The present invention relates to interconnected locks, i.e., locks in which the outside of the door has a latchbolt lock mechanism on the bottom and a separate deadbolt lock mechanism on the top, but on the inside the mechanisms are interconnected so that rotating the inner handle automatically retracts both the latchbolt and the deadbolt, without having to separately unlock the two.
Many local codes dictate when a deadbolt is in use the lockset must be an interconnected type lockset to allow simultaneous retraction of both the latchbolt and the deadbolt during egress from the inside of the door, i.e., the inside of the house or apartment, or the side of the door for which security is otherwise desired. Existing interconnect products have a fixed center to center distance measured from the center of rotation of the lever handle, where the latchbolt is positioned, to the centerline of the deadbolt. This fixed dimension of latchbolt/deadbolt axis spacing, or offset distance, is typically either 4 in. (102 mm) or 5.5 in. (140 mm) center to center. For new construction projects consumers can specify door preparation so the offset center-to center distance is not so much of an issue. There is a benefit to offering an adjustable interconnected lock for consumers on renovation and retro fit projects where the door is usually not replaced. There is typically a mix in the market place of 4 in. (102 mm) and 5.5 in. (140 mm) door preparations, but in interconnect markets the predominant door preparation is 4 in. (102 mm) as most competitive interconnects are 4 in. (102 mm). In non-interconnect markets the 5.5 in. (140 mm) distance is often used with a deadbolt and passage. The biggest driver for covering both preparations is to comply with the International Building Code (IBC). As more states adopt the IBC interconnected locks will increase in use as single handle motion egress is required. The ability to retrofit both offset distances without re-prepping or buying new doors would be advantageous.
Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide an interconnected lock which permits adjustment of deadbolt to latchbolt spacing.
It is another object of the present invention to provide an interconnected lock that is able to switch between different latchbolt-deadbolt offset spacings, and may optionally be re-handed, without adding or removing any components thereof.
A further object of the invention is to provide an interconnected lock that is able to accomplish the switch between different latchbolt-deadbolt spacings without the need for using any tools.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
The above and other objects, which will be apparent to those skilled in the art, are achieved in the present invention which is directed to an interconnected lock for use on a door, where the lock has adjustable offset spacing between a deadbolt and latchbolt. The lock includes a latchbolt mechanism mountable in a first bore through a door and including a latchbolt and an interior actuator operable to move the latchbolt between latched and unlatched positions along a first axis. The lock also includes a deadbolt lock mechanism mountable in a second bore through a door, with the second bore being spaced from the first bore, and has a deadbolt moveable by the deadbolt lock mechanism along a second axis between latched and unlatched positions. The distance between the latchbolt first axis and the deadbolt second axis is the offset spacing. The lock further includes first and second shafts for actuating the deadbolt lock mechanism. The first shaft is disposed at a first offset spacing from the latchbolt first axis and the second shaft is disposed at a second, greater offset spacing from the latchbolt first axis.
The lock additionally includes a driver member connected to and moveable by the latchbolt actuator, the driver member being alternately connectable to rotate either the first deadbolt-actuating shaft or the second deadbolt-actuating shaft, depending on the offset spacing between the latchbolt first axis and the deadbolt second axis. The driver member may be a linkage arm having a lower end connected to and moveable by the latchbolt actuator. The linkage arm has a length extending upwards with first and second upper positions. The first upper linkage arm position has a distance from the lower end sufficient for connection to rotate the first deadbolt-actuating shaft. The second upper linkage arm position has a distance from the lower end sufficient for connection to rotate the second deadbolt-actuating shaft. The first and second upper linkage arm positions are alternately connectable to rotate the first and second deadbolt-actuating shafts, and thereby actuate the deadbolt lock mechanism, depending on the offset spacing between the latchbolt first axis and the deadbolt second axis.
Upon operation of the interior actuator, the linkage arm moves the deadbolt along the second axis from the latched to the unlatched position at the same time that the operation of the interior actuator moves the latchbolt along the first axis from the latched to the unlatched position. The first and second upper linkage arm positions are alternately connectable to rotate the first and second deadbolt-actuating shafts when adjusting or changing spacing between the first and second axes to adjust or change offset spacing between the deadbolt and latchbolt between a first distance and a second, longer distance.
The lock may include a rotatable lower cam operable by the interior actuator, with the lower cam having a pair of arms extending outward on opposite sides thereof. The lock may also include a sliding mechanism that is urged upward by one of the lower cam arms when the interior actuator is rotated. The linkage arm may be urged upward by a lower slider portion of the sliding mechanism to rotate the first or second deadbolt-actuating shafts. An upper slider portion of the sliding mechanism may be connected to the lower slider, and the linkage arm lower end may be connected to the upper slider and extend upward therefrom. The linkage arm lower end may be connected by a pin to the upper slider.
The lock may include first and second upper cam plates, with the first upper cam plate being connected to the first deadbolt-actuating shaft, and the second upper cam plate being connected to the second deadbolt-actuating shaft. The first and second upper linkage arm positions are alternately connectable to the first and second upper cam plates.
The first upper linkage arm position may be connectable to the first upper cam plate by a pin, and the second upper linkage arm position may be connectable to the second upper cam plate by a pin. When the deadbolt is at the first offset spacing, the first upper linkage arm position is connected to the first upper cam plate and the second upper pin position of the linkage is unconnected to the second upper cam plate; when the deadbolt is at the second offset spacing, the second upper linkage arm position is connected to the second upper cam plate and the first upper pin position of the linkage is unconnected to the first upper cam plate. The pins may be located on the cam plates or the linkage arm upper arm positions. The first and second upper linkage arm positions may be alternately connectable to rotate the first and second deadbolt-actuating shafts without adding or removing any components thereof, and without any use of tools.
In another aspect the present invention is directed to a method of adjusting offset spacing between a deadbolt and latchbolt in interconnected lock for use on a door. The method comprises initially providing an interconnected lock of the type described above. If adjusting or changing to a shorter offset spacing distance, the method comprises connecting the first upper linkage arm position to rotate the first deadbolt-actuating shaft and thereby actuate the deadbolt lock mechanism. If adjusting or changing to a longer offset spacing distance, the method comprises connecting the second upper linkage arm position to rotate the second deadbolt-actuating shaft and thereby actuate the deadbolt lock mechanism. The connection of the first and second upper linkage arm positions is accomplished without adding or removing any components thereof.
Yet another aspect of the invention is directed to a method of re-handing or reversing an interconnected lock for use on a door. The method initially comprises providing an interconnected lock of the type described above, wherein the lock further includes first and second upper cam plates. The first upper cam plate is connected to the first deadbolt-actuating shaft, and the second upper cam plate is connected to the second deadbolt-actuating shaft. The first and second upper linkage arm positions are alternately connectable to the first and second upper cam plates. If handing the lock for a right hand operation, the method comprises connecting the linkage arm to one side of the first and second upper cam plates. If handing the lock for a left hand operation, the method comprises connecting the linkage arm to the other side of the first and second upper cam plates.
The first and second upper linkage arm positions may be alternately connectable to the first and second upper cam plates by pins located on either side thereof. If handing the lock for a right hand operation, the linkage arm is connected to a pin on one side of the first and second upper cam plates. If handing the lock for a left hand operation, the linkage arm is connected to a pin on the other side of the first and second upper cam plates.
The features of the invention believed to be novel and the elements characteristic of the invention are set forth with particularity in the appended claims. The figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
In describing the embodiment(s) of the present invention, reference will be made herein to
As shown by an embodiment in the drawings, the interconnected lock 20 of the present invention is mounted and for use on the inside of a door 21 (
The interconnected lock 20 also includes a rotatable lower cam plate connected to latchbolt actuator driver or shaft 44 and operable by the interior actuator, the lower cam having a pair of arms 46a, 46b (
Slider or sliding mechanism 80 forms part of the mechanism that translates rotation of the latchbolt actuator 36 to retract the deadbolt 50, and comprises lower and upper sliders 82, 84, respectively. Lower slider or sliding mechanism 82 is urged upward by one of the lower cam arms 46a or 46b when the interior actuator 36 is rotated. As shown in
The interconnected lock further includes a pair of upper cam plates, one upper cam plate 110 positioned at a first location, e.g., 4 in. (102 mm) from the latchbolt first axis, and the other upper cam plate 120 positioned at a second location, e.g., 5.5 in. (140 mm) from the latchbolt first axis. The first upper cam plate is disposed to be operably connected to the deadbolt lock mechanism 52 by driver or shaft 112 extending therefrom when it is at the first offset distance, e.g., 4 in. (102 mm) from the latchbolt first axis 42 (
Deadbolt lock mechanism 52 includes a deadbolt actuator shaft extending from an interior thumbturn 68 through an opening and locking into deadbolt cam plate 110 or 120, depending on the offset distance. Deadbolt bore 54 extends perpendicularly from the inner surface of door 21 to its outer surface (
The linkage arm 90 has a length extending upwards from the upper slider 84 and two upper positions 92, 94 for alternate pin connection to the upper cam plates (
To move the deadbolt 50 along the second axis 56b from the latched to the unlatched position when it is at the second offset distance, e.g., 5.5 in. (140 mm) from the latchbolt first axis 42, an opening 95 in the second linkage upper position 94 may be removably connected to the second upper cam plate 120 by a pin 124a or 124b (
Regardless of the offset spacing between the deadbolt and latchbolt, rotating the inner handle 36 moves the linkage arm 90 upwards, rotating the upper cam plate 110 or 120 operably connected to the deadbolt lock mechanism 52 and automatically retracts both the latchbolt 30 and the deadbolt 50, without having to separately unlock the two. At this point, the user may open the door. After the user is outside and the door is closed, the latchbolt 30 normally returns to the latched position automatically, and the deadbolt 50 may be manually latched by use of a key on an exterior deadbolt security lock 58 or whatever security locking mechanism is employed. It should be noted that operation of the handle 38 on the outer side of the door does not rotate latchbolt cam plate 46, and the deadbolt 50 may only be retracted from the outside of the door by the key or otherwise unlocking the deadbolt security locking mechanism.
To provide for easy installation, the slider mechanism 80, linkage 90 and cam plates 110, 120 are mounted inside the front wall of escutcheon 22, and lower and upper cover plates 140 and 144, respectively are provided thereover. As shown by way of example in
To re-hand or reverse the lock mechanism from right-handed operation to left-handed operation, and vice-versa, the symmetry of the upper slider 84 and upper cam plates 110 and 120 about a central vertical line enables the linkage arm 90 to be easily flipped from one side to the other, as shown by way of example in
The interconnected lock of the present invention permits an electromechanical lock module 130 (
Accordingly, the present invention provides an interconnected lock that is able to switch between different latchbolt-deadbolt offset spacings without adding or removing any components thereof. The interconnected lock of the invention may be switched between different latchbolt-deadbolt offset spacings without the potential of losing parts during the spacing adjustment. Additionally, the interconnected lock of the present invention is able to accomplish the switch between different latchbolt-deadbolt spacings without the need for using any tools. The linkage arm adjustment design configuration is an ergonomic and intuitively adjustable solution for the installer and cost effective for the manufacturer. Since no disassembly is required, installation time is reduced.
While the present invention has been particularly described, in conjunction with a specific preferred embodiment, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications and variations as falling within the true scope and spirit of the present invention.
This application claims priority from U.S. patent application No. 62/069,477 filed on Oct. 28, 2014 and from U.S. patent application No. 62/084,699 filed on Nov. 26, 2014.
Number | Name | Date | Kind |
---|---|---|---|
5513505 | Dancs | May 1996 | A |
5713612 | Kajuch | Feb 1998 | A |
5810402 | Armstrong | Sep 1998 | A |
7364212 | Fan | Apr 2008 | B1 |
8434335 | Roth et al. | May 2013 | B2 |
20100022512 | Chiang et al. | Sep 2010 | A1 |
20160168888 | Farias | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
20080094541 | Oct 2008 | KR |
2015057503 | Apr 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20160115720 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
62084699 | Nov 2014 | US | |
62069477 | Oct 2014 | US |