BRIEF DESCRIPTION OF THE DRAWINGS
Another objectives, characteristics and advantages of the present invention will become more evident from the following detailed description, when taken together with the drawings, in which:
FIG. 1
a shows a stone slab colored by known immersion methods;
FIG. 1
b shows a stone slab colored by the methods of the present invention;
FIG. 2 shows a stone slab placed into a stuffiness chamber;
FIG. 3 shows a stone slab placed into a vacuum chamber;
FIG. 4 shows a stone slab placed into a pressure chamber.
DETAILED DESCRIPTION OF THE INVENTION
As can be understood from the drawings, wherein equal numeric references identify correspondent parts, FIG. 1a shows a slab colored by immersion method, being possible to observe the non-homogeneous dyeing of the hole thickness of the-stone slab 2, the FIG. 1b shows a stone slab 2 colored by the coloration methods described in the present invention, occurring a homogeneous coloration of the hole thickness of the stone slab 2. FIG. 2 shows a stone slab 2, placed in a stuffiness chamber 7, being applied a coloring solution 3 through the use of brushes, rolls, spray, etc., in one or more surfaces of said stone slab 2, such coloring solution 2 can have different colors for each application area in the stone slab 2. The stuffiness chamber 7 is closed and the stone slab 2 is maintained into the stuffiness chamber 7 by a period of time necessary for the penetration of the colorant solution 3 by the pores of the surface of said stone slab 2, in its hole thickness. The atmosphere inside the stuffiness chamber 7 becomes saturated of colorant solution 3, thus allowing a greater penetration of the colorant solution 3 in the stone slab 2. The stuffiness chamber 7, or the-stone slab 2, can be submitted to heating in order to accelerate the method of total coloration of the stone slab 2.
FIG. 3 has a vacuum chamber 1, showed in a longitudinal view, in order to facilitate the viewing of the stone slab 2. After the stone slab 2 be placed into the vacuum chamber 1, the coloring solution 3 is applied using brushes, rolls, spray, etc., in one or more surfaces of said stone slab 2, such coloring solution 3 can be all of a single color or have different colors for each application area of the stone slab 2. Then, the vacuum chamber 1 is closed and the extraction process of the air of its interior is started, trough the mouthpiece 4, that is connected to a piping 5 connected to a vacuum pump (not showed). The mouthpiece 4 is coupled in a tight way to the stone slab 2, so that the air removed from the interior of the vacuum chamber 1 will be forced to pass by the pores of the stone slab 2, thus carrying the colorant solution 3 that is in contact with the surface of the stone slab 2. In this way the colorant solution will penetrate by the pores of the stone slab 2, allowing the coloration of the interior of the stone slab 2, going from one side to another.
FIG. 4 presents a pressure chamber 6, showed in a longitudinal section view, in order to facilitate the viewing of the stone slab 2. After the stone slab-2 be placed into the pressure chamber 6, a colorant solution 3 is applied using brushes, rolls, spray, etc., in one or more surfaces of said stone slab 2, such coloring solution 3 can be of only one color or have different colors for each application area of the stone slab 2. Then the pressure chamber 6 is closed and the compression process of its interior air is started, through the injection of air trough the mouthpiece 8 which are coupled to a piping 5 connected to an air compressor (not showed). The air pressure increase into the pressure chamber 6 makes the hole surface of said stone slab 2 subjected to the compression and, by this way, the colorant solution 3 that is in contact with the surface of the stone slab 2 is forced to penetrate by the pores of the stone slab 2, allowing the dying of the hole thickness of the slab-stone 2 interior.
The pressure chamber 6, shown in FIG. 3, alternatively can further be used as vacuum chamber, by just connecting the vacuum pump (not showed) to the piping 9, allowing a final result, different of the obtained by the use of the vacuum chamber 1, as described in FIG. 2, to be obtained.
In the above-described methods, the stone slab 2 can be heated in order to accelerate the coloration method. Said coloration methods are complemented by the use of a proofing specially developed, based of vegetable oils that do not attack neither the stone nor the color, mixed to the coloring solution 3 that penetrates in the interior of the stone slab 2, the proofing, by this way, protecting against degrading agents of the stone and protecting the applied color against abrasive products, the natural wear, besides stabilizing and fixing the resulting coloration in the stone slab 2 and making it hydro-oil repellent.