 8, 2021, the disclosure of which is incorporated herein by reference in its entirety; Ser. No. 17/468,777 claims priority from provisional patent application Ser. No. 63/076,063, filed in the USPTO on Sep. 9, 2020, the disclosure of which is incorporated herein by reference; this application is also a continuation in part of U.S. non-provisional patent application Ser. No. 17/512,652, entitled DEVICES, SYSTEMS AND METHODS FOR REDUCING CONDUCTED AND RADIATED EMISSIONS AND SUSCEPTIBILITY, filed in the USPTO on Oct. 27, 2021, the disclosure of which is incorporated herein by reference; Ser. No. 17/512,652 is a continuation-in-part of international application no. PCT/US21/25284, entitled DEVICES, SYSTEMS AND METHODS FOR REDUCING CONDUCTED AND RADIATED EMISSIONS AND SUSCEPTIBILITY, filed in the Unites States Receiving Office (USRO) of the USPTO on Mar. 31, 2021, the disclosure of which is incorporated herein by reference; PCT/US21/25284 claimed benefit of priority to U.S. provisional patent application Ser. No. 63/003,278, entitled DEVICES, SYSTEMS AND METHODS FOR REDUCING CONDUCTED AND RADIATED EMISSIONS AND SUSCEPTIBILITY filed in the USPTO on Mar. 31, 2020, the disclosure of which is incorporated herein by reference; PCT/US21/25284 also claimed benefit of priority to U.S. provisional patent application Ser. No. 63/014,443, entitled DEVICES, SYSTEMS AND METHODS FOR REDUCING CONDUCTED AND RADIATED EMISSIONS AND SUSCEPTIBILITY, filed in the USPTO on Apr. 23, 2020, the disclosure of which is incorporated herein by reference. This patent application also incorporates herein by reference in its entirety all of the disclosure of U.S. Pat. No. 6,836,054, entitled “Thickness Mode Piezoelectric Transducer with Resonant Drive Circuit” which issued from the United States Patent and Trademark Office on Dec. 28, 2004.
Number | Date | Country | |
---|---|---|---|
63076063 | Sep 2020 | US | |
63003278 | Mar 2020 | US | |
63014443 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17468777 | Sep 2021 | US |
Child | 17691102 | US | |
Parent | 17512652 | Oct 2021 | US |
Child | 17468777 | US | |
Parent | PCT/US21/25284 | Mar 2021 | US |
Child | 17512652 | US |