This application relates to an intercooled cooling air supply system for cooling rotatable components in a gas turbine engine.
Gas turbine engines are known and typically include a fan delivering air into a bypass air as propulsion air. The fan also delivers air into a core engine where it enters a compressor section. The air is compressed and delivered into a combustion section where it is mixed with fuel and ignited. Products of this combustion pass downstream over turbine rotors causing them to rotate.
Modern gas turbine engines are operating at higher and higher compressor pressures and, hence, temperatures. Further, the turbine sections are being exposed to higher temperature and pressures.
It becomes important to adequately supply cooling air in an efficient manner to rotating components, such as found in the compressor or turbine sections.
In a featured embodiment, a gas turbine engine includes a plurality of rotating components housed within a main compressor section and a turbine section. A first tap is connected to the main compressor section and configured to deliver air at a first pressure. A heat exchanger is connected downstream of the first tap. A cooling air valve is configured to selectively block flow of cooling air across the heat exchanger. A cooling compressor is connected downstream of the heat exchanger. A shut off valve stops flow between the heat exchanger and the cooling compressor. A second tap is configured to deliver air at a second pressure which is higher than the first pressure. A mixing chamber is connected downstream of the cooling compressor and the second tap. The mixing chamber is configured to deliver air to at least one of the plurality of rotating components. A system stops flow between the cooling compressor and the plurality of rotating components. A controller is configured to modulate flow between the heat exchanger and the plurality of rotating components under certain power conditions of the gas turbine engine. The controller is programmed to control the cooling air valve, the shut off valve and the system such that flow is stopped between the heat exchanger and the cooling compressor only after the cooling compressor has been stopped.
In another embodiment according to the previous embodiment, the system for stopping rotation of the cooling compressor includes a clutch.
In another embodiment according to any of the previous embodiments, the air downstream of the cooling compressor passes through struts in a diffuser downstream of the main compressor section.
In another embodiment according to any of the previous embodiments, the mixing chamber is radially inward of said struts.
In another embodiment according to any of the previous embodiments, a check valve is placed on the tap between the main compressor section and the heat exchanger.
In another embodiment according to any of the previous embodiments, the heat exchanger is received within a chamber defined between an outer core housing and an inner housing which is radially inward of a bypass duct.
In another embodiment according to any of the previous embodiments, the cooling air valve is positioned at an upstream end of said chamber.
In another embodiment according to any of the previous embodiments, the cooling air valve is positioned at a location downstream of said heat exchanger.
In another embodiment according to any of the previous embodiments, the mixing chamber is upstream of a turbine blade in said turbine section.
In another embodiment according to any of the previous embodiments, a cooling compressor pressure ratio of the air downstream of the cooling compressor, and upstream of the mixing chamber, compared to a pressure of air downstream of the downstream most location is selected to be greater than or equal to 1.02.
In another featured embodiment, a gas turbine engine includes a plurality of rotating components housed within a main compressor section and a turbine section. A first tap is connected to the main compressor section and configured to deliver air at a first pressure. A heat exchanger is connected downstream of the first tap. A cooling air valve is configured to selectively block flow of cooling air across the heat exchanger. A cooling compressor is connected downstream of the heat exchanger. A means for stopping flow between the heat exchanger and the cooling compressor is provided. A second tap is configured to deliver air at a second pressure which is higher than the first pressure. A mixing chamber is connected downstream of the cooling compressor and the second tap. The mixing chamber is configured to deliver air to at least one of the plurality of rotating components. A means for stopping flow between the cooling compressor and the plurality of rotating components is provided. A controller is configured to modulate flow between the heat exchanger and the plurality of rotating components under certain power conditions of the gas turbine engine. The controller is programmed such that flow is stopped between the heat exchanger and the cooling compressor only after the cooling compressor has been stopped.
In another embodiment according to the previous embodiment, the means for stopping flow between the cooling compressor and the plurality of rotating components includes a clutch.
In another embodiment according to any of the previous embodiments, the means for stopping flow between the heat exchanger and the cooling compressor includes a shut off valve.
In another embodiment according to any of the previous embodiments, the means for stopping flow between the heat exchanger and the cooling compressor includes a shut off valve.
In another embodiment according to any of the previous embodiments, the air downstream of the cooling compressor passes through struts in a diffuser downstream of said main compressor section.
In another embodiment according to any of the previous embodiments, a check valve is placed on the first tap between the main compressor section and the heat exchanger.
In another embodiment according to any of the previous embodiments, the heat exchanger is received within a chamber defined between an outer core housing and an inner housing which is radially inward of a bypass duct.
In another embodiment according to any of the previous embodiments, the cooling air valve is positioned at an upstream end of the chamber.
In another embodiment according to any of the previous embodiments, the cooling air valve is positioned at a location downstream of the heat exchanger.
In another embodiment according to any of the previous embodiments, a cooling compressor pressure ratio of the air downstream of the cooling compressor, and upstream of said mixing chamber, compared to a pressure of air downstream of the downstream most location is selected to be greater than or equal to 1.02.
These and other features may be best understood from the following drawings and specification.
The exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.
The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a first (or low) pressure compressor 44 and a first (or low) pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a second (or high) pressure compressor 52 and a second (or high) pressure turbine 54. A combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.
The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path C. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion. It will be appreciated that each of the positions of the fan section 22, compressor section 24, combustor section 26, turbine section 28, and fan drive gear system 48 may be varied. For example, gear system 48 may be located aft of combustor section 26 or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the location of gear system 48.
The engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10), the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about five. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about five 5:1. Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet (10,668 meters). The flight condition of 0.8 Mach and 35,000 ft (10,668 meters), with the engine at its best fuel consumption—also known as “bucket cruise Thrust Specific Fuel Consumption (‘TSFC’)”—is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. “Low fan pressure ratio” is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane (“FEGV”) system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. “Low corrected fan tip speed” is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram ° R)/(518.7° R)]0.5. The “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second (350.5 meters/second).
A commercial gas turbine engine, as illustrated in
A downstream most point 109 in the high pressure compressor 108 defines a location where a pressure at, or about the highest pressure compressed air to be seen in the core of the engine. Further, air downstream of the point 109 is at about the highest temperature (known as T3), and may also surround a combustor 110.
As shown at 116, a diffuser is downstream of the high pressure compressor 108.
Cooling air from the intercooled cooling system 100 may cool a first turbine vane row 112 and a first turbine blade row 114 of a high pressure turbine. In addition, or alternatively, the air may also cool a downstream most disk and hub in the high pressure compressor 108.
Air is tapped as shown at 118 from a location which is upstream of the downstream most location 109. In the illustrated embodiment, the air 118 is tapped from the low pressure compressor 106. However, it may also be tapped at more downstream locations in the low pressure compressor 106, or at locations within the high pressure compressor 108, which are upstream of the downstream most location 109.
A check valve 120 ensures that air flowing from the tap 118 will only pass into a passage 122 and will not return into the compressor 106. Air downstream of the passage 122 passes into a heat exchanger 124 having a first leg 125 extending to a crossing portion 126. That air is then passed into a return leg 128 extending back inwardly through the housing 104 to a line 130.
While the heat exchanger 124 is shown schematically, it should be understood that a plurality of heat exchange enhancing features such as fins, etc. may be utilized on the outer surface of the heat exchanger 124 to increase the heat transfer. In addition, a plurality of legs 125/128 may be utilized with a single return manifold 126. As can be seen, the radially outwardly extending upstream leg 125 is located within the chamber 105 to be downstream of the return or downstream leg 128. In this manner, the air in leg 128, which is cooler than the air in leg 125, is cooled before the cooling air encounters the higher temperature air in the leg 125. It should be understood that the arrangement shown for this heat exchanger is a space saving arrangement which might facilitate packaging of an otherwise very large pneumatic system in the core. Other heat exchanger arrangements can be employed.
Air downstream of the passage 130 passes through a shut off valve 132. The air downstream of the valve 132 passes to a cooling compressor 134. The air downstream of the cooling compressor 134 passes into passages 136, and through structural struts 160, which are circumferentially spaced and may be upstream in the diffuser 116.
The air having passed through the strut 160 enters a mixing chamber 138 radially inward of diffuser 116. The mixing chamber 138 mixes this air from a plurality of taps 161, which tap air downstream of the downstream most location 109 into the mixing chamber 138. In this manner, air from the tap 118 mixes with air from the taps or holes 161.
In embodiments, air downstream of the mixing chamber 138 then passes into passages 142 and through a tangential on-board injector (TOBI) 144, and then to the blades 114 and the vanes 112.
The air can also cool the hub and disk of the high pressure compressor.
As further shown, a clutch 146 alternatively connects a drive input 149 through a shaft 147 to selectively drive the cooling compressor 134. Input 149 may be a mechanical power take off shaft, an electric or hydraulic motor, or any number of other drives.
One feature of this disclosure is that the intercooled cooling air passing through the cooling compressor 134 is only utilized at higher power operation for an associated gas turbine engine. As an example, the compressor 134 may not be operational during idle, at the end of climb or during cruise operation of the associated gas turbine engine. However, at takeoff and initial climb, the cooling compressor 134 may be utilized to supplement the cooling air provided to the turbine section 112/114 and/or rear sections of the high pressure compressor 108. The air is shown passing at 140 to selectively cool the downstream most portion of the high pressure compressor 108 and, in particular, its hub and disk.
Stated generically, it could be said that the engine associated with the intercooled cooling system 100 includes a plurality of rotatable components within a housing, with the plurality of rotatable components including at least a high pressure compressor and a high pressure turbine, and the cooling air is directed to at least one of the rotatable components. In embodiments, it may be the high pressure compressor, the high pressure turbine, or both.
The associated clutch 146 is opened by a control 133 to stop rotation of the cooling compressor 134 under conditions as described above. The control will also control the shut off valve 132. The timing of closing off the shut off valve 132 and opening the clutch 146 is such that the clutch 146 is opened such that power input to the compressor 134 substantially stops before the valve 132 is substantially closed to block further airflow. Alternatively, rather than a clutch the drive 149 may be otherwise substantially unpowered. Other shut off controls to depower the compressor 134 from compressing air may be used.
A cooling air valve 152 is associated with the control 133 and is operable to open or close thereby reducing or eliminating cooling air flowing across the heat exchanger 124. Generally, at lower power operation, the valve 152 is closed to improve engine efficiency and to decrease the amount of bypass flow diverted through a chamber 105 where such diverted flow represents an inefficiency by reducing engine thrust. This airflow is shown at 153 being delivered back into the bypass airflow.
An alternative location 154 is shown for the cooling air valve downstream of the upstream end of chamber 105. Such an arrangement may be utilized with a flush scoop inlet in the location where valve 152 is illustrated. Another alternative to be incorporated with either a flush scoop or raised (see
An appropriate monitoring system may be utilized such as shown at 156, which ensures the valve is open when cooling airflow is desired. A monitoring system 148 to ensures the clutch 146 is open when desired and closed when desired. In addition, a monitoring system 150 ensures that the compressed air at line 136 has a temperature and pressure as desired.
While 118/122/130 and 136 are shown as simple lines it should be understood they are fluid conduits.
The cooling compressor may be designed such that air downstream is at a pressure ratio slightly greater than that downstream of downstream point 109. As an example, the pressure ratio may be greater than 1.02 of that downstream of point 109, and in other examples greater than 1.05. Also, the mixing chamber has no movable part, such that when a design flow is introduced via the flow passages represented by 136 that flow is potentially supplemented by a flow from 160 or lost to 160 if an oversupply of air relative to what all passages downstream of the mixing chamber can receive is provided.
By locating the heat exchanger 124 in the recessed chamber 105, fuel consumption efficiency is achieved by not blocking the flow of air through the bypass duct in particular when the cooled cooling air system is not in use.
As shown in
Passages at 139 from the mixing chamber 138 allow the air to enter tubes, or a circumferentially extending chamber 142.
As with the earlier embodiment, similar pressure ratios are achieved.
The control 133 may be part of a FADEC for the entire engine, or a stand-alone control programmed as appropriate.
This application could be summarized as disclosing a gas turbine engine including a plurality of rotating components housed within a main compressor section and a turbine section. A first tap is connected to the main compressor section and is configured to deliver air at a first pressure. A heat exchanger is connected downstream of the first tap. A cooling air valve is configured to selectively block flow of cooling air across the heat exchanger. A cooling compressor is connected downstream of the heat exchanger. A means for stopping flow between the heat exchanger and the cooling compressor is provided. A second tap is configured to deliver air at a second pressure which is higher than said first pressure. A mixing chamber is connected downstream of the cooling compressor and the second tap. The mixing chamber is configured to deliver air to at least one of the plurality of rotating components. A means for stopping flow between the cooling compressor and the plurality of rotating components is provided. A controller is configured to modulate flow between the heat exchanger and the plurality of rotating components under certain power conditions of the gas turbine engine. The controller is programmed such that flow is stopped between the heat exchanger and the cooling compressor only after the cooling compressor has been stopped.
Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. For that reason, the following claims should be studied to determine the true scope and content of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
2692476 | Schaal et al. | Oct 1954 | A |
3878677 | Colvin | Apr 1975 | A |
4254618 | Elovic | Mar 1981 | A |
4539945 | Bosisio | Sep 1985 | A |
4882902 | Reigel et al. | Nov 1989 | A |
5056335 | Renninger et al. | Oct 1991 | A |
5269135 | Vermejan et al. | Dec 1993 | A |
5305616 | Coffinberry | Apr 1994 | A |
5363641 | Dixon | Nov 1994 | A |
5392614 | Coffinberry | Feb 1995 | A |
5414992 | Glickstein | May 1995 | A |
5452573 | Glickstein et al. | Sep 1995 | A |
5498126 | Pighetti et al. | Mar 1996 | A |
5724806 | Horner | Mar 1998 | A |
5758485 | Frutschi | Jun 1998 | A |
5867979 | Newton et al. | Feb 1999 | A |
5918458 | Coffinberry et al. | Jul 1999 | A |
5967461 | Farrington | Oct 1999 | A |
6050079 | Durgin et al. | Apr 2000 | A |
6065282 | Fukue et al. | May 2000 | A |
6134880 | Yoshinaka | Oct 2000 | A |
6430931 | Horner | Aug 2002 | B1 |
6487863 | Chen et al. | Dec 2002 | B1 |
6612114 | Klingels | Sep 2003 | B1 |
6892523 | Fetescu et al. | May 2005 | B2 |
7237386 | Hoffmann et al. | Jul 2007 | B2 |
7246484 | Giffin, III et al. | Jul 2007 | B2 |
7284377 | Joshi et al. | Oct 2007 | B2 |
7306424 | Romanov et al. | Dec 2007 | B2 |
7334412 | Tiemann | Feb 2008 | B2 |
7347637 | Kubo et al. | Mar 2008 | B2 |
7500365 | Suciu et al. | Mar 2009 | B2 |
7552591 | Bart et al. | Jun 2009 | B2 |
7698884 | Maguire et al. | Apr 2010 | B2 |
7765788 | Schwarz | Aug 2010 | B2 |
7823389 | Seitzer | Nov 2010 | B2 |
7882691 | Lemmers, Jr. et al. | Feb 2011 | B2 |
7886520 | Stretton et al. | Feb 2011 | B2 |
8015828 | Moniz et al. | Sep 2011 | B2 |
8037686 | Lasker | Oct 2011 | B2 |
8087249 | Ottaviano et al. | Jan 2012 | B2 |
8181443 | Rago | May 2012 | B2 |
8307662 | Turco | Nov 2012 | B2 |
8350398 | Butt | Jan 2013 | B2 |
8397487 | Sennoun et al. | Mar 2013 | B2 |
8402742 | Roberge et al. | Mar 2013 | B2 |
8434997 | Pinero et al. | May 2013 | B2 |
8511967 | Suciu et al. | Aug 2013 | B2 |
8522529 | Martinou et al. | Sep 2013 | B2 |
8572982 | Tiemann | Nov 2013 | B2 |
8602717 | Suciu et al. | Dec 2013 | B2 |
8621871 | McCune et al. | Jan 2014 | B2 |
8727703 | Laurello et al. | May 2014 | B2 |
8776952 | Schwarz et al. | Jul 2014 | B2 |
8814502 | Eleftheriou | Aug 2014 | B2 |
8876465 | Stretton | Nov 2014 | B2 |
8961108 | Bergman et al. | Feb 2015 | B2 |
9234481 | Suciu et al. | Jan 2016 | B2 |
9243563 | Lo | Jan 2016 | B2 |
9255492 | Bacic | Feb 2016 | B2 |
9297391 | Rued et al. | Mar 2016 | B2 |
9422063 | Diaz | Aug 2016 | B2 |
9429072 | Diaz et al. | Aug 2016 | B2 |
9850819 | Suciu et al. | Dec 2017 | B2 |
9856793 | Zelesky et al. | Jan 2018 | B2 |
20030046938 | Mortzheim et al. | Mar 2003 | A1 |
20040088995 | Reissig | May 2004 | A1 |
20050172612 | Yamanaka et al. | Aug 2005 | A1 |
20070022735 | Henry et al. | Feb 2007 | A1 |
20070213917 | Bruno et al. | Sep 2007 | A1 |
20070245738 | Stretton et al. | Oct 2007 | A1 |
20080028763 | Schwarz et al. | Feb 2008 | A1 |
20080230651 | Porte | Sep 2008 | A1 |
20080253881 | Richards | Oct 2008 | A1 |
20090007567 | Porte et al. | Jan 2009 | A1 |
20090090096 | Sheridan | Apr 2009 | A1 |
20090145102 | Roberge et al. | Jun 2009 | A1 |
20090196736 | Sengar | Aug 2009 | A1 |
20090226297 | Yanagi et al. | Sep 2009 | A1 |
20090272120 | Tiemann | Nov 2009 | A1 |
20100043396 | Coffinberry | Feb 2010 | A1 |
20100154434 | Kubota et al. | Jun 2010 | A1 |
20110036066 | Zhang et al. | Feb 2011 | A1 |
20110088405 | Turco | Apr 2011 | A1 |
20110120083 | Giffin et al. | May 2011 | A1 |
20110247344 | Glahn et al. | Oct 2011 | A1 |
20120067055 | Held | Mar 2012 | A1 |
20120102915 | Baltas | May 2012 | A1 |
20120159961 | Krautheim et al. | Jun 2012 | A1 |
20120180509 | DeFrancesco | Jul 2012 | A1 |
20130036747 | Fuchs et al. | Feb 2013 | A1 |
20130067928 | Arias Chao et al. | Mar 2013 | A1 |
20130098059 | Suciu et al. | Apr 2013 | A1 |
20130145744 | Lo et al. | Jun 2013 | A1 |
20130145774 | Duong et al. | Jun 2013 | A1 |
20130186102 | Lo | Jul 2013 | A1 |
20130199156 | Ress, Jr. et al. | Aug 2013 | A1 |
20130239583 | Suciu et al. | Sep 2013 | A1 |
20130319002 | Sidelkovskiy et al. | Dec 2013 | A1 |
20140020506 | Duong | Jan 2014 | A1 |
20140137417 | Silberberg et al. | May 2014 | A1 |
20140196469 | Finney et al. | Jul 2014 | A1 |
20140230444 | Hao et al. | Aug 2014 | A1 |
20140250898 | Mackin et al. | Sep 2014 | A1 |
20140260326 | Schwarz et al. | Sep 2014 | A1 |
20140311157 | Laurello et al. | Oct 2014 | A1 |
20140341704 | Fletcher | Nov 2014 | A1 |
20140352315 | Diaz | Dec 2014 | A1 |
20150114611 | Morris et al. | Apr 2015 | A1 |
20150275769 | Foutch | Oct 2015 | A1 |
20150285147 | Phillips | Oct 2015 | A1 |
20150308339 | Forcier | Oct 2015 | A1 |
20150330236 | Beecroft et al. | Nov 2015 | A1 |
20150354465 | Suciu et al. | Dec 2015 | A1 |
20150354822 | Suciu et al. | Dec 2015 | A1 |
20160010554 | Suciu et al. | Jan 2016 | A1 |
20160131036 | Bintz et al. | May 2016 | A1 |
20160131037 | Spangler | May 2016 | A1 |
20160169118 | Duong | Jun 2016 | A1 |
20160215732 | Malecki | Jul 2016 | A1 |
20160237901 | Zelesky | Aug 2016 | A1 |
20160237906 | Suciu | Aug 2016 | A1 |
20160312615 | Lyons | Oct 2016 | A1 |
20160312797 | Suciu | Oct 2016 | A1 |
20160341125 | Kraft et al. | Nov 2016 | A1 |
20160369697 | Schwarz et al. | Dec 2016 | A1 |
20170009657 | Schwarz | Jan 2017 | A1 |
20170044980 | Duesler et al. | Feb 2017 | A1 |
20170044982 | Duesler et al. | Feb 2017 | A1 |
20170152765 | Uechi et al. | Jun 2017 | A1 |
20170159568 | Sennoun et al. | Jun 2017 | A1 |
20170167388 | Merry | Jun 2017 | A1 |
20170175632 | Hanrahan | Jun 2017 | A1 |
20170184027 | Moniz | Jun 2017 | A1 |
20170204787 | Duesler et al. | Jul 2017 | A1 |
20170306794 | Schwarz | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
2852057 | Jun 1979 | DE |
0447886 | Sep 1991 | EP |
0469825 | Feb 1992 | EP |
0608142 | Jul 1994 | EP |
0903484 | Mar 1999 | EP |
1314872 | May 2003 | EP |
1944475 | Jul 2008 | EP |
2085599 | Aug 2009 | EP |
2128023 | Dec 2009 | EP |
2362081 | Aug 2011 | EP |
2540991 | Jan 2013 | EP |
2584172 | Apr 2013 | EP |
2604825 | Jun 2013 | EP |
2733322 | May 2014 | EP |
2865981 | Apr 2015 | EP |
2942490 | Nov 2015 | EP |
3085923 | Oct 2016 | EP |
3085924 | Oct 2016 | EP |
3109436 | Dec 2016 | EP |
3121411 | Jan 2017 | EP |
3296543 | Mar 2018 | EP |
2851295 | Aug 2004 | FR |
1244340 | Aug 1971 | GB |
2152148 | Jul 1985 | GB |
H1136889 | Feb 1999 | JP |
2003037715 | May 2003 | WO |
2008082335 | Jul 2008 | WO |
2013154631 | Oct 2013 | WO |
2014046713 | Mar 2014 | WO |
2014092777 | Jun 2014 | WO |
2014120125 | Aug 2014 | WO |
Entry |
---|
The Extended European Search Report for EP Application No. 19164741.1, dated Jul. 23, 2019. |
Dornheim, Michael A., Rolls-Royce Trent 1000 to Drive Boeing 787 Accessories From IP Spool, Aviation Week & Space Technology, Mar. 28, 2005, p. 51, Los Angeles, CA. |
U.S. Appl. No. 15/232,101. |
U.S. Appl. No. 14/964,984. |
U.S. Appl. No. 14/967,446. |
U.S. Appl. No. 15/069,197. |
U.S. Appl. No. 15/269,014. |
U.S. Appl. No. 15/373,072. |
European Search Report for European Application No. 16166707.6 dated Sep. 26, 2016. |
European Search Report for European Application No. 16166724.1 dated Sep. 26, 2016. |
European Search Report for European Patent Application No. 16154635.3 dated Jul. 6, 2016. |
European Search Report for European Application No. 16155316.9 completed Jun. 30, 2016. |
European Search Report for Application No. 16170021.6 dated Oct. 11, 2016. |
European Search Report for Application No. 16174862.9 dated Nov. 7, 2016. |
European Search Report for European Application No. 16175531.9 dated Nov. 15, 2016. |
European Search Report for European Application No. 16175533.5 dated Nov. 15, 2016. |
European Search Report for European Application No. 16175552.5 dated Nov. 17, 2016. |
European Search Report for European Application No. 16175760.4 dated Nov. 16, 2016. |
European Search Report for Application No. 16178207.3 dated Nov. 21, 2016. |
European Search Report for European Application No. 16202876.5 dated Apr. 24, 2017. |
European Search Report for European Application No. 16180657.5 dated Dec. 16, 2016. |
European Search Report for EP Application No. 17160816.9 dated Jul. 21, 2017. |
Number | Date | Country | |
---|---|---|---|
20190292985 A1 | Sep 2019 | US |