This application is the US national stage of PCT application PCT/DE2006/000047, filed 14 Jan. 2006, published 10 Aug. 2006 as WO 2006/081790, and claiming the priority of German patent application 102005005116.2 itself filed 4 Feb. 2005, whose entire disclosures are herewith incorporated by reference.
The invention relates to an interconnector for high-temperature fuel cells.
A fuel cell has a cathode, an electrolyte, and an anode. An oxidizing agent, e.g. air, is supplied to the cathode, and a fuel, e.g. water, is supplied to the anode.
Different types of fuel cells are known, for instance the SOFC fuel cell from publication DE 44 30 958 C1 and the PEM fuel cell from publication DE 195 31 852 C1 [CA 2,240,270].
The SOFC fuel cell is also called a high-temperature fuel cell because its operating temperature can be up to 1000° C. In the presence of the oxidizing agent, oxygen ions form on the cathode of a high-temperature fuel cell. The oxygen ions diffuse through the electrolytes and recombine on the anode side, creating water with the hydrogen that comes from the fuel. As this recombination occurs electrons are released and thus electrical energy is generated.
As a rule, a plurality of fuel cells are generally joined together, electrically and mechanically, by connecting elements, also called interconnectors, for attaining great electrical outputs. Electrically series-switched fuel cells that are stacked upon one another result from interconnectors. This arrangement is called a fuel cell stack. Fuel cell stacks comprise interconnectors and the electrode/electrolyte units.
In addition to the electrical and mechanical properties, interconnectors normally also possess gas-distributing structures. This is realized using bars and grooves (DE 44 10 711 C1) [U.S. Pat. No. 5,733,682]. Gas-distributing structures cause the fuel to be distributed uniformly in the electrode spaces (spaces in which the electrodes are located).
The following problems can disadvantageously occur with fuel cells and fuel cell stacks:
In this regard, in the prior art there is still not adequate compatibility between the comparatively high expansion coefficients e.g. of the metallic interconnectors and the currently known electrode materials, whose expansion coefficients are comparatively low. On the one hand, thermal stresses can occur between electrodes and interconnectors. These can result in destruction within the fuel cell. However, on the other hand this also applies to glass solders that are frequently used in fuel cells, the glass solders being intended to ensure that the fuel cells are sealed. The interconnectors known from the prior art are made of metal, providing good electrical conductivity. However, one disadvantage of the metal interconnectors is comprised in that they are susceptible to corrosion and the service life of the fuel cell is shortened by this. In particular, the use of ferritic chromium steel (e.g. Crofer 22, a steel alloy having 22% chromium) represents a problem for the cathode of the fuel cell. At high temperatures, this material forms a chromium oxide protective layer that is sufficiently conductive. However, under operating conditions chromium evaporates continuously from this protective layer and deactivates the active centers of the cathodes of the fuel cell, so-called chromium poisoning. This means a continuous drop in the performance of the fuel cell. Known from DE 195 47 699 is a selectively coated interconnector that comprises a chromium oxide-forming alloy. It has a protective layer in the area of the gas guiding surfaces that reduces the effects of corrosion and that is an electrical insulator, e.g. a thin Al2O3 layer. In addition, the interconnector is coated with a mixed oxide layer on the electrode contact surface, leading to an increase in conductivity and to a reduction in the rate of evaporation. This mixed oxide layer is attained e.g. by applying a thin layer made of a metal or metal oxides that forms a mixed oxide (e.g. Spinell type) when used at high temperatures with Cr and/or Cr2O3 on the oxide/gas limiting surface. Suggested as suitable metals or their oxides are Fe, Ni, or Co, which modify the physical properties of the Cr2O3 in the desired manner. However, these layers are only stable under certain conditions and tend to burst or crack. Another disadvantage is that the production method for these thin layers is complex.
The object of the invention is therefore to provide an interconnector for a high-temperature fuel cell that is resistant to oxidation, that possesses good conductivity on the limiting surfaces to the electrodes, and that has a low rate of evaporation for volatile chromium oxide/hydroxide. Moreover, the corrosion caused by the contact between the glass solder and metal should be kept to a minimum. It is furthermore an object of the invention to create a simplified production process for an interconnector having the above-described properties. Problems that are based on thermal stresses, e.g. deficient seal, should be prevented.
This object is attained using an interconnector for a high-temperature fuel cell characterized by an interconnector that comprises two parts made of different materials, whereby one of the parts that is in contact with the electrodes and that provides the electrical connection for the fuel cells comprises a chromium oxide-forming high-temperature alloy, and the other part that mechanically connects the fuel cells comprises a corrosion-resistant high-temperature material that is not electrically conductive, and that does not evaporate chromium such as e.g. chromium oxide. A material that is suitable for the nonconductive part can be for instance an iron-chromium-aluminum alloy that forms an aluminum oxide protective layer. This protective layer prevents chromium from evaporating. This protective layer is not electrically conductive, however. For this reason the electrically conductive part comprises for instance a ferritic chromium steel that is a chromium oxide former. Since most of the fuel cell stack comprises an aluminum oxide former or other materials without chromium, chromium poisoning is sharply reduced. Moreover, the corrosion previously caused by the contact between the chromium oxide-forming steel and the glass solder joints is prevented, because the glass solder is now only in contact with the material of the nonconductive part, which does not evaporate any chromium oxide.
In order to keep thermal stresses between the different materials to a minimum, it is advantageous to select materials with thermal-expansion coefficients that are similar at the operating temperature of the high-temperature fuel cell. Thus for instance a combination of Crofer 22 for the conductive part with aluchrome for the nonconductive part is an advantageous embodiment, as is steel with the material number 1.4742 and aluchrome.
In one advantageous embodiment of the apparatus, the conductive part comprises a rolled profiled sheet metal. This leads to simplified production of the part, since the otherwise conventional chip-removing methods for producing the gas distributing structures that are used for an interconnector produced from a part are not used.
In another advantageous embodiment of the apparatus, the nonconductive part comprises a thin sheet metal. Such an design leads to simplified production of the part. The nonconductive part that forms the frame for the conductive part can be produced for instance such that the recess required for the conductive part is punched out of a sheet metal.
One advantageous design of the apparatus provides that the parts are connected with a thin sheet metal having a thickness of for instance 0.05 to 0.2 mm in order to prevent thermal stresses between the two parts. For this, a gap of for instance 2 to 10 mm can be prespecified between the parts, which gap is covered with a thin metal sheet and is connected gas-tight by means of welding or high-temperature soldering to the two parts.
The object is furthermore attained using a method for producing the inventive interconnector.
In the following the invention is explained inter alia also using the description of an illustrated embodiment and referring to the attached FIGURE.
The part B that mechanically connects the individual fuel cells 5 to one another and forms the frame for the part A is made of an electrically insulating material such as for instance ceramic or a ferritic, aluminum oxide-forming alloy. This can be for instance aluchrome that contains 2 to 5% aluminum in addition to the approximately 20% chromium. This aluminum part forms a dense aluminum oxide layer so that chromium is prevented from evaporating. An elastic means can be arranged between anode 2 and interconnector 1 for capturing relative movements. This can be an elastic nickel net 9 for instance. Glass ceramics, for instance, such as e.g. glass solder 10, are used for sealing the joints between fuel cell 5 and interconnectors 1 gas-tight.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 005 116 | Feb 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2006/000047 | 1/14/2006 | WO | 00 | 5/14/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/081790 | 8/10/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5733682 | Quadakkers et al. | Mar 1998 | A |
5942348 | Jansing et al. | Aug 1999 | A |
6268076 | Diekmann et al. | Jul 2001 | B1 |
20030132270 | Weil et al. | Jul 2003 | A1 |
20030194592 | Hilliard | Oct 2003 | A1 |
20040050462 | Grubb | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
2516472 | Sep 2004 | CA |
100 50 010 | Apr 2002 | DE |
Number | Date | Country | |
---|---|---|---|
20090117414 A1 | May 2009 | US |