Priority is hereby claimed to German Patent Application No. DE 10 2005 058 769.0 filed on Dec. 9, 2006, the entire contents of which are incorporated herein by reference.
Flat tube intercoolers having multiple collection chambers exist in the art. Such intercoolers are known, for example, from DE 43 07 503 A1. There, the disclosed intercooler has a one-piece connection plate. Also, rather than having one-piece flat tubes in the intercooler, heat exchanger plates form the flat tubes.
Another heat exchanger which is presumably also an intercooler is known from DE 44 07 080 A1. The intercooler disclosed therein has no connection plate shown or described. The flat tubes are likewise constructed from plates.
The present invention takes this state of the art as a starting point, from which the inventors have been presented with the task of reducing the number of parts of the heat exchanger in order to lead to a better manufacturability (among other things).
Some embodiments of present proposal provide an intercooler that is arranged in a casing through which charge air can flow. In addition, a characteristic of the design in some embodiments is the use of a special connection plate of the intercooler.
Manufacturability can be improved in some embodiments by the use of at least four collecting chambers (hereinafter “collecting tubes”), whereby coolant follows at least one outgoing route that lies between first and second collecting tubes, and a return route in an opposite direction that lies between the third and the fourth collecting tubes. The outgoing route and the return route, seen in the flow direction of the charging air, can be provided in flat tube-corrugated rib layers arranged one after another. Substantially shorter solder connections are available, which can reduce the danger of leaks. Also, in some embodiments, the first and fourth collecting tubes can be constructed as a double tube, and/or the second and third collecting tubes can be constructed as a double tube.
The collecting tubes can consist of round, rectangular, or oval tubes that contain a series of slits for the intake of the ends of flat tubes. The provision of intake slits can lead to an economical manufacturing of heat exchangers also yielding tight soldering connections.
In some embodiments, the collecting tubes extend parallel to each other. The connection plate referenced above can be constructed of multiple components, such as a two-components connection plate. One component of the connection plate can be a frame component, while the other can be a generally flat component. Also, in some embodiments, the flow connection between the second collecting tube and the third collecting tube takes place by means of the connection plate. For example, in the frame part of the connection plate, an excess flow dome can be constructed. The flat component of the connection plate can have at least four openings which receive the ends of the collection tubes.
The flat component in some embodiments of the connection plate can include a trough, whereby the trough rests on an outermost corrugated rib of the tube and fin assembly. Also, the frame component of the connection plate can rest flat upon the full perimeter of the edge of the trough.
As another alternative, the flow connection between the second and third collecting tubes can be provided at or near the ends of the second and third collection tubes opposite the connection plate.
The flat tubes can be constructed as single components. For example, a flat tube can be welded with a longitudinal weld, or can be a semi-finished part, such as a drawn or extruded flat tube.
On the ends of the collection tubes opposite the connection plate, an additional plate can be present that closes the ends of the collection tubes. This additional plate can be an end plate of the assembly.
The present invention is described below with the aid of the enclosed embodiment drawings by way of example only.
The following description comprises additional characteristics and actions that are possibly of a greater significance than is expected at the present time.
With reference first to
As is well known, in order to increase the volume efficiency of the cylinder, and thereby the effectiveness of turbo charging, charge air can be cooled by means of an intercooler. An example of an intercooler is illustrated in
In some embodiments, all individual components of the intercooler are aluminum, and are connected in a soldering furnace.
The illustrated exemplary embodiment of
The connection plate 5 can serve as a device to attach the intercooler to the edge or other portion of the opening 60 of the casing 6. To this end, the connection plate 5 can be provided with attachment openings 57. A plate 50 closing the front side openings of the collecting tubes 3.1-3.4 can be located at the ends of the collecting tubes 3.1-3.4 opposite the connection plate 5, and can be constructed with corresponding bulges 52. In addition, a projecting edge 51 can be provided that supports the attachment of the intercooler when, for example, the projecting edge 51 is received within a groove (not shown) constructed in the casing 6.
The previously-mentioned connection pieces 4 can be constructed integrally with the collecting tubes 3, such as when the collecting tubes 3 have an approximately round cross sectional shape as shown in
Moreover, there are additional construction variants with respect to the design of the transfer of coolant from one of the collecting tubes to another, as is shown in the
All in all, a relatively manufacturing-friendly heat exchanger can be generated by utilizing one or more features of the present invention. The collecting tubes 3.1-3.4 can be manufactured as semi-finished parts, can be cut to length, and can be provided with slits 13. Welded or drawn flat tubes 1 can be cut to length and stacked with corrugated ribs 2. Also, the ends of the flat tubes 1 can be slid into the slits 13 of the collecting tubes 3.1-3.4. The connection plate 5 and the plate 50 (which can be an end plate) can be applied. In some embodiments, the whole construction is soldered in a soldering furnace, and is then available for the assembly in the casing 6 as an intercooler.
The embodiments described above and illustrated in the figures are presented by way of example only and are not intended as a limitation upon the concepts and principles of the present invention. As such, it will be appreciated by one having ordinary skill in the art that various changes in the elements and their configuration and arrangement are possible without departing from the spirit and scope of the present invention as set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 058 769 | Dec 2005 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3444926 | Stalberg | May 1969 | A |
3939908 | Chartet | Feb 1976 | A |
4081025 | Donaldson | Mar 1978 | A |
5042577 | Suzumura | Aug 1991 | A |
5211222 | Shinmura | May 1993 | A |
5435383 | Rajagopal | Jul 1995 | A |
5607012 | Buchanan et al. | Mar 1997 | A |
5875834 | Brooks | Mar 1999 | A |
5964282 | Seiler et al. | Oct 1999 | A |
6220340 | Cheong et al. | Apr 2001 | B1 |
6467536 | Abate et al. | Oct 2002 | B1 |
6478080 | Pinto | Nov 2002 | B2 |
6571866 | AbdulNour et al. | Jun 2003 | B2 |
6918434 | Strahle | Jul 2005 | B2 |
7222501 | Cho et al. | May 2007 | B2 |
7303003 | Ohhashi et al. | Dec 2007 | B2 |
7367386 | Sato et al. | May 2008 | B2 |
7416018 | Thunwall et al. | Aug 2008 | B2 |
7520319 | Ohno | Apr 2009 | B2 |
20020139520 | Pinto | Oct 2002 | A1 |
20020179291 | Abate et al. | Dec 2002 | A1 |
20040206490 | Katoh et al. | Oct 2004 | A1 |
20060162918 | Horiuchi et al. | Jul 2006 | A1 |
20070144721 | Watanabe et al. | Jun 2007 | A1 |
20070251681 | Higashiyama et al. | Nov 2007 | A1 |
20070277964 | Higashiyama et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
4307503 | Sep 1994 | DE |
4407080 | Sep 1994 | DE |
69019633 | Nov 1995 | DE |
19833845 | Feb 2000 | DE |
19859756 | Jul 2000 | DE |
19933913 | Feb 2001 | DE |
19961199 | Jun 2001 | DE |
102004009415 | Sep 2005 | DE |
Number | Date | Country | |
---|---|---|---|
20070193731 A1 | Aug 2007 | US |